]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/platforms/powernv/pci-ioda.c
c226d9fe455e820806ff4d92df85578b5cecab79
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2 * Support PCI/PCIe on PowerNV platforms
3 *
4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45
46 #include <misc/cxl-base.h>
47
48 #include "powernv.h"
49 #include "pci.h"
50
51 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */
52 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */
53 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
54
55 #define POWERNV_IOMMU_DEFAULT_LEVELS 1
56 #define POWERNV_IOMMU_MAX_LEVELS 5
57
58 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
59 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
60
61 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
62 const char *fmt, ...)
63 {
64 struct va_format vaf;
65 va_list args;
66 char pfix[32];
67
68 va_start(args, fmt);
69
70 vaf.fmt = fmt;
71 vaf.va = &args;
72
73 if (pe->flags & PNV_IODA_PE_DEV)
74 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
75 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
76 sprintf(pfix, "%04x:%02x ",
77 pci_domain_nr(pe->pbus), pe->pbus->number);
78 #ifdef CONFIG_PCI_IOV
79 else if (pe->flags & PNV_IODA_PE_VF)
80 sprintf(pfix, "%04x:%02x:%2x.%d",
81 pci_domain_nr(pe->parent_dev->bus),
82 (pe->rid & 0xff00) >> 8,
83 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
84 #endif /* CONFIG_PCI_IOV*/
85
86 printk("%spci %s: [PE# %.2x] %pV",
87 level, pfix, pe->pe_number, &vaf);
88
89 va_end(args);
90 }
91
92 static bool pnv_iommu_bypass_disabled __read_mostly;
93
94 static int __init iommu_setup(char *str)
95 {
96 if (!str)
97 return -EINVAL;
98
99 while (*str) {
100 if (!strncmp(str, "nobypass", 8)) {
101 pnv_iommu_bypass_disabled = true;
102 pr_info("PowerNV: IOMMU bypass window disabled.\n");
103 break;
104 }
105 str += strcspn(str, ",");
106 if (*str == ',')
107 str++;
108 }
109
110 return 0;
111 }
112 early_param("iommu", iommu_setup);
113
114 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
115 {
116 /*
117 * WARNING: We cannot rely on the resource flags. The Linux PCI
118 * allocation code sometimes decides to put a 64-bit prefetchable
119 * BAR in the 32-bit window, so we have to compare the addresses.
120 *
121 * For simplicity we only test resource start.
122 */
123 return (r->start >= phb->ioda.m64_base &&
124 r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
125 }
126
127 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
128 {
129 unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
130
131 return (resource_flags & flags) == flags;
132 }
133
134 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
135 {
136 s64 rc;
137
138 phb->ioda.pe_array[pe_no].phb = phb;
139 phb->ioda.pe_array[pe_no].pe_number = pe_no;
140
141 /*
142 * Clear the PE frozen state as it might be put into frozen state
143 * in the last PCI remove path. It's not harmful to do so when the
144 * PE is already in unfrozen state.
145 */
146 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
147 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
148 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
149 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
150 __func__, rc, phb->hose->global_number, pe_no);
151
152 return &phb->ioda.pe_array[pe_no];
153 }
154
155 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
156 {
157 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
158 pr_warn("%s: Invalid PE %x on PHB#%x\n",
159 __func__, pe_no, phb->hose->global_number);
160 return;
161 }
162
163 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
164 pr_debug("%s: PE %x was reserved on PHB#%x\n",
165 __func__, pe_no, phb->hose->global_number);
166
167 pnv_ioda_init_pe(phb, pe_no);
168 }
169
170 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
171 {
172 long pe;
173
174 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
175 if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
176 return pnv_ioda_init_pe(phb, pe);
177 }
178
179 return NULL;
180 }
181
182 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
183 {
184 struct pnv_phb *phb = pe->phb;
185 unsigned int pe_num = pe->pe_number;
186
187 WARN_ON(pe->pdev);
188
189 memset(pe, 0, sizeof(struct pnv_ioda_pe));
190 clear_bit(pe_num, phb->ioda.pe_alloc);
191 }
192
193 /* The default M64 BAR is shared by all PEs */
194 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
195 {
196 const char *desc;
197 struct resource *r;
198 s64 rc;
199
200 /* Configure the default M64 BAR */
201 rc = opal_pci_set_phb_mem_window(phb->opal_id,
202 OPAL_M64_WINDOW_TYPE,
203 phb->ioda.m64_bar_idx,
204 phb->ioda.m64_base,
205 0, /* unused */
206 phb->ioda.m64_size);
207 if (rc != OPAL_SUCCESS) {
208 desc = "configuring";
209 goto fail;
210 }
211
212 /* Enable the default M64 BAR */
213 rc = opal_pci_phb_mmio_enable(phb->opal_id,
214 OPAL_M64_WINDOW_TYPE,
215 phb->ioda.m64_bar_idx,
216 OPAL_ENABLE_M64_SPLIT);
217 if (rc != OPAL_SUCCESS) {
218 desc = "enabling";
219 goto fail;
220 }
221
222 /*
223 * Exclude the segments for reserved and root bus PE, which
224 * are first or last two PEs.
225 */
226 r = &phb->hose->mem_resources[1];
227 if (phb->ioda.reserved_pe_idx == 0)
228 r->start += (2 * phb->ioda.m64_segsize);
229 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
230 r->end -= (2 * phb->ioda.m64_segsize);
231 else
232 pr_warn(" Cannot strip M64 segment for reserved PE#%x\n",
233 phb->ioda.reserved_pe_idx);
234
235 return 0;
236
237 fail:
238 pr_warn(" Failure %lld %s M64 BAR#%d\n",
239 rc, desc, phb->ioda.m64_bar_idx);
240 opal_pci_phb_mmio_enable(phb->opal_id,
241 OPAL_M64_WINDOW_TYPE,
242 phb->ioda.m64_bar_idx,
243 OPAL_DISABLE_M64);
244 return -EIO;
245 }
246
247 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
248 unsigned long *pe_bitmap)
249 {
250 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
251 struct pnv_phb *phb = hose->private_data;
252 struct resource *r;
253 resource_size_t base, sgsz, start, end;
254 int segno, i;
255
256 base = phb->ioda.m64_base;
257 sgsz = phb->ioda.m64_segsize;
258 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
259 r = &pdev->resource[i];
260 if (!r->parent || !pnv_pci_is_m64(phb, r))
261 continue;
262
263 start = _ALIGN_DOWN(r->start - base, sgsz);
264 end = _ALIGN_UP(r->end - base, sgsz);
265 for (segno = start / sgsz; segno < end / sgsz; segno++) {
266 if (pe_bitmap)
267 set_bit(segno, pe_bitmap);
268 else
269 pnv_ioda_reserve_pe(phb, segno);
270 }
271 }
272 }
273
274 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
275 {
276 struct resource *r;
277 int index;
278
279 /*
280 * There are 16 M64 BARs, each of which has 8 segments. So
281 * there are as many M64 segments as the maximum number of
282 * PEs, which is 128.
283 */
284 for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
285 unsigned long base, segsz = phb->ioda.m64_segsize;
286 int64_t rc;
287
288 base = phb->ioda.m64_base +
289 index * PNV_IODA1_M64_SEGS * segsz;
290 rc = opal_pci_set_phb_mem_window(phb->opal_id,
291 OPAL_M64_WINDOW_TYPE, index, base, 0,
292 PNV_IODA1_M64_SEGS * segsz);
293 if (rc != OPAL_SUCCESS) {
294 pr_warn(" Error %lld setting M64 PHB#%x-BAR#%d\n",
295 rc, phb->hose->global_number, index);
296 goto fail;
297 }
298
299 rc = opal_pci_phb_mmio_enable(phb->opal_id,
300 OPAL_M64_WINDOW_TYPE, index,
301 OPAL_ENABLE_M64_SPLIT);
302 if (rc != OPAL_SUCCESS) {
303 pr_warn(" Error %lld enabling M64 PHB#%x-BAR#%d\n",
304 rc, phb->hose->global_number, index);
305 goto fail;
306 }
307 }
308
309 /*
310 * Exclude the segments for reserved and root bus PE, which
311 * are first or last two PEs.
312 */
313 r = &phb->hose->mem_resources[1];
314 if (phb->ioda.reserved_pe_idx == 0)
315 r->start += (2 * phb->ioda.m64_segsize);
316 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
317 r->end -= (2 * phb->ioda.m64_segsize);
318 else
319 WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
320 phb->ioda.reserved_pe_idx, phb->hose->global_number);
321
322 return 0;
323
324 fail:
325 for ( ; index >= 0; index--)
326 opal_pci_phb_mmio_enable(phb->opal_id,
327 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
328
329 return -EIO;
330 }
331
332 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
333 unsigned long *pe_bitmap,
334 bool all)
335 {
336 struct pci_dev *pdev;
337
338 list_for_each_entry(pdev, &bus->devices, bus_list) {
339 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
340
341 if (all && pdev->subordinate)
342 pnv_ioda_reserve_m64_pe(pdev->subordinate,
343 pe_bitmap, all);
344 }
345 }
346
347 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
348 {
349 struct pci_controller *hose = pci_bus_to_host(bus);
350 struct pnv_phb *phb = hose->private_data;
351 struct pnv_ioda_pe *master_pe, *pe;
352 unsigned long size, *pe_alloc;
353 int i;
354
355 /* Root bus shouldn't use M64 */
356 if (pci_is_root_bus(bus))
357 return NULL;
358
359 /* Allocate bitmap */
360 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
361 pe_alloc = kzalloc(size, GFP_KERNEL);
362 if (!pe_alloc) {
363 pr_warn("%s: Out of memory !\n",
364 __func__);
365 return NULL;
366 }
367
368 /* Figure out reserved PE numbers by the PE */
369 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
370
371 /*
372 * the current bus might not own M64 window and that's all
373 * contributed by its child buses. For the case, we needn't
374 * pick M64 dependent PE#.
375 */
376 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
377 kfree(pe_alloc);
378 return NULL;
379 }
380
381 /*
382 * Figure out the master PE and put all slave PEs to master
383 * PE's list to form compound PE.
384 */
385 master_pe = NULL;
386 i = -1;
387 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
388 phb->ioda.total_pe_num) {
389 pe = &phb->ioda.pe_array[i];
390
391 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
392 if (!master_pe) {
393 pe->flags |= PNV_IODA_PE_MASTER;
394 INIT_LIST_HEAD(&pe->slaves);
395 master_pe = pe;
396 } else {
397 pe->flags |= PNV_IODA_PE_SLAVE;
398 pe->master = master_pe;
399 list_add_tail(&pe->list, &master_pe->slaves);
400 }
401
402 /*
403 * P7IOC supports M64DT, which helps mapping M64 segment
404 * to one particular PE#. However, PHB3 has fixed mapping
405 * between M64 segment and PE#. In order to have same logic
406 * for P7IOC and PHB3, we enforce fixed mapping between M64
407 * segment and PE# on P7IOC.
408 */
409 if (phb->type == PNV_PHB_IODA1) {
410 int64_t rc;
411
412 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
413 pe->pe_number, OPAL_M64_WINDOW_TYPE,
414 pe->pe_number / PNV_IODA1_M64_SEGS,
415 pe->pe_number % PNV_IODA1_M64_SEGS);
416 if (rc != OPAL_SUCCESS)
417 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
418 __func__, rc, phb->hose->global_number,
419 pe->pe_number);
420 }
421 }
422
423 kfree(pe_alloc);
424 return master_pe;
425 }
426
427 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
428 {
429 struct pci_controller *hose = phb->hose;
430 struct device_node *dn = hose->dn;
431 struct resource *res;
432 u32 m64_range[2], i;
433 const __be32 *r;
434 u64 pci_addr;
435
436 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
437 pr_info(" Not support M64 window\n");
438 return;
439 }
440
441 if (!firmware_has_feature(FW_FEATURE_OPAL)) {
442 pr_info(" Firmware too old to support M64 window\n");
443 return;
444 }
445
446 r = of_get_property(dn, "ibm,opal-m64-window", NULL);
447 if (!r) {
448 pr_info(" No <ibm,opal-m64-window> on %s\n",
449 dn->full_name);
450 return;
451 }
452
453 /*
454 * Find the available M64 BAR range and pickup the last one for
455 * covering the whole 64-bits space. We support only one range.
456 */
457 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
458 m64_range, 2)) {
459 /* In absence of the property, assume 0..15 */
460 m64_range[0] = 0;
461 m64_range[1] = 16;
462 }
463 /* We only support 64 bits in our allocator */
464 if (m64_range[1] > 63) {
465 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
466 __func__, m64_range[1], phb->hose->global_number);
467 m64_range[1] = 63;
468 }
469 /* Empty range, no m64 */
470 if (m64_range[1] <= m64_range[0]) {
471 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
472 __func__, phb->hose->global_number);
473 return;
474 }
475
476 /* Configure M64 informations */
477 res = &hose->mem_resources[1];
478 res->name = dn->full_name;
479 res->start = of_translate_address(dn, r + 2);
480 res->end = res->start + of_read_number(r + 4, 2) - 1;
481 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
482 pci_addr = of_read_number(r, 2);
483 hose->mem_offset[1] = res->start - pci_addr;
484
485 phb->ioda.m64_size = resource_size(res);
486 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
487 phb->ioda.m64_base = pci_addr;
488
489 /* This lines up nicely with the display from processing OF ranges */
490 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
491 res->start, res->end, pci_addr, m64_range[0],
492 m64_range[0] + m64_range[1] - 1);
493
494 /* Mark all M64 used up by default */
495 phb->ioda.m64_bar_alloc = (unsigned long)-1;
496
497 /* Use last M64 BAR to cover M64 window */
498 m64_range[1]--;
499 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
500
501 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
502
503 /* Mark remaining ones free */
504 for (i = m64_range[0]; i < m64_range[1]; i++)
505 clear_bit(i, &phb->ioda.m64_bar_alloc);
506
507 /*
508 * Setup init functions for M64 based on IODA version, IODA3 uses
509 * the IODA2 code.
510 */
511 if (phb->type == PNV_PHB_IODA1)
512 phb->init_m64 = pnv_ioda1_init_m64;
513 else
514 phb->init_m64 = pnv_ioda2_init_m64;
515 phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
516 phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
517 }
518
519 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
520 {
521 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
522 struct pnv_ioda_pe *slave;
523 s64 rc;
524
525 /* Fetch master PE */
526 if (pe->flags & PNV_IODA_PE_SLAVE) {
527 pe = pe->master;
528 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
529 return;
530
531 pe_no = pe->pe_number;
532 }
533
534 /* Freeze master PE */
535 rc = opal_pci_eeh_freeze_set(phb->opal_id,
536 pe_no,
537 OPAL_EEH_ACTION_SET_FREEZE_ALL);
538 if (rc != OPAL_SUCCESS) {
539 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
540 __func__, rc, phb->hose->global_number, pe_no);
541 return;
542 }
543
544 /* Freeze slave PEs */
545 if (!(pe->flags & PNV_IODA_PE_MASTER))
546 return;
547
548 list_for_each_entry(slave, &pe->slaves, list) {
549 rc = opal_pci_eeh_freeze_set(phb->opal_id,
550 slave->pe_number,
551 OPAL_EEH_ACTION_SET_FREEZE_ALL);
552 if (rc != OPAL_SUCCESS)
553 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
554 __func__, rc, phb->hose->global_number,
555 slave->pe_number);
556 }
557 }
558
559 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
560 {
561 struct pnv_ioda_pe *pe, *slave;
562 s64 rc;
563
564 /* Find master PE */
565 pe = &phb->ioda.pe_array[pe_no];
566 if (pe->flags & PNV_IODA_PE_SLAVE) {
567 pe = pe->master;
568 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
569 pe_no = pe->pe_number;
570 }
571
572 /* Clear frozen state for master PE */
573 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
574 if (rc != OPAL_SUCCESS) {
575 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
576 __func__, rc, opt, phb->hose->global_number, pe_no);
577 return -EIO;
578 }
579
580 if (!(pe->flags & PNV_IODA_PE_MASTER))
581 return 0;
582
583 /* Clear frozen state for slave PEs */
584 list_for_each_entry(slave, &pe->slaves, list) {
585 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
586 slave->pe_number,
587 opt);
588 if (rc != OPAL_SUCCESS) {
589 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
590 __func__, rc, opt, phb->hose->global_number,
591 slave->pe_number);
592 return -EIO;
593 }
594 }
595
596 return 0;
597 }
598
599 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
600 {
601 struct pnv_ioda_pe *slave, *pe;
602 u8 fstate, state;
603 __be16 pcierr;
604 s64 rc;
605
606 /* Sanity check on PE number */
607 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
608 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
609
610 /*
611 * Fetch the master PE and the PE instance might be
612 * not initialized yet.
613 */
614 pe = &phb->ioda.pe_array[pe_no];
615 if (pe->flags & PNV_IODA_PE_SLAVE) {
616 pe = pe->master;
617 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
618 pe_no = pe->pe_number;
619 }
620
621 /* Check the master PE */
622 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
623 &state, &pcierr, NULL);
624 if (rc != OPAL_SUCCESS) {
625 pr_warn("%s: Failure %lld getting "
626 "PHB#%x-PE#%x state\n",
627 __func__, rc,
628 phb->hose->global_number, pe_no);
629 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
630 }
631
632 /* Check the slave PE */
633 if (!(pe->flags & PNV_IODA_PE_MASTER))
634 return state;
635
636 list_for_each_entry(slave, &pe->slaves, list) {
637 rc = opal_pci_eeh_freeze_status(phb->opal_id,
638 slave->pe_number,
639 &fstate,
640 &pcierr,
641 NULL);
642 if (rc != OPAL_SUCCESS) {
643 pr_warn("%s: Failure %lld getting "
644 "PHB#%x-PE#%x state\n",
645 __func__, rc,
646 phb->hose->global_number, slave->pe_number);
647 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
648 }
649
650 /*
651 * Override the result based on the ascending
652 * priority.
653 */
654 if (fstate > state)
655 state = fstate;
656 }
657
658 return state;
659 }
660
661 /* Currently those 2 are only used when MSIs are enabled, this will change
662 * but in the meantime, we need to protect them to avoid warnings
663 */
664 #ifdef CONFIG_PCI_MSI
665 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
666 {
667 struct pci_controller *hose = pci_bus_to_host(dev->bus);
668 struct pnv_phb *phb = hose->private_data;
669 struct pci_dn *pdn = pci_get_pdn(dev);
670
671 if (!pdn)
672 return NULL;
673 if (pdn->pe_number == IODA_INVALID_PE)
674 return NULL;
675 return &phb->ioda.pe_array[pdn->pe_number];
676 }
677 #endif /* CONFIG_PCI_MSI */
678
679 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
680 struct pnv_ioda_pe *parent,
681 struct pnv_ioda_pe *child,
682 bool is_add)
683 {
684 const char *desc = is_add ? "adding" : "removing";
685 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
686 OPAL_REMOVE_PE_FROM_DOMAIN;
687 struct pnv_ioda_pe *slave;
688 long rc;
689
690 /* Parent PE affects child PE */
691 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
692 child->pe_number, op);
693 if (rc != OPAL_SUCCESS) {
694 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
695 rc, desc);
696 return -ENXIO;
697 }
698
699 if (!(child->flags & PNV_IODA_PE_MASTER))
700 return 0;
701
702 /* Compound case: parent PE affects slave PEs */
703 list_for_each_entry(slave, &child->slaves, list) {
704 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
705 slave->pe_number, op);
706 if (rc != OPAL_SUCCESS) {
707 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
708 rc, desc);
709 return -ENXIO;
710 }
711 }
712
713 return 0;
714 }
715
716 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
717 struct pnv_ioda_pe *pe,
718 bool is_add)
719 {
720 struct pnv_ioda_pe *slave;
721 struct pci_dev *pdev = NULL;
722 int ret;
723
724 /*
725 * Clear PE frozen state. If it's master PE, we need
726 * clear slave PE frozen state as well.
727 */
728 if (is_add) {
729 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
730 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
731 if (pe->flags & PNV_IODA_PE_MASTER) {
732 list_for_each_entry(slave, &pe->slaves, list)
733 opal_pci_eeh_freeze_clear(phb->opal_id,
734 slave->pe_number,
735 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
736 }
737 }
738
739 /*
740 * Associate PE in PELT. We need add the PE into the
741 * corresponding PELT-V as well. Otherwise, the error
742 * originated from the PE might contribute to other
743 * PEs.
744 */
745 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
746 if (ret)
747 return ret;
748
749 /* For compound PEs, any one affects all of them */
750 if (pe->flags & PNV_IODA_PE_MASTER) {
751 list_for_each_entry(slave, &pe->slaves, list) {
752 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
753 if (ret)
754 return ret;
755 }
756 }
757
758 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
759 pdev = pe->pbus->self;
760 else if (pe->flags & PNV_IODA_PE_DEV)
761 pdev = pe->pdev->bus->self;
762 #ifdef CONFIG_PCI_IOV
763 else if (pe->flags & PNV_IODA_PE_VF)
764 pdev = pe->parent_dev;
765 #endif /* CONFIG_PCI_IOV */
766 while (pdev) {
767 struct pci_dn *pdn = pci_get_pdn(pdev);
768 struct pnv_ioda_pe *parent;
769
770 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
771 parent = &phb->ioda.pe_array[pdn->pe_number];
772 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
773 if (ret)
774 return ret;
775 }
776
777 pdev = pdev->bus->self;
778 }
779
780 return 0;
781 }
782
783 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
784 {
785 struct pci_dev *parent;
786 uint8_t bcomp, dcomp, fcomp;
787 int64_t rc;
788 long rid_end, rid;
789
790 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
791 if (pe->pbus) {
792 int count;
793
794 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
795 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
796 parent = pe->pbus->self;
797 if (pe->flags & PNV_IODA_PE_BUS_ALL)
798 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
799 else
800 count = 1;
801
802 switch(count) {
803 case 1: bcomp = OpalPciBusAll; break;
804 case 2: bcomp = OpalPciBus7Bits; break;
805 case 4: bcomp = OpalPciBus6Bits; break;
806 case 8: bcomp = OpalPciBus5Bits; break;
807 case 16: bcomp = OpalPciBus4Bits; break;
808 case 32: bcomp = OpalPciBus3Bits; break;
809 default:
810 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
811 count);
812 /* Do an exact match only */
813 bcomp = OpalPciBusAll;
814 }
815 rid_end = pe->rid + (count << 8);
816 } else {
817 #ifdef CONFIG_PCI_IOV
818 if (pe->flags & PNV_IODA_PE_VF)
819 parent = pe->parent_dev;
820 else
821 #endif
822 parent = pe->pdev->bus->self;
823 bcomp = OpalPciBusAll;
824 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
825 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
826 rid_end = pe->rid + 1;
827 }
828
829 /* Clear the reverse map */
830 for (rid = pe->rid; rid < rid_end; rid++)
831 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
832
833 /* Release from all parents PELT-V */
834 while (parent) {
835 struct pci_dn *pdn = pci_get_pdn(parent);
836 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
837 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
838 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
839 /* XXX What to do in case of error ? */
840 }
841 parent = parent->bus->self;
842 }
843
844 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
845 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
846
847 /* Disassociate PE in PELT */
848 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
849 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
850 if (rc)
851 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
852 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
853 bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
854 if (rc)
855 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
856
857 pe->pbus = NULL;
858 pe->pdev = NULL;
859 #ifdef CONFIG_PCI_IOV
860 pe->parent_dev = NULL;
861 #endif
862
863 return 0;
864 }
865
866 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
867 {
868 struct pci_dev *parent;
869 uint8_t bcomp, dcomp, fcomp;
870 long rc, rid_end, rid;
871
872 /* Bus validation ? */
873 if (pe->pbus) {
874 int count;
875
876 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
877 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
878 parent = pe->pbus->self;
879 if (pe->flags & PNV_IODA_PE_BUS_ALL)
880 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
881 else
882 count = 1;
883
884 switch(count) {
885 case 1: bcomp = OpalPciBusAll; break;
886 case 2: bcomp = OpalPciBus7Bits; break;
887 case 4: bcomp = OpalPciBus6Bits; break;
888 case 8: bcomp = OpalPciBus5Bits; break;
889 case 16: bcomp = OpalPciBus4Bits; break;
890 case 32: bcomp = OpalPciBus3Bits; break;
891 default:
892 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
893 count);
894 /* Do an exact match only */
895 bcomp = OpalPciBusAll;
896 }
897 rid_end = pe->rid + (count << 8);
898 } else {
899 #ifdef CONFIG_PCI_IOV
900 if (pe->flags & PNV_IODA_PE_VF)
901 parent = pe->parent_dev;
902 else
903 #endif /* CONFIG_PCI_IOV */
904 parent = pe->pdev->bus->self;
905 bcomp = OpalPciBusAll;
906 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
907 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
908 rid_end = pe->rid + 1;
909 }
910
911 /*
912 * Associate PE in PELT. We need add the PE into the
913 * corresponding PELT-V as well. Otherwise, the error
914 * originated from the PE might contribute to other
915 * PEs.
916 */
917 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
918 bcomp, dcomp, fcomp, OPAL_MAP_PE);
919 if (rc) {
920 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
921 return -ENXIO;
922 }
923
924 /*
925 * Configure PELTV. NPUs don't have a PELTV table so skip
926 * configuration on them.
927 */
928 if (phb->type != PNV_PHB_NPU)
929 pnv_ioda_set_peltv(phb, pe, true);
930
931 /* Setup reverse map */
932 for (rid = pe->rid; rid < rid_end; rid++)
933 phb->ioda.pe_rmap[rid] = pe->pe_number;
934
935 /* Setup one MVTs on IODA1 */
936 if (phb->type != PNV_PHB_IODA1) {
937 pe->mve_number = 0;
938 goto out;
939 }
940
941 pe->mve_number = pe->pe_number;
942 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
943 if (rc != OPAL_SUCCESS) {
944 pe_err(pe, "OPAL error %ld setting up MVE %x\n",
945 rc, pe->mve_number);
946 pe->mve_number = -1;
947 } else {
948 rc = opal_pci_set_mve_enable(phb->opal_id,
949 pe->mve_number, OPAL_ENABLE_MVE);
950 if (rc) {
951 pe_err(pe, "OPAL error %ld enabling MVE %x\n",
952 rc, pe->mve_number);
953 pe->mve_number = -1;
954 }
955 }
956
957 out:
958 return 0;
959 }
960
961 #ifdef CONFIG_PCI_IOV
962 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
963 {
964 struct pci_dn *pdn = pci_get_pdn(dev);
965 int i;
966 struct resource *res, res2;
967 resource_size_t size;
968 u16 num_vfs;
969
970 if (!dev->is_physfn)
971 return -EINVAL;
972
973 /*
974 * "offset" is in VFs. The M64 windows are sized so that when they
975 * are segmented, each segment is the same size as the IOV BAR.
976 * Each segment is in a separate PE, and the high order bits of the
977 * address are the PE number. Therefore, each VF's BAR is in a
978 * separate PE, and changing the IOV BAR start address changes the
979 * range of PEs the VFs are in.
980 */
981 num_vfs = pdn->num_vfs;
982 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
983 res = &dev->resource[i + PCI_IOV_RESOURCES];
984 if (!res->flags || !res->parent)
985 continue;
986
987 /*
988 * The actual IOV BAR range is determined by the start address
989 * and the actual size for num_vfs VFs BAR. This check is to
990 * make sure that after shifting, the range will not overlap
991 * with another device.
992 */
993 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
994 res2.flags = res->flags;
995 res2.start = res->start + (size * offset);
996 res2.end = res2.start + (size * num_vfs) - 1;
997
998 if (res2.end > res->end) {
999 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
1000 i, &res2, res, num_vfs, offset);
1001 return -EBUSY;
1002 }
1003 }
1004
1005 /*
1006 * After doing so, there would be a "hole" in the /proc/iomem when
1007 * offset is a positive value. It looks like the device return some
1008 * mmio back to the system, which actually no one could use it.
1009 */
1010 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1011 res = &dev->resource[i + PCI_IOV_RESOURCES];
1012 if (!res->flags || !res->parent)
1013 continue;
1014
1015 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1016 res2 = *res;
1017 res->start += size * offset;
1018
1019 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1020 i, &res2, res, (offset > 0) ? "En" : "Dis",
1021 num_vfs, offset);
1022 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1023 }
1024 return 0;
1025 }
1026 #endif /* CONFIG_PCI_IOV */
1027
1028 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1029 {
1030 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1031 struct pnv_phb *phb = hose->private_data;
1032 struct pci_dn *pdn = pci_get_pdn(dev);
1033 struct pnv_ioda_pe *pe;
1034
1035 if (!pdn) {
1036 pr_err("%s: Device tree node not associated properly\n",
1037 pci_name(dev));
1038 return NULL;
1039 }
1040 if (pdn->pe_number != IODA_INVALID_PE)
1041 return NULL;
1042
1043 pe = pnv_ioda_alloc_pe(phb);
1044 if (!pe) {
1045 pr_warning("%s: Not enough PE# available, disabling device\n",
1046 pci_name(dev));
1047 return NULL;
1048 }
1049
1050 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1051 * pointer in the PE data structure, both should be destroyed at the
1052 * same time. However, this needs to be looked at more closely again
1053 * once we actually start removing things (Hotplug, SR-IOV, ...)
1054 *
1055 * At some point we want to remove the PDN completely anyways
1056 */
1057 pci_dev_get(dev);
1058 pdn->pcidev = dev;
1059 pdn->pe_number = pe->pe_number;
1060 pe->flags = PNV_IODA_PE_DEV;
1061 pe->pdev = dev;
1062 pe->pbus = NULL;
1063 pe->mve_number = -1;
1064 pe->rid = dev->bus->number << 8 | pdn->devfn;
1065
1066 pe_info(pe, "Associated device to PE\n");
1067
1068 if (pnv_ioda_configure_pe(phb, pe)) {
1069 /* XXX What do we do here ? */
1070 pnv_ioda_free_pe(pe);
1071 pdn->pe_number = IODA_INVALID_PE;
1072 pe->pdev = NULL;
1073 pci_dev_put(dev);
1074 return NULL;
1075 }
1076
1077 /* Put PE to the list */
1078 list_add_tail(&pe->list, &phb->ioda.pe_list);
1079
1080 return pe;
1081 }
1082
1083 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1084 {
1085 struct pci_dev *dev;
1086
1087 list_for_each_entry(dev, &bus->devices, bus_list) {
1088 struct pci_dn *pdn = pci_get_pdn(dev);
1089
1090 if (pdn == NULL) {
1091 pr_warn("%s: No device node associated with device !\n",
1092 pci_name(dev));
1093 continue;
1094 }
1095
1096 /*
1097 * In partial hotplug case, the PCI device might be still
1098 * associated with the PE and needn't attach it to the PE
1099 * again.
1100 */
1101 if (pdn->pe_number != IODA_INVALID_PE)
1102 continue;
1103
1104 pe->device_count++;
1105 pdn->pcidev = dev;
1106 pdn->pe_number = pe->pe_number;
1107 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1108 pnv_ioda_setup_same_PE(dev->subordinate, pe);
1109 }
1110 }
1111
1112 /*
1113 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1114 * single PCI bus. Another one that contains the primary PCI bus and its
1115 * subordinate PCI devices and buses. The second type of PE is normally
1116 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1117 */
1118 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1119 {
1120 struct pci_controller *hose = pci_bus_to_host(bus);
1121 struct pnv_phb *phb = hose->private_data;
1122 struct pnv_ioda_pe *pe = NULL;
1123 unsigned int pe_num;
1124
1125 /*
1126 * In partial hotplug case, the PE instance might be still alive.
1127 * We should reuse it instead of allocating a new one.
1128 */
1129 pe_num = phb->ioda.pe_rmap[bus->number << 8];
1130 if (pe_num != IODA_INVALID_PE) {
1131 pe = &phb->ioda.pe_array[pe_num];
1132 pnv_ioda_setup_same_PE(bus, pe);
1133 return NULL;
1134 }
1135
1136 /* PE number for root bus should have been reserved */
1137 if (pci_is_root_bus(bus) &&
1138 phb->ioda.root_pe_idx != IODA_INVALID_PE)
1139 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1140
1141 /* Check if PE is determined by M64 */
1142 if (!pe && phb->pick_m64_pe)
1143 pe = phb->pick_m64_pe(bus, all);
1144
1145 /* The PE number isn't pinned by M64 */
1146 if (!pe)
1147 pe = pnv_ioda_alloc_pe(phb);
1148
1149 if (!pe) {
1150 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1151 __func__, pci_domain_nr(bus), bus->number);
1152 return NULL;
1153 }
1154
1155 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1156 pe->pbus = bus;
1157 pe->pdev = NULL;
1158 pe->mve_number = -1;
1159 pe->rid = bus->busn_res.start << 8;
1160
1161 if (all)
1162 pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1163 bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1164 else
1165 pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1166 bus->busn_res.start, pe->pe_number);
1167
1168 if (pnv_ioda_configure_pe(phb, pe)) {
1169 /* XXX What do we do here ? */
1170 pnv_ioda_free_pe(pe);
1171 pe->pbus = NULL;
1172 return NULL;
1173 }
1174
1175 /* Associate it with all child devices */
1176 pnv_ioda_setup_same_PE(bus, pe);
1177
1178 /* Put PE to the list */
1179 list_add_tail(&pe->list, &phb->ioda.pe_list);
1180
1181 return pe;
1182 }
1183
1184 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1185 {
1186 int pe_num, found_pe = false, rc;
1187 long rid;
1188 struct pnv_ioda_pe *pe;
1189 struct pci_dev *gpu_pdev;
1190 struct pci_dn *npu_pdn;
1191 struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1192 struct pnv_phb *phb = hose->private_data;
1193
1194 /*
1195 * Due to a hardware errata PE#0 on the NPU is reserved for
1196 * error handling. This means we only have three PEs remaining
1197 * which need to be assigned to four links, implying some
1198 * links must share PEs.
1199 *
1200 * To achieve this we assign PEs such that NPUs linking the
1201 * same GPU get assigned the same PE.
1202 */
1203 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1204 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1205 pe = &phb->ioda.pe_array[pe_num];
1206 if (!pe->pdev)
1207 continue;
1208
1209 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1210 /*
1211 * This device has the same peer GPU so should
1212 * be assigned the same PE as the existing
1213 * peer NPU.
1214 */
1215 dev_info(&npu_pdev->dev,
1216 "Associating to existing PE %x\n", pe_num);
1217 pci_dev_get(npu_pdev);
1218 npu_pdn = pci_get_pdn(npu_pdev);
1219 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1220 npu_pdn->pcidev = npu_pdev;
1221 npu_pdn->pe_number = pe_num;
1222 phb->ioda.pe_rmap[rid] = pe->pe_number;
1223
1224 /* Map the PE to this link */
1225 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1226 OpalPciBusAll,
1227 OPAL_COMPARE_RID_DEVICE_NUMBER,
1228 OPAL_COMPARE_RID_FUNCTION_NUMBER,
1229 OPAL_MAP_PE);
1230 WARN_ON(rc != OPAL_SUCCESS);
1231 found_pe = true;
1232 break;
1233 }
1234 }
1235
1236 if (!found_pe)
1237 /*
1238 * Could not find an existing PE so allocate a new
1239 * one.
1240 */
1241 return pnv_ioda_setup_dev_PE(npu_pdev);
1242 else
1243 return pe;
1244 }
1245
1246 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1247 {
1248 struct pci_dev *pdev;
1249
1250 list_for_each_entry(pdev, &bus->devices, bus_list)
1251 pnv_ioda_setup_npu_PE(pdev);
1252 }
1253
1254 static void pnv_pci_ioda_setup_PEs(void)
1255 {
1256 struct pci_controller *hose, *tmp;
1257 struct pnv_phb *phb;
1258
1259 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1260 phb = hose->private_data;
1261 if (phb->type == PNV_PHB_NPU) {
1262 /* PE#0 is needed for error reporting */
1263 pnv_ioda_reserve_pe(phb, 0);
1264 pnv_ioda_setup_npu_PEs(hose->bus);
1265 if (phb->model == PNV_PHB_MODEL_NPU2)
1266 pnv_npu2_init(phb);
1267 }
1268 }
1269 }
1270
1271 #ifdef CONFIG_PCI_IOV
1272 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1273 {
1274 struct pci_bus *bus;
1275 struct pci_controller *hose;
1276 struct pnv_phb *phb;
1277 struct pci_dn *pdn;
1278 int i, j;
1279 int m64_bars;
1280
1281 bus = pdev->bus;
1282 hose = pci_bus_to_host(bus);
1283 phb = hose->private_data;
1284 pdn = pci_get_pdn(pdev);
1285
1286 if (pdn->m64_single_mode)
1287 m64_bars = num_vfs;
1288 else
1289 m64_bars = 1;
1290
1291 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1292 for (j = 0; j < m64_bars; j++) {
1293 if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1294 continue;
1295 opal_pci_phb_mmio_enable(phb->opal_id,
1296 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1297 clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1298 pdn->m64_map[j][i] = IODA_INVALID_M64;
1299 }
1300
1301 kfree(pdn->m64_map);
1302 return 0;
1303 }
1304
1305 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1306 {
1307 struct pci_bus *bus;
1308 struct pci_controller *hose;
1309 struct pnv_phb *phb;
1310 struct pci_dn *pdn;
1311 unsigned int win;
1312 struct resource *res;
1313 int i, j;
1314 int64_t rc;
1315 int total_vfs;
1316 resource_size_t size, start;
1317 int pe_num;
1318 int m64_bars;
1319
1320 bus = pdev->bus;
1321 hose = pci_bus_to_host(bus);
1322 phb = hose->private_data;
1323 pdn = pci_get_pdn(pdev);
1324 total_vfs = pci_sriov_get_totalvfs(pdev);
1325
1326 if (pdn->m64_single_mode)
1327 m64_bars = num_vfs;
1328 else
1329 m64_bars = 1;
1330
1331 pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL);
1332 if (!pdn->m64_map)
1333 return -ENOMEM;
1334 /* Initialize the m64_map to IODA_INVALID_M64 */
1335 for (i = 0; i < m64_bars ; i++)
1336 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1337 pdn->m64_map[i][j] = IODA_INVALID_M64;
1338
1339
1340 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1341 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1342 if (!res->flags || !res->parent)
1343 continue;
1344
1345 for (j = 0; j < m64_bars; j++) {
1346 do {
1347 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1348 phb->ioda.m64_bar_idx + 1, 0);
1349
1350 if (win >= phb->ioda.m64_bar_idx + 1)
1351 goto m64_failed;
1352 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1353
1354 pdn->m64_map[j][i] = win;
1355
1356 if (pdn->m64_single_mode) {
1357 size = pci_iov_resource_size(pdev,
1358 PCI_IOV_RESOURCES + i);
1359 start = res->start + size * j;
1360 } else {
1361 size = resource_size(res);
1362 start = res->start;
1363 }
1364
1365 /* Map the M64 here */
1366 if (pdn->m64_single_mode) {
1367 pe_num = pdn->pe_num_map[j];
1368 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1369 pe_num, OPAL_M64_WINDOW_TYPE,
1370 pdn->m64_map[j][i], 0);
1371 }
1372
1373 rc = opal_pci_set_phb_mem_window(phb->opal_id,
1374 OPAL_M64_WINDOW_TYPE,
1375 pdn->m64_map[j][i],
1376 start,
1377 0, /* unused */
1378 size);
1379
1380
1381 if (rc != OPAL_SUCCESS) {
1382 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1383 win, rc);
1384 goto m64_failed;
1385 }
1386
1387 if (pdn->m64_single_mode)
1388 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1389 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1390 else
1391 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1392 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1393
1394 if (rc != OPAL_SUCCESS) {
1395 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1396 win, rc);
1397 goto m64_failed;
1398 }
1399 }
1400 }
1401 return 0;
1402
1403 m64_failed:
1404 pnv_pci_vf_release_m64(pdev, num_vfs);
1405 return -EBUSY;
1406 }
1407
1408 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1409 int num);
1410 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1411
1412 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1413 {
1414 struct iommu_table *tbl;
1415 int64_t rc;
1416
1417 tbl = pe->table_group.tables[0];
1418 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1419 if (rc)
1420 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1421
1422 pnv_pci_ioda2_set_bypass(pe, false);
1423 if (pe->table_group.group) {
1424 iommu_group_put(pe->table_group.group);
1425 BUG_ON(pe->table_group.group);
1426 }
1427 pnv_pci_ioda2_table_free_pages(tbl);
1428 iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1429 }
1430
1431 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1432 {
1433 struct pci_bus *bus;
1434 struct pci_controller *hose;
1435 struct pnv_phb *phb;
1436 struct pnv_ioda_pe *pe, *pe_n;
1437 struct pci_dn *pdn;
1438
1439 bus = pdev->bus;
1440 hose = pci_bus_to_host(bus);
1441 phb = hose->private_data;
1442 pdn = pci_get_pdn(pdev);
1443
1444 if (!pdev->is_physfn)
1445 return;
1446
1447 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1448 if (pe->parent_dev != pdev)
1449 continue;
1450
1451 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1452
1453 /* Remove from list */
1454 mutex_lock(&phb->ioda.pe_list_mutex);
1455 list_del(&pe->list);
1456 mutex_unlock(&phb->ioda.pe_list_mutex);
1457
1458 pnv_ioda_deconfigure_pe(phb, pe);
1459
1460 pnv_ioda_free_pe(pe);
1461 }
1462 }
1463
1464 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1465 {
1466 struct pci_bus *bus;
1467 struct pci_controller *hose;
1468 struct pnv_phb *phb;
1469 struct pnv_ioda_pe *pe;
1470 struct pci_dn *pdn;
1471 struct pci_sriov *iov;
1472 u16 num_vfs, i;
1473
1474 bus = pdev->bus;
1475 hose = pci_bus_to_host(bus);
1476 phb = hose->private_data;
1477 pdn = pci_get_pdn(pdev);
1478 iov = pdev->sriov;
1479 num_vfs = pdn->num_vfs;
1480
1481 /* Release VF PEs */
1482 pnv_ioda_release_vf_PE(pdev);
1483
1484 if (phb->type == PNV_PHB_IODA2) {
1485 if (!pdn->m64_single_mode)
1486 pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1487
1488 /* Release M64 windows */
1489 pnv_pci_vf_release_m64(pdev, num_vfs);
1490
1491 /* Release PE numbers */
1492 if (pdn->m64_single_mode) {
1493 for (i = 0; i < num_vfs; i++) {
1494 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1495 continue;
1496
1497 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1498 pnv_ioda_free_pe(pe);
1499 }
1500 } else
1501 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1502 /* Releasing pe_num_map */
1503 kfree(pdn->pe_num_map);
1504 }
1505 }
1506
1507 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1508 struct pnv_ioda_pe *pe);
1509 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1510 {
1511 struct pci_bus *bus;
1512 struct pci_controller *hose;
1513 struct pnv_phb *phb;
1514 struct pnv_ioda_pe *pe;
1515 int pe_num;
1516 u16 vf_index;
1517 struct pci_dn *pdn;
1518
1519 bus = pdev->bus;
1520 hose = pci_bus_to_host(bus);
1521 phb = hose->private_data;
1522 pdn = pci_get_pdn(pdev);
1523
1524 if (!pdev->is_physfn)
1525 return;
1526
1527 /* Reserve PE for each VF */
1528 for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1529 if (pdn->m64_single_mode)
1530 pe_num = pdn->pe_num_map[vf_index];
1531 else
1532 pe_num = *pdn->pe_num_map + vf_index;
1533
1534 pe = &phb->ioda.pe_array[pe_num];
1535 pe->pe_number = pe_num;
1536 pe->phb = phb;
1537 pe->flags = PNV_IODA_PE_VF;
1538 pe->pbus = NULL;
1539 pe->parent_dev = pdev;
1540 pe->mve_number = -1;
1541 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1542 pci_iov_virtfn_devfn(pdev, vf_index);
1543
1544 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1545 hose->global_number, pdev->bus->number,
1546 PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1547 PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1548
1549 if (pnv_ioda_configure_pe(phb, pe)) {
1550 /* XXX What do we do here ? */
1551 pnv_ioda_free_pe(pe);
1552 pe->pdev = NULL;
1553 continue;
1554 }
1555
1556 /* Put PE to the list */
1557 mutex_lock(&phb->ioda.pe_list_mutex);
1558 list_add_tail(&pe->list, &phb->ioda.pe_list);
1559 mutex_unlock(&phb->ioda.pe_list_mutex);
1560
1561 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1562 }
1563 }
1564
1565 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1566 {
1567 struct pci_bus *bus;
1568 struct pci_controller *hose;
1569 struct pnv_phb *phb;
1570 struct pnv_ioda_pe *pe;
1571 struct pci_dn *pdn;
1572 int ret;
1573 u16 i;
1574
1575 bus = pdev->bus;
1576 hose = pci_bus_to_host(bus);
1577 phb = hose->private_data;
1578 pdn = pci_get_pdn(pdev);
1579
1580 if (phb->type == PNV_PHB_IODA2) {
1581 if (!pdn->vfs_expanded) {
1582 dev_info(&pdev->dev, "don't support this SRIOV device"
1583 " with non 64bit-prefetchable IOV BAR\n");
1584 return -ENOSPC;
1585 }
1586
1587 /*
1588 * When M64 BARs functions in Single PE mode, the number of VFs
1589 * could be enabled must be less than the number of M64 BARs.
1590 */
1591 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1592 dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1593 return -EBUSY;
1594 }
1595
1596 /* Allocating pe_num_map */
1597 if (pdn->m64_single_mode)
1598 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs,
1599 GFP_KERNEL);
1600 else
1601 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1602
1603 if (!pdn->pe_num_map)
1604 return -ENOMEM;
1605
1606 if (pdn->m64_single_mode)
1607 for (i = 0; i < num_vfs; i++)
1608 pdn->pe_num_map[i] = IODA_INVALID_PE;
1609
1610 /* Calculate available PE for required VFs */
1611 if (pdn->m64_single_mode) {
1612 for (i = 0; i < num_vfs; i++) {
1613 pe = pnv_ioda_alloc_pe(phb);
1614 if (!pe) {
1615 ret = -EBUSY;
1616 goto m64_failed;
1617 }
1618
1619 pdn->pe_num_map[i] = pe->pe_number;
1620 }
1621 } else {
1622 mutex_lock(&phb->ioda.pe_alloc_mutex);
1623 *pdn->pe_num_map = bitmap_find_next_zero_area(
1624 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1625 0, num_vfs, 0);
1626 if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1627 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1628 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1629 kfree(pdn->pe_num_map);
1630 return -EBUSY;
1631 }
1632 bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1633 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1634 }
1635 pdn->num_vfs = num_vfs;
1636
1637 /* Assign M64 window accordingly */
1638 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1639 if (ret) {
1640 dev_info(&pdev->dev, "Not enough M64 window resources\n");
1641 goto m64_failed;
1642 }
1643
1644 /*
1645 * When using one M64 BAR to map one IOV BAR, we need to shift
1646 * the IOV BAR according to the PE# allocated to the VFs.
1647 * Otherwise, the PE# for the VF will conflict with others.
1648 */
1649 if (!pdn->m64_single_mode) {
1650 ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1651 if (ret)
1652 goto m64_failed;
1653 }
1654 }
1655
1656 /* Setup VF PEs */
1657 pnv_ioda_setup_vf_PE(pdev, num_vfs);
1658
1659 return 0;
1660
1661 m64_failed:
1662 if (pdn->m64_single_mode) {
1663 for (i = 0; i < num_vfs; i++) {
1664 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1665 continue;
1666
1667 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1668 pnv_ioda_free_pe(pe);
1669 }
1670 } else
1671 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1672
1673 /* Releasing pe_num_map */
1674 kfree(pdn->pe_num_map);
1675
1676 return ret;
1677 }
1678
1679 int pcibios_sriov_disable(struct pci_dev *pdev)
1680 {
1681 pnv_pci_sriov_disable(pdev);
1682
1683 /* Release PCI data */
1684 remove_dev_pci_data(pdev);
1685 return 0;
1686 }
1687
1688 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1689 {
1690 /* Allocate PCI data */
1691 add_dev_pci_data(pdev);
1692
1693 return pnv_pci_sriov_enable(pdev, num_vfs);
1694 }
1695 #endif /* CONFIG_PCI_IOV */
1696
1697 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1698 {
1699 struct pci_dn *pdn = pci_get_pdn(pdev);
1700 struct pnv_ioda_pe *pe;
1701
1702 /*
1703 * The function can be called while the PE#
1704 * hasn't been assigned. Do nothing for the
1705 * case.
1706 */
1707 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1708 return;
1709
1710 pe = &phb->ioda.pe_array[pdn->pe_number];
1711 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1712 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1713 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1714 /*
1715 * Note: iommu_add_device() will fail here as
1716 * for physical PE: the device is already added by now;
1717 * for virtual PE: sysfs entries are not ready yet and
1718 * tce_iommu_bus_notifier will add the device to a group later.
1719 */
1720 }
1721
1722 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1723 {
1724 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1725 struct pnv_phb *phb = hose->private_data;
1726 struct pci_dn *pdn = pci_get_pdn(pdev);
1727 struct pnv_ioda_pe *pe;
1728 uint64_t top;
1729 bool bypass = false;
1730
1731 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1732 return -ENODEV;;
1733
1734 pe = &phb->ioda.pe_array[pdn->pe_number];
1735 if (pe->tce_bypass_enabled) {
1736 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1737 bypass = (dma_mask >= top);
1738 }
1739
1740 if (bypass) {
1741 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1742 set_dma_ops(&pdev->dev, &dma_direct_ops);
1743 } else {
1744 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1745 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1746 }
1747 *pdev->dev.dma_mask = dma_mask;
1748
1749 /* Update peer npu devices */
1750 pnv_npu_try_dma_set_bypass(pdev, bypass);
1751
1752 return 0;
1753 }
1754
1755 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1756 {
1757 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1758 struct pnv_phb *phb = hose->private_data;
1759 struct pci_dn *pdn = pci_get_pdn(pdev);
1760 struct pnv_ioda_pe *pe;
1761 u64 end, mask;
1762
1763 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1764 return 0;
1765
1766 pe = &phb->ioda.pe_array[pdn->pe_number];
1767 if (!pe->tce_bypass_enabled)
1768 return __dma_get_required_mask(&pdev->dev);
1769
1770
1771 end = pe->tce_bypass_base + memblock_end_of_DRAM();
1772 mask = 1ULL << (fls64(end) - 1);
1773 mask += mask - 1;
1774
1775 return mask;
1776 }
1777
1778 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1779 struct pci_bus *bus)
1780 {
1781 struct pci_dev *dev;
1782
1783 list_for_each_entry(dev, &bus->devices, bus_list) {
1784 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1785 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1786 iommu_add_device(&dev->dev);
1787
1788 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1789 pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1790 }
1791 }
1792
1793 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1794 bool real_mode)
1795 {
1796 return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1797 (phb->regs + 0x210);
1798 }
1799
1800 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1801 unsigned long index, unsigned long npages, bool rm)
1802 {
1803 struct iommu_table_group_link *tgl = list_first_entry_or_null(
1804 &tbl->it_group_list, struct iommu_table_group_link,
1805 next);
1806 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1807 struct pnv_ioda_pe, table_group);
1808 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1809 unsigned long start, end, inc;
1810
1811 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1812 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1813 npages - 1);
1814
1815 /* p7ioc-style invalidation, 2 TCEs per write */
1816 start |= (1ull << 63);
1817 end |= (1ull << 63);
1818 inc = 16;
1819 end |= inc - 1; /* round up end to be different than start */
1820
1821 mb(); /* Ensure above stores are visible */
1822 while (start <= end) {
1823 if (rm)
1824 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1825 else
1826 __raw_writeq(cpu_to_be64(start), invalidate);
1827 start += inc;
1828 }
1829
1830 /*
1831 * The iommu layer will do another mb() for us on build()
1832 * and we don't care on free()
1833 */
1834 }
1835
1836 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1837 long npages, unsigned long uaddr,
1838 enum dma_data_direction direction,
1839 unsigned long attrs)
1840 {
1841 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1842 attrs);
1843
1844 if (!ret)
1845 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1846
1847 return ret;
1848 }
1849
1850 #ifdef CONFIG_IOMMU_API
1851 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1852 unsigned long *hpa, enum dma_data_direction *direction)
1853 {
1854 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1855
1856 if (!ret)
1857 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1858
1859 return ret;
1860 }
1861
1862 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
1863 unsigned long *hpa, enum dma_data_direction *direction)
1864 {
1865 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1866
1867 if (!ret)
1868 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
1869
1870 return ret;
1871 }
1872 #endif
1873
1874 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1875 long npages)
1876 {
1877 pnv_tce_free(tbl, index, npages);
1878
1879 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1880 }
1881
1882 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1883 .set = pnv_ioda1_tce_build,
1884 #ifdef CONFIG_IOMMU_API
1885 .exchange = pnv_ioda1_tce_xchg,
1886 .exchange_rm = pnv_ioda1_tce_xchg_rm,
1887 #endif
1888 .clear = pnv_ioda1_tce_free,
1889 .get = pnv_tce_get,
1890 };
1891
1892 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0)
1893 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1)
1894 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2)
1895
1896 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1897 {
1898 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1899 const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1900
1901 mb(); /* Ensure previous TCE table stores are visible */
1902 if (rm)
1903 __raw_rm_writeq(cpu_to_be64(val), invalidate);
1904 else
1905 __raw_writeq(cpu_to_be64(val), invalidate);
1906 }
1907
1908 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1909 {
1910 /* 01xb - invalidate TCEs that match the specified PE# */
1911 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1912 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1913
1914 mb(); /* Ensure above stores are visible */
1915 __raw_writeq(cpu_to_be64(val), invalidate);
1916 }
1917
1918 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
1919 unsigned shift, unsigned long index,
1920 unsigned long npages)
1921 {
1922 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1923 unsigned long start, end, inc;
1924
1925 /* We'll invalidate DMA address in PE scope */
1926 start = PHB3_TCE_KILL_INVAL_ONE;
1927 start |= (pe->pe_number & 0xFF);
1928 end = start;
1929
1930 /* Figure out the start, end and step */
1931 start |= (index << shift);
1932 end |= ((index + npages - 1) << shift);
1933 inc = (0x1ull << shift);
1934 mb();
1935
1936 while (start <= end) {
1937 if (rm)
1938 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1939 else
1940 __raw_writeq(cpu_to_be64(start), invalidate);
1941 start += inc;
1942 }
1943 }
1944
1945 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1946 {
1947 struct pnv_phb *phb = pe->phb;
1948
1949 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1950 pnv_pci_phb3_tce_invalidate_pe(pe);
1951 else
1952 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1953 pe->pe_number, 0, 0, 0);
1954 }
1955
1956 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1957 unsigned long index, unsigned long npages, bool rm)
1958 {
1959 struct iommu_table_group_link *tgl;
1960
1961 list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
1962 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1963 struct pnv_ioda_pe, table_group);
1964 struct pnv_phb *phb = pe->phb;
1965 unsigned int shift = tbl->it_page_shift;
1966
1967 /*
1968 * NVLink1 can use the TCE kill register directly as
1969 * it's the same as PHB3. NVLink2 is different and
1970 * should go via the OPAL call.
1971 */
1972 if (phb->model == PNV_PHB_MODEL_NPU) {
1973 /*
1974 * The NVLink hardware does not support TCE kill
1975 * per TCE entry so we have to invalidate
1976 * the entire cache for it.
1977 */
1978 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1979 continue;
1980 }
1981 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1982 pnv_pci_phb3_tce_invalidate(pe, rm, shift,
1983 index, npages);
1984 else
1985 opal_pci_tce_kill(phb->opal_id,
1986 OPAL_PCI_TCE_KILL_PAGES,
1987 pe->pe_number, 1u << shift,
1988 index << shift, npages);
1989 }
1990 }
1991
1992 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1993 {
1994 if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
1995 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1996 else
1997 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
1998 }
1999
2000 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2001 long npages, unsigned long uaddr,
2002 enum dma_data_direction direction,
2003 unsigned long attrs)
2004 {
2005 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2006 attrs);
2007
2008 if (!ret)
2009 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2010
2011 return ret;
2012 }
2013
2014 #ifdef CONFIG_IOMMU_API
2015 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2016 unsigned long *hpa, enum dma_data_direction *direction)
2017 {
2018 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2019
2020 if (!ret)
2021 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2022
2023 return ret;
2024 }
2025
2026 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2027 unsigned long *hpa, enum dma_data_direction *direction)
2028 {
2029 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2030
2031 if (!ret)
2032 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2033
2034 return ret;
2035 }
2036 #endif
2037
2038 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2039 long npages)
2040 {
2041 pnv_tce_free(tbl, index, npages);
2042
2043 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2044 }
2045
2046 static void pnv_ioda2_table_free(struct iommu_table *tbl)
2047 {
2048 pnv_pci_ioda2_table_free_pages(tbl);
2049 iommu_free_table(tbl, "pnv");
2050 }
2051
2052 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2053 .set = pnv_ioda2_tce_build,
2054 #ifdef CONFIG_IOMMU_API
2055 .exchange = pnv_ioda2_tce_xchg,
2056 .exchange_rm = pnv_ioda2_tce_xchg_rm,
2057 #endif
2058 .clear = pnv_ioda2_tce_free,
2059 .get = pnv_tce_get,
2060 .free = pnv_ioda2_table_free,
2061 };
2062
2063 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2064 {
2065 unsigned int *weight = (unsigned int *)data;
2066
2067 /* This is quite simplistic. The "base" weight of a device
2068 * is 10. 0 means no DMA is to be accounted for it.
2069 */
2070 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2071 return 0;
2072
2073 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2074 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2075 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2076 *weight += 3;
2077 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2078 *weight += 15;
2079 else
2080 *weight += 10;
2081
2082 return 0;
2083 }
2084
2085 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2086 {
2087 unsigned int weight = 0;
2088
2089 /* SRIOV VF has same DMA32 weight as its PF */
2090 #ifdef CONFIG_PCI_IOV
2091 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2092 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2093 return weight;
2094 }
2095 #endif
2096
2097 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2098 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2099 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2100 struct pci_dev *pdev;
2101
2102 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2103 pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2104 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2105 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2106 }
2107
2108 return weight;
2109 }
2110
2111 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2112 struct pnv_ioda_pe *pe)
2113 {
2114
2115 struct page *tce_mem = NULL;
2116 struct iommu_table *tbl;
2117 unsigned int weight, total_weight = 0;
2118 unsigned int tce32_segsz, base, segs, avail, i;
2119 int64_t rc;
2120 void *addr;
2121
2122 /* XXX FIXME: Handle 64-bit only DMA devices */
2123 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2124 /* XXX FIXME: Allocate multi-level tables on PHB3 */
2125 weight = pnv_pci_ioda_pe_dma_weight(pe);
2126 if (!weight)
2127 return;
2128
2129 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2130 &total_weight);
2131 segs = (weight * phb->ioda.dma32_count) / total_weight;
2132 if (!segs)
2133 segs = 1;
2134
2135 /*
2136 * Allocate contiguous DMA32 segments. We begin with the expected
2137 * number of segments. With one more attempt, the number of DMA32
2138 * segments to be allocated is decreased by one until one segment
2139 * is allocated successfully.
2140 */
2141 do {
2142 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2143 for (avail = 0, i = base; i < base + segs; i++) {
2144 if (phb->ioda.dma32_segmap[i] ==
2145 IODA_INVALID_PE)
2146 avail++;
2147 }
2148
2149 if (avail == segs)
2150 goto found;
2151 }
2152 } while (--segs);
2153
2154 if (!segs) {
2155 pe_warn(pe, "No available DMA32 segments\n");
2156 return;
2157 }
2158
2159 found:
2160 tbl = pnv_pci_table_alloc(phb->hose->node);
2161 iommu_register_group(&pe->table_group, phb->hose->global_number,
2162 pe->pe_number);
2163 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2164
2165 /* Grab a 32-bit TCE table */
2166 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2167 weight, total_weight, base, segs);
2168 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2169 base * PNV_IODA1_DMA32_SEGSIZE,
2170 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2171
2172 /* XXX Currently, we allocate one big contiguous table for the
2173 * TCEs. We only really need one chunk per 256M of TCE space
2174 * (ie per segment) but that's an optimization for later, it
2175 * requires some added smarts with our get/put_tce implementation
2176 *
2177 * Each TCE page is 4KB in size and each TCE entry occupies 8
2178 * bytes
2179 */
2180 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2181 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2182 get_order(tce32_segsz * segs));
2183 if (!tce_mem) {
2184 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2185 goto fail;
2186 }
2187 addr = page_address(tce_mem);
2188 memset(addr, 0, tce32_segsz * segs);
2189
2190 /* Configure HW */
2191 for (i = 0; i < segs; i++) {
2192 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2193 pe->pe_number,
2194 base + i, 1,
2195 __pa(addr) + tce32_segsz * i,
2196 tce32_segsz, IOMMU_PAGE_SIZE_4K);
2197 if (rc) {
2198 pe_err(pe, " Failed to configure 32-bit TCE table,"
2199 " err %ld\n", rc);
2200 goto fail;
2201 }
2202 }
2203
2204 /* Setup DMA32 segment mapping */
2205 for (i = base; i < base + segs; i++)
2206 phb->ioda.dma32_segmap[i] = pe->pe_number;
2207
2208 /* Setup linux iommu table */
2209 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2210 base * PNV_IODA1_DMA32_SEGSIZE,
2211 IOMMU_PAGE_SHIFT_4K);
2212
2213 tbl->it_ops = &pnv_ioda1_iommu_ops;
2214 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2215 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2216 iommu_init_table(tbl, phb->hose->node);
2217
2218 if (pe->flags & PNV_IODA_PE_DEV) {
2219 /*
2220 * Setting table base here only for carrying iommu_group
2221 * further down to let iommu_add_device() do the job.
2222 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2223 */
2224 set_iommu_table_base(&pe->pdev->dev, tbl);
2225 iommu_add_device(&pe->pdev->dev);
2226 } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2227 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2228
2229 return;
2230 fail:
2231 /* XXX Failure: Try to fallback to 64-bit only ? */
2232 if (tce_mem)
2233 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2234 if (tbl) {
2235 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2236 iommu_free_table(tbl, "pnv");
2237 }
2238 }
2239
2240 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2241 int num, struct iommu_table *tbl)
2242 {
2243 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2244 table_group);
2245 struct pnv_phb *phb = pe->phb;
2246 int64_t rc;
2247 const unsigned long size = tbl->it_indirect_levels ?
2248 tbl->it_level_size : tbl->it_size;
2249 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2250 const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2251
2252 pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2253 start_addr, start_addr + win_size - 1,
2254 IOMMU_PAGE_SIZE(tbl));
2255
2256 /*
2257 * Map TCE table through TVT. The TVE index is the PE number
2258 * shifted by 1 bit for 32-bits DMA space.
2259 */
2260 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2261 pe->pe_number,
2262 (pe->pe_number << 1) + num,
2263 tbl->it_indirect_levels + 1,
2264 __pa(tbl->it_base),
2265 size << 3,
2266 IOMMU_PAGE_SIZE(tbl));
2267 if (rc) {
2268 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2269 return rc;
2270 }
2271
2272 pnv_pci_link_table_and_group(phb->hose->node, num,
2273 tbl, &pe->table_group);
2274 pnv_pci_ioda2_tce_invalidate_pe(pe);
2275
2276 return 0;
2277 }
2278
2279 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2280 {
2281 uint16_t window_id = (pe->pe_number << 1 ) + 1;
2282 int64_t rc;
2283
2284 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2285 if (enable) {
2286 phys_addr_t top = memblock_end_of_DRAM();
2287
2288 top = roundup_pow_of_two(top);
2289 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2290 pe->pe_number,
2291 window_id,
2292 pe->tce_bypass_base,
2293 top);
2294 } else {
2295 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2296 pe->pe_number,
2297 window_id,
2298 pe->tce_bypass_base,
2299 0);
2300 }
2301 if (rc)
2302 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2303 else
2304 pe->tce_bypass_enabled = enable;
2305 }
2306
2307 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2308 __u32 page_shift, __u64 window_size, __u32 levels,
2309 struct iommu_table *tbl);
2310
2311 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2312 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2313 struct iommu_table **ptbl)
2314 {
2315 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2316 table_group);
2317 int nid = pe->phb->hose->node;
2318 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2319 long ret;
2320 struct iommu_table *tbl;
2321
2322 tbl = pnv_pci_table_alloc(nid);
2323 if (!tbl)
2324 return -ENOMEM;
2325
2326 ret = pnv_pci_ioda2_table_alloc_pages(nid,
2327 bus_offset, page_shift, window_size,
2328 levels, tbl);
2329 if (ret) {
2330 iommu_free_table(tbl, "pnv");
2331 return ret;
2332 }
2333
2334 tbl->it_ops = &pnv_ioda2_iommu_ops;
2335
2336 *ptbl = tbl;
2337
2338 return 0;
2339 }
2340
2341 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2342 {
2343 struct iommu_table *tbl = NULL;
2344 long rc;
2345
2346 /*
2347 * crashkernel= specifies the kdump kernel's maximum memory at
2348 * some offset and there is no guaranteed the result is a power
2349 * of 2, which will cause errors later.
2350 */
2351 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2352
2353 /*
2354 * In memory constrained environments, e.g. kdump kernel, the
2355 * DMA window can be larger than available memory, which will
2356 * cause errors later.
2357 */
2358 const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2359
2360 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2361 IOMMU_PAGE_SHIFT_4K,
2362 window_size,
2363 POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2364 if (rc) {
2365 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2366 rc);
2367 return rc;
2368 }
2369
2370 iommu_init_table(tbl, pe->phb->hose->node);
2371
2372 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2373 if (rc) {
2374 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2375 rc);
2376 pnv_ioda2_table_free(tbl);
2377 return rc;
2378 }
2379
2380 if (!pnv_iommu_bypass_disabled)
2381 pnv_pci_ioda2_set_bypass(pe, true);
2382
2383 /*
2384 * Setting table base here only for carrying iommu_group
2385 * further down to let iommu_add_device() do the job.
2386 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2387 */
2388 if (pe->flags & PNV_IODA_PE_DEV)
2389 set_iommu_table_base(&pe->pdev->dev, tbl);
2390
2391 return 0;
2392 }
2393
2394 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2395 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2396 int num)
2397 {
2398 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2399 table_group);
2400 struct pnv_phb *phb = pe->phb;
2401 long ret;
2402
2403 pe_info(pe, "Removing DMA window #%d\n", num);
2404
2405 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2406 (pe->pe_number << 1) + num,
2407 0/* levels */, 0/* table address */,
2408 0/* table size */, 0/* page size */);
2409 if (ret)
2410 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2411 else
2412 pnv_pci_ioda2_tce_invalidate_pe(pe);
2413
2414 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2415
2416 return ret;
2417 }
2418 #endif
2419
2420 #ifdef CONFIG_IOMMU_API
2421 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2422 __u64 window_size, __u32 levels)
2423 {
2424 unsigned long bytes = 0;
2425 const unsigned window_shift = ilog2(window_size);
2426 unsigned entries_shift = window_shift - page_shift;
2427 unsigned table_shift = entries_shift + 3;
2428 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2429 unsigned long direct_table_size;
2430
2431 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2432 (window_size > memory_hotplug_max()) ||
2433 !is_power_of_2(window_size))
2434 return 0;
2435
2436 /* Calculate a direct table size from window_size and levels */
2437 entries_shift = (entries_shift + levels - 1) / levels;
2438 table_shift = entries_shift + 3;
2439 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2440 direct_table_size = 1UL << table_shift;
2441
2442 for ( ; levels; --levels) {
2443 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2444
2445 tce_table_size /= direct_table_size;
2446 tce_table_size <<= 3;
2447 tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2448 }
2449
2450 return bytes;
2451 }
2452
2453 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2454 {
2455 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2456 table_group);
2457 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2458 struct iommu_table *tbl = pe->table_group.tables[0];
2459
2460 pnv_pci_ioda2_set_bypass(pe, false);
2461 pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2462 pnv_ioda2_table_free(tbl);
2463 }
2464
2465 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2466 {
2467 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2468 table_group);
2469
2470 pnv_pci_ioda2_setup_default_config(pe);
2471 }
2472
2473 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2474 .get_table_size = pnv_pci_ioda2_get_table_size,
2475 .create_table = pnv_pci_ioda2_create_table,
2476 .set_window = pnv_pci_ioda2_set_window,
2477 .unset_window = pnv_pci_ioda2_unset_window,
2478 .take_ownership = pnv_ioda2_take_ownership,
2479 .release_ownership = pnv_ioda2_release_ownership,
2480 };
2481
2482 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2483 {
2484 struct pci_controller *hose;
2485 struct pnv_phb *phb;
2486 struct pnv_ioda_pe **ptmppe = opaque;
2487 struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2488 struct pci_dn *pdn = pci_get_pdn(pdev);
2489
2490 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2491 return 0;
2492
2493 hose = pci_bus_to_host(pdev->bus);
2494 phb = hose->private_data;
2495 if (phb->type != PNV_PHB_NPU)
2496 return 0;
2497
2498 *ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2499
2500 return 1;
2501 }
2502
2503 /*
2504 * This returns PE of associated NPU.
2505 * This assumes that NPU is in the same IOMMU group with GPU and there is
2506 * no other PEs.
2507 */
2508 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2509 struct iommu_table_group *table_group)
2510 {
2511 struct pnv_ioda_pe *npe = NULL;
2512 int ret = iommu_group_for_each_dev(table_group->group, &npe,
2513 gpe_table_group_to_npe_cb);
2514
2515 BUG_ON(!ret || !npe);
2516
2517 return npe;
2518 }
2519
2520 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2521 int num, struct iommu_table *tbl)
2522 {
2523 long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2524
2525 if (ret)
2526 return ret;
2527
2528 ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2529 if (ret)
2530 pnv_pci_ioda2_unset_window(table_group, num);
2531
2532 return ret;
2533 }
2534
2535 static long pnv_pci_ioda2_npu_unset_window(
2536 struct iommu_table_group *table_group,
2537 int num)
2538 {
2539 long ret = pnv_pci_ioda2_unset_window(table_group, num);
2540
2541 if (ret)
2542 return ret;
2543
2544 return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2545 }
2546
2547 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2548 {
2549 /*
2550 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2551 * the iommu_table if 32bit DMA is enabled.
2552 */
2553 pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2554 pnv_ioda2_take_ownership(table_group);
2555 }
2556
2557 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2558 .get_table_size = pnv_pci_ioda2_get_table_size,
2559 .create_table = pnv_pci_ioda2_create_table,
2560 .set_window = pnv_pci_ioda2_npu_set_window,
2561 .unset_window = pnv_pci_ioda2_npu_unset_window,
2562 .take_ownership = pnv_ioda2_npu_take_ownership,
2563 .release_ownership = pnv_ioda2_release_ownership,
2564 };
2565
2566 static void pnv_pci_ioda_setup_iommu_api(void)
2567 {
2568 struct pci_controller *hose, *tmp;
2569 struct pnv_phb *phb;
2570 struct pnv_ioda_pe *pe, *gpe;
2571
2572 /*
2573 * Now we have all PHBs discovered, time to add NPU devices to
2574 * the corresponding IOMMU groups.
2575 */
2576 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2577 phb = hose->private_data;
2578
2579 if (phb->type != PNV_PHB_NPU)
2580 continue;
2581
2582 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2583 gpe = pnv_pci_npu_setup_iommu(pe);
2584 if (gpe)
2585 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2586 }
2587 }
2588 }
2589 #else /* !CONFIG_IOMMU_API */
2590 static void pnv_pci_ioda_setup_iommu_api(void) { };
2591 #endif
2592
2593 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2594 unsigned levels, unsigned long limit,
2595 unsigned long *current_offset, unsigned long *total_allocated)
2596 {
2597 struct page *tce_mem = NULL;
2598 __be64 *addr, *tmp;
2599 unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2600 unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2601 unsigned entries = 1UL << (shift - 3);
2602 long i;
2603
2604 tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2605 if (!tce_mem) {
2606 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2607 return NULL;
2608 }
2609 addr = page_address(tce_mem);
2610 memset(addr, 0, allocated);
2611 *total_allocated += allocated;
2612
2613 --levels;
2614 if (!levels) {
2615 *current_offset += allocated;
2616 return addr;
2617 }
2618
2619 for (i = 0; i < entries; ++i) {
2620 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2621 levels, limit, current_offset, total_allocated);
2622 if (!tmp)
2623 break;
2624
2625 addr[i] = cpu_to_be64(__pa(tmp) |
2626 TCE_PCI_READ | TCE_PCI_WRITE);
2627
2628 if (*current_offset >= limit)
2629 break;
2630 }
2631
2632 return addr;
2633 }
2634
2635 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2636 unsigned long size, unsigned level);
2637
2638 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2639 __u32 page_shift, __u64 window_size, __u32 levels,
2640 struct iommu_table *tbl)
2641 {
2642 void *addr;
2643 unsigned long offset = 0, level_shift, total_allocated = 0;
2644 const unsigned window_shift = ilog2(window_size);
2645 unsigned entries_shift = window_shift - page_shift;
2646 unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2647 const unsigned long tce_table_size = 1UL << table_shift;
2648
2649 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2650 return -EINVAL;
2651
2652 if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2653 return -EINVAL;
2654
2655 /* Adjust direct table size from window_size and levels */
2656 entries_shift = (entries_shift + levels - 1) / levels;
2657 level_shift = entries_shift + 3;
2658 level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2659
2660 /* Allocate TCE table */
2661 addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2662 levels, tce_table_size, &offset, &total_allocated);
2663
2664 /* addr==NULL means that the first level allocation failed */
2665 if (!addr)
2666 return -ENOMEM;
2667
2668 /*
2669 * First level was allocated but some lower level failed as
2670 * we did not allocate as much as we wanted,
2671 * release partially allocated table.
2672 */
2673 if (offset < tce_table_size) {
2674 pnv_pci_ioda2_table_do_free_pages(addr,
2675 1ULL << (level_shift - 3), levels - 1);
2676 return -ENOMEM;
2677 }
2678
2679 /* Setup linux iommu table */
2680 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2681 page_shift);
2682 tbl->it_level_size = 1ULL << (level_shift - 3);
2683 tbl->it_indirect_levels = levels - 1;
2684 tbl->it_allocated_size = total_allocated;
2685
2686 pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2687 window_size, tce_table_size, bus_offset);
2688
2689 return 0;
2690 }
2691
2692 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2693 unsigned long size, unsigned level)
2694 {
2695 const unsigned long addr_ul = (unsigned long) addr &
2696 ~(TCE_PCI_READ | TCE_PCI_WRITE);
2697
2698 if (level) {
2699 long i;
2700 u64 *tmp = (u64 *) addr_ul;
2701
2702 for (i = 0; i < size; ++i) {
2703 unsigned long hpa = be64_to_cpu(tmp[i]);
2704
2705 if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2706 continue;
2707
2708 pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2709 level - 1);
2710 }
2711 }
2712
2713 free_pages(addr_ul, get_order(size << 3));
2714 }
2715
2716 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2717 {
2718 const unsigned long size = tbl->it_indirect_levels ?
2719 tbl->it_level_size : tbl->it_size;
2720
2721 if (!tbl->it_size)
2722 return;
2723
2724 pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2725 tbl->it_indirect_levels);
2726 }
2727
2728 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2729 struct pnv_ioda_pe *pe)
2730 {
2731 int64_t rc;
2732
2733 if (!pnv_pci_ioda_pe_dma_weight(pe))
2734 return;
2735
2736 /* TVE #1 is selected by PCI address bit 59 */
2737 pe->tce_bypass_base = 1ull << 59;
2738
2739 iommu_register_group(&pe->table_group, phb->hose->global_number,
2740 pe->pe_number);
2741
2742 /* The PE will reserve all possible 32-bits space */
2743 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2744 phb->ioda.m32_pci_base);
2745
2746 /* Setup linux iommu table */
2747 pe->table_group.tce32_start = 0;
2748 pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2749 pe->table_group.max_dynamic_windows_supported =
2750 IOMMU_TABLE_GROUP_MAX_TABLES;
2751 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2752 pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2753 #ifdef CONFIG_IOMMU_API
2754 pe->table_group.ops = &pnv_pci_ioda2_ops;
2755 #endif
2756
2757 rc = pnv_pci_ioda2_setup_default_config(pe);
2758 if (rc)
2759 return;
2760
2761 if (pe->flags & PNV_IODA_PE_DEV)
2762 iommu_add_device(&pe->pdev->dev);
2763 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2764 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2765 }
2766
2767 #ifdef CONFIG_PCI_MSI
2768 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2769 {
2770 struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2771 ioda.irq_chip);
2772
2773 return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2774 }
2775
2776 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2777 {
2778 int64_t rc;
2779 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2780 struct irq_chip *chip = irq_data_get_irq_chip(d);
2781
2782 rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2783 WARN_ON_ONCE(rc);
2784
2785 icp_native_eoi(d);
2786 }
2787
2788
2789 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2790 {
2791 struct irq_data *idata;
2792 struct irq_chip *ichip;
2793
2794 /* The MSI EOI OPAL call is only needed on PHB3 */
2795 if (phb->model != PNV_PHB_MODEL_PHB3)
2796 return;
2797
2798 if (!phb->ioda.irq_chip_init) {
2799 /*
2800 * First time we setup an MSI IRQ, we need to setup the
2801 * corresponding IRQ chip to route correctly.
2802 */
2803 idata = irq_get_irq_data(virq);
2804 ichip = irq_data_get_irq_chip(idata);
2805 phb->ioda.irq_chip_init = 1;
2806 phb->ioda.irq_chip = *ichip;
2807 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2808 }
2809 irq_set_chip(virq, &phb->ioda.irq_chip);
2810 }
2811
2812 /*
2813 * Returns true iff chip is something that we could call
2814 * pnv_opal_pci_msi_eoi for.
2815 */
2816 bool is_pnv_opal_msi(struct irq_chip *chip)
2817 {
2818 return chip->irq_eoi == pnv_ioda2_msi_eoi;
2819 }
2820 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2821
2822 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2823 unsigned int hwirq, unsigned int virq,
2824 unsigned int is_64, struct msi_msg *msg)
2825 {
2826 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2827 unsigned int xive_num = hwirq - phb->msi_base;
2828 __be32 data;
2829 int rc;
2830
2831 /* No PE assigned ? bail out ... no MSI for you ! */
2832 if (pe == NULL)
2833 return -ENXIO;
2834
2835 /* Check if we have an MVE */
2836 if (pe->mve_number < 0)
2837 return -ENXIO;
2838
2839 /* Force 32-bit MSI on some broken devices */
2840 if (dev->no_64bit_msi)
2841 is_64 = 0;
2842
2843 /* Assign XIVE to PE */
2844 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2845 if (rc) {
2846 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2847 pci_name(dev), rc, xive_num);
2848 return -EIO;
2849 }
2850
2851 if (is_64) {
2852 __be64 addr64;
2853
2854 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2855 &addr64, &data);
2856 if (rc) {
2857 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2858 pci_name(dev), rc);
2859 return -EIO;
2860 }
2861 msg->address_hi = be64_to_cpu(addr64) >> 32;
2862 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2863 } else {
2864 __be32 addr32;
2865
2866 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2867 &addr32, &data);
2868 if (rc) {
2869 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2870 pci_name(dev), rc);
2871 return -EIO;
2872 }
2873 msg->address_hi = 0;
2874 msg->address_lo = be32_to_cpu(addr32);
2875 }
2876 msg->data = be32_to_cpu(data);
2877
2878 pnv_set_msi_irq_chip(phb, virq);
2879
2880 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2881 " address=%x_%08x data=%x PE# %x\n",
2882 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2883 msg->address_hi, msg->address_lo, data, pe->pe_number);
2884
2885 return 0;
2886 }
2887
2888 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2889 {
2890 unsigned int count;
2891 const __be32 *prop = of_get_property(phb->hose->dn,
2892 "ibm,opal-msi-ranges", NULL);
2893 if (!prop) {
2894 /* BML Fallback */
2895 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2896 }
2897 if (!prop)
2898 return;
2899
2900 phb->msi_base = be32_to_cpup(prop);
2901 count = be32_to_cpup(prop + 1);
2902 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2903 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2904 phb->hose->global_number);
2905 return;
2906 }
2907
2908 phb->msi_setup = pnv_pci_ioda_msi_setup;
2909 phb->msi32_support = 1;
2910 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2911 count, phb->msi_base);
2912 }
2913 #else
2914 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2915 #endif /* CONFIG_PCI_MSI */
2916
2917 #ifdef CONFIG_PCI_IOV
2918 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2919 {
2920 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2921 struct pnv_phb *phb = hose->private_data;
2922 const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2923 struct resource *res;
2924 int i;
2925 resource_size_t size, total_vf_bar_sz;
2926 struct pci_dn *pdn;
2927 int mul, total_vfs;
2928
2929 if (!pdev->is_physfn || pdev->is_added)
2930 return;
2931
2932 pdn = pci_get_pdn(pdev);
2933 pdn->vfs_expanded = 0;
2934 pdn->m64_single_mode = false;
2935
2936 total_vfs = pci_sriov_get_totalvfs(pdev);
2937 mul = phb->ioda.total_pe_num;
2938 total_vf_bar_sz = 0;
2939
2940 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2941 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2942 if (!res->flags || res->parent)
2943 continue;
2944 if (!pnv_pci_is_m64_flags(res->flags)) {
2945 dev_warn(&pdev->dev, "Don't support SR-IOV with"
2946 " non M64 VF BAR%d: %pR. \n",
2947 i, res);
2948 goto truncate_iov;
2949 }
2950
2951 total_vf_bar_sz += pci_iov_resource_size(pdev,
2952 i + PCI_IOV_RESOURCES);
2953
2954 /*
2955 * If bigger than quarter of M64 segment size, just round up
2956 * power of two.
2957 *
2958 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2959 * with other devices, IOV BAR size is expanded to be
2960 * (total_pe * VF_BAR_size). When VF_BAR_size is half of M64
2961 * segment size , the expanded size would equal to half of the
2962 * whole M64 space size, which will exhaust the M64 Space and
2963 * limit the system flexibility. This is a design decision to
2964 * set the boundary to quarter of the M64 segment size.
2965 */
2966 if (total_vf_bar_sz > gate) {
2967 mul = roundup_pow_of_two(total_vfs);
2968 dev_info(&pdev->dev,
2969 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2970 total_vf_bar_sz, gate, mul);
2971 pdn->m64_single_mode = true;
2972 break;
2973 }
2974 }
2975
2976 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2977 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2978 if (!res->flags || res->parent)
2979 continue;
2980
2981 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2982 /*
2983 * On PHB3, the minimum size alignment of M64 BAR in single
2984 * mode is 32MB.
2985 */
2986 if (pdn->m64_single_mode && (size < SZ_32M))
2987 goto truncate_iov;
2988 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2989 res->end = res->start + size * mul - 1;
2990 dev_dbg(&pdev->dev, " %pR\n", res);
2991 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2992 i, res, mul);
2993 }
2994 pdn->vfs_expanded = mul;
2995
2996 return;
2997
2998 truncate_iov:
2999 /* To save MMIO space, IOV BAR is truncated. */
3000 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3001 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3002 res->flags = 0;
3003 res->end = res->start - 1;
3004 }
3005 }
3006 #endif /* CONFIG_PCI_IOV */
3007
3008 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3009 struct resource *res)
3010 {
3011 struct pnv_phb *phb = pe->phb;
3012 struct pci_bus_region region;
3013 int index;
3014 int64_t rc;
3015
3016 if (!res || !res->flags || res->start > res->end)
3017 return;
3018
3019 if (res->flags & IORESOURCE_IO) {
3020 region.start = res->start - phb->ioda.io_pci_base;
3021 region.end = res->end - phb->ioda.io_pci_base;
3022 index = region.start / phb->ioda.io_segsize;
3023
3024 while (index < phb->ioda.total_pe_num &&
3025 region.start <= region.end) {
3026 phb->ioda.io_segmap[index] = pe->pe_number;
3027 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3028 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3029 if (rc != OPAL_SUCCESS) {
3030 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3031 __func__, rc, index, pe->pe_number);
3032 break;
3033 }
3034
3035 region.start += phb->ioda.io_segsize;
3036 index++;
3037 }
3038 } else if ((res->flags & IORESOURCE_MEM) &&
3039 !pnv_pci_is_m64(phb, res)) {
3040 region.start = res->start -
3041 phb->hose->mem_offset[0] -
3042 phb->ioda.m32_pci_base;
3043 region.end = res->end -
3044 phb->hose->mem_offset[0] -
3045 phb->ioda.m32_pci_base;
3046 index = region.start / phb->ioda.m32_segsize;
3047
3048 while (index < phb->ioda.total_pe_num &&
3049 region.start <= region.end) {
3050 phb->ioda.m32_segmap[index] = pe->pe_number;
3051 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3052 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3053 if (rc != OPAL_SUCCESS) {
3054 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3055 __func__, rc, index, pe->pe_number);
3056 break;
3057 }
3058
3059 region.start += phb->ioda.m32_segsize;
3060 index++;
3061 }
3062 }
3063 }
3064
3065 /*
3066 * This function is supposed to be called on basis of PE from top
3067 * to bottom style. So the the I/O or MMIO segment assigned to
3068 * parent PE could be overrided by its child PEs if necessary.
3069 */
3070 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3071 {
3072 struct pci_dev *pdev;
3073 int i;
3074
3075 /*
3076 * NOTE: We only care PCI bus based PE for now. For PCI
3077 * device based PE, for example SRIOV sensitive VF should
3078 * be figured out later.
3079 */
3080 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3081
3082 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3083 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3084 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3085
3086 /*
3087 * If the PE contains all subordinate PCI buses, the
3088 * windows of the child bridges should be mapped to
3089 * the PE as well.
3090 */
3091 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3092 continue;
3093 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3094 pnv_ioda_setup_pe_res(pe,
3095 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3096 }
3097 }
3098
3099 #ifdef CONFIG_DEBUG_FS
3100 static int pnv_pci_diag_data_set(void *data, u64 val)
3101 {
3102 struct pci_controller *hose;
3103 struct pnv_phb *phb;
3104 s64 ret;
3105
3106 if (val != 1ULL)
3107 return -EINVAL;
3108
3109 hose = (struct pci_controller *)data;
3110 if (!hose || !hose->private_data)
3111 return -ENODEV;
3112
3113 phb = hose->private_data;
3114
3115 /* Retrieve the diag data from firmware */
3116 ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag.blob,
3117 PNV_PCI_DIAG_BUF_SIZE);
3118 if (ret != OPAL_SUCCESS)
3119 return -EIO;
3120
3121 /* Print the diag data to the kernel log */
3122 pnv_pci_dump_phb_diag_data(phb->hose, phb->diag.blob);
3123 return 0;
3124 }
3125
3126 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3127 pnv_pci_diag_data_set, "%llu\n");
3128
3129 #endif /* CONFIG_DEBUG_FS */
3130
3131 static void pnv_pci_ioda_create_dbgfs(void)
3132 {
3133 #ifdef CONFIG_DEBUG_FS
3134 struct pci_controller *hose, *tmp;
3135 struct pnv_phb *phb;
3136 char name[16];
3137
3138 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3139 phb = hose->private_data;
3140
3141 /* Notify initialization of PHB done */
3142 phb->initialized = 1;
3143
3144 sprintf(name, "PCI%04x", hose->global_number);
3145 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3146 if (!phb->dbgfs) {
3147 pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3148 __func__, hose->global_number);
3149 continue;
3150 }
3151
3152 debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3153 &pnv_pci_diag_data_fops);
3154 }
3155 #endif /* CONFIG_DEBUG_FS */
3156 }
3157
3158 static void pnv_pci_ioda_fixup(void)
3159 {
3160 pnv_pci_ioda_setup_PEs();
3161 pnv_pci_ioda_setup_iommu_api();
3162 pnv_pci_ioda_create_dbgfs();
3163
3164 #ifdef CONFIG_EEH
3165 eeh_init();
3166 eeh_addr_cache_build();
3167 #endif
3168 }
3169
3170 /*
3171 * Returns the alignment for I/O or memory windows for P2P
3172 * bridges. That actually depends on how PEs are segmented.
3173 * For now, we return I/O or M32 segment size for PE sensitive
3174 * P2P bridges. Otherwise, the default values (4KiB for I/O,
3175 * 1MiB for memory) will be returned.
3176 *
3177 * The current PCI bus might be put into one PE, which was
3178 * create against the parent PCI bridge. For that case, we
3179 * needn't enlarge the alignment so that we can save some
3180 * resources.
3181 */
3182 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3183 unsigned long type)
3184 {
3185 struct pci_dev *bridge;
3186 struct pci_controller *hose = pci_bus_to_host(bus);
3187 struct pnv_phb *phb = hose->private_data;
3188 int num_pci_bridges = 0;
3189
3190 bridge = bus->self;
3191 while (bridge) {
3192 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3193 num_pci_bridges++;
3194 if (num_pci_bridges >= 2)
3195 return 1;
3196 }
3197
3198 bridge = bridge->bus->self;
3199 }
3200
3201 /*
3202 * We fall back to M32 if M64 isn't supported. We enforce the M64
3203 * alignment for any 64-bit resource, PCIe doesn't care and
3204 * bridges only do 64-bit prefetchable anyway.
3205 */
3206 if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3207 return phb->ioda.m64_segsize;
3208 if (type & IORESOURCE_MEM)
3209 return phb->ioda.m32_segsize;
3210
3211 return phb->ioda.io_segsize;
3212 }
3213
3214 /*
3215 * We are updating root port or the upstream port of the
3216 * bridge behind the root port with PHB's windows in order
3217 * to accommodate the changes on required resources during
3218 * PCI (slot) hotplug, which is connected to either root
3219 * port or the downstream ports of PCIe switch behind the
3220 * root port.
3221 */
3222 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3223 unsigned long type)
3224 {
3225 struct pci_controller *hose = pci_bus_to_host(bus);
3226 struct pnv_phb *phb = hose->private_data;
3227 struct pci_dev *bridge = bus->self;
3228 struct resource *r, *w;
3229 bool msi_region = false;
3230 int i;
3231
3232 /* Check if we need apply fixup to the bridge's windows */
3233 if (!pci_is_root_bus(bridge->bus) &&
3234 !pci_is_root_bus(bridge->bus->self->bus))
3235 return;
3236
3237 /* Fixup the resources */
3238 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3239 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3240 if (!r->flags || !r->parent)
3241 continue;
3242
3243 w = NULL;
3244 if (r->flags & type & IORESOURCE_IO)
3245 w = &hose->io_resource;
3246 else if (pnv_pci_is_m64(phb, r) &&
3247 (type & IORESOURCE_PREFETCH) &&
3248 phb->ioda.m64_segsize)
3249 w = &hose->mem_resources[1];
3250 else if (r->flags & type & IORESOURCE_MEM) {
3251 w = &hose->mem_resources[0];
3252 msi_region = true;
3253 }
3254
3255 r->start = w->start;
3256 r->end = w->end;
3257
3258 /* The 64KB 32-bits MSI region shouldn't be included in
3259 * the 32-bits bridge window. Otherwise, we can see strange
3260 * issues. One of them is EEH error observed on Garrison.
3261 *
3262 * Exclude top 1MB region which is the minimal alignment of
3263 * 32-bits bridge window.
3264 */
3265 if (msi_region) {
3266 r->end += 0x10000;
3267 r->end -= 0x100000;
3268 }
3269 }
3270 }
3271
3272 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3273 {
3274 struct pci_controller *hose = pci_bus_to_host(bus);
3275 struct pnv_phb *phb = hose->private_data;
3276 struct pci_dev *bridge = bus->self;
3277 struct pnv_ioda_pe *pe;
3278 bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3279
3280 /* Extend bridge's windows if necessary */
3281 pnv_pci_fixup_bridge_resources(bus, type);
3282
3283 /* The PE for root bus should be realized before any one else */
3284 if (!phb->ioda.root_pe_populated) {
3285 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3286 if (pe) {
3287 phb->ioda.root_pe_idx = pe->pe_number;
3288 phb->ioda.root_pe_populated = true;
3289 }
3290 }
3291
3292 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3293 if (list_empty(&bus->devices))
3294 return;
3295
3296 /* Reserve PEs according to used M64 resources */
3297 if (phb->reserve_m64_pe)
3298 phb->reserve_m64_pe(bus, NULL, all);
3299
3300 /*
3301 * Assign PE. We might run here because of partial hotplug.
3302 * For the case, we just pick up the existing PE and should
3303 * not allocate resources again.
3304 */
3305 pe = pnv_ioda_setup_bus_PE(bus, all);
3306 if (!pe)
3307 return;
3308
3309 pnv_ioda_setup_pe_seg(pe);
3310 switch (phb->type) {
3311 case PNV_PHB_IODA1:
3312 pnv_pci_ioda1_setup_dma_pe(phb, pe);
3313 break;
3314 case PNV_PHB_IODA2:
3315 pnv_pci_ioda2_setup_dma_pe(phb, pe);
3316 break;
3317 default:
3318 pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3319 __func__, phb->hose->global_number, phb->type);
3320 }
3321 }
3322
3323 #ifdef CONFIG_PCI_IOV
3324 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3325 int resno)
3326 {
3327 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3328 struct pnv_phb *phb = hose->private_data;
3329 struct pci_dn *pdn = pci_get_pdn(pdev);
3330 resource_size_t align;
3331
3332 /*
3333 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3334 * SR-IOV. While from hardware perspective, the range mapped by M64
3335 * BAR should be size aligned.
3336 *
3337 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3338 * powernv-specific hardware restriction is gone. But if just use the
3339 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3340 * in one segment of M64 #15, which introduces the PE conflict between
3341 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3342 * m64_segsize.
3343 *
3344 * This function returns the total IOV BAR size if M64 BAR is in
3345 * Shared PE mode or just VF BAR size if not.
3346 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3347 * M64 segment size if IOV BAR size is less.
3348 */
3349 align = pci_iov_resource_size(pdev, resno);
3350 if (!pdn->vfs_expanded)
3351 return align;
3352 if (pdn->m64_single_mode)
3353 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3354
3355 return pdn->vfs_expanded * align;
3356 }
3357 #endif /* CONFIG_PCI_IOV */
3358
3359 /* Prevent enabling devices for which we couldn't properly
3360 * assign a PE
3361 */
3362 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3363 {
3364 struct pci_controller *hose = pci_bus_to_host(dev->bus);
3365 struct pnv_phb *phb = hose->private_data;
3366 struct pci_dn *pdn;
3367
3368 /* The function is probably called while the PEs have
3369 * not be created yet. For example, resource reassignment
3370 * during PCI probe period. We just skip the check if
3371 * PEs isn't ready.
3372 */
3373 if (!phb->initialized)
3374 return true;
3375
3376 pdn = pci_get_pdn(dev);
3377 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3378 return false;
3379
3380 return true;
3381 }
3382
3383 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3384 int num)
3385 {
3386 struct pnv_ioda_pe *pe = container_of(table_group,
3387 struct pnv_ioda_pe, table_group);
3388 struct pnv_phb *phb = pe->phb;
3389 unsigned int idx;
3390 long rc;
3391
3392 pe_info(pe, "Removing DMA window #%d\n", num);
3393 for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3394 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3395 continue;
3396
3397 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3398 idx, 0, 0ul, 0ul, 0ul);
3399 if (rc != OPAL_SUCCESS) {
3400 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3401 rc, idx);
3402 return rc;
3403 }
3404
3405 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3406 }
3407
3408 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3409 return OPAL_SUCCESS;
3410 }
3411
3412 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3413 {
3414 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3415 struct iommu_table *tbl = pe->table_group.tables[0];
3416 int64_t rc;
3417
3418 if (!weight)
3419 return;
3420
3421 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3422 if (rc != OPAL_SUCCESS)
3423 return;
3424
3425 pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3426 if (pe->table_group.group) {
3427 iommu_group_put(pe->table_group.group);
3428 WARN_ON(pe->table_group.group);
3429 }
3430
3431 free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3432 iommu_free_table(tbl, "pnv");
3433 }
3434
3435 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3436 {
3437 struct iommu_table *tbl = pe->table_group.tables[0];
3438 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3439 #ifdef CONFIG_IOMMU_API
3440 int64_t rc;
3441 #endif
3442
3443 if (!weight)
3444 return;
3445
3446 #ifdef CONFIG_IOMMU_API
3447 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3448 if (rc)
3449 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3450 #endif
3451
3452 pnv_pci_ioda2_set_bypass(pe, false);
3453 if (pe->table_group.group) {
3454 iommu_group_put(pe->table_group.group);
3455 WARN_ON(pe->table_group.group);
3456 }
3457
3458 pnv_pci_ioda2_table_free_pages(tbl);
3459 iommu_free_table(tbl, "pnv");
3460 }
3461
3462 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3463 unsigned short win,
3464 unsigned int *map)
3465 {
3466 struct pnv_phb *phb = pe->phb;
3467 int idx;
3468 int64_t rc;
3469
3470 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3471 if (map[idx] != pe->pe_number)
3472 continue;
3473
3474 if (win == OPAL_M64_WINDOW_TYPE)
3475 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3476 phb->ioda.reserved_pe_idx, win,
3477 idx / PNV_IODA1_M64_SEGS,
3478 idx % PNV_IODA1_M64_SEGS);
3479 else
3480 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3481 phb->ioda.reserved_pe_idx, win, 0, idx);
3482
3483 if (rc != OPAL_SUCCESS)
3484 pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3485 rc, win, idx);
3486
3487 map[idx] = IODA_INVALID_PE;
3488 }
3489 }
3490
3491 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3492 {
3493 struct pnv_phb *phb = pe->phb;
3494
3495 if (phb->type == PNV_PHB_IODA1) {
3496 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3497 phb->ioda.io_segmap);
3498 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3499 phb->ioda.m32_segmap);
3500 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3501 phb->ioda.m64_segmap);
3502 } else if (phb->type == PNV_PHB_IODA2) {
3503 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3504 phb->ioda.m32_segmap);
3505 }
3506 }
3507
3508 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3509 {
3510 struct pnv_phb *phb = pe->phb;
3511 struct pnv_ioda_pe *slave, *tmp;
3512
3513 list_del(&pe->list);
3514 switch (phb->type) {
3515 case PNV_PHB_IODA1:
3516 pnv_pci_ioda1_release_pe_dma(pe);
3517 break;
3518 case PNV_PHB_IODA2:
3519 pnv_pci_ioda2_release_pe_dma(pe);
3520 break;
3521 default:
3522 WARN_ON(1);
3523 }
3524
3525 pnv_ioda_release_pe_seg(pe);
3526 pnv_ioda_deconfigure_pe(pe->phb, pe);
3527
3528 /* Release slave PEs in the compound PE */
3529 if (pe->flags & PNV_IODA_PE_MASTER) {
3530 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3531 list_del(&slave->list);
3532 pnv_ioda_free_pe(slave);
3533 }
3534 }
3535
3536 /*
3537 * The PE for root bus can be removed because of hotplug in EEH
3538 * recovery for fenced PHB error. We need to mark the PE dead so
3539 * that it can be populated again in PCI hot add path. The PE
3540 * shouldn't be destroyed as it's the global reserved resource.
3541 */
3542 if (phb->ioda.root_pe_populated &&
3543 phb->ioda.root_pe_idx == pe->pe_number)
3544 phb->ioda.root_pe_populated = false;
3545 else
3546 pnv_ioda_free_pe(pe);
3547 }
3548
3549 static void pnv_pci_release_device(struct pci_dev *pdev)
3550 {
3551 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3552 struct pnv_phb *phb = hose->private_data;
3553 struct pci_dn *pdn = pci_get_pdn(pdev);
3554 struct pnv_ioda_pe *pe;
3555
3556 if (pdev->is_virtfn)
3557 return;
3558
3559 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3560 return;
3561
3562 /*
3563 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3564 * isn't removed and added afterwards in this scenario. We should
3565 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3566 * device count is decreased on removing devices while failing to
3567 * be increased on adding devices. It leads to unbalanced PE's device
3568 * count and eventually make normal PCI hotplug path broken.
3569 */
3570 pe = &phb->ioda.pe_array[pdn->pe_number];
3571 pdn->pe_number = IODA_INVALID_PE;
3572
3573 WARN_ON(--pe->device_count < 0);
3574 if (pe->device_count == 0)
3575 pnv_ioda_release_pe(pe);
3576 }
3577
3578 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3579 {
3580 struct pnv_phb *phb = hose->private_data;
3581
3582 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3583 OPAL_ASSERT_RESET);
3584 }
3585
3586 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3587 .dma_dev_setup = pnv_pci_dma_dev_setup,
3588 .dma_bus_setup = pnv_pci_dma_bus_setup,
3589 #ifdef CONFIG_PCI_MSI
3590 .setup_msi_irqs = pnv_setup_msi_irqs,
3591 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3592 #endif
3593 .enable_device_hook = pnv_pci_enable_device_hook,
3594 .release_device = pnv_pci_release_device,
3595 .window_alignment = pnv_pci_window_alignment,
3596 .setup_bridge = pnv_pci_setup_bridge,
3597 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3598 .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3599 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
3600 .shutdown = pnv_pci_ioda_shutdown,
3601 };
3602
3603 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3604 {
3605 dev_err_once(&npdev->dev,
3606 "%s operation unsupported for NVLink devices\n",
3607 __func__);
3608 return -EPERM;
3609 }
3610
3611 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3612 .dma_dev_setup = pnv_pci_dma_dev_setup,
3613 #ifdef CONFIG_PCI_MSI
3614 .setup_msi_irqs = pnv_setup_msi_irqs,
3615 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3616 #endif
3617 .enable_device_hook = pnv_pci_enable_device_hook,
3618 .window_alignment = pnv_pci_window_alignment,
3619 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3620 .dma_set_mask = pnv_npu_dma_set_mask,
3621 .shutdown = pnv_pci_ioda_shutdown,
3622 };
3623
3624 #ifdef CONFIG_CXL_BASE
3625 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3626 .dma_dev_setup = pnv_pci_dma_dev_setup,
3627 .dma_bus_setup = pnv_pci_dma_bus_setup,
3628 #ifdef CONFIG_PCI_MSI
3629 .setup_msi_irqs = pnv_cxl_cx4_setup_msi_irqs,
3630 .teardown_msi_irqs = pnv_cxl_cx4_teardown_msi_irqs,
3631 #endif
3632 .enable_device_hook = pnv_cxl_enable_device_hook,
3633 .disable_device = pnv_cxl_disable_device,
3634 .release_device = pnv_pci_release_device,
3635 .window_alignment = pnv_pci_window_alignment,
3636 .setup_bridge = pnv_pci_setup_bridge,
3637 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3638 .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3639 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
3640 .shutdown = pnv_pci_ioda_shutdown,
3641 };
3642 #endif
3643
3644 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3645 u64 hub_id, int ioda_type)
3646 {
3647 struct pci_controller *hose;
3648 struct pnv_phb *phb;
3649 unsigned long size, m64map_off, m32map_off, pemap_off;
3650 unsigned long iomap_off = 0, dma32map_off = 0;
3651 struct resource r;
3652 const __be64 *prop64;
3653 const __be32 *prop32;
3654 int len;
3655 unsigned int segno;
3656 u64 phb_id;
3657 void *aux;
3658 long rc;
3659
3660 if (!of_device_is_available(np))
3661 return;
3662
3663 pr_info("Initializing %s PHB (%s)\n",
3664 pnv_phb_names[ioda_type], of_node_full_name(np));
3665
3666 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3667 if (!prop64) {
3668 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
3669 return;
3670 }
3671 phb_id = be64_to_cpup(prop64);
3672 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
3673
3674 phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3675
3676 /* Allocate PCI controller */
3677 phb->hose = hose = pcibios_alloc_controller(np);
3678 if (!phb->hose) {
3679 pr_err(" Can't allocate PCI controller for %s\n",
3680 np->full_name);
3681 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3682 return;
3683 }
3684
3685 spin_lock_init(&phb->lock);
3686 prop32 = of_get_property(np, "bus-range", &len);
3687 if (prop32 && len == 8) {
3688 hose->first_busno = be32_to_cpu(prop32[0]);
3689 hose->last_busno = be32_to_cpu(prop32[1]);
3690 } else {
3691 pr_warn(" Broken <bus-range> on %s\n", np->full_name);
3692 hose->first_busno = 0;
3693 hose->last_busno = 0xff;
3694 }
3695 hose->private_data = phb;
3696 phb->hub_id = hub_id;
3697 phb->opal_id = phb_id;
3698 phb->type = ioda_type;
3699 mutex_init(&phb->ioda.pe_alloc_mutex);
3700
3701 /* Detect specific models for error handling */
3702 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3703 phb->model = PNV_PHB_MODEL_P7IOC;
3704 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3705 phb->model = PNV_PHB_MODEL_PHB3;
3706 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3707 phb->model = PNV_PHB_MODEL_NPU;
3708 else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3709 phb->model = PNV_PHB_MODEL_NPU2;
3710 else
3711 phb->model = PNV_PHB_MODEL_UNKNOWN;
3712
3713 /* Parse 32-bit and IO ranges (if any) */
3714 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3715
3716 /* Get registers */
3717 if (!of_address_to_resource(np, 0, &r)) {
3718 phb->regs_phys = r.start;
3719 phb->regs = ioremap(r.start, resource_size(&r));
3720 if (phb->regs == NULL)
3721 pr_err(" Failed to map registers !\n");
3722 }
3723
3724 /* Initialize more IODA stuff */
3725 phb->ioda.total_pe_num = 1;
3726 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3727 if (prop32)
3728 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3729 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3730 if (prop32)
3731 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3732
3733 /* Invalidate RID to PE# mapping */
3734 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3735 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3736
3737 /* Parse 64-bit MMIO range */
3738 pnv_ioda_parse_m64_window(phb);
3739
3740 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3741 /* FW Has already off top 64k of M32 space (MSI space) */
3742 phb->ioda.m32_size += 0x10000;
3743
3744 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3745 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3746 phb->ioda.io_size = hose->pci_io_size;
3747 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3748 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3749
3750 /* Calculate how many 32-bit TCE segments we have */
3751 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3752 PNV_IODA1_DMA32_SEGSIZE;
3753
3754 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3755 size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3756 sizeof(unsigned long));
3757 m64map_off = size;
3758 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3759 m32map_off = size;
3760 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3761 if (phb->type == PNV_PHB_IODA1) {
3762 iomap_off = size;
3763 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3764 dma32map_off = size;
3765 size += phb->ioda.dma32_count *
3766 sizeof(phb->ioda.dma32_segmap[0]);
3767 }
3768 pemap_off = size;
3769 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3770 aux = memblock_virt_alloc(size, 0);
3771 phb->ioda.pe_alloc = aux;
3772 phb->ioda.m64_segmap = aux + m64map_off;
3773 phb->ioda.m32_segmap = aux + m32map_off;
3774 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3775 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3776 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3777 }
3778 if (phb->type == PNV_PHB_IODA1) {
3779 phb->ioda.io_segmap = aux + iomap_off;
3780 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3781 phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3782
3783 phb->ioda.dma32_segmap = aux + dma32map_off;
3784 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3785 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3786 }
3787 phb->ioda.pe_array = aux + pemap_off;
3788
3789 /*
3790 * Choose PE number for root bus, which shouldn't have
3791 * M64 resources consumed by its child devices. To pick
3792 * the PE number adjacent to the reserved one if possible.
3793 */
3794 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3795 if (phb->ioda.reserved_pe_idx == 0) {
3796 phb->ioda.root_pe_idx = 1;
3797 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3798 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3799 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3800 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3801 } else {
3802 phb->ioda.root_pe_idx = IODA_INVALID_PE;
3803 }
3804
3805 INIT_LIST_HEAD(&phb->ioda.pe_list);
3806 mutex_init(&phb->ioda.pe_list_mutex);
3807
3808 /* Calculate how many 32-bit TCE segments we have */
3809 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3810 PNV_IODA1_DMA32_SEGSIZE;
3811
3812 #if 0 /* We should really do that ... */
3813 rc = opal_pci_set_phb_mem_window(opal->phb_id,
3814 window_type,
3815 window_num,
3816 starting_real_address,
3817 starting_pci_address,
3818 segment_size);
3819 #endif
3820
3821 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3822 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3823 phb->ioda.m32_size, phb->ioda.m32_segsize);
3824 if (phb->ioda.m64_size)
3825 pr_info(" M64: 0x%lx [segment=0x%lx]\n",
3826 phb->ioda.m64_size, phb->ioda.m64_segsize);
3827 if (phb->ioda.io_size)
3828 pr_info(" IO: 0x%x [segment=0x%x]\n",
3829 phb->ioda.io_size, phb->ioda.io_segsize);
3830
3831
3832 phb->hose->ops = &pnv_pci_ops;
3833 phb->get_pe_state = pnv_ioda_get_pe_state;
3834 phb->freeze_pe = pnv_ioda_freeze_pe;
3835 phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3836
3837 /* Setup MSI support */
3838 pnv_pci_init_ioda_msis(phb);
3839
3840 /*
3841 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3842 * to let the PCI core do resource assignment. It's supposed
3843 * that the PCI core will do correct I/O and MMIO alignment
3844 * for the P2P bridge bars so that each PCI bus (excluding
3845 * the child P2P bridges) can form individual PE.
3846 */
3847 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3848
3849 if (phb->type == PNV_PHB_NPU) {
3850 hose->controller_ops = pnv_npu_ioda_controller_ops;
3851 } else {
3852 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3853 hose->controller_ops = pnv_pci_ioda_controller_ops;
3854 }
3855
3856 #ifdef CONFIG_PCI_IOV
3857 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3858 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3859 #endif
3860
3861 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3862
3863 /* Reset IODA tables to a clean state */
3864 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3865 if (rc)
3866 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
3867
3868 /*
3869 * If we're running in kdump kernel, the previous kernel never
3870 * shutdown PCI devices correctly. We already got IODA table
3871 * cleaned out. So we have to issue PHB reset to stop all PCI
3872 * transactions from previous kernel.
3873 */
3874 if (is_kdump_kernel()) {
3875 pr_info(" Issue PHB reset ...\n");
3876 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3877 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3878 }
3879
3880 /* Remove M64 resource if we can't configure it successfully */
3881 if (!phb->init_m64 || phb->init_m64(phb))
3882 hose->mem_resources[1].flags = 0;
3883 }
3884
3885 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3886 {
3887 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3888 }
3889
3890 void __init pnv_pci_init_npu_phb(struct device_node *np)
3891 {
3892 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3893 }
3894
3895 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3896 {
3897 struct device_node *phbn;
3898 const __be64 *prop64;
3899 u64 hub_id;
3900
3901 pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3902
3903 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3904 if (!prop64) {
3905 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3906 return;
3907 }
3908 hub_id = be64_to_cpup(prop64);
3909 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3910
3911 /* Count child PHBs */
3912 for_each_child_of_node(np, phbn) {
3913 /* Look for IODA1 PHBs */
3914 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3915 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3916 }
3917 }