]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/kvm/x86.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68
69 #define CREATE_TRACE_POINTS
70 #include "trace.h"
71
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
76
77 #define emul_to_vcpu(ctxt) \
78 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
79
80 /* EFER defaults:
81 * - enable syscall per default because its emulated by KVM
82 * - enable LME and LMA per default on 64 bit KVM
83 */
84 #ifdef CONFIG_X86_64
85 static
86 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
87 #else
88 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
89 #endif
90
91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
93
94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
95 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
96
97 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
98 static void process_nmi(struct kvm_vcpu *vcpu);
99 static void enter_smm(struct kvm_vcpu *vcpu);
100 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
101
102 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
103 EXPORT_SYMBOL_GPL(kvm_x86_ops);
104
105 static bool __read_mostly ignore_msrs = 0;
106 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
107
108 unsigned int min_timer_period_us = 500;
109 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
110
111 static bool __read_mostly kvmclock_periodic_sync = true;
112 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
113
114 bool __read_mostly kvm_has_tsc_control;
115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
116 u32 __read_mostly kvm_max_guest_tsc_khz;
117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
118 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
120 u64 __read_mostly kvm_max_tsc_scaling_ratio;
121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
122 u64 __read_mostly kvm_default_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
124
125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
126 static u32 __read_mostly tsc_tolerance_ppm = 250;
127 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
128
129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
130 unsigned int __read_mostly lapic_timer_advance_ns = 0;
131 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
132
133 static bool __read_mostly vector_hashing = true;
134 module_param(vector_hashing, bool, S_IRUGO);
135
136 static bool __read_mostly backwards_tsc_observed = false;
137
138 #define KVM_NR_SHARED_MSRS 16
139
140 struct kvm_shared_msrs_global {
141 int nr;
142 u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144
145 struct kvm_shared_msrs {
146 struct user_return_notifier urn;
147 bool registered;
148 struct kvm_shared_msr_values {
149 u64 host;
150 u64 curr;
151 } values[KVM_NR_SHARED_MSRS];
152 };
153
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158 { "pf_fixed", VCPU_STAT(pf_fixed) },
159 { "pf_guest", VCPU_STAT(pf_guest) },
160 { "tlb_flush", VCPU_STAT(tlb_flush) },
161 { "invlpg", VCPU_STAT(invlpg) },
162 { "exits", VCPU_STAT(exits) },
163 { "io_exits", VCPU_STAT(io_exits) },
164 { "mmio_exits", VCPU_STAT(mmio_exits) },
165 { "signal_exits", VCPU_STAT(signal_exits) },
166 { "irq_window", VCPU_STAT(irq_window_exits) },
167 { "nmi_window", VCPU_STAT(nmi_window_exits) },
168 { "halt_exits", VCPU_STAT(halt_exits) },
169 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
173 { "hypercalls", VCPU_STAT(hypercalls) },
174 { "request_irq", VCPU_STAT(request_irq_exits) },
175 { "irq_exits", VCPU_STAT(irq_exits) },
176 { "host_state_reload", VCPU_STAT(host_state_reload) },
177 { "efer_reload", VCPU_STAT(efer_reload) },
178 { "fpu_reload", VCPU_STAT(fpu_reload) },
179 { "insn_emulation", VCPU_STAT(insn_emulation) },
180 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181 { "irq_injections", VCPU_STAT(irq_injections) },
182 { "nmi_injections", VCPU_STAT(nmi_injections) },
183 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
185 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187 { "mmu_flooded", VM_STAT(mmu_flooded) },
188 { "mmu_recycled", VM_STAT(mmu_recycled) },
189 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190 { "mmu_unsync", VM_STAT(mmu_unsync) },
191 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192 { "largepages", VM_STAT(lpages) },
193 { NULL }
194 };
195
196 u64 __read_mostly host_xcr0;
197
198 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
199
200 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
201 {
202 int i;
203 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
204 vcpu->arch.apf.gfns[i] = ~0;
205 }
206
207 static void kvm_on_user_return(struct user_return_notifier *urn)
208 {
209 unsigned slot;
210 struct kvm_shared_msrs *locals
211 = container_of(urn, struct kvm_shared_msrs, urn);
212 struct kvm_shared_msr_values *values;
213 unsigned long flags;
214
215 /*
216 * Disabling irqs at this point since the following code could be
217 * interrupted and executed through kvm_arch_hardware_disable()
218 */
219 local_irq_save(flags);
220 if (locals->registered) {
221 locals->registered = false;
222 user_return_notifier_unregister(urn);
223 }
224 local_irq_restore(flags);
225 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
226 values = &locals->values[slot];
227 if (values->host != values->curr) {
228 wrmsrl(shared_msrs_global.msrs[slot], values->host);
229 values->curr = values->host;
230 }
231 }
232 }
233
234 static void shared_msr_update(unsigned slot, u32 msr)
235 {
236 u64 value;
237 unsigned int cpu = smp_processor_id();
238 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
239
240 /* only read, and nobody should modify it at this time,
241 * so don't need lock */
242 if (slot >= shared_msrs_global.nr) {
243 printk(KERN_ERR "kvm: invalid MSR slot!");
244 return;
245 }
246 rdmsrl_safe(msr, &value);
247 smsr->values[slot].host = value;
248 smsr->values[slot].curr = value;
249 }
250
251 void kvm_define_shared_msr(unsigned slot, u32 msr)
252 {
253 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
254 shared_msrs_global.msrs[slot] = msr;
255 if (slot >= shared_msrs_global.nr)
256 shared_msrs_global.nr = slot + 1;
257 }
258 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
259
260 static void kvm_shared_msr_cpu_online(void)
261 {
262 unsigned i;
263
264 for (i = 0; i < shared_msrs_global.nr; ++i)
265 shared_msr_update(i, shared_msrs_global.msrs[i]);
266 }
267
268 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
269 {
270 unsigned int cpu = smp_processor_id();
271 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
272 int err;
273
274 if (((value ^ smsr->values[slot].curr) & mask) == 0)
275 return 0;
276 smsr->values[slot].curr = value;
277 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
278 if (err)
279 return 1;
280
281 if (!smsr->registered) {
282 smsr->urn.on_user_return = kvm_on_user_return;
283 user_return_notifier_register(&smsr->urn);
284 smsr->registered = true;
285 }
286 return 0;
287 }
288 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
289
290 static void drop_user_return_notifiers(void)
291 {
292 unsigned int cpu = smp_processor_id();
293 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
294
295 if (smsr->registered)
296 kvm_on_user_return(&smsr->urn);
297 }
298
299 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
300 {
301 return vcpu->arch.apic_base;
302 }
303 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
304
305 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
306 {
307 u64 old_state = vcpu->arch.apic_base &
308 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
309 u64 new_state = msr_info->data &
310 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
311 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
312 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
313
314 if (!msr_info->host_initiated &&
315 ((msr_info->data & reserved_bits) != 0 ||
316 new_state == X2APIC_ENABLE ||
317 (new_state == MSR_IA32_APICBASE_ENABLE &&
318 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
319 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
320 old_state == 0)))
321 return 1;
322
323 kvm_lapic_set_base(vcpu, msr_info->data);
324 return 0;
325 }
326 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
327
328 asmlinkage __visible void kvm_spurious_fault(void)
329 {
330 /* Fault while not rebooting. We want the trace. */
331 BUG();
332 }
333 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
334
335 #define EXCPT_BENIGN 0
336 #define EXCPT_CONTRIBUTORY 1
337 #define EXCPT_PF 2
338
339 static int exception_class(int vector)
340 {
341 switch (vector) {
342 case PF_VECTOR:
343 return EXCPT_PF;
344 case DE_VECTOR:
345 case TS_VECTOR:
346 case NP_VECTOR:
347 case SS_VECTOR:
348 case GP_VECTOR:
349 return EXCPT_CONTRIBUTORY;
350 default:
351 break;
352 }
353 return EXCPT_BENIGN;
354 }
355
356 #define EXCPT_FAULT 0
357 #define EXCPT_TRAP 1
358 #define EXCPT_ABORT 2
359 #define EXCPT_INTERRUPT 3
360
361 static int exception_type(int vector)
362 {
363 unsigned int mask;
364
365 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
366 return EXCPT_INTERRUPT;
367
368 mask = 1 << vector;
369
370 /* #DB is trap, as instruction watchpoints are handled elsewhere */
371 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
372 return EXCPT_TRAP;
373
374 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
375 return EXCPT_ABORT;
376
377 /* Reserved exceptions will result in fault */
378 return EXCPT_FAULT;
379 }
380
381 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
382 unsigned nr, bool has_error, u32 error_code,
383 bool reinject)
384 {
385 u32 prev_nr;
386 int class1, class2;
387
388 kvm_make_request(KVM_REQ_EVENT, vcpu);
389
390 if (!vcpu->arch.exception.pending) {
391 queue:
392 if (has_error && !is_protmode(vcpu))
393 has_error = false;
394 vcpu->arch.exception.pending = true;
395 vcpu->arch.exception.has_error_code = has_error;
396 vcpu->arch.exception.nr = nr;
397 vcpu->arch.exception.error_code = error_code;
398 vcpu->arch.exception.reinject = reinject;
399 return;
400 }
401
402 /* to check exception */
403 prev_nr = vcpu->arch.exception.nr;
404 if (prev_nr == DF_VECTOR) {
405 /* triple fault -> shutdown */
406 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
407 return;
408 }
409 class1 = exception_class(prev_nr);
410 class2 = exception_class(nr);
411 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
412 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
413 /* generate double fault per SDM Table 5-5 */
414 vcpu->arch.exception.pending = true;
415 vcpu->arch.exception.has_error_code = true;
416 vcpu->arch.exception.nr = DF_VECTOR;
417 vcpu->arch.exception.error_code = 0;
418 } else
419 /* replace previous exception with a new one in a hope
420 that instruction re-execution will regenerate lost
421 exception */
422 goto queue;
423 }
424
425 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
426 {
427 kvm_multiple_exception(vcpu, nr, false, 0, false);
428 }
429 EXPORT_SYMBOL_GPL(kvm_queue_exception);
430
431 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
432 {
433 kvm_multiple_exception(vcpu, nr, false, 0, true);
434 }
435 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
436
437 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
438 {
439 if (err)
440 kvm_inject_gp(vcpu, 0);
441 else
442 return kvm_skip_emulated_instruction(vcpu);
443
444 return 1;
445 }
446 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
447
448 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
449 {
450 ++vcpu->stat.pf_guest;
451 vcpu->arch.cr2 = fault->address;
452 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
453 }
454 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
455
456 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
457 {
458 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
459 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
460 else
461 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
462
463 return fault->nested_page_fault;
464 }
465
466 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
467 {
468 atomic_inc(&vcpu->arch.nmi_queued);
469 kvm_make_request(KVM_REQ_NMI, vcpu);
470 }
471 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
472
473 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
474 {
475 kvm_multiple_exception(vcpu, nr, true, error_code, false);
476 }
477 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
478
479 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
480 {
481 kvm_multiple_exception(vcpu, nr, true, error_code, true);
482 }
483 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
484
485 /*
486 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
487 * a #GP and return false.
488 */
489 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
490 {
491 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
492 return true;
493 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
494 return false;
495 }
496 EXPORT_SYMBOL_GPL(kvm_require_cpl);
497
498 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
499 {
500 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
501 return true;
502
503 kvm_queue_exception(vcpu, UD_VECTOR);
504 return false;
505 }
506 EXPORT_SYMBOL_GPL(kvm_require_dr);
507
508 /*
509 * This function will be used to read from the physical memory of the currently
510 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
511 * can read from guest physical or from the guest's guest physical memory.
512 */
513 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
514 gfn_t ngfn, void *data, int offset, int len,
515 u32 access)
516 {
517 struct x86_exception exception;
518 gfn_t real_gfn;
519 gpa_t ngpa;
520
521 ngpa = gfn_to_gpa(ngfn);
522 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
523 if (real_gfn == UNMAPPED_GVA)
524 return -EFAULT;
525
526 real_gfn = gpa_to_gfn(real_gfn);
527
528 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
529 }
530 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
531
532 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
533 void *data, int offset, int len, u32 access)
534 {
535 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
536 data, offset, len, access);
537 }
538
539 /*
540 * Load the pae pdptrs. Return true is they are all valid.
541 */
542 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
543 {
544 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
545 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
546 int i;
547 int ret;
548 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
549
550 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
551 offset * sizeof(u64), sizeof(pdpte),
552 PFERR_USER_MASK|PFERR_WRITE_MASK);
553 if (ret < 0) {
554 ret = 0;
555 goto out;
556 }
557 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
558 if ((pdpte[i] & PT_PRESENT_MASK) &&
559 (pdpte[i] &
560 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
561 ret = 0;
562 goto out;
563 }
564 }
565 ret = 1;
566
567 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
568 __set_bit(VCPU_EXREG_PDPTR,
569 (unsigned long *)&vcpu->arch.regs_avail);
570 __set_bit(VCPU_EXREG_PDPTR,
571 (unsigned long *)&vcpu->arch.regs_dirty);
572 out:
573
574 return ret;
575 }
576 EXPORT_SYMBOL_GPL(load_pdptrs);
577
578 bool pdptrs_changed(struct kvm_vcpu *vcpu)
579 {
580 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
581 bool changed = true;
582 int offset;
583 gfn_t gfn;
584 int r;
585
586 if (is_long_mode(vcpu) || !is_pae(vcpu))
587 return false;
588
589 if (!test_bit(VCPU_EXREG_PDPTR,
590 (unsigned long *)&vcpu->arch.regs_avail))
591 return true;
592
593 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
594 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
595 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
596 PFERR_USER_MASK | PFERR_WRITE_MASK);
597 if (r < 0)
598 goto out;
599 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
600 out:
601
602 return changed;
603 }
604 EXPORT_SYMBOL_GPL(pdptrs_changed);
605
606 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
607 {
608 unsigned long old_cr0 = kvm_read_cr0(vcpu);
609 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
610
611 cr0 |= X86_CR0_ET;
612
613 #ifdef CONFIG_X86_64
614 if (cr0 & 0xffffffff00000000UL)
615 return 1;
616 #endif
617
618 cr0 &= ~CR0_RESERVED_BITS;
619
620 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
621 return 1;
622
623 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
624 return 1;
625
626 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
627 #ifdef CONFIG_X86_64
628 if ((vcpu->arch.efer & EFER_LME)) {
629 int cs_db, cs_l;
630
631 if (!is_pae(vcpu))
632 return 1;
633 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
634 if (cs_l)
635 return 1;
636 } else
637 #endif
638 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
639 kvm_read_cr3(vcpu)))
640 return 1;
641 }
642
643 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
644 return 1;
645
646 kvm_x86_ops->set_cr0(vcpu, cr0);
647
648 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
649 kvm_clear_async_pf_completion_queue(vcpu);
650 kvm_async_pf_hash_reset(vcpu);
651 }
652
653 if ((cr0 ^ old_cr0) & update_bits)
654 kvm_mmu_reset_context(vcpu);
655
656 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
657 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
658 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
659 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
660
661 return 0;
662 }
663 EXPORT_SYMBOL_GPL(kvm_set_cr0);
664
665 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
666 {
667 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
668 }
669 EXPORT_SYMBOL_GPL(kvm_lmsw);
670
671 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
672 {
673 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
674 !vcpu->guest_xcr0_loaded) {
675 /* kvm_set_xcr() also depends on this */
676 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
677 vcpu->guest_xcr0_loaded = 1;
678 }
679 }
680
681 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
682 {
683 if (vcpu->guest_xcr0_loaded) {
684 if (vcpu->arch.xcr0 != host_xcr0)
685 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
686 vcpu->guest_xcr0_loaded = 0;
687 }
688 }
689
690 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
691 {
692 u64 xcr0 = xcr;
693 u64 old_xcr0 = vcpu->arch.xcr0;
694 u64 valid_bits;
695
696 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
697 if (index != XCR_XFEATURE_ENABLED_MASK)
698 return 1;
699 if (!(xcr0 & XFEATURE_MASK_FP))
700 return 1;
701 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
702 return 1;
703
704 /*
705 * Do not allow the guest to set bits that we do not support
706 * saving. However, xcr0 bit 0 is always set, even if the
707 * emulated CPU does not support XSAVE (see fx_init).
708 */
709 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
710 if (xcr0 & ~valid_bits)
711 return 1;
712
713 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
714 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
715 return 1;
716
717 if (xcr0 & XFEATURE_MASK_AVX512) {
718 if (!(xcr0 & XFEATURE_MASK_YMM))
719 return 1;
720 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
721 return 1;
722 }
723 vcpu->arch.xcr0 = xcr0;
724
725 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
726 kvm_update_cpuid(vcpu);
727 return 0;
728 }
729
730 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
731 {
732 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
733 __kvm_set_xcr(vcpu, index, xcr)) {
734 kvm_inject_gp(vcpu, 0);
735 return 1;
736 }
737 return 0;
738 }
739 EXPORT_SYMBOL_GPL(kvm_set_xcr);
740
741 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
742 {
743 unsigned long old_cr4 = kvm_read_cr4(vcpu);
744 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
745 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
746
747 if (cr4 & CR4_RESERVED_BITS)
748 return 1;
749
750 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
751 return 1;
752
753 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
754 return 1;
755
756 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
757 return 1;
758
759 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
760 return 1;
761
762 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
763 return 1;
764
765 if (is_long_mode(vcpu)) {
766 if (!(cr4 & X86_CR4_PAE))
767 return 1;
768 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
769 && ((cr4 ^ old_cr4) & pdptr_bits)
770 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
771 kvm_read_cr3(vcpu)))
772 return 1;
773
774 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
775 if (!guest_cpuid_has_pcid(vcpu))
776 return 1;
777
778 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
779 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
780 return 1;
781 }
782
783 if (kvm_x86_ops->set_cr4(vcpu, cr4))
784 return 1;
785
786 if (((cr4 ^ old_cr4) & pdptr_bits) ||
787 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
788 kvm_mmu_reset_context(vcpu);
789
790 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
791 kvm_update_cpuid(vcpu);
792
793 return 0;
794 }
795 EXPORT_SYMBOL_GPL(kvm_set_cr4);
796
797 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
798 {
799 #ifdef CONFIG_X86_64
800 cr3 &= ~CR3_PCID_INVD;
801 #endif
802
803 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
804 kvm_mmu_sync_roots(vcpu);
805 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
806 return 0;
807 }
808
809 if (is_long_mode(vcpu)) {
810 if (cr3 & CR3_L_MODE_RESERVED_BITS)
811 return 1;
812 } else if (is_pae(vcpu) && is_paging(vcpu) &&
813 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
814 return 1;
815
816 vcpu->arch.cr3 = cr3;
817 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
818 kvm_mmu_new_cr3(vcpu);
819 return 0;
820 }
821 EXPORT_SYMBOL_GPL(kvm_set_cr3);
822
823 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
824 {
825 if (cr8 & CR8_RESERVED_BITS)
826 return 1;
827 if (lapic_in_kernel(vcpu))
828 kvm_lapic_set_tpr(vcpu, cr8);
829 else
830 vcpu->arch.cr8 = cr8;
831 return 0;
832 }
833 EXPORT_SYMBOL_GPL(kvm_set_cr8);
834
835 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
836 {
837 if (lapic_in_kernel(vcpu))
838 return kvm_lapic_get_cr8(vcpu);
839 else
840 return vcpu->arch.cr8;
841 }
842 EXPORT_SYMBOL_GPL(kvm_get_cr8);
843
844 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
845 {
846 int i;
847
848 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
849 for (i = 0; i < KVM_NR_DB_REGS; i++)
850 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
851 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
852 }
853 }
854
855 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
856 {
857 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
858 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
859 }
860
861 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
862 {
863 unsigned long dr7;
864
865 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
866 dr7 = vcpu->arch.guest_debug_dr7;
867 else
868 dr7 = vcpu->arch.dr7;
869 kvm_x86_ops->set_dr7(vcpu, dr7);
870 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
871 if (dr7 & DR7_BP_EN_MASK)
872 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
873 }
874
875 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
876 {
877 u64 fixed = DR6_FIXED_1;
878
879 if (!guest_cpuid_has_rtm(vcpu))
880 fixed |= DR6_RTM;
881 return fixed;
882 }
883
884 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
885 {
886 switch (dr) {
887 case 0 ... 3:
888 vcpu->arch.db[dr] = val;
889 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
890 vcpu->arch.eff_db[dr] = val;
891 break;
892 case 4:
893 /* fall through */
894 case 6:
895 if (val & 0xffffffff00000000ULL)
896 return -1; /* #GP */
897 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
898 kvm_update_dr6(vcpu);
899 break;
900 case 5:
901 /* fall through */
902 default: /* 7 */
903 if (val & 0xffffffff00000000ULL)
904 return -1; /* #GP */
905 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
906 kvm_update_dr7(vcpu);
907 break;
908 }
909
910 return 0;
911 }
912
913 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
914 {
915 if (__kvm_set_dr(vcpu, dr, val)) {
916 kvm_inject_gp(vcpu, 0);
917 return 1;
918 }
919 return 0;
920 }
921 EXPORT_SYMBOL_GPL(kvm_set_dr);
922
923 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
924 {
925 switch (dr) {
926 case 0 ... 3:
927 *val = vcpu->arch.db[dr];
928 break;
929 case 4:
930 /* fall through */
931 case 6:
932 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
933 *val = vcpu->arch.dr6;
934 else
935 *val = kvm_x86_ops->get_dr6(vcpu);
936 break;
937 case 5:
938 /* fall through */
939 default: /* 7 */
940 *val = vcpu->arch.dr7;
941 break;
942 }
943 return 0;
944 }
945 EXPORT_SYMBOL_GPL(kvm_get_dr);
946
947 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
948 {
949 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
950 u64 data;
951 int err;
952
953 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
954 if (err)
955 return err;
956 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
957 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
958 return err;
959 }
960 EXPORT_SYMBOL_GPL(kvm_rdpmc);
961
962 /*
963 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
964 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
965 *
966 * This list is modified at module load time to reflect the
967 * capabilities of the host cpu. This capabilities test skips MSRs that are
968 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
969 * may depend on host virtualization features rather than host cpu features.
970 */
971
972 static u32 msrs_to_save[] = {
973 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
974 MSR_STAR,
975 #ifdef CONFIG_X86_64
976 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
977 #endif
978 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
979 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
980 };
981
982 static unsigned num_msrs_to_save;
983
984 static u32 emulated_msrs[] = {
985 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
986 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
987 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
988 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
989 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
990 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
991 HV_X64_MSR_RESET,
992 HV_X64_MSR_VP_INDEX,
993 HV_X64_MSR_VP_RUNTIME,
994 HV_X64_MSR_SCONTROL,
995 HV_X64_MSR_STIMER0_CONFIG,
996 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
997 MSR_KVM_PV_EOI_EN,
998
999 MSR_IA32_TSC_ADJUST,
1000 MSR_IA32_TSCDEADLINE,
1001 MSR_IA32_MISC_ENABLE,
1002 MSR_IA32_MCG_STATUS,
1003 MSR_IA32_MCG_CTL,
1004 MSR_IA32_MCG_EXT_CTL,
1005 MSR_IA32_SMBASE,
1006 };
1007
1008 static unsigned num_emulated_msrs;
1009
1010 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1011 {
1012 if (efer & efer_reserved_bits)
1013 return false;
1014
1015 if (efer & EFER_FFXSR) {
1016 struct kvm_cpuid_entry2 *feat;
1017
1018 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1019 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1020 return false;
1021 }
1022
1023 if (efer & EFER_SVME) {
1024 struct kvm_cpuid_entry2 *feat;
1025
1026 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1027 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1028 return false;
1029 }
1030
1031 return true;
1032 }
1033 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1034
1035 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1036 {
1037 u64 old_efer = vcpu->arch.efer;
1038
1039 if (!kvm_valid_efer(vcpu, efer))
1040 return 1;
1041
1042 if (is_paging(vcpu)
1043 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1044 return 1;
1045
1046 efer &= ~EFER_LMA;
1047 efer |= vcpu->arch.efer & EFER_LMA;
1048
1049 kvm_x86_ops->set_efer(vcpu, efer);
1050
1051 /* Update reserved bits */
1052 if ((efer ^ old_efer) & EFER_NX)
1053 kvm_mmu_reset_context(vcpu);
1054
1055 return 0;
1056 }
1057
1058 void kvm_enable_efer_bits(u64 mask)
1059 {
1060 efer_reserved_bits &= ~mask;
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1063
1064 /*
1065 * Writes msr value into into the appropriate "register".
1066 * Returns 0 on success, non-0 otherwise.
1067 * Assumes vcpu_load() was already called.
1068 */
1069 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1070 {
1071 switch (msr->index) {
1072 case MSR_FS_BASE:
1073 case MSR_GS_BASE:
1074 case MSR_KERNEL_GS_BASE:
1075 case MSR_CSTAR:
1076 case MSR_LSTAR:
1077 if (is_noncanonical_address(msr->data))
1078 return 1;
1079 break;
1080 case MSR_IA32_SYSENTER_EIP:
1081 case MSR_IA32_SYSENTER_ESP:
1082 /*
1083 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1084 * non-canonical address is written on Intel but not on
1085 * AMD (which ignores the top 32-bits, because it does
1086 * not implement 64-bit SYSENTER).
1087 *
1088 * 64-bit code should hence be able to write a non-canonical
1089 * value on AMD. Making the address canonical ensures that
1090 * vmentry does not fail on Intel after writing a non-canonical
1091 * value, and that something deterministic happens if the guest
1092 * invokes 64-bit SYSENTER.
1093 */
1094 msr->data = get_canonical(msr->data);
1095 }
1096 return kvm_x86_ops->set_msr(vcpu, msr);
1097 }
1098 EXPORT_SYMBOL_GPL(kvm_set_msr);
1099
1100 /*
1101 * Adapt set_msr() to msr_io()'s calling convention
1102 */
1103 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1104 {
1105 struct msr_data msr;
1106 int r;
1107
1108 msr.index = index;
1109 msr.host_initiated = true;
1110 r = kvm_get_msr(vcpu, &msr);
1111 if (r)
1112 return r;
1113
1114 *data = msr.data;
1115 return 0;
1116 }
1117
1118 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1119 {
1120 struct msr_data msr;
1121
1122 msr.data = *data;
1123 msr.index = index;
1124 msr.host_initiated = true;
1125 return kvm_set_msr(vcpu, &msr);
1126 }
1127
1128 #ifdef CONFIG_X86_64
1129 struct pvclock_gtod_data {
1130 seqcount_t seq;
1131
1132 struct { /* extract of a clocksource struct */
1133 int vclock_mode;
1134 u64 cycle_last;
1135 u64 mask;
1136 u32 mult;
1137 u32 shift;
1138 } clock;
1139
1140 u64 boot_ns;
1141 u64 nsec_base;
1142 };
1143
1144 static struct pvclock_gtod_data pvclock_gtod_data;
1145
1146 static void update_pvclock_gtod(struct timekeeper *tk)
1147 {
1148 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1149 u64 boot_ns;
1150
1151 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1152
1153 write_seqcount_begin(&vdata->seq);
1154
1155 /* copy pvclock gtod data */
1156 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1157 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1158 vdata->clock.mask = tk->tkr_mono.mask;
1159 vdata->clock.mult = tk->tkr_mono.mult;
1160 vdata->clock.shift = tk->tkr_mono.shift;
1161
1162 vdata->boot_ns = boot_ns;
1163 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1164
1165 write_seqcount_end(&vdata->seq);
1166 }
1167 #endif
1168
1169 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1170 {
1171 /*
1172 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1173 * vcpu_enter_guest. This function is only called from
1174 * the physical CPU that is running vcpu.
1175 */
1176 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1177 }
1178
1179 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1180 {
1181 int version;
1182 int r;
1183 struct pvclock_wall_clock wc;
1184 struct timespec64 boot;
1185
1186 if (!wall_clock)
1187 return;
1188
1189 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1190 if (r)
1191 return;
1192
1193 if (version & 1)
1194 ++version; /* first time write, random junk */
1195
1196 ++version;
1197
1198 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1199 return;
1200
1201 /*
1202 * The guest calculates current wall clock time by adding
1203 * system time (updated by kvm_guest_time_update below) to the
1204 * wall clock specified here. guest system time equals host
1205 * system time for us, thus we must fill in host boot time here.
1206 */
1207 getboottime64(&boot);
1208
1209 if (kvm->arch.kvmclock_offset) {
1210 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1211 boot = timespec64_sub(boot, ts);
1212 }
1213 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1214 wc.nsec = boot.tv_nsec;
1215 wc.version = version;
1216
1217 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1218
1219 version++;
1220 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1221 }
1222
1223 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1224 {
1225 do_shl32_div32(dividend, divisor);
1226 return dividend;
1227 }
1228
1229 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1230 s8 *pshift, u32 *pmultiplier)
1231 {
1232 uint64_t scaled64;
1233 int32_t shift = 0;
1234 uint64_t tps64;
1235 uint32_t tps32;
1236
1237 tps64 = base_hz;
1238 scaled64 = scaled_hz;
1239 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1240 tps64 >>= 1;
1241 shift--;
1242 }
1243
1244 tps32 = (uint32_t)tps64;
1245 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1246 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1247 scaled64 >>= 1;
1248 else
1249 tps32 <<= 1;
1250 shift++;
1251 }
1252
1253 *pshift = shift;
1254 *pmultiplier = div_frac(scaled64, tps32);
1255
1256 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1257 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1258 }
1259
1260 #ifdef CONFIG_X86_64
1261 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1262 #endif
1263
1264 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1265 static unsigned long max_tsc_khz;
1266
1267 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1268 {
1269 u64 v = (u64)khz * (1000000 + ppm);
1270 do_div(v, 1000000);
1271 return v;
1272 }
1273
1274 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1275 {
1276 u64 ratio;
1277
1278 /* Guest TSC same frequency as host TSC? */
1279 if (!scale) {
1280 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1281 return 0;
1282 }
1283
1284 /* TSC scaling supported? */
1285 if (!kvm_has_tsc_control) {
1286 if (user_tsc_khz > tsc_khz) {
1287 vcpu->arch.tsc_catchup = 1;
1288 vcpu->arch.tsc_always_catchup = 1;
1289 return 0;
1290 } else {
1291 WARN(1, "user requested TSC rate below hardware speed\n");
1292 return -1;
1293 }
1294 }
1295
1296 /* TSC scaling required - calculate ratio */
1297 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1298 user_tsc_khz, tsc_khz);
1299
1300 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1301 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1302 user_tsc_khz);
1303 return -1;
1304 }
1305
1306 vcpu->arch.tsc_scaling_ratio = ratio;
1307 return 0;
1308 }
1309
1310 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1311 {
1312 u32 thresh_lo, thresh_hi;
1313 int use_scaling = 0;
1314
1315 /* tsc_khz can be zero if TSC calibration fails */
1316 if (user_tsc_khz == 0) {
1317 /* set tsc_scaling_ratio to a safe value */
1318 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1319 return -1;
1320 }
1321
1322 /* Compute a scale to convert nanoseconds in TSC cycles */
1323 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1324 &vcpu->arch.virtual_tsc_shift,
1325 &vcpu->arch.virtual_tsc_mult);
1326 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1327
1328 /*
1329 * Compute the variation in TSC rate which is acceptable
1330 * within the range of tolerance and decide if the
1331 * rate being applied is within that bounds of the hardware
1332 * rate. If so, no scaling or compensation need be done.
1333 */
1334 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1335 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1336 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1337 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1338 use_scaling = 1;
1339 }
1340 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1341 }
1342
1343 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1344 {
1345 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1346 vcpu->arch.virtual_tsc_mult,
1347 vcpu->arch.virtual_tsc_shift);
1348 tsc += vcpu->arch.this_tsc_write;
1349 return tsc;
1350 }
1351
1352 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1353 {
1354 #ifdef CONFIG_X86_64
1355 bool vcpus_matched;
1356 struct kvm_arch *ka = &vcpu->kvm->arch;
1357 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1358
1359 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1360 atomic_read(&vcpu->kvm->online_vcpus));
1361
1362 /*
1363 * Once the masterclock is enabled, always perform request in
1364 * order to update it.
1365 *
1366 * In order to enable masterclock, the host clocksource must be TSC
1367 * and the vcpus need to have matched TSCs. When that happens,
1368 * perform request to enable masterclock.
1369 */
1370 if (ka->use_master_clock ||
1371 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1372 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1373
1374 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1375 atomic_read(&vcpu->kvm->online_vcpus),
1376 ka->use_master_clock, gtod->clock.vclock_mode);
1377 #endif
1378 }
1379
1380 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1381 {
1382 u64 curr_offset = vcpu->arch.tsc_offset;
1383 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1384 }
1385
1386 /*
1387 * Multiply tsc by a fixed point number represented by ratio.
1388 *
1389 * The most significant 64-N bits (mult) of ratio represent the
1390 * integral part of the fixed point number; the remaining N bits
1391 * (frac) represent the fractional part, ie. ratio represents a fixed
1392 * point number (mult + frac * 2^(-N)).
1393 *
1394 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1395 */
1396 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1397 {
1398 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1399 }
1400
1401 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1402 {
1403 u64 _tsc = tsc;
1404 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1405
1406 if (ratio != kvm_default_tsc_scaling_ratio)
1407 _tsc = __scale_tsc(ratio, tsc);
1408
1409 return _tsc;
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1412
1413 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1414 {
1415 u64 tsc;
1416
1417 tsc = kvm_scale_tsc(vcpu, rdtsc());
1418
1419 return target_tsc - tsc;
1420 }
1421
1422 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1423 {
1424 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1425 }
1426 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1427
1428 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1429 {
1430 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1431 vcpu->arch.tsc_offset = offset;
1432 }
1433
1434 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1435 {
1436 struct kvm *kvm = vcpu->kvm;
1437 u64 offset, ns, elapsed;
1438 unsigned long flags;
1439 s64 usdiff;
1440 bool matched;
1441 bool already_matched;
1442 u64 data = msr->data;
1443
1444 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1445 offset = kvm_compute_tsc_offset(vcpu, data);
1446 ns = ktime_get_boot_ns();
1447 elapsed = ns - kvm->arch.last_tsc_nsec;
1448
1449 if (vcpu->arch.virtual_tsc_khz) {
1450 int faulted = 0;
1451
1452 /* n.b - signed multiplication and division required */
1453 usdiff = data - kvm->arch.last_tsc_write;
1454 #ifdef CONFIG_X86_64
1455 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1456 #else
1457 /* do_div() only does unsigned */
1458 asm("1: idivl %[divisor]\n"
1459 "2: xor %%edx, %%edx\n"
1460 " movl $0, %[faulted]\n"
1461 "3:\n"
1462 ".section .fixup,\"ax\"\n"
1463 "4: movl $1, %[faulted]\n"
1464 " jmp 3b\n"
1465 ".previous\n"
1466
1467 _ASM_EXTABLE(1b, 4b)
1468
1469 : "=A"(usdiff), [faulted] "=r" (faulted)
1470 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1471
1472 #endif
1473 do_div(elapsed, 1000);
1474 usdiff -= elapsed;
1475 if (usdiff < 0)
1476 usdiff = -usdiff;
1477
1478 /* idivl overflow => difference is larger than USEC_PER_SEC */
1479 if (faulted)
1480 usdiff = USEC_PER_SEC;
1481 } else
1482 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1483
1484 /*
1485 * Special case: TSC write with a small delta (1 second) of virtual
1486 * cycle time against real time is interpreted as an attempt to
1487 * synchronize the CPU.
1488 *
1489 * For a reliable TSC, we can match TSC offsets, and for an unstable
1490 * TSC, we add elapsed time in this computation. We could let the
1491 * compensation code attempt to catch up if we fall behind, but
1492 * it's better to try to match offsets from the beginning.
1493 */
1494 if (usdiff < USEC_PER_SEC &&
1495 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1496 if (!check_tsc_unstable()) {
1497 offset = kvm->arch.cur_tsc_offset;
1498 pr_debug("kvm: matched tsc offset for %llu\n", data);
1499 } else {
1500 u64 delta = nsec_to_cycles(vcpu, elapsed);
1501 data += delta;
1502 offset = kvm_compute_tsc_offset(vcpu, data);
1503 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1504 }
1505 matched = true;
1506 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1507 } else {
1508 /*
1509 * We split periods of matched TSC writes into generations.
1510 * For each generation, we track the original measured
1511 * nanosecond time, offset, and write, so if TSCs are in
1512 * sync, we can match exact offset, and if not, we can match
1513 * exact software computation in compute_guest_tsc()
1514 *
1515 * These values are tracked in kvm->arch.cur_xxx variables.
1516 */
1517 kvm->arch.cur_tsc_generation++;
1518 kvm->arch.cur_tsc_nsec = ns;
1519 kvm->arch.cur_tsc_write = data;
1520 kvm->arch.cur_tsc_offset = offset;
1521 matched = false;
1522 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1523 kvm->arch.cur_tsc_generation, data);
1524 }
1525
1526 /*
1527 * We also track th most recent recorded KHZ, write and time to
1528 * allow the matching interval to be extended at each write.
1529 */
1530 kvm->arch.last_tsc_nsec = ns;
1531 kvm->arch.last_tsc_write = data;
1532 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1533
1534 vcpu->arch.last_guest_tsc = data;
1535
1536 /* Keep track of which generation this VCPU has synchronized to */
1537 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1538 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1539 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1540
1541 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1542 update_ia32_tsc_adjust_msr(vcpu, offset);
1543 kvm_vcpu_write_tsc_offset(vcpu, offset);
1544 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1545
1546 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1547 if (!matched) {
1548 kvm->arch.nr_vcpus_matched_tsc = 0;
1549 } else if (!already_matched) {
1550 kvm->arch.nr_vcpus_matched_tsc++;
1551 }
1552
1553 kvm_track_tsc_matching(vcpu);
1554 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1555 }
1556
1557 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1558
1559 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1560 s64 adjustment)
1561 {
1562 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1563 }
1564
1565 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1566 {
1567 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1568 WARN_ON(adjustment < 0);
1569 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1570 adjust_tsc_offset_guest(vcpu, adjustment);
1571 }
1572
1573 #ifdef CONFIG_X86_64
1574
1575 static u64 read_tsc(void)
1576 {
1577 u64 ret = (u64)rdtsc_ordered();
1578 u64 last = pvclock_gtod_data.clock.cycle_last;
1579
1580 if (likely(ret >= last))
1581 return ret;
1582
1583 /*
1584 * GCC likes to generate cmov here, but this branch is extremely
1585 * predictable (it's just a function of time and the likely is
1586 * very likely) and there's a data dependence, so force GCC
1587 * to generate a branch instead. I don't barrier() because
1588 * we don't actually need a barrier, and if this function
1589 * ever gets inlined it will generate worse code.
1590 */
1591 asm volatile ("");
1592 return last;
1593 }
1594
1595 static inline u64 vgettsc(u64 *cycle_now)
1596 {
1597 long v;
1598 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1599
1600 *cycle_now = read_tsc();
1601
1602 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1603 return v * gtod->clock.mult;
1604 }
1605
1606 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1607 {
1608 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1609 unsigned long seq;
1610 int mode;
1611 u64 ns;
1612
1613 do {
1614 seq = read_seqcount_begin(&gtod->seq);
1615 mode = gtod->clock.vclock_mode;
1616 ns = gtod->nsec_base;
1617 ns += vgettsc(cycle_now);
1618 ns >>= gtod->clock.shift;
1619 ns += gtod->boot_ns;
1620 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1621 *t = ns;
1622
1623 return mode;
1624 }
1625
1626 /* returns true if host is using tsc clocksource */
1627 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1628 {
1629 /* checked again under seqlock below */
1630 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1631 return false;
1632
1633 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1634 }
1635 #endif
1636
1637 /*
1638 *
1639 * Assuming a stable TSC across physical CPUS, and a stable TSC
1640 * across virtual CPUs, the following condition is possible.
1641 * Each numbered line represents an event visible to both
1642 * CPUs at the next numbered event.
1643 *
1644 * "timespecX" represents host monotonic time. "tscX" represents
1645 * RDTSC value.
1646 *
1647 * VCPU0 on CPU0 | VCPU1 on CPU1
1648 *
1649 * 1. read timespec0,tsc0
1650 * 2. | timespec1 = timespec0 + N
1651 * | tsc1 = tsc0 + M
1652 * 3. transition to guest | transition to guest
1653 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1654 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1655 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1656 *
1657 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1658 *
1659 * - ret0 < ret1
1660 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1661 * ...
1662 * - 0 < N - M => M < N
1663 *
1664 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1665 * always the case (the difference between two distinct xtime instances
1666 * might be smaller then the difference between corresponding TSC reads,
1667 * when updating guest vcpus pvclock areas).
1668 *
1669 * To avoid that problem, do not allow visibility of distinct
1670 * system_timestamp/tsc_timestamp values simultaneously: use a master
1671 * copy of host monotonic time values. Update that master copy
1672 * in lockstep.
1673 *
1674 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1675 *
1676 */
1677
1678 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1679 {
1680 #ifdef CONFIG_X86_64
1681 struct kvm_arch *ka = &kvm->arch;
1682 int vclock_mode;
1683 bool host_tsc_clocksource, vcpus_matched;
1684
1685 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1686 atomic_read(&kvm->online_vcpus));
1687
1688 /*
1689 * If the host uses TSC clock, then passthrough TSC as stable
1690 * to the guest.
1691 */
1692 host_tsc_clocksource = kvm_get_time_and_clockread(
1693 &ka->master_kernel_ns,
1694 &ka->master_cycle_now);
1695
1696 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1697 && !backwards_tsc_observed
1698 && !ka->boot_vcpu_runs_old_kvmclock;
1699
1700 if (ka->use_master_clock)
1701 atomic_set(&kvm_guest_has_master_clock, 1);
1702
1703 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1704 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1705 vcpus_matched);
1706 #endif
1707 }
1708
1709 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1710 {
1711 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1712 }
1713
1714 static void kvm_gen_update_masterclock(struct kvm *kvm)
1715 {
1716 #ifdef CONFIG_X86_64
1717 int i;
1718 struct kvm_vcpu *vcpu;
1719 struct kvm_arch *ka = &kvm->arch;
1720
1721 spin_lock(&ka->pvclock_gtod_sync_lock);
1722 kvm_make_mclock_inprogress_request(kvm);
1723 /* no guest entries from this point */
1724 pvclock_update_vm_gtod_copy(kvm);
1725
1726 kvm_for_each_vcpu(i, vcpu, kvm)
1727 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1728
1729 /* guest entries allowed */
1730 kvm_for_each_vcpu(i, vcpu, kvm)
1731 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1732
1733 spin_unlock(&ka->pvclock_gtod_sync_lock);
1734 #endif
1735 }
1736
1737 static u64 __get_kvmclock_ns(struct kvm *kvm)
1738 {
1739 struct kvm_arch *ka = &kvm->arch;
1740 struct pvclock_vcpu_time_info hv_clock;
1741
1742 spin_lock(&ka->pvclock_gtod_sync_lock);
1743 if (!ka->use_master_clock) {
1744 spin_unlock(&ka->pvclock_gtod_sync_lock);
1745 return ktime_get_boot_ns() + ka->kvmclock_offset;
1746 }
1747
1748 hv_clock.tsc_timestamp = ka->master_cycle_now;
1749 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1750 spin_unlock(&ka->pvclock_gtod_sync_lock);
1751
1752 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1753 &hv_clock.tsc_shift,
1754 &hv_clock.tsc_to_system_mul);
1755 return __pvclock_read_cycles(&hv_clock, rdtsc());
1756 }
1757
1758 u64 get_kvmclock_ns(struct kvm *kvm)
1759 {
1760 unsigned long flags;
1761 s64 ns;
1762
1763 local_irq_save(flags);
1764 ns = __get_kvmclock_ns(kvm);
1765 local_irq_restore(flags);
1766
1767 return ns;
1768 }
1769
1770 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1771 {
1772 struct kvm_vcpu_arch *vcpu = &v->arch;
1773 struct pvclock_vcpu_time_info guest_hv_clock;
1774
1775 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1776 &guest_hv_clock, sizeof(guest_hv_clock))))
1777 return;
1778
1779 /* This VCPU is paused, but it's legal for a guest to read another
1780 * VCPU's kvmclock, so we really have to follow the specification where
1781 * it says that version is odd if data is being modified, and even after
1782 * it is consistent.
1783 *
1784 * Version field updates must be kept separate. This is because
1785 * kvm_write_guest_cached might use a "rep movs" instruction, and
1786 * writes within a string instruction are weakly ordered. So there
1787 * are three writes overall.
1788 *
1789 * As a small optimization, only write the version field in the first
1790 * and third write. The vcpu->pv_time cache is still valid, because the
1791 * version field is the first in the struct.
1792 */
1793 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1794
1795 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1796 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1797 &vcpu->hv_clock,
1798 sizeof(vcpu->hv_clock.version));
1799
1800 smp_wmb();
1801
1802 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1803 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1804
1805 if (vcpu->pvclock_set_guest_stopped_request) {
1806 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1807 vcpu->pvclock_set_guest_stopped_request = false;
1808 }
1809
1810 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1811
1812 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1813 &vcpu->hv_clock,
1814 sizeof(vcpu->hv_clock));
1815
1816 smp_wmb();
1817
1818 vcpu->hv_clock.version++;
1819 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1820 &vcpu->hv_clock,
1821 sizeof(vcpu->hv_clock.version));
1822 }
1823
1824 static int kvm_guest_time_update(struct kvm_vcpu *v)
1825 {
1826 unsigned long flags, tgt_tsc_khz;
1827 struct kvm_vcpu_arch *vcpu = &v->arch;
1828 struct kvm_arch *ka = &v->kvm->arch;
1829 s64 kernel_ns;
1830 u64 tsc_timestamp, host_tsc;
1831 u8 pvclock_flags;
1832 bool use_master_clock;
1833
1834 kernel_ns = 0;
1835 host_tsc = 0;
1836
1837 /*
1838 * If the host uses TSC clock, then passthrough TSC as stable
1839 * to the guest.
1840 */
1841 spin_lock(&ka->pvclock_gtod_sync_lock);
1842 use_master_clock = ka->use_master_clock;
1843 if (use_master_clock) {
1844 host_tsc = ka->master_cycle_now;
1845 kernel_ns = ka->master_kernel_ns;
1846 }
1847 spin_unlock(&ka->pvclock_gtod_sync_lock);
1848
1849 /* Keep irq disabled to prevent changes to the clock */
1850 local_irq_save(flags);
1851 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1852 if (unlikely(tgt_tsc_khz == 0)) {
1853 local_irq_restore(flags);
1854 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1855 return 1;
1856 }
1857 if (!use_master_clock) {
1858 host_tsc = rdtsc();
1859 kernel_ns = ktime_get_boot_ns();
1860 }
1861
1862 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1863
1864 /*
1865 * We may have to catch up the TSC to match elapsed wall clock
1866 * time for two reasons, even if kvmclock is used.
1867 * 1) CPU could have been running below the maximum TSC rate
1868 * 2) Broken TSC compensation resets the base at each VCPU
1869 * entry to avoid unknown leaps of TSC even when running
1870 * again on the same CPU. This may cause apparent elapsed
1871 * time to disappear, and the guest to stand still or run
1872 * very slowly.
1873 */
1874 if (vcpu->tsc_catchup) {
1875 u64 tsc = compute_guest_tsc(v, kernel_ns);
1876 if (tsc > tsc_timestamp) {
1877 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1878 tsc_timestamp = tsc;
1879 }
1880 }
1881
1882 local_irq_restore(flags);
1883
1884 /* With all the info we got, fill in the values */
1885
1886 if (kvm_has_tsc_control)
1887 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1888
1889 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1890 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1891 &vcpu->hv_clock.tsc_shift,
1892 &vcpu->hv_clock.tsc_to_system_mul);
1893 vcpu->hw_tsc_khz = tgt_tsc_khz;
1894 }
1895
1896 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1897 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1898 vcpu->last_guest_tsc = tsc_timestamp;
1899
1900 /* If the host uses TSC clocksource, then it is stable */
1901 pvclock_flags = 0;
1902 if (use_master_clock)
1903 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1904
1905 vcpu->hv_clock.flags = pvclock_flags;
1906
1907 if (vcpu->pv_time_enabled)
1908 kvm_setup_pvclock_page(v);
1909 if (v == kvm_get_vcpu(v->kvm, 0))
1910 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1911 return 0;
1912 }
1913
1914 /*
1915 * kvmclock updates which are isolated to a given vcpu, such as
1916 * vcpu->cpu migration, should not allow system_timestamp from
1917 * the rest of the vcpus to remain static. Otherwise ntp frequency
1918 * correction applies to one vcpu's system_timestamp but not
1919 * the others.
1920 *
1921 * So in those cases, request a kvmclock update for all vcpus.
1922 * We need to rate-limit these requests though, as they can
1923 * considerably slow guests that have a large number of vcpus.
1924 * The time for a remote vcpu to update its kvmclock is bound
1925 * by the delay we use to rate-limit the updates.
1926 */
1927
1928 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1929
1930 static void kvmclock_update_fn(struct work_struct *work)
1931 {
1932 int i;
1933 struct delayed_work *dwork = to_delayed_work(work);
1934 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1935 kvmclock_update_work);
1936 struct kvm *kvm = container_of(ka, struct kvm, arch);
1937 struct kvm_vcpu *vcpu;
1938
1939 kvm_for_each_vcpu(i, vcpu, kvm) {
1940 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1941 kvm_vcpu_kick(vcpu);
1942 }
1943 }
1944
1945 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1946 {
1947 struct kvm *kvm = v->kvm;
1948
1949 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1950 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1951 KVMCLOCK_UPDATE_DELAY);
1952 }
1953
1954 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1955
1956 static void kvmclock_sync_fn(struct work_struct *work)
1957 {
1958 struct delayed_work *dwork = to_delayed_work(work);
1959 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1960 kvmclock_sync_work);
1961 struct kvm *kvm = container_of(ka, struct kvm, arch);
1962
1963 if (!kvmclock_periodic_sync)
1964 return;
1965
1966 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1967 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1968 KVMCLOCK_SYNC_PERIOD);
1969 }
1970
1971 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1972 {
1973 u64 mcg_cap = vcpu->arch.mcg_cap;
1974 unsigned bank_num = mcg_cap & 0xff;
1975
1976 switch (msr) {
1977 case MSR_IA32_MCG_STATUS:
1978 vcpu->arch.mcg_status = data;
1979 break;
1980 case MSR_IA32_MCG_CTL:
1981 if (!(mcg_cap & MCG_CTL_P))
1982 return 1;
1983 if (data != 0 && data != ~(u64)0)
1984 return -1;
1985 vcpu->arch.mcg_ctl = data;
1986 break;
1987 default:
1988 if (msr >= MSR_IA32_MC0_CTL &&
1989 msr < MSR_IA32_MCx_CTL(bank_num)) {
1990 u32 offset = msr - MSR_IA32_MC0_CTL;
1991 /* only 0 or all 1s can be written to IA32_MCi_CTL
1992 * some Linux kernels though clear bit 10 in bank 4 to
1993 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1994 * this to avoid an uncatched #GP in the guest
1995 */
1996 if ((offset & 0x3) == 0 &&
1997 data != 0 && (data | (1 << 10)) != ~(u64)0)
1998 return -1;
1999 vcpu->arch.mce_banks[offset] = data;
2000 break;
2001 }
2002 return 1;
2003 }
2004 return 0;
2005 }
2006
2007 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2008 {
2009 struct kvm *kvm = vcpu->kvm;
2010 int lm = is_long_mode(vcpu);
2011 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2012 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2013 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2014 : kvm->arch.xen_hvm_config.blob_size_32;
2015 u32 page_num = data & ~PAGE_MASK;
2016 u64 page_addr = data & PAGE_MASK;
2017 u8 *page;
2018 int r;
2019
2020 r = -E2BIG;
2021 if (page_num >= blob_size)
2022 goto out;
2023 r = -ENOMEM;
2024 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2025 if (IS_ERR(page)) {
2026 r = PTR_ERR(page);
2027 goto out;
2028 }
2029 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2030 goto out_free;
2031 r = 0;
2032 out_free:
2033 kfree(page);
2034 out:
2035 return r;
2036 }
2037
2038 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2039 {
2040 gpa_t gpa = data & ~0x3f;
2041
2042 /* Bits 2:5 are reserved, Should be zero */
2043 if (data & 0x3c)
2044 return 1;
2045
2046 vcpu->arch.apf.msr_val = data;
2047
2048 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2049 kvm_clear_async_pf_completion_queue(vcpu);
2050 kvm_async_pf_hash_reset(vcpu);
2051 return 0;
2052 }
2053
2054 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2055 sizeof(u32)))
2056 return 1;
2057
2058 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2059 kvm_async_pf_wakeup_all(vcpu);
2060 return 0;
2061 }
2062
2063 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2064 {
2065 vcpu->arch.pv_time_enabled = false;
2066 }
2067
2068 static void record_steal_time(struct kvm_vcpu *vcpu)
2069 {
2070 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2071 return;
2072
2073 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2074 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2075 return;
2076
2077 vcpu->arch.st.steal.preempted = 0;
2078
2079 if (vcpu->arch.st.steal.version & 1)
2080 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2081
2082 vcpu->arch.st.steal.version += 1;
2083
2084 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2085 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2086
2087 smp_wmb();
2088
2089 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2090 vcpu->arch.st.last_steal;
2091 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2092
2093 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2094 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2095
2096 smp_wmb();
2097
2098 vcpu->arch.st.steal.version += 1;
2099
2100 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2101 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2102 }
2103
2104 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2105 {
2106 bool pr = false;
2107 u32 msr = msr_info->index;
2108 u64 data = msr_info->data;
2109
2110 switch (msr) {
2111 case MSR_AMD64_NB_CFG:
2112 case MSR_IA32_UCODE_REV:
2113 case MSR_IA32_UCODE_WRITE:
2114 case MSR_VM_HSAVE_PA:
2115 case MSR_AMD64_PATCH_LOADER:
2116 case MSR_AMD64_BU_CFG2:
2117 break;
2118
2119 case MSR_EFER:
2120 return set_efer(vcpu, data);
2121 case MSR_K7_HWCR:
2122 data &= ~(u64)0x40; /* ignore flush filter disable */
2123 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2124 data &= ~(u64)0x8; /* ignore TLB cache disable */
2125 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2126 if (data != 0) {
2127 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2128 data);
2129 return 1;
2130 }
2131 break;
2132 case MSR_FAM10H_MMIO_CONF_BASE:
2133 if (data != 0) {
2134 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2135 "0x%llx\n", data);
2136 return 1;
2137 }
2138 break;
2139 case MSR_IA32_DEBUGCTLMSR:
2140 if (!data) {
2141 /* We support the non-activated case already */
2142 break;
2143 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2144 /* Values other than LBR and BTF are vendor-specific,
2145 thus reserved and should throw a #GP */
2146 return 1;
2147 }
2148 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2149 __func__, data);
2150 break;
2151 case 0x200 ... 0x2ff:
2152 return kvm_mtrr_set_msr(vcpu, msr, data);
2153 case MSR_IA32_APICBASE:
2154 return kvm_set_apic_base(vcpu, msr_info);
2155 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2156 return kvm_x2apic_msr_write(vcpu, msr, data);
2157 case MSR_IA32_TSCDEADLINE:
2158 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2159 break;
2160 case MSR_IA32_TSC_ADJUST:
2161 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2162 if (!msr_info->host_initiated) {
2163 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2164 adjust_tsc_offset_guest(vcpu, adj);
2165 }
2166 vcpu->arch.ia32_tsc_adjust_msr = data;
2167 }
2168 break;
2169 case MSR_IA32_MISC_ENABLE:
2170 vcpu->arch.ia32_misc_enable_msr = data;
2171 break;
2172 case MSR_IA32_SMBASE:
2173 if (!msr_info->host_initiated)
2174 return 1;
2175 vcpu->arch.smbase = data;
2176 break;
2177 case MSR_KVM_WALL_CLOCK_NEW:
2178 case MSR_KVM_WALL_CLOCK:
2179 vcpu->kvm->arch.wall_clock = data;
2180 kvm_write_wall_clock(vcpu->kvm, data);
2181 break;
2182 case MSR_KVM_SYSTEM_TIME_NEW:
2183 case MSR_KVM_SYSTEM_TIME: {
2184 struct kvm_arch *ka = &vcpu->kvm->arch;
2185
2186 kvmclock_reset(vcpu);
2187
2188 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2189 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2190
2191 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2192 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2193 &vcpu->requests);
2194
2195 ka->boot_vcpu_runs_old_kvmclock = tmp;
2196 }
2197
2198 vcpu->arch.time = data;
2199 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2200
2201 /* we verify if the enable bit is set... */
2202 if (!(data & 1))
2203 break;
2204
2205 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2206 &vcpu->arch.pv_time, data & ~1ULL,
2207 sizeof(struct pvclock_vcpu_time_info)))
2208 vcpu->arch.pv_time_enabled = false;
2209 else
2210 vcpu->arch.pv_time_enabled = true;
2211
2212 break;
2213 }
2214 case MSR_KVM_ASYNC_PF_EN:
2215 if (kvm_pv_enable_async_pf(vcpu, data))
2216 return 1;
2217 break;
2218 case MSR_KVM_STEAL_TIME:
2219
2220 if (unlikely(!sched_info_on()))
2221 return 1;
2222
2223 if (data & KVM_STEAL_RESERVED_MASK)
2224 return 1;
2225
2226 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2227 data & KVM_STEAL_VALID_BITS,
2228 sizeof(struct kvm_steal_time)))
2229 return 1;
2230
2231 vcpu->arch.st.msr_val = data;
2232
2233 if (!(data & KVM_MSR_ENABLED))
2234 break;
2235
2236 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2237
2238 break;
2239 case MSR_KVM_PV_EOI_EN:
2240 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2241 return 1;
2242 break;
2243
2244 case MSR_IA32_MCG_CTL:
2245 case MSR_IA32_MCG_STATUS:
2246 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2247 return set_msr_mce(vcpu, msr, data);
2248
2249 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2250 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2251 pr = true; /* fall through */
2252 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2253 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2254 if (kvm_pmu_is_valid_msr(vcpu, msr))
2255 return kvm_pmu_set_msr(vcpu, msr_info);
2256
2257 if (pr || data != 0)
2258 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2259 "0x%x data 0x%llx\n", msr, data);
2260 break;
2261 case MSR_K7_CLK_CTL:
2262 /*
2263 * Ignore all writes to this no longer documented MSR.
2264 * Writes are only relevant for old K7 processors,
2265 * all pre-dating SVM, but a recommended workaround from
2266 * AMD for these chips. It is possible to specify the
2267 * affected processor models on the command line, hence
2268 * the need to ignore the workaround.
2269 */
2270 break;
2271 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2272 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2273 case HV_X64_MSR_CRASH_CTL:
2274 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2275 return kvm_hv_set_msr_common(vcpu, msr, data,
2276 msr_info->host_initiated);
2277 case MSR_IA32_BBL_CR_CTL3:
2278 /* Drop writes to this legacy MSR -- see rdmsr
2279 * counterpart for further detail.
2280 */
2281 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2282 break;
2283 case MSR_AMD64_OSVW_ID_LENGTH:
2284 if (!guest_cpuid_has_osvw(vcpu))
2285 return 1;
2286 vcpu->arch.osvw.length = data;
2287 break;
2288 case MSR_AMD64_OSVW_STATUS:
2289 if (!guest_cpuid_has_osvw(vcpu))
2290 return 1;
2291 vcpu->arch.osvw.status = data;
2292 break;
2293 default:
2294 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2295 return xen_hvm_config(vcpu, data);
2296 if (kvm_pmu_is_valid_msr(vcpu, msr))
2297 return kvm_pmu_set_msr(vcpu, msr_info);
2298 if (!ignore_msrs) {
2299 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2300 msr, data);
2301 return 1;
2302 } else {
2303 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2304 msr, data);
2305 break;
2306 }
2307 }
2308 return 0;
2309 }
2310 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2311
2312
2313 /*
2314 * Reads an msr value (of 'msr_index') into 'pdata'.
2315 * Returns 0 on success, non-0 otherwise.
2316 * Assumes vcpu_load() was already called.
2317 */
2318 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2319 {
2320 return kvm_x86_ops->get_msr(vcpu, msr);
2321 }
2322 EXPORT_SYMBOL_GPL(kvm_get_msr);
2323
2324 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2325 {
2326 u64 data;
2327 u64 mcg_cap = vcpu->arch.mcg_cap;
2328 unsigned bank_num = mcg_cap & 0xff;
2329
2330 switch (msr) {
2331 case MSR_IA32_P5_MC_ADDR:
2332 case MSR_IA32_P5_MC_TYPE:
2333 data = 0;
2334 break;
2335 case MSR_IA32_MCG_CAP:
2336 data = vcpu->arch.mcg_cap;
2337 break;
2338 case MSR_IA32_MCG_CTL:
2339 if (!(mcg_cap & MCG_CTL_P))
2340 return 1;
2341 data = vcpu->arch.mcg_ctl;
2342 break;
2343 case MSR_IA32_MCG_STATUS:
2344 data = vcpu->arch.mcg_status;
2345 break;
2346 default:
2347 if (msr >= MSR_IA32_MC0_CTL &&
2348 msr < MSR_IA32_MCx_CTL(bank_num)) {
2349 u32 offset = msr - MSR_IA32_MC0_CTL;
2350 data = vcpu->arch.mce_banks[offset];
2351 break;
2352 }
2353 return 1;
2354 }
2355 *pdata = data;
2356 return 0;
2357 }
2358
2359 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2360 {
2361 switch (msr_info->index) {
2362 case MSR_IA32_PLATFORM_ID:
2363 case MSR_IA32_EBL_CR_POWERON:
2364 case MSR_IA32_DEBUGCTLMSR:
2365 case MSR_IA32_LASTBRANCHFROMIP:
2366 case MSR_IA32_LASTBRANCHTOIP:
2367 case MSR_IA32_LASTINTFROMIP:
2368 case MSR_IA32_LASTINTTOIP:
2369 case MSR_K8_SYSCFG:
2370 case MSR_K8_TSEG_ADDR:
2371 case MSR_K8_TSEG_MASK:
2372 case MSR_K7_HWCR:
2373 case MSR_VM_HSAVE_PA:
2374 case MSR_K8_INT_PENDING_MSG:
2375 case MSR_AMD64_NB_CFG:
2376 case MSR_FAM10H_MMIO_CONF_BASE:
2377 case MSR_AMD64_BU_CFG2:
2378 case MSR_IA32_PERF_CTL:
2379 msr_info->data = 0;
2380 break;
2381 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2382 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2383 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2384 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2385 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2386 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2387 msr_info->data = 0;
2388 break;
2389 case MSR_IA32_UCODE_REV:
2390 msr_info->data = 0x100000000ULL;
2391 break;
2392 case MSR_MTRRcap:
2393 case 0x200 ... 0x2ff:
2394 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2395 case 0xcd: /* fsb frequency */
2396 msr_info->data = 3;
2397 break;
2398 /*
2399 * MSR_EBC_FREQUENCY_ID
2400 * Conservative value valid for even the basic CPU models.
2401 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2402 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2403 * and 266MHz for model 3, or 4. Set Core Clock
2404 * Frequency to System Bus Frequency Ratio to 1 (bits
2405 * 31:24) even though these are only valid for CPU
2406 * models > 2, however guests may end up dividing or
2407 * multiplying by zero otherwise.
2408 */
2409 case MSR_EBC_FREQUENCY_ID:
2410 msr_info->data = 1 << 24;
2411 break;
2412 case MSR_IA32_APICBASE:
2413 msr_info->data = kvm_get_apic_base(vcpu);
2414 break;
2415 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2416 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2417 break;
2418 case MSR_IA32_TSCDEADLINE:
2419 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2420 break;
2421 case MSR_IA32_TSC_ADJUST:
2422 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2423 break;
2424 case MSR_IA32_MISC_ENABLE:
2425 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2426 break;
2427 case MSR_IA32_SMBASE:
2428 if (!msr_info->host_initiated)
2429 return 1;
2430 msr_info->data = vcpu->arch.smbase;
2431 break;
2432 case MSR_IA32_PERF_STATUS:
2433 /* TSC increment by tick */
2434 msr_info->data = 1000ULL;
2435 /* CPU multiplier */
2436 msr_info->data |= (((uint64_t)4ULL) << 40);
2437 break;
2438 case MSR_EFER:
2439 msr_info->data = vcpu->arch.efer;
2440 break;
2441 case MSR_KVM_WALL_CLOCK:
2442 case MSR_KVM_WALL_CLOCK_NEW:
2443 msr_info->data = vcpu->kvm->arch.wall_clock;
2444 break;
2445 case MSR_KVM_SYSTEM_TIME:
2446 case MSR_KVM_SYSTEM_TIME_NEW:
2447 msr_info->data = vcpu->arch.time;
2448 break;
2449 case MSR_KVM_ASYNC_PF_EN:
2450 msr_info->data = vcpu->arch.apf.msr_val;
2451 break;
2452 case MSR_KVM_STEAL_TIME:
2453 msr_info->data = vcpu->arch.st.msr_val;
2454 break;
2455 case MSR_KVM_PV_EOI_EN:
2456 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2457 break;
2458 case MSR_IA32_P5_MC_ADDR:
2459 case MSR_IA32_P5_MC_TYPE:
2460 case MSR_IA32_MCG_CAP:
2461 case MSR_IA32_MCG_CTL:
2462 case MSR_IA32_MCG_STATUS:
2463 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2464 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2465 case MSR_K7_CLK_CTL:
2466 /*
2467 * Provide expected ramp-up count for K7. All other
2468 * are set to zero, indicating minimum divisors for
2469 * every field.
2470 *
2471 * This prevents guest kernels on AMD host with CPU
2472 * type 6, model 8 and higher from exploding due to
2473 * the rdmsr failing.
2474 */
2475 msr_info->data = 0x20000000;
2476 break;
2477 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2478 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2479 case HV_X64_MSR_CRASH_CTL:
2480 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2481 return kvm_hv_get_msr_common(vcpu,
2482 msr_info->index, &msr_info->data);
2483 break;
2484 case MSR_IA32_BBL_CR_CTL3:
2485 /* This legacy MSR exists but isn't fully documented in current
2486 * silicon. It is however accessed by winxp in very narrow
2487 * scenarios where it sets bit #19, itself documented as
2488 * a "reserved" bit. Best effort attempt to source coherent
2489 * read data here should the balance of the register be
2490 * interpreted by the guest:
2491 *
2492 * L2 cache control register 3: 64GB range, 256KB size,
2493 * enabled, latency 0x1, configured
2494 */
2495 msr_info->data = 0xbe702111;
2496 break;
2497 case MSR_AMD64_OSVW_ID_LENGTH:
2498 if (!guest_cpuid_has_osvw(vcpu))
2499 return 1;
2500 msr_info->data = vcpu->arch.osvw.length;
2501 break;
2502 case MSR_AMD64_OSVW_STATUS:
2503 if (!guest_cpuid_has_osvw(vcpu))
2504 return 1;
2505 msr_info->data = vcpu->arch.osvw.status;
2506 break;
2507 default:
2508 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2509 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2510 if (!ignore_msrs) {
2511 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2512 msr_info->index);
2513 return 1;
2514 } else {
2515 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2516 msr_info->data = 0;
2517 }
2518 break;
2519 }
2520 return 0;
2521 }
2522 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2523
2524 /*
2525 * Read or write a bunch of msrs. All parameters are kernel addresses.
2526 *
2527 * @return number of msrs set successfully.
2528 */
2529 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2530 struct kvm_msr_entry *entries,
2531 int (*do_msr)(struct kvm_vcpu *vcpu,
2532 unsigned index, u64 *data))
2533 {
2534 int i, idx;
2535
2536 idx = srcu_read_lock(&vcpu->kvm->srcu);
2537 for (i = 0; i < msrs->nmsrs; ++i)
2538 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2539 break;
2540 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2541
2542 return i;
2543 }
2544
2545 /*
2546 * Read or write a bunch of msrs. Parameters are user addresses.
2547 *
2548 * @return number of msrs set successfully.
2549 */
2550 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2551 int (*do_msr)(struct kvm_vcpu *vcpu,
2552 unsigned index, u64 *data),
2553 int writeback)
2554 {
2555 struct kvm_msrs msrs;
2556 struct kvm_msr_entry *entries;
2557 int r, n;
2558 unsigned size;
2559
2560 r = -EFAULT;
2561 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2562 goto out;
2563
2564 r = -E2BIG;
2565 if (msrs.nmsrs >= MAX_IO_MSRS)
2566 goto out;
2567
2568 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2569 entries = memdup_user(user_msrs->entries, size);
2570 if (IS_ERR(entries)) {
2571 r = PTR_ERR(entries);
2572 goto out;
2573 }
2574
2575 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2576 if (r < 0)
2577 goto out_free;
2578
2579 r = -EFAULT;
2580 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2581 goto out_free;
2582
2583 r = n;
2584
2585 out_free:
2586 kfree(entries);
2587 out:
2588 return r;
2589 }
2590
2591 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2592 {
2593 int r;
2594
2595 switch (ext) {
2596 case KVM_CAP_IRQCHIP:
2597 case KVM_CAP_HLT:
2598 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2599 case KVM_CAP_SET_TSS_ADDR:
2600 case KVM_CAP_EXT_CPUID:
2601 case KVM_CAP_EXT_EMUL_CPUID:
2602 case KVM_CAP_CLOCKSOURCE:
2603 case KVM_CAP_PIT:
2604 case KVM_CAP_NOP_IO_DELAY:
2605 case KVM_CAP_MP_STATE:
2606 case KVM_CAP_SYNC_MMU:
2607 case KVM_CAP_USER_NMI:
2608 case KVM_CAP_REINJECT_CONTROL:
2609 case KVM_CAP_IRQ_INJECT_STATUS:
2610 case KVM_CAP_IOEVENTFD:
2611 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2612 case KVM_CAP_PIT2:
2613 case KVM_CAP_PIT_STATE2:
2614 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2615 case KVM_CAP_XEN_HVM:
2616 case KVM_CAP_VCPU_EVENTS:
2617 case KVM_CAP_HYPERV:
2618 case KVM_CAP_HYPERV_VAPIC:
2619 case KVM_CAP_HYPERV_SPIN:
2620 case KVM_CAP_HYPERV_SYNIC:
2621 case KVM_CAP_PCI_SEGMENT:
2622 case KVM_CAP_DEBUGREGS:
2623 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2624 case KVM_CAP_XSAVE:
2625 case KVM_CAP_ASYNC_PF:
2626 case KVM_CAP_GET_TSC_KHZ:
2627 case KVM_CAP_KVMCLOCK_CTRL:
2628 case KVM_CAP_READONLY_MEM:
2629 case KVM_CAP_HYPERV_TIME:
2630 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2631 case KVM_CAP_TSC_DEADLINE_TIMER:
2632 case KVM_CAP_ENABLE_CAP_VM:
2633 case KVM_CAP_DISABLE_QUIRKS:
2634 case KVM_CAP_SET_BOOT_CPU_ID:
2635 case KVM_CAP_SPLIT_IRQCHIP:
2636 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2637 case KVM_CAP_ASSIGN_DEV_IRQ:
2638 case KVM_CAP_PCI_2_3:
2639 #endif
2640 r = 1;
2641 break;
2642 case KVM_CAP_ADJUST_CLOCK:
2643 r = KVM_CLOCK_TSC_STABLE;
2644 break;
2645 case KVM_CAP_X86_SMM:
2646 /* SMBASE is usually relocated above 1M on modern chipsets,
2647 * and SMM handlers might indeed rely on 4G segment limits,
2648 * so do not report SMM to be available if real mode is
2649 * emulated via vm86 mode. Still, do not go to great lengths
2650 * to avoid userspace's usage of the feature, because it is a
2651 * fringe case that is not enabled except via specific settings
2652 * of the module parameters.
2653 */
2654 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2655 break;
2656 case KVM_CAP_COALESCED_MMIO:
2657 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2658 break;
2659 case KVM_CAP_VAPIC:
2660 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2661 break;
2662 case KVM_CAP_NR_VCPUS:
2663 r = KVM_SOFT_MAX_VCPUS;
2664 break;
2665 case KVM_CAP_MAX_VCPUS:
2666 r = KVM_MAX_VCPUS;
2667 break;
2668 case KVM_CAP_NR_MEMSLOTS:
2669 r = KVM_USER_MEM_SLOTS;
2670 break;
2671 case KVM_CAP_PV_MMU: /* obsolete */
2672 r = 0;
2673 break;
2674 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2675 case KVM_CAP_IOMMU:
2676 r = iommu_present(&pci_bus_type);
2677 break;
2678 #endif
2679 case KVM_CAP_MCE:
2680 r = KVM_MAX_MCE_BANKS;
2681 break;
2682 case KVM_CAP_XCRS:
2683 r = boot_cpu_has(X86_FEATURE_XSAVE);
2684 break;
2685 case KVM_CAP_TSC_CONTROL:
2686 r = kvm_has_tsc_control;
2687 break;
2688 case KVM_CAP_X2APIC_API:
2689 r = KVM_X2APIC_API_VALID_FLAGS;
2690 break;
2691 default:
2692 r = 0;
2693 break;
2694 }
2695 return r;
2696
2697 }
2698
2699 long kvm_arch_dev_ioctl(struct file *filp,
2700 unsigned int ioctl, unsigned long arg)
2701 {
2702 void __user *argp = (void __user *)arg;
2703 long r;
2704
2705 switch (ioctl) {
2706 case KVM_GET_MSR_INDEX_LIST: {
2707 struct kvm_msr_list __user *user_msr_list = argp;
2708 struct kvm_msr_list msr_list;
2709 unsigned n;
2710
2711 r = -EFAULT;
2712 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2713 goto out;
2714 n = msr_list.nmsrs;
2715 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2716 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2717 goto out;
2718 r = -E2BIG;
2719 if (n < msr_list.nmsrs)
2720 goto out;
2721 r = -EFAULT;
2722 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2723 num_msrs_to_save * sizeof(u32)))
2724 goto out;
2725 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2726 &emulated_msrs,
2727 num_emulated_msrs * sizeof(u32)))
2728 goto out;
2729 r = 0;
2730 break;
2731 }
2732 case KVM_GET_SUPPORTED_CPUID:
2733 case KVM_GET_EMULATED_CPUID: {
2734 struct kvm_cpuid2 __user *cpuid_arg = argp;
2735 struct kvm_cpuid2 cpuid;
2736
2737 r = -EFAULT;
2738 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2739 goto out;
2740
2741 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2742 ioctl);
2743 if (r)
2744 goto out;
2745
2746 r = -EFAULT;
2747 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2748 goto out;
2749 r = 0;
2750 break;
2751 }
2752 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2753 r = -EFAULT;
2754 if (copy_to_user(argp, &kvm_mce_cap_supported,
2755 sizeof(kvm_mce_cap_supported)))
2756 goto out;
2757 r = 0;
2758 break;
2759 }
2760 default:
2761 r = -EINVAL;
2762 }
2763 out:
2764 return r;
2765 }
2766
2767 static void wbinvd_ipi(void *garbage)
2768 {
2769 wbinvd();
2770 }
2771
2772 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2773 {
2774 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2775 }
2776
2777 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2778 {
2779 set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2780 }
2781
2782 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2783 {
2784 /* Address WBINVD may be executed by guest */
2785 if (need_emulate_wbinvd(vcpu)) {
2786 if (kvm_x86_ops->has_wbinvd_exit())
2787 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2788 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2789 smp_call_function_single(vcpu->cpu,
2790 wbinvd_ipi, NULL, 1);
2791 }
2792
2793 kvm_x86_ops->vcpu_load(vcpu, cpu);
2794
2795 /* Apply any externally detected TSC adjustments (due to suspend) */
2796 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2797 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2798 vcpu->arch.tsc_offset_adjustment = 0;
2799 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2800 }
2801
2802 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2803 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2804 rdtsc() - vcpu->arch.last_host_tsc;
2805 if (tsc_delta < 0)
2806 mark_tsc_unstable("KVM discovered backwards TSC");
2807
2808 if (check_tsc_unstable()) {
2809 u64 offset = kvm_compute_tsc_offset(vcpu,
2810 vcpu->arch.last_guest_tsc);
2811 kvm_vcpu_write_tsc_offset(vcpu, offset);
2812 vcpu->arch.tsc_catchup = 1;
2813 }
2814 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2815 kvm_x86_ops->set_hv_timer(vcpu,
2816 kvm_get_lapic_target_expiration_tsc(vcpu)))
2817 kvm_lapic_switch_to_sw_timer(vcpu);
2818 /*
2819 * On a host with synchronized TSC, there is no need to update
2820 * kvmclock on vcpu->cpu migration
2821 */
2822 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2823 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2824 if (vcpu->cpu != cpu)
2825 kvm_migrate_timers(vcpu);
2826 vcpu->cpu = cpu;
2827 }
2828
2829 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2830 }
2831
2832 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2833 {
2834 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2835 return;
2836
2837 vcpu->arch.st.steal.preempted = 1;
2838
2839 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2840 &vcpu->arch.st.steal.preempted,
2841 offsetof(struct kvm_steal_time, preempted),
2842 sizeof(vcpu->arch.st.steal.preempted));
2843 }
2844
2845 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2846 {
2847 int idx;
2848 /*
2849 * Disable page faults because we're in atomic context here.
2850 * kvm_write_guest_offset_cached() would call might_fault()
2851 * that relies on pagefault_disable() to tell if there's a
2852 * bug. NOTE: the write to guest memory may not go through if
2853 * during postcopy live migration or if there's heavy guest
2854 * paging.
2855 */
2856 pagefault_disable();
2857 /*
2858 * kvm_memslots() will be called by
2859 * kvm_write_guest_offset_cached() so take the srcu lock.
2860 */
2861 idx = srcu_read_lock(&vcpu->kvm->srcu);
2862 kvm_steal_time_set_preempted(vcpu);
2863 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2864 pagefault_enable();
2865 kvm_x86_ops->vcpu_put(vcpu);
2866 kvm_put_guest_fpu(vcpu);
2867 vcpu->arch.last_host_tsc = rdtsc();
2868 }
2869
2870 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2871 struct kvm_lapic_state *s)
2872 {
2873 if (vcpu->arch.apicv_active)
2874 kvm_x86_ops->sync_pir_to_irr(vcpu);
2875
2876 return kvm_apic_get_state(vcpu, s);
2877 }
2878
2879 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2880 struct kvm_lapic_state *s)
2881 {
2882 int r;
2883
2884 r = kvm_apic_set_state(vcpu, s);
2885 if (r)
2886 return r;
2887 update_cr8_intercept(vcpu);
2888
2889 return 0;
2890 }
2891
2892 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2893 {
2894 return (!lapic_in_kernel(vcpu) ||
2895 kvm_apic_accept_pic_intr(vcpu));
2896 }
2897
2898 /*
2899 * if userspace requested an interrupt window, check that the
2900 * interrupt window is open.
2901 *
2902 * No need to exit to userspace if we already have an interrupt queued.
2903 */
2904 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2905 {
2906 return kvm_arch_interrupt_allowed(vcpu) &&
2907 !kvm_cpu_has_interrupt(vcpu) &&
2908 !kvm_event_needs_reinjection(vcpu) &&
2909 kvm_cpu_accept_dm_intr(vcpu);
2910 }
2911
2912 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2913 struct kvm_interrupt *irq)
2914 {
2915 if (irq->irq >= KVM_NR_INTERRUPTS)
2916 return -EINVAL;
2917
2918 if (!irqchip_in_kernel(vcpu->kvm)) {
2919 kvm_queue_interrupt(vcpu, irq->irq, false);
2920 kvm_make_request(KVM_REQ_EVENT, vcpu);
2921 return 0;
2922 }
2923
2924 /*
2925 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2926 * fail for in-kernel 8259.
2927 */
2928 if (pic_in_kernel(vcpu->kvm))
2929 return -ENXIO;
2930
2931 if (vcpu->arch.pending_external_vector != -1)
2932 return -EEXIST;
2933
2934 vcpu->arch.pending_external_vector = irq->irq;
2935 kvm_make_request(KVM_REQ_EVENT, vcpu);
2936 return 0;
2937 }
2938
2939 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2940 {
2941 kvm_inject_nmi(vcpu);
2942
2943 return 0;
2944 }
2945
2946 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2947 {
2948 kvm_make_request(KVM_REQ_SMI, vcpu);
2949
2950 return 0;
2951 }
2952
2953 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2954 struct kvm_tpr_access_ctl *tac)
2955 {
2956 if (tac->flags)
2957 return -EINVAL;
2958 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2959 return 0;
2960 }
2961
2962 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2963 u64 mcg_cap)
2964 {
2965 int r;
2966 unsigned bank_num = mcg_cap & 0xff, bank;
2967
2968 r = -EINVAL;
2969 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2970 goto out;
2971 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
2972 goto out;
2973 r = 0;
2974 vcpu->arch.mcg_cap = mcg_cap;
2975 /* Init IA32_MCG_CTL to all 1s */
2976 if (mcg_cap & MCG_CTL_P)
2977 vcpu->arch.mcg_ctl = ~(u64)0;
2978 /* Init IA32_MCi_CTL to all 1s */
2979 for (bank = 0; bank < bank_num; bank++)
2980 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2981
2982 if (kvm_x86_ops->setup_mce)
2983 kvm_x86_ops->setup_mce(vcpu);
2984 out:
2985 return r;
2986 }
2987
2988 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2989 struct kvm_x86_mce *mce)
2990 {
2991 u64 mcg_cap = vcpu->arch.mcg_cap;
2992 unsigned bank_num = mcg_cap & 0xff;
2993 u64 *banks = vcpu->arch.mce_banks;
2994
2995 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2996 return -EINVAL;
2997 /*
2998 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2999 * reporting is disabled
3000 */
3001 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3002 vcpu->arch.mcg_ctl != ~(u64)0)
3003 return 0;
3004 banks += 4 * mce->bank;
3005 /*
3006 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3007 * reporting is disabled for the bank
3008 */
3009 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3010 return 0;
3011 if (mce->status & MCI_STATUS_UC) {
3012 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3013 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3014 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3015 return 0;
3016 }
3017 if (banks[1] & MCI_STATUS_VAL)
3018 mce->status |= MCI_STATUS_OVER;
3019 banks[2] = mce->addr;
3020 banks[3] = mce->misc;
3021 vcpu->arch.mcg_status = mce->mcg_status;
3022 banks[1] = mce->status;
3023 kvm_queue_exception(vcpu, MC_VECTOR);
3024 } else if (!(banks[1] & MCI_STATUS_VAL)
3025 || !(banks[1] & MCI_STATUS_UC)) {
3026 if (banks[1] & MCI_STATUS_VAL)
3027 mce->status |= MCI_STATUS_OVER;
3028 banks[2] = mce->addr;
3029 banks[3] = mce->misc;
3030 banks[1] = mce->status;
3031 } else
3032 banks[1] |= MCI_STATUS_OVER;
3033 return 0;
3034 }
3035
3036 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3037 struct kvm_vcpu_events *events)
3038 {
3039 process_nmi(vcpu);
3040 events->exception.injected =
3041 vcpu->arch.exception.pending &&
3042 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3043 events->exception.nr = vcpu->arch.exception.nr;
3044 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3045 events->exception.pad = 0;
3046 events->exception.error_code = vcpu->arch.exception.error_code;
3047
3048 events->interrupt.injected =
3049 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3050 events->interrupt.nr = vcpu->arch.interrupt.nr;
3051 events->interrupt.soft = 0;
3052 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3053
3054 events->nmi.injected = vcpu->arch.nmi_injected;
3055 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3056 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3057 events->nmi.pad = 0;
3058
3059 events->sipi_vector = 0; /* never valid when reporting to user space */
3060
3061 events->smi.smm = is_smm(vcpu);
3062 events->smi.pending = vcpu->arch.smi_pending;
3063 events->smi.smm_inside_nmi =
3064 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3065 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3066
3067 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3068 | KVM_VCPUEVENT_VALID_SHADOW
3069 | KVM_VCPUEVENT_VALID_SMM);
3070 memset(&events->reserved, 0, sizeof(events->reserved));
3071 }
3072
3073 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3074
3075 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3076 struct kvm_vcpu_events *events)
3077 {
3078 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3079 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3080 | KVM_VCPUEVENT_VALID_SHADOW
3081 | KVM_VCPUEVENT_VALID_SMM))
3082 return -EINVAL;
3083
3084 if (events->exception.injected &&
3085 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3086 return -EINVAL;
3087
3088 process_nmi(vcpu);
3089 vcpu->arch.exception.pending = events->exception.injected;
3090 vcpu->arch.exception.nr = events->exception.nr;
3091 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3092 vcpu->arch.exception.error_code = events->exception.error_code;
3093
3094 vcpu->arch.interrupt.pending = events->interrupt.injected;
3095 vcpu->arch.interrupt.nr = events->interrupt.nr;
3096 vcpu->arch.interrupt.soft = events->interrupt.soft;
3097 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3098 kvm_x86_ops->set_interrupt_shadow(vcpu,
3099 events->interrupt.shadow);
3100
3101 vcpu->arch.nmi_injected = events->nmi.injected;
3102 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3103 vcpu->arch.nmi_pending = events->nmi.pending;
3104 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3105
3106 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3107 lapic_in_kernel(vcpu))
3108 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3109
3110 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3111 u32 hflags = vcpu->arch.hflags;
3112 if (events->smi.smm)
3113 hflags |= HF_SMM_MASK;
3114 else
3115 hflags &= ~HF_SMM_MASK;
3116 kvm_set_hflags(vcpu, hflags);
3117
3118 vcpu->arch.smi_pending = events->smi.pending;
3119 if (events->smi.smm_inside_nmi)
3120 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3121 else
3122 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3123 if (lapic_in_kernel(vcpu)) {
3124 if (events->smi.latched_init)
3125 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3126 else
3127 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3128 }
3129 }
3130
3131 kvm_make_request(KVM_REQ_EVENT, vcpu);
3132
3133 return 0;
3134 }
3135
3136 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3137 struct kvm_debugregs *dbgregs)
3138 {
3139 unsigned long val;
3140
3141 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3142 kvm_get_dr(vcpu, 6, &val);
3143 dbgregs->dr6 = val;
3144 dbgregs->dr7 = vcpu->arch.dr7;
3145 dbgregs->flags = 0;
3146 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3147 }
3148
3149 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3150 struct kvm_debugregs *dbgregs)
3151 {
3152 if (dbgregs->flags)
3153 return -EINVAL;
3154
3155 if (dbgregs->dr6 & ~0xffffffffull)
3156 return -EINVAL;
3157 if (dbgregs->dr7 & ~0xffffffffull)
3158 return -EINVAL;
3159
3160 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3161 kvm_update_dr0123(vcpu);
3162 vcpu->arch.dr6 = dbgregs->dr6;
3163 kvm_update_dr6(vcpu);
3164 vcpu->arch.dr7 = dbgregs->dr7;
3165 kvm_update_dr7(vcpu);
3166
3167 return 0;
3168 }
3169
3170 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3171
3172 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3173 {
3174 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3175 u64 xstate_bv = xsave->header.xfeatures;
3176 u64 valid;
3177
3178 /*
3179 * Copy legacy XSAVE area, to avoid complications with CPUID
3180 * leaves 0 and 1 in the loop below.
3181 */
3182 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3183
3184 /* Set XSTATE_BV */
3185 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3186
3187 /*
3188 * Copy each region from the possibly compacted offset to the
3189 * non-compacted offset.
3190 */
3191 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3192 while (valid) {
3193 u64 feature = valid & -valid;
3194 int index = fls64(feature) - 1;
3195 void *src = get_xsave_addr(xsave, feature);
3196
3197 if (src) {
3198 u32 size, offset, ecx, edx;
3199 cpuid_count(XSTATE_CPUID, index,
3200 &size, &offset, &ecx, &edx);
3201 memcpy(dest + offset, src, size);
3202 }
3203
3204 valid -= feature;
3205 }
3206 }
3207
3208 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3209 {
3210 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3211 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3212 u64 valid;
3213
3214 /*
3215 * Copy legacy XSAVE area, to avoid complications with CPUID
3216 * leaves 0 and 1 in the loop below.
3217 */
3218 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3219
3220 /* Set XSTATE_BV and possibly XCOMP_BV. */
3221 xsave->header.xfeatures = xstate_bv;
3222 if (boot_cpu_has(X86_FEATURE_XSAVES))
3223 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3224
3225 /*
3226 * Copy each region from the non-compacted offset to the
3227 * possibly compacted offset.
3228 */
3229 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3230 while (valid) {
3231 u64 feature = valid & -valid;
3232 int index = fls64(feature) - 1;
3233 void *dest = get_xsave_addr(xsave, feature);
3234
3235 if (dest) {
3236 u32 size, offset, ecx, edx;
3237 cpuid_count(XSTATE_CPUID, index,
3238 &size, &offset, &ecx, &edx);
3239 memcpy(dest, src + offset, size);
3240 }
3241
3242 valid -= feature;
3243 }
3244 }
3245
3246 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3247 struct kvm_xsave *guest_xsave)
3248 {
3249 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3250 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3251 fill_xsave((u8 *) guest_xsave->region, vcpu);
3252 } else {
3253 memcpy(guest_xsave->region,
3254 &vcpu->arch.guest_fpu.state.fxsave,
3255 sizeof(struct fxregs_state));
3256 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3257 XFEATURE_MASK_FPSSE;
3258 }
3259 }
3260
3261 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3262 struct kvm_xsave *guest_xsave)
3263 {
3264 u64 xstate_bv =
3265 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3266
3267 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3268 /*
3269 * Here we allow setting states that are not present in
3270 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3271 * with old userspace.
3272 */
3273 if (xstate_bv & ~kvm_supported_xcr0())
3274 return -EINVAL;
3275 load_xsave(vcpu, (u8 *)guest_xsave->region);
3276 } else {
3277 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3278 return -EINVAL;
3279 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3280 guest_xsave->region, sizeof(struct fxregs_state));
3281 }
3282 return 0;
3283 }
3284
3285 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3286 struct kvm_xcrs *guest_xcrs)
3287 {
3288 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3289 guest_xcrs->nr_xcrs = 0;
3290 return;
3291 }
3292
3293 guest_xcrs->nr_xcrs = 1;
3294 guest_xcrs->flags = 0;
3295 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3296 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3297 }
3298
3299 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3300 struct kvm_xcrs *guest_xcrs)
3301 {
3302 int i, r = 0;
3303
3304 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3305 return -EINVAL;
3306
3307 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3308 return -EINVAL;
3309
3310 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3311 /* Only support XCR0 currently */
3312 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3313 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3314 guest_xcrs->xcrs[i].value);
3315 break;
3316 }
3317 if (r)
3318 r = -EINVAL;
3319 return r;
3320 }
3321
3322 /*
3323 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3324 * stopped by the hypervisor. This function will be called from the host only.
3325 * EINVAL is returned when the host attempts to set the flag for a guest that
3326 * does not support pv clocks.
3327 */
3328 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3329 {
3330 if (!vcpu->arch.pv_time_enabled)
3331 return -EINVAL;
3332 vcpu->arch.pvclock_set_guest_stopped_request = true;
3333 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3334 return 0;
3335 }
3336
3337 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3338 struct kvm_enable_cap *cap)
3339 {
3340 if (cap->flags)
3341 return -EINVAL;
3342
3343 switch (cap->cap) {
3344 case KVM_CAP_HYPERV_SYNIC:
3345 return kvm_hv_activate_synic(vcpu);
3346 default:
3347 return -EINVAL;
3348 }
3349 }
3350
3351 long kvm_arch_vcpu_ioctl(struct file *filp,
3352 unsigned int ioctl, unsigned long arg)
3353 {
3354 struct kvm_vcpu *vcpu = filp->private_data;
3355 void __user *argp = (void __user *)arg;
3356 int r;
3357 union {
3358 struct kvm_lapic_state *lapic;
3359 struct kvm_xsave *xsave;
3360 struct kvm_xcrs *xcrs;
3361 void *buffer;
3362 } u;
3363
3364 u.buffer = NULL;
3365 switch (ioctl) {
3366 case KVM_GET_LAPIC: {
3367 r = -EINVAL;
3368 if (!lapic_in_kernel(vcpu))
3369 goto out;
3370 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3371
3372 r = -ENOMEM;
3373 if (!u.lapic)
3374 goto out;
3375 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3376 if (r)
3377 goto out;
3378 r = -EFAULT;
3379 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3380 goto out;
3381 r = 0;
3382 break;
3383 }
3384 case KVM_SET_LAPIC: {
3385 r = -EINVAL;
3386 if (!lapic_in_kernel(vcpu))
3387 goto out;
3388 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3389 if (IS_ERR(u.lapic))
3390 return PTR_ERR(u.lapic);
3391
3392 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3393 break;
3394 }
3395 case KVM_INTERRUPT: {
3396 struct kvm_interrupt irq;
3397
3398 r = -EFAULT;
3399 if (copy_from_user(&irq, argp, sizeof irq))
3400 goto out;
3401 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3402 break;
3403 }
3404 case KVM_NMI: {
3405 r = kvm_vcpu_ioctl_nmi(vcpu);
3406 break;
3407 }
3408 case KVM_SMI: {
3409 r = kvm_vcpu_ioctl_smi(vcpu);
3410 break;
3411 }
3412 case KVM_SET_CPUID: {
3413 struct kvm_cpuid __user *cpuid_arg = argp;
3414 struct kvm_cpuid cpuid;
3415
3416 r = -EFAULT;
3417 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3418 goto out;
3419 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3420 break;
3421 }
3422 case KVM_SET_CPUID2: {
3423 struct kvm_cpuid2 __user *cpuid_arg = argp;
3424 struct kvm_cpuid2 cpuid;
3425
3426 r = -EFAULT;
3427 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3428 goto out;
3429 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3430 cpuid_arg->entries);
3431 break;
3432 }
3433 case KVM_GET_CPUID2: {
3434 struct kvm_cpuid2 __user *cpuid_arg = argp;
3435 struct kvm_cpuid2 cpuid;
3436
3437 r = -EFAULT;
3438 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3439 goto out;
3440 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3441 cpuid_arg->entries);
3442 if (r)
3443 goto out;
3444 r = -EFAULT;
3445 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3446 goto out;
3447 r = 0;
3448 break;
3449 }
3450 case KVM_GET_MSRS:
3451 r = msr_io(vcpu, argp, do_get_msr, 1);
3452 break;
3453 case KVM_SET_MSRS:
3454 r = msr_io(vcpu, argp, do_set_msr, 0);
3455 break;
3456 case KVM_TPR_ACCESS_REPORTING: {
3457 struct kvm_tpr_access_ctl tac;
3458
3459 r = -EFAULT;
3460 if (copy_from_user(&tac, argp, sizeof tac))
3461 goto out;
3462 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3463 if (r)
3464 goto out;
3465 r = -EFAULT;
3466 if (copy_to_user(argp, &tac, sizeof tac))
3467 goto out;
3468 r = 0;
3469 break;
3470 };
3471 case KVM_SET_VAPIC_ADDR: {
3472 struct kvm_vapic_addr va;
3473 int idx;
3474
3475 r = -EINVAL;
3476 if (!lapic_in_kernel(vcpu))
3477 goto out;
3478 r = -EFAULT;
3479 if (copy_from_user(&va, argp, sizeof va))
3480 goto out;
3481 idx = srcu_read_lock(&vcpu->kvm->srcu);
3482 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3483 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3484 break;
3485 }
3486 case KVM_X86_SETUP_MCE: {
3487 u64 mcg_cap;
3488
3489 r = -EFAULT;
3490 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3491 goto out;
3492 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3493 break;
3494 }
3495 case KVM_X86_SET_MCE: {
3496 struct kvm_x86_mce mce;
3497
3498 r = -EFAULT;
3499 if (copy_from_user(&mce, argp, sizeof mce))
3500 goto out;
3501 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3502 break;
3503 }
3504 case KVM_GET_VCPU_EVENTS: {
3505 struct kvm_vcpu_events events;
3506
3507 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3508
3509 r = -EFAULT;
3510 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3511 break;
3512 r = 0;
3513 break;
3514 }
3515 case KVM_SET_VCPU_EVENTS: {
3516 struct kvm_vcpu_events events;
3517
3518 r = -EFAULT;
3519 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3520 break;
3521
3522 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3523 break;
3524 }
3525 case KVM_GET_DEBUGREGS: {
3526 struct kvm_debugregs dbgregs;
3527
3528 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3529
3530 r = -EFAULT;
3531 if (copy_to_user(argp, &dbgregs,
3532 sizeof(struct kvm_debugregs)))
3533 break;
3534 r = 0;
3535 break;
3536 }
3537 case KVM_SET_DEBUGREGS: {
3538 struct kvm_debugregs dbgregs;
3539
3540 r = -EFAULT;
3541 if (copy_from_user(&dbgregs, argp,
3542 sizeof(struct kvm_debugregs)))
3543 break;
3544
3545 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3546 break;
3547 }
3548 case KVM_GET_XSAVE: {
3549 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3550 r = -ENOMEM;
3551 if (!u.xsave)
3552 break;
3553
3554 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3555
3556 r = -EFAULT;
3557 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3558 break;
3559 r = 0;
3560 break;
3561 }
3562 case KVM_SET_XSAVE: {
3563 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3564 if (IS_ERR(u.xsave))
3565 return PTR_ERR(u.xsave);
3566
3567 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3568 break;
3569 }
3570 case KVM_GET_XCRS: {
3571 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3572 r = -ENOMEM;
3573 if (!u.xcrs)
3574 break;
3575
3576 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3577
3578 r = -EFAULT;
3579 if (copy_to_user(argp, u.xcrs,
3580 sizeof(struct kvm_xcrs)))
3581 break;
3582 r = 0;
3583 break;
3584 }
3585 case KVM_SET_XCRS: {
3586 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3587 if (IS_ERR(u.xcrs))
3588 return PTR_ERR(u.xcrs);
3589
3590 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3591 break;
3592 }
3593 case KVM_SET_TSC_KHZ: {
3594 u32 user_tsc_khz;
3595
3596 r = -EINVAL;
3597 user_tsc_khz = (u32)arg;
3598
3599 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3600 goto out;
3601
3602 if (user_tsc_khz == 0)
3603 user_tsc_khz = tsc_khz;
3604
3605 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3606 r = 0;
3607
3608 goto out;
3609 }
3610 case KVM_GET_TSC_KHZ: {
3611 r = vcpu->arch.virtual_tsc_khz;
3612 goto out;
3613 }
3614 case KVM_KVMCLOCK_CTRL: {
3615 r = kvm_set_guest_paused(vcpu);
3616 goto out;
3617 }
3618 case KVM_ENABLE_CAP: {
3619 struct kvm_enable_cap cap;
3620
3621 r = -EFAULT;
3622 if (copy_from_user(&cap, argp, sizeof(cap)))
3623 goto out;
3624 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3625 break;
3626 }
3627 default:
3628 r = -EINVAL;
3629 }
3630 out:
3631 kfree(u.buffer);
3632 return r;
3633 }
3634
3635 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3636 {
3637 return VM_FAULT_SIGBUS;
3638 }
3639
3640 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3641 {
3642 int ret;
3643
3644 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3645 return -EINVAL;
3646 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3647 return ret;
3648 }
3649
3650 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3651 u64 ident_addr)
3652 {
3653 kvm->arch.ept_identity_map_addr = ident_addr;
3654 return 0;
3655 }
3656
3657 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3658 u32 kvm_nr_mmu_pages)
3659 {
3660 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3661 return -EINVAL;
3662
3663 mutex_lock(&kvm->slots_lock);
3664
3665 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3666 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3667
3668 mutex_unlock(&kvm->slots_lock);
3669 return 0;
3670 }
3671
3672 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3673 {
3674 return kvm->arch.n_max_mmu_pages;
3675 }
3676
3677 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3678 {
3679 int r;
3680
3681 r = 0;
3682 switch (chip->chip_id) {
3683 case KVM_IRQCHIP_PIC_MASTER:
3684 memcpy(&chip->chip.pic,
3685 &pic_irqchip(kvm)->pics[0],
3686 sizeof(struct kvm_pic_state));
3687 break;
3688 case KVM_IRQCHIP_PIC_SLAVE:
3689 memcpy(&chip->chip.pic,
3690 &pic_irqchip(kvm)->pics[1],
3691 sizeof(struct kvm_pic_state));
3692 break;
3693 case KVM_IRQCHIP_IOAPIC:
3694 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3695 break;
3696 default:
3697 r = -EINVAL;
3698 break;
3699 }
3700 return r;
3701 }
3702
3703 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3704 {
3705 int r;
3706
3707 r = 0;
3708 switch (chip->chip_id) {
3709 case KVM_IRQCHIP_PIC_MASTER:
3710 spin_lock(&pic_irqchip(kvm)->lock);
3711 memcpy(&pic_irqchip(kvm)->pics[0],
3712 &chip->chip.pic,
3713 sizeof(struct kvm_pic_state));
3714 spin_unlock(&pic_irqchip(kvm)->lock);
3715 break;
3716 case KVM_IRQCHIP_PIC_SLAVE:
3717 spin_lock(&pic_irqchip(kvm)->lock);
3718 memcpy(&pic_irqchip(kvm)->pics[1],
3719 &chip->chip.pic,
3720 sizeof(struct kvm_pic_state));
3721 spin_unlock(&pic_irqchip(kvm)->lock);
3722 break;
3723 case KVM_IRQCHIP_IOAPIC:
3724 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3725 break;
3726 default:
3727 r = -EINVAL;
3728 break;
3729 }
3730 kvm_pic_update_irq(pic_irqchip(kvm));
3731 return r;
3732 }
3733
3734 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3735 {
3736 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3737
3738 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3739
3740 mutex_lock(&kps->lock);
3741 memcpy(ps, &kps->channels, sizeof(*ps));
3742 mutex_unlock(&kps->lock);
3743 return 0;
3744 }
3745
3746 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3747 {
3748 int i;
3749 struct kvm_pit *pit = kvm->arch.vpit;
3750
3751 mutex_lock(&pit->pit_state.lock);
3752 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3753 for (i = 0; i < 3; i++)
3754 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3755 mutex_unlock(&pit->pit_state.lock);
3756 return 0;
3757 }
3758
3759 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3760 {
3761 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3762 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3763 sizeof(ps->channels));
3764 ps->flags = kvm->arch.vpit->pit_state.flags;
3765 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3766 memset(&ps->reserved, 0, sizeof(ps->reserved));
3767 return 0;
3768 }
3769
3770 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3771 {
3772 int start = 0;
3773 int i;
3774 u32 prev_legacy, cur_legacy;
3775 struct kvm_pit *pit = kvm->arch.vpit;
3776
3777 mutex_lock(&pit->pit_state.lock);
3778 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3779 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3780 if (!prev_legacy && cur_legacy)
3781 start = 1;
3782 memcpy(&pit->pit_state.channels, &ps->channels,
3783 sizeof(pit->pit_state.channels));
3784 pit->pit_state.flags = ps->flags;
3785 for (i = 0; i < 3; i++)
3786 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3787 start && i == 0);
3788 mutex_unlock(&pit->pit_state.lock);
3789 return 0;
3790 }
3791
3792 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3793 struct kvm_reinject_control *control)
3794 {
3795 struct kvm_pit *pit = kvm->arch.vpit;
3796
3797 if (!pit)
3798 return -ENXIO;
3799
3800 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3801 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3802 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3803 */
3804 mutex_lock(&pit->pit_state.lock);
3805 kvm_pit_set_reinject(pit, control->pit_reinject);
3806 mutex_unlock(&pit->pit_state.lock);
3807
3808 return 0;
3809 }
3810
3811 /**
3812 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3813 * @kvm: kvm instance
3814 * @log: slot id and address to which we copy the log
3815 *
3816 * Steps 1-4 below provide general overview of dirty page logging. See
3817 * kvm_get_dirty_log_protect() function description for additional details.
3818 *
3819 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3820 * always flush the TLB (step 4) even if previous step failed and the dirty
3821 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3822 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3823 * writes will be marked dirty for next log read.
3824 *
3825 * 1. Take a snapshot of the bit and clear it if needed.
3826 * 2. Write protect the corresponding page.
3827 * 3. Copy the snapshot to the userspace.
3828 * 4. Flush TLB's if needed.
3829 */
3830 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3831 {
3832 bool is_dirty = false;
3833 int r;
3834
3835 mutex_lock(&kvm->slots_lock);
3836
3837 /*
3838 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3839 */
3840 if (kvm_x86_ops->flush_log_dirty)
3841 kvm_x86_ops->flush_log_dirty(kvm);
3842
3843 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3844
3845 /*
3846 * All the TLBs can be flushed out of mmu lock, see the comments in
3847 * kvm_mmu_slot_remove_write_access().
3848 */
3849 lockdep_assert_held(&kvm->slots_lock);
3850 if (is_dirty)
3851 kvm_flush_remote_tlbs(kvm);
3852
3853 mutex_unlock(&kvm->slots_lock);
3854 return r;
3855 }
3856
3857 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3858 bool line_status)
3859 {
3860 if (!irqchip_in_kernel(kvm))
3861 return -ENXIO;
3862
3863 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3864 irq_event->irq, irq_event->level,
3865 line_status);
3866 return 0;
3867 }
3868
3869 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3870 struct kvm_enable_cap *cap)
3871 {
3872 int r;
3873
3874 if (cap->flags)
3875 return -EINVAL;
3876
3877 switch (cap->cap) {
3878 case KVM_CAP_DISABLE_QUIRKS:
3879 kvm->arch.disabled_quirks = cap->args[0];
3880 r = 0;
3881 break;
3882 case KVM_CAP_SPLIT_IRQCHIP: {
3883 mutex_lock(&kvm->lock);
3884 r = -EINVAL;
3885 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3886 goto split_irqchip_unlock;
3887 r = -EEXIST;
3888 if (irqchip_in_kernel(kvm))
3889 goto split_irqchip_unlock;
3890 if (kvm->created_vcpus)
3891 goto split_irqchip_unlock;
3892 r = kvm_setup_empty_irq_routing(kvm);
3893 if (r)
3894 goto split_irqchip_unlock;
3895 /* Pairs with irqchip_in_kernel. */
3896 smp_wmb();
3897 kvm->arch.irqchip_split = true;
3898 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3899 r = 0;
3900 split_irqchip_unlock:
3901 mutex_unlock(&kvm->lock);
3902 break;
3903 }
3904 case KVM_CAP_X2APIC_API:
3905 r = -EINVAL;
3906 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3907 break;
3908
3909 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3910 kvm->arch.x2apic_format = true;
3911 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3912 kvm->arch.x2apic_broadcast_quirk_disabled = true;
3913
3914 r = 0;
3915 break;
3916 default:
3917 r = -EINVAL;
3918 break;
3919 }
3920 return r;
3921 }
3922
3923 long kvm_arch_vm_ioctl(struct file *filp,
3924 unsigned int ioctl, unsigned long arg)
3925 {
3926 struct kvm *kvm = filp->private_data;
3927 void __user *argp = (void __user *)arg;
3928 int r = -ENOTTY;
3929 /*
3930 * This union makes it completely explicit to gcc-3.x
3931 * that these two variables' stack usage should be
3932 * combined, not added together.
3933 */
3934 union {
3935 struct kvm_pit_state ps;
3936 struct kvm_pit_state2 ps2;
3937 struct kvm_pit_config pit_config;
3938 } u;
3939
3940 switch (ioctl) {
3941 case KVM_SET_TSS_ADDR:
3942 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3943 break;
3944 case KVM_SET_IDENTITY_MAP_ADDR: {
3945 u64 ident_addr;
3946
3947 r = -EFAULT;
3948 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3949 goto out;
3950 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3951 break;
3952 }
3953 case KVM_SET_NR_MMU_PAGES:
3954 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3955 break;
3956 case KVM_GET_NR_MMU_PAGES:
3957 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3958 break;
3959 case KVM_CREATE_IRQCHIP: {
3960 struct kvm_pic *vpic;
3961
3962 mutex_lock(&kvm->lock);
3963 r = -EEXIST;
3964 if (kvm->arch.vpic)
3965 goto create_irqchip_unlock;
3966 r = -EINVAL;
3967 if (kvm->created_vcpus)
3968 goto create_irqchip_unlock;
3969 r = -ENOMEM;
3970 vpic = kvm_create_pic(kvm);
3971 if (vpic) {
3972 r = kvm_ioapic_init(kvm);
3973 if (r) {
3974 mutex_lock(&kvm->slots_lock);
3975 kvm_destroy_pic(vpic);
3976 mutex_unlock(&kvm->slots_lock);
3977 goto create_irqchip_unlock;
3978 }
3979 } else
3980 goto create_irqchip_unlock;
3981 r = kvm_setup_default_irq_routing(kvm);
3982 if (r) {
3983 mutex_lock(&kvm->slots_lock);
3984 mutex_lock(&kvm->irq_lock);
3985 kvm_ioapic_destroy(kvm);
3986 kvm_destroy_pic(vpic);
3987 mutex_unlock(&kvm->irq_lock);
3988 mutex_unlock(&kvm->slots_lock);
3989 goto create_irqchip_unlock;
3990 }
3991 /* Write kvm->irq_routing before kvm->arch.vpic. */
3992 smp_wmb();
3993 kvm->arch.vpic = vpic;
3994 create_irqchip_unlock:
3995 mutex_unlock(&kvm->lock);
3996 break;
3997 }
3998 case KVM_CREATE_PIT:
3999 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4000 goto create_pit;
4001 case KVM_CREATE_PIT2:
4002 r = -EFAULT;
4003 if (copy_from_user(&u.pit_config, argp,
4004 sizeof(struct kvm_pit_config)))
4005 goto out;
4006 create_pit:
4007 mutex_lock(&kvm->lock);
4008 r = -EEXIST;
4009 if (kvm->arch.vpit)
4010 goto create_pit_unlock;
4011 r = -ENOMEM;
4012 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4013 if (kvm->arch.vpit)
4014 r = 0;
4015 create_pit_unlock:
4016 mutex_unlock(&kvm->lock);
4017 break;
4018 case KVM_GET_IRQCHIP: {
4019 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4020 struct kvm_irqchip *chip;
4021
4022 chip = memdup_user(argp, sizeof(*chip));
4023 if (IS_ERR(chip)) {
4024 r = PTR_ERR(chip);
4025 goto out;
4026 }
4027
4028 r = -ENXIO;
4029 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
4030 goto get_irqchip_out;
4031 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4032 if (r)
4033 goto get_irqchip_out;
4034 r = -EFAULT;
4035 if (copy_to_user(argp, chip, sizeof *chip))
4036 goto get_irqchip_out;
4037 r = 0;
4038 get_irqchip_out:
4039 kfree(chip);
4040 break;
4041 }
4042 case KVM_SET_IRQCHIP: {
4043 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4044 struct kvm_irqchip *chip;
4045
4046 chip = memdup_user(argp, sizeof(*chip));
4047 if (IS_ERR(chip)) {
4048 r = PTR_ERR(chip);
4049 goto out;
4050 }
4051
4052 r = -ENXIO;
4053 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
4054 goto set_irqchip_out;
4055 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4056 if (r)
4057 goto set_irqchip_out;
4058 r = 0;
4059 set_irqchip_out:
4060 kfree(chip);
4061 break;
4062 }
4063 case KVM_GET_PIT: {
4064 r = -EFAULT;
4065 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4066 goto out;
4067 r = -ENXIO;
4068 if (!kvm->arch.vpit)
4069 goto out;
4070 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4071 if (r)
4072 goto out;
4073 r = -EFAULT;
4074 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4075 goto out;
4076 r = 0;
4077 break;
4078 }
4079 case KVM_SET_PIT: {
4080 r = -EFAULT;
4081 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4082 goto out;
4083 r = -ENXIO;
4084 if (!kvm->arch.vpit)
4085 goto out;
4086 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4087 break;
4088 }
4089 case KVM_GET_PIT2: {
4090 r = -ENXIO;
4091 if (!kvm->arch.vpit)
4092 goto out;
4093 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4094 if (r)
4095 goto out;
4096 r = -EFAULT;
4097 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4098 goto out;
4099 r = 0;
4100 break;
4101 }
4102 case KVM_SET_PIT2: {
4103 r = -EFAULT;
4104 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4105 goto out;
4106 r = -ENXIO;
4107 if (!kvm->arch.vpit)
4108 goto out;
4109 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4110 break;
4111 }
4112 case KVM_REINJECT_CONTROL: {
4113 struct kvm_reinject_control control;
4114 r = -EFAULT;
4115 if (copy_from_user(&control, argp, sizeof(control)))
4116 goto out;
4117 r = kvm_vm_ioctl_reinject(kvm, &control);
4118 break;
4119 }
4120 case KVM_SET_BOOT_CPU_ID:
4121 r = 0;
4122 mutex_lock(&kvm->lock);
4123 if (kvm->created_vcpus)
4124 r = -EBUSY;
4125 else
4126 kvm->arch.bsp_vcpu_id = arg;
4127 mutex_unlock(&kvm->lock);
4128 break;
4129 case KVM_XEN_HVM_CONFIG: {
4130 r = -EFAULT;
4131 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4132 sizeof(struct kvm_xen_hvm_config)))
4133 goto out;
4134 r = -EINVAL;
4135 if (kvm->arch.xen_hvm_config.flags)
4136 goto out;
4137 r = 0;
4138 break;
4139 }
4140 case KVM_SET_CLOCK: {
4141 struct kvm_clock_data user_ns;
4142 u64 now_ns;
4143
4144 r = -EFAULT;
4145 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4146 goto out;
4147
4148 r = -EINVAL;
4149 if (user_ns.flags)
4150 goto out;
4151
4152 r = 0;
4153 local_irq_disable();
4154 now_ns = __get_kvmclock_ns(kvm);
4155 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4156 local_irq_enable();
4157 kvm_gen_update_masterclock(kvm);
4158 break;
4159 }
4160 case KVM_GET_CLOCK: {
4161 struct kvm_clock_data user_ns;
4162 u64 now_ns;
4163
4164 local_irq_disable();
4165 now_ns = __get_kvmclock_ns(kvm);
4166 user_ns.clock = now_ns;
4167 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4168 local_irq_enable();
4169 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4170
4171 r = -EFAULT;
4172 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4173 goto out;
4174 r = 0;
4175 break;
4176 }
4177 case KVM_ENABLE_CAP: {
4178 struct kvm_enable_cap cap;
4179
4180 r = -EFAULT;
4181 if (copy_from_user(&cap, argp, sizeof(cap)))
4182 goto out;
4183 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4184 break;
4185 }
4186 default:
4187 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4188 }
4189 out:
4190 return r;
4191 }
4192
4193 static void kvm_init_msr_list(void)
4194 {
4195 u32 dummy[2];
4196 unsigned i, j;
4197
4198 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4199 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4200 continue;
4201
4202 /*
4203 * Even MSRs that are valid in the host may not be exposed
4204 * to the guests in some cases.
4205 */
4206 switch (msrs_to_save[i]) {
4207 case MSR_IA32_BNDCFGS:
4208 if (!kvm_x86_ops->mpx_supported())
4209 continue;
4210 break;
4211 case MSR_TSC_AUX:
4212 if (!kvm_x86_ops->rdtscp_supported())
4213 continue;
4214 break;
4215 default:
4216 break;
4217 }
4218
4219 if (j < i)
4220 msrs_to_save[j] = msrs_to_save[i];
4221 j++;
4222 }
4223 num_msrs_to_save = j;
4224
4225 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4226 switch (emulated_msrs[i]) {
4227 case MSR_IA32_SMBASE:
4228 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4229 continue;
4230 break;
4231 default:
4232 break;
4233 }
4234
4235 if (j < i)
4236 emulated_msrs[j] = emulated_msrs[i];
4237 j++;
4238 }
4239 num_emulated_msrs = j;
4240 }
4241
4242 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4243 const void *v)
4244 {
4245 int handled = 0;
4246 int n;
4247
4248 do {
4249 n = min(len, 8);
4250 if (!(lapic_in_kernel(vcpu) &&
4251 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4252 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4253 break;
4254 handled += n;
4255 addr += n;
4256 len -= n;
4257 v += n;
4258 } while (len);
4259
4260 return handled;
4261 }
4262
4263 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4264 {
4265 int handled = 0;
4266 int n;
4267
4268 do {
4269 n = min(len, 8);
4270 if (!(lapic_in_kernel(vcpu) &&
4271 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4272 addr, n, v))
4273 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4274 break;
4275 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4276 handled += n;
4277 addr += n;
4278 len -= n;
4279 v += n;
4280 } while (len);
4281
4282 return handled;
4283 }
4284
4285 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4286 struct kvm_segment *var, int seg)
4287 {
4288 kvm_x86_ops->set_segment(vcpu, var, seg);
4289 }
4290
4291 void kvm_get_segment(struct kvm_vcpu *vcpu,
4292 struct kvm_segment *var, int seg)
4293 {
4294 kvm_x86_ops->get_segment(vcpu, var, seg);
4295 }
4296
4297 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4298 struct x86_exception *exception)
4299 {
4300 gpa_t t_gpa;
4301
4302 BUG_ON(!mmu_is_nested(vcpu));
4303
4304 /* NPT walks are always user-walks */
4305 access |= PFERR_USER_MASK;
4306 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4307
4308 return t_gpa;
4309 }
4310
4311 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4312 struct x86_exception *exception)
4313 {
4314 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4315 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4316 }
4317
4318 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4319 struct x86_exception *exception)
4320 {
4321 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4322 access |= PFERR_FETCH_MASK;
4323 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4324 }
4325
4326 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4327 struct x86_exception *exception)
4328 {
4329 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4330 access |= PFERR_WRITE_MASK;
4331 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4332 }
4333
4334 /* uses this to access any guest's mapped memory without checking CPL */
4335 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4336 struct x86_exception *exception)
4337 {
4338 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4339 }
4340
4341 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4342 struct kvm_vcpu *vcpu, u32 access,
4343 struct x86_exception *exception)
4344 {
4345 void *data = val;
4346 int r = X86EMUL_CONTINUE;
4347
4348 while (bytes) {
4349 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4350 exception);
4351 unsigned offset = addr & (PAGE_SIZE-1);
4352 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4353 int ret;
4354
4355 if (gpa == UNMAPPED_GVA)
4356 return X86EMUL_PROPAGATE_FAULT;
4357 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4358 offset, toread);
4359 if (ret < 0) {
4360 r = X86EMUL_IO_NEEDED;
4361 goto out;
4362 }
4363
4364 bytes -= toread;
4365 data += toread;
4366 addr += toread;
4367 }
4368 out:
4369 return r;
4370 }
4371
4372 /* used for instruction fetching */
4373 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4374 gva_t addr, void *val, unsigned int bytes,
4375 struct x86_exception *exception)
4376 {
4377 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4378 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4379 unsigned offset;
4380 int ret;
4381
4382 /* Inline kvm_read_guest_virt_helper for speed. */
4383 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4384 exception);
4385 if (unlikely(gpa == UNMAPPED_GVA))
4386 return X86EMUL_PROPAGATE_FAULT;
4387
4388 offset = addr & (PAGE_SIZE-1);
4389 if (WARN_ON(offset + bytes > PAGE_SIZE))
4390 bytes = (unsigned)PAGE_SIZE - offset;
4391 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4392 offset, bytes);
4393 if (unlikely(ret < 0))
4394 return X86EMUL_IO_NEEDED;
4395
4396 return X86EMUL_CONTINUE;
4397 }
4398
4399 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4400 gva_t addr, void *val, unsigned int bytes,
4401 struct x86_exception *exception)
4402 {
4403 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4404 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4405
4406 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4407 exception);
4408 }
4409 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4410
4411 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4412 gva_t addr, void *val, unsigned int bytes,
4413 struct x86_exception *exception)
4414 {
4415 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4416 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4417 }
4418
4419 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4420 unsigned long addr, void *val, unsigned int bytes)
4421 {
4422 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4423 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4424
4425 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4426 }
4427
4428 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4429 gva_t addr, void *val,
4430 unsigned int bytes,
4431 struct x86_exception *exception)
4432 {
4433 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4434 void *data = val;
4435 int r = X86EMUL_CONTINUE;
4436
4437 while (bytes) {
4438 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4439 PFERR_WRITE_MASK,
4440 exception);
4441 unsigned offset = addr & (PAGE_SIZE-1);
4442 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4443 int ret;
4444
4445 if (gpa == UNMAPPED_GVA)
4446 return X86EMUL_PROPAGATE_FAULT;
4447 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4448 if (ret < 0) {
4449 r = X86EMUL_IO_NEEDED;
4450 goto out;
4451 }
4452
4453 bytes -= towrite;
4454 data += towrite;
4455 addr += towrite;
4456 }
4457 out:
4458 return r;
4459 }
4460 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4461
4462 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4463 gpa_t *gpa, struct x86_exception *exception,
4464 bool write)
4465 {
4466 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4467 | (write ? PFERR_WRITE_MASK : 0);
4468
4469 /*
4470 * currently PKRU is only applied to ept enabled guest so
4471 * there is no pkey in EPT page table for L1 guest or EPT
4472 * shadow page table for L2 guest.
4473 */
4474 if (vcpu_match_mmio_gva(vcpu, gva)
4475 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4476 vcpu->arch.access, 0, access)) {
4477 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4478 (gva & (PAGE_SIZE - 1));
4479 trace_vcpu_match_mmio(gva, *gpa, write, false);
4480 return 1;
4481 }
4482
4483 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4484
4485 if (*gpa == UNMAPPED_GVA)
4486 return -1;
4487
4488 /* For APIC access vmexit */
4489 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4490 return 1;
4491
4492 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4493 trace_vcpu_match_mmio(gva, *gpa, write, true);
4494 return 1;
4495 }
4496
4497 return 0;
4498 }
4499
4500 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4501 const void *val, int bytes)
4502 {
4503 int ret;
4504
4505 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4506 if (ret < 0)
4507 return 0;
4508 kvm_page_track_write(vcpu, gpa, val, bytes);
4509 return 1;
4510 }
4511
4512 struct read_write_emulator_ops {
4513 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4514 int bytes);
4515 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4516 void *val, int bytes);
4517 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4518 int bytes, void *val);
4519 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4520 void *val, int bytes);
4521 bool write;
4522 };
4523
4524 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4525 {
4526 if (vcpu->mmio_read_completed) {
4527 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4528 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4529 vcpu->mmio_read_completed = 0;
4530 return 1;
4531 }
4532
4533 return 0;
4534 }
4535
4536 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4537 void *val, int bytes)
4538 {
4539 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4540 }
4541
4542 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4543 void *val, int bytes)
4544 {
4545 return emulator_write_phys(vcpu, gpa, val, bytes);
4546 }
4547
4548 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4549 {
4550 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4551 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4552 }
4553
4554 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4555 void *val, int bytes)
4556 {
4557 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4558 return X86EMUL_IO_NEEDED;
4559 }
4560
4561 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4562 void *val, int bytes)
4563 {
4564 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4565
4566 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4567 return X86EMUL_CONTINUE;
4568 }
4569
4570 static const struct read_write_emulator_ops read_emultor = {
4571 .read_write_prepare = read_prepare,
4572 .read_write_emulate = read_emulate,
4573 .read_write_mmio = vcpu_mmio_read,
4574 .read_write_exit_mmio = read_exit_mmio,
4575 };
4576
4577 static const struct read_write_emulator_ops write_emultor = {
4578 .read_write_emulate = write_emulate,
4579 .read_write_mmio = write_mmio,
4580 .read_write_exit_mmio = write_exit_mmio,
4581 .write = true,
4582 };
4583
4584 static int emulator_read_write_onepage(unsigned long addr, void *val,
4585 unsigned int bytes,
4586 struct x86_exception *exception,
4587 struct kvm_vcpu *vcpu,
4588 const struct read_write_emulator_ops *ops)
4589 {
4590 gpa_t gpa;
4591 int handled, ret;
4592 bool write = ops->write;
4593 struct kvm_mmio_fragment *frag;
4594
4595 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4596
4597 if (ret < 0)
4598 return X86EMUL_PROPAGATE_FAULT;
4599
4600 /* For APIC access vmexit */
4601 if (ret)
4602 goto mmio;
4603
4604 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4605 return X86EMUL_CONTINUE;
4606
4607 mmio:
4608 /*
4609 * Is this MMIO handled locally?
4610 */
4611 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4612 if (handled == bytes)
4613 return X86EMUL_CONTINUE;
4614
4615 gpa += handled;
4616 bytes -= handled;
4617 val += handled;
4618
4619 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4620 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4621 frag->gpa = gpa;
4622 frag->data = val;
4623 frag->len = bytes;
4624 return X86EMUL_CONTINUE;
4625 }
4626
4627 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4628 unsigned long addr,
4629 void *val, unsigned int bytes,
4630 struct x86_exception *exception,
4631 const struct read_write_emulator_ops *ops)
4632 {
4633 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4634 gpa_t gpa;
4635 int rc;
4636
4637 if (ops->read_write_prepare &&
4638 ops->read_write_prepare(vcpu, val, bytes))
4639 return X86EMUL_CONTINUE;
4640
4641 vcpu->mmio_nr_fragments = 0;
4642
4643 /* Crossing a page boundary? */
4644 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4645 int now;
4646
4647 now = -addr & ~PAGE_MASK;
4648 rc = emulator_read_write_onepage(addr, val, now, exception,
4649 vcpu, ops);
4650
4651 if (rc != X86EMUL_CONTINUE)
4652 return rc;
4653 addr += now;
4654 if (ctxt->mode != X86EMUL_MODE_PROT64)
4655 addr = (u32)addr;
4656 val += now;
4657 bytes -= now;
4658 }
4659
4660 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4661 vcpu, ops);
4662 if (rc != X86EMUL_CONTINUE)
4663 return rc;
4664
4665 if (!vcpu->mmio_nr_fragments)
4666 return rc;
4667
4668 gpa = vcpu->mmio_fragments[0].gpa;
4669
4670 vcpu->mmio_needed = 1;
4671 vcpu->mmio_cur_fragment = 0;
4672
4673 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4674 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4675 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4676 vcpu->run->mmio.phys_addr = gpa;
4677
4678 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4679 }
4680
4681 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4682 unsigned long addr,
4683 void *val,
4684 unsigned int bytes,
4685 struct x86_exception *exception)
4686 {
4687 return emulator_read_write(ctxt, addr, val, bytes,
4688 exception, &read_emultor);
4689 }
4690
4691 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4692 unsigned long addr,
4693 const void *val,
4694 unsigned int bytes,
4695 struct x86_exception *exception)
4696 {
4697 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4698 exception, &write_emultor);
4699 }
4700
4701 #define CMPXCHG_TYPE(t, ptr, old, new) \
4702 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4703
4704 #ifdef CONFIG_X86_64
4705 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4706 #else
4707 # define CMPXCHG64(ptr, old, new) \
4708 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4709 #endif
4710
4711 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4712 unsigned long addr,
4713 const void *old,
4714 const void *new,
4715 unsigned int bytes,
4716 struct x86_exception *exception)
4717 {
4718 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4719 gpa_t gpa;
4720 struct page *page;
4721 char *kaddr;
4722 bool exchanged;
4723
4724 /* guests cmpxchg8b have to be emulated atomically */
4725 if (bytes > 8 || (bytes & (bytes - 1)))
4726 goto emul_write;
4727
4728 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4729
4730 if (gpa == UNMAPPED_GVA ||
4731 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4732 goto emul_write;
4733
4734 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4735 goto emul_write;
4736
4737 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4738 if (is_error_page(page))
4739 goto emul_write;
4740
4741 kaddr = kmap_atomic(page);
4742 kaddr += offset_in_page(gpa);
4743 switch (bytes) {
4744 case 1:
4745 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4746 break;
4747 case 2:
4748 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4749 break;
4750 case 4:
4751 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4752 break;
4753 case 8:
4754 exchanged = CMPXCHG64(kaddr, old, new);
4755 break;
4756 default:
4757 BUG();
4758 }
4759 kunmap_atomic(kaddr);
4760 kvm_release_page_dirty(page);
4761
4762 if (!exchanged)
4763 return X86EMUL_CMPXCHG_FAILED;
4764
4765 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4766 kvm_page_track_write(vcpu, gpa, new, bytes);
4767
4768 return X86EMUL_CONTINUE;
4769
4770 emul_write:
4771 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4772
4773 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4774 }
4775
4776 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4777 {
4778 /* TODO: String I/O for in kernel device */
4779 int r;
4780
4781 if (vcpu->arch.pio.in)
4782 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4783 vcpu->arch.pio.size, pd);
4784 else
4785 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4786 vcpu->arch.pio.port, vcpu->arch.pio.size,
4787 pd);
4788 return r;
4789 }
4790
4791 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4792 unsigned short port, void *val,
4793 unsigned int count, bool in)
4794 {
4795 vcpu->arch.pio.port = port;
4796 vcpu->arch.pio.in = in;
4797 vcpu->arch.pio.count = count;
4798 vcpu->arch.pio.size = size;
4799
4800 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4801 vcpu->arch.pio.count = 0;
4802 return 1;
4803 }
4804
4805 vcpu->run->exit_reason = KVM_EXIT_IO;
4806 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4807 vcpu->run->io.size = size;
4808 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4809 vcpu->run->io.count = count;
4810 vcpu->run->io.port = port;
4811
4812 return 0;
4813 }
4814
4815 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4816 int size, unsigned short port, void *val,
4817 unsigned int count)
4818 {
4819 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4820 int ret;
4821
4822 if (vcpu->arch.pio.count)
4823 goto data_avail;
4824
4825 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4826 if (ret) {
4827 data_avail:
4828 memcpy(val, vcpu->arch.pio_data, size * count);
4829 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4830 vcpu->arch.pio.count = 0;
4831 return 1;
4832 }
4833
4834 return 0;
4835 }
4836
4837 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4838 int size, unsigned short port,
4839 const void *val, unsigned int count)
4840 {
4841 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4842
4843 memcpy(vcpu->arch.pio_data, val, size * count);
4844 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4845 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4846 }
4847
4848 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4849 {
4850 return kvm_x86_ops->get_segment_base(vcpu, seg);
4851 }
4852
4853 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4854 {
4855 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4856 }
4857
4858 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4859 {
4860 if (!need_emulate_wbinvd(vcpu))
4861 return X86EMUL_CONTINUE;
4862
4863 if (kvm_x86_ops->has_wbinvd_exit()) {
4864 int cpu = get_cpu();
4865
4866 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4867 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4868 wbinvd_ipi, NULL, 1);
4869 put_cpu();
4870 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4871 } else
4872 wbinvd();
4873 return X86EMUL_CONTINUE;
4874 }
4875
4876 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4877 {
4878 kvm_emulate_wbinvd_noskip(vcpu);
4879 return kvm_skip_emulated_instruction(vcpu);
4880 }
4881 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4882
4883
4884
4885 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4886 {
4887 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4888 }
4889
4890 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4891 unsigned long *dest)
4892 {
4893 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4894 }
4895
4896 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4897 unsigned long value)
4898 {
4899
4900 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4901 }
4902
4903 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4904 {
4905 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4906 }
4907
4908 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4909 {
4910 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4911 unsigned long value;
4912
4913 switch (cr) {
4914 case 0:
4915 value = kvm_read_cr0(vcpu);
4916 break;
4917 case 2:
4918 value = vcpu->arch.cr2;
4919 break;
4920 case 3:
4921 value = kvm_read_cr3(vcpu);
4922 break;
4923 case 4:
4924 value = kvm_read_cr4(vcpu);
4925 break;
4926 case 8:
4927 value = kvm_get_cr8(vcpu);
4928 break;
4929 default:
4930 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4931 return 0;
4932 }
4933
4934 return value;
4935 }
4936
4937 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4938 {
4939 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4940 int res = 0;
4941
4942 switch (cr) {
4943 case 0:
4944 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4945 break;
4946 case 2:
4947 vcpu->arch.cr2 = val;
4948 break;
4949 case 3:
4950 res = kvm_set_cr3(vcpu, val);
4951 break;
4952 case 4:
4953 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4954 break;
4955 case 8:
4956 res = kvm_set_cr8(vcpu, val);
4957 break;
4958 default:
4959 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4960 res = -1;
4961 }
4962
4963 return res;
4964 }
4965
4966 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4967 {
4968 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4969 }
4970
4971 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4972 {
4973 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4974 }
4975
4976 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4977 {
4978 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4979 }
4980
4981 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4982 {
4983 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4984 }
4985
4986 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4987 {
4988 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4989 }
4990
4991 static unsigned long emulator_get_cached_segment_base(
4992 struct x86_emulate_ctxt *ctxt, int seg)
4993 {
4994 return get_segment_base(emul_to_vcpu(ctxt), seg);
4995 }
4996
4997 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4998 struct desc_struct *desc, u32 *base3,
4999 int seg)
5000 {
5001 struct kvm_segment var;
5002
5003 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5004 *selector = var.selector;
5005
5006 if (var.unusable) {
5007 memset(desc, 0, sizeof(*desc));
5008 return false;
5009 }
5010
5011 if (var.g)
5012 var.limit >>= 12;
5013 set_desc_limit(desc, var.limit);
5014 set_desc_base(desc, (unsigned long)var.base);
5015 #ifdef CONFIG_X86_64
5016 if (base3)
5017 *base3 = var.base >> 32;
5018 #endif
5019 desc->type = var.type;
5020 desc->s = var.s;
5021 desc->dpl = var.dpl;
5022 desc->p = var.present;
5023 desc->avl = var.avl;
5024 desc->l = var.l;
5025 desc->d = var.db;
5026 desc->g = var.g;
5027
5028 return true;
5029 }
5030
5031 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5032 struct desc_struct *desc, u32 base3,
5033 int seg)
5034 {
5035 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5036 struct kvm_segment var;
5037
5038 var.selector = selector;
5039 var.base = get_desc_base(desc);
5040 #ifdef CONFIG_X86_64
5041 var.base |= ((u64)base3) << 32;
5042 #endif
5043 var.limit = get_desc_limit(desc);
5044 if (desc->g)
5045 var.limit = (var.limit << 12) | 0xfff;
5046 var.type = desc->type;
5047 var.dpl = desc->dpl;
5048 var.db = desc->d;
5049 var.s = desc->s;
5050 var.l = desc->l;
5051 var.g = desc->g;
5052 var.avl = desc->avl;
5053 var.present = desc->p;
5054 var.unusable = !var.present;
5055 var.padding = 0;
5056
5057 kvm_set_segment(vcpu, &var, seg);
5058 return;
5059 }
5060
5061 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5062 u32 msr_index, u64 *pdata)
5063 {
5064 struct msr_data msr;
5065 int r;
5066
5067 msr.index = msr_index;
5068 msr.host_initiated = false;
5069 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5070 if (r)
5071 return r;
5072
5073 *pdata = msr.data;
5074 return 0;
5075 }
5076
5077 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5078 u32 msr_index, u64 data)
5079 {
5080 struct msr_data msr;
5081
5082 msr.data = data;
5083 msr.index = msr_index;
5084 msr.host_initiated = false;
5085 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5086 }
5087
5088 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5089 {
5090 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5091
5092 return vcpu->arch.smbase;
5093 }
5094
5095 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5096 {
5097 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5098
5099 vcpu->arch.smbase = smbase;
5100 }
5101
5102 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5103 u32 pmc)
5104 {
5105 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5106 }
5107
5108 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5109 u32 pmc, u64 *pdata)
5110 {
5111 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5112 }
5113
5114 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5115 {
5116 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5117 }
5118
5119 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5120 {
5121 preempt_disable();
5122 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5123 }
5124
5125 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5126 {
5127 preempt_enable();
5128 }
5129
5130 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5131 struct x86_instruction_info *info,
5132 enum x86_intercept_stage stage)
5133 {
5134 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5135 }
5136
5137 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5138 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5139 {
5140 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5141 }
5142
5143 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5144 {
5145 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5146 }
5147
5148 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5149 {
5150 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5151 }
5152
5153 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5154 {
5155 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5156 }
5157
5158 static const struct x86_emulate_ops emulate_ops = {
5159 .read_gpr = emulator_read_gpr,
5160 .write_gpr = emulator_write_gpr,
5161 .read_std = kvm_read_guest_virt_system,
5162 .write_std = kvm_write_guest_virt_system,
5163 .read_phys = kvm_read_guest_phys_system,
5164 .fetch = kvm_fetch_guest_virt,
5165 .read_emulated = emulator_read_emulated,
5166 .write_emulated = emulator_write_emulated,
5167 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5168 .invlpg = emulator_invlpg,
5169 .pio_in_emulated = emulator_pio_in_emulated,
5170 .pio_out_emulated = emulator_pio_out_emulated,
5171 .get_segment = emulator_get_segment,
5172 .set_segment = emulator_set_segment,
5173 .get_cached_segment_base = emulator_get_cached_segment_base,
5174 .get_gdt = emulator_get_gdt,
5175 .get_idt = emulator_get_idt,
5176 .set_gdt = emulator_set_gdt,
5177 .set_idt = emulator_set_idt,
5178 .get_cr = emulator_get_cr,
5179 .set_cr = emulator_set_cr,
5180 .cpl = emulator_get_cpl,
5181 .get_dr = emulator_get_dr,
5182 .set_dr = emulator_set_dr,
5183 .get_smbase = emulator_get_smbase,
5184 .set_smbase = emulator_set_smbase,
5185 .set_msr = emulator_set_msr,
5186 .get_msr = emulator_get_msr,
5187 .check_pmc = emulator_check_pmc,
5188 .read_pmc = emulator_read_pmc,
5189 .halt = emulator_halt,
5190 .wbinvd = emulator_wbinvd,
5191 .fix_hypercall = emulator_fix_hypercall,
5192 .get_fpu = emulator_get_fpu,
5193 .put_fpu = emulator_put_fpu,
5194 .intercept = emulator_intercept,
5195 .get_cpuid = emulator_get_cpuid,
5196 .set_nmi_mask = emulator_set_nmi_mask,
5197 };
5198
5199 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5200 {
5201 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5202 /*
5203 * an sti; sti; sequence only disable interrupts for the first
5204 * instruction. So, if the last instruction, be it emulated or
5205 * not, left the system with the INT_STI flag enabled, it
5206 * means that the last instruction is an sti. We should not
5207 * leave the flag on in this case. The same goes for mov ss
5208 */
5209 if (int_shadow & mask)
5210 mask = 0;
5211 if (unlikely(int_shadow || mask)) {
5212 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5213 if (!mask)
5214 kvm_make_request(KVM_REQ_EVENT, vcpu);
5215 }
5216 }
5217
5218 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5219 {
5220 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5221 if (ctxt->exception.vector == PF_VECTOR)
5222 return kvm_propagate_fault(vcpu, &ctxt->exception);
5223
5224 if (ctxt->exception.error_code_valid)
5225 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5226 ctxt->exception.error_code);
5227 else
5228 kvm_queue_exception(vcpu, ctxt->exception.vector);
5229 return false;
5230 }
5231
5232 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5233 {
5234 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5235 int cs_db, cs_l;
5236
5237 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5238
5239 ctxt->eflags = kvm_get_rflags(vcpu);
5240 ctxt->eip = kvm_rip_read(vcpu);
5241 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5242 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5243 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5244 cs_db ? X86EMUL_MODE_PROT32 :
5245 X86EMUL_MODE_PROT16;
5246 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5247 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5248 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5249 ctxt->emul_flags = vcpu->arch.hflags;
5250
5251 init_decode_cache(ctxt);
5252 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5253 }
5254
5255 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5256 {
5257 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5258 int ret;
5259
5260 init_emulate_ctxt(vcpu);
5261
5262 ctxt->op_bytes = 2;
5263 ctxt->ad_bytes = 2;
5264 ctxt->_eip = ctxt->eip + inc_eip;
5265 ret = emulate_int_real(ctxt, irq);
5266
5267 if (ret != X86EMUL_CONTINUE)
5268 return EMULATE_FAIL;
5269
5270 ctxt->eip = ctxt->_eip;
5271 kvm_rip_write(vcpu, ctxt->eip);
5272 kvm_set_rflags(vcpu, ctxt->eflags);
5273
5274 if (irq == NMI_VECTOR)
5275 vcpu->arch.nmi_pending = 0;
5276 else
5277 vcpu->arch.interrupt.pending = false;
5278
5279 return EMULATE_DONE;
5280 }
5281 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5282
5283 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5284 {
5285 int r = EMULATE_DONE;
5286
5287 ++vcpu->stat.insn_emulation_fail;
5288 trace_kvm_emulate_insn_failed(vcpu);
5289 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5290 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5291 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5292 vcpu->run->internal.ndata = 0;
5293 r = EMULATE_FAIL;
5294 }
5295 kvm_queue_exception(vcpu, UD_VECTOR);
5296
5297 return r;
5298 }
5299
5300 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5301 bool write_fault_to_shadow_pgtable,
5302 int emulation_type)
5303 {
5304 gpa_t gpa = cr2;
5305 kvm_pfn_t pfn;
5306
5307 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5308 return false;
5309
5310 if (!vcpu->arch.mmu.direct_map) {
5311 /*
5312 * Write permission should be allowed since only
5313 * write access need to be emulated.
5314 */
5315 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5316
5317 /*
5318 * If the mapping is invalid in guest, let cpu retry
5319 * it to generate fault.
5320 */
5321 if (gpa == UNMAPPED_GVA)
5322 return true;
5323 }
5324
5325 /*
5326 * Do not retry the unhandleable instruction if it faults on the
5327 * readonly host memory, otherwise it will goto a infinite loop:
5328 * retry instruction -> write #PF -> emulation fail -> retry
5329 * instruction -> ...
5330 */
5331 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5332
5333 /*
5334 * If the instruction failed on the error pfn, it can not be fixed,
5335 * report the error to userspace.
5336 */
5337 if (is_error_noslot_pfn(pfn))
5338 return false;
5339
5340 kvm_release_pfn_clean(pfn);
5341
5342 /* The instructions are well-emulated on direct mmu. */
5343 if (vcpu->arch.mmu.direct_map) {
5344 unsigned int indirect_shadow_pages;
5345
5346 spin_lock(&vcpu->kvm->mmu_lock);
5347 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5348 spin_unlock(&vcpu->kvm->mmu_lock);
5349
5350 if (indirect_shadow_pages)
5351 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5352
5353 return true;
5354 }
5355
5356 /*
5357 * if emulation was due to access to shadowed page table
5358 * and it failed try to unshadow page and re-enter the
5359 * guest to let CPU execute the instruction.
5360 */
5361 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5362
5363 /*
5364 * If the access faults on its page table, it can not
5365 * be fixed by unprotecting shadow page and it should
5366 * be reported to userspace.
5367 */
5368 return !write_fault_to_shadow_pgtable;
5369 }
5370
5371 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5372 unsigned long cr2, int emulation_type)
5373 {
5374 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5375 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5376
5377 last_retry_eip = vcpu->arch.last_retry_eip;
5378 last_retry_addr = vcpu->arch.last_retry_addr;
5379
5380 /*
5381 * If the emulation is caused by #PF and it is non-page_table
5382 * writing instruction, it means the VM-EXIT is caused by shadow
5383 * page protected, we can zap the shadow page and retry this
5384 * instruction directly.
5385 *
5386 * Note: if the guest uses a non-page-table modifying instruction
5387 * on the PDE that points to the instruction, then we will unmap
5388 * the instruction and go to an infinite loop. So, we cache the
5389 * last retried eip and the last fault address, if we meet the eip
5390 * and the address again, we can break out of the potential infinite
5391 * loop.
5392 */
5393 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5394
5395 if (!(emulation_type & EMULTYPE_RETRY))
5396 return false;
5397
5398 if (x86_page_table_writing_insn(ctxt))
5399 return false;
5400
5401 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5402 return false;
5403
5404 vcpu->arch.last_retry_eip = ctxt->eip;
5405 vcpu->arch.last_retry_addr = cr2;
5406
5407 if (!vcpu->arch.mmu.direct_map)
5408 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5409
5410 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5411
5412 return true;
5413 }
5414
5415 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5416 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5417
5418 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5419 {
5420 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5421 /* This is a good place to trace that we are exiting SMM. */
5422 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5423
5424 /* Process a latched INIT or SMI, if any. */
5425 kvm_make_request(KVM_REQ_EVENT, vcpu);
5426 }
5427
5428 kvm_mmu_reset_context(vcpu);
5429 }
5430
5431 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5432 {
5433 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5434
5435 vcpu->arch.hflags = emul_flags;
5436
5437 if (changed & HF_SMM_MASK)
5438 kvm_smm_changed(vcpu);
5439 }
5440
5441 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5442 unsigned long *db)
5443 {
5444 u32 dr6 = 0;
5445 int i;
5446 u32 enable, rwlen;
5447
5448 enable = dr7;
5449 rwlen = dr7 >> 16;
5450 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5451 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5452 dr6 |= (1 << i);
5453 return dr6;
5454 }
5455
5456 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5457 {
5458 struct kvm_run *kvm_run = vcpu->run;
5459
5460 /*
5461 * rflags is the old, "raw" value of the flags. The new value has
5462 * not been saved yet.
5463 *
5464 * This is correct even for TF set by the guest, because "the
5465 * processor will not generate this exception after the instruction
5466 * that sets the TF flag".
5467 */
5468 if (unlikely(rflags & X86_EFLAGS_TF)) {
5469 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5470 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5471 DR6_RTM;
5472 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5473 kvm_run->debug.arch.exception = DB_VECTOR;
5474 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5475 *r = EMULATE_USER_EXIT;
5476 } else {
5477 /*
5478 * "Certain debug exceptions may clear bit 0-3. The
5479 * remaining contents of the DR6 register are never
5480 * cleared by the processor".
5481 */
5482 vcpu->arch.dr6 &= ~15;
5483 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5484 kvm_queue_exception(vcpu, DB_VECTOR);
5485 }
5486 }
5487 }
5488
5489 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5490 {
5491 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5492 int r = EMULATE_DONE;
5493
5494 kvm_x86_ops->skip_emulated_instruction(vcpu);
5495 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5496 return r == EMULATE_DONE;
5497 }
5498 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5499
5500 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5501 {
5502 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5503 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5504 struct kvm_run *kvm_run = vcpu->run;
5505 unsigned long eip = kvm_get_linear_rip(vcpu);
5506 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5507 vcpu->arch.guest_debug_dr7,
5508 vcpu->arch.eff_db);
5509
5510 if (dr6 != 0) {
5511 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5512 kvm_run->debug.arch.pc = eip;
5513 kvm_run->debug.arch.exception = DB_VECTOR;
5514 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5515 *r = EMULATE_USER_EXIT;
5516 return true;
5517 }
5518 }
5519
5520 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5521 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5522 unsigned long eip = kvm_get_linear_rip(vcpu);
5523 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5524 vcpu->arch.dr7,
5525 vcpu->arch.db);
5526
5527 if (dr6 != 0) {
5528 vcpu->arch.dr6 &= ~15;
5529 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5530 kvm_queue_exception(vcpu, DB_VECTOR);
5531 *r = EMULATE_DONE;
5532 return true;
5533 }
5534 }
5535
5536 return false;
5537 }
5538
5539 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5540 unsigned long cr2,
5541 int emulation_type,
5542 void *insn,
5543 int insn_len)
5544 {
5545 int r;
5546 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5547 bool writeback = true;
5548 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5549
5550 /*
5551 * Clear write_fault_to_shadow_pgtable here to ensure it is
5552 * never reused.
5553 */
5554 vcpu->arch.write_fault_to_shadow_pgtable = false;
5555 kvm_clear_exception_queue(vcpu);
5556
5557 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5558 init_emulate_ctxt(vcpu);
5559
5560 /*
5561 * We will reenter on the same instruction since
5562 * we do not set complete_userspace_io. This does not
5563 * handle watchpoints yet, those would be handled in
5564 * the emulate_ops.
5565 */
5566 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5567 return r;
5568
5569 ctxt->interruptibility = 0;
5570 ctxt->have_exception = false;
5571 ctxt->exception.vector = -1;
5572 ctxt->perm_ok = false;
5573
5574 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5575
5576 r = x86_decode_insn(ctxt, insn, insn_len);
5577
5578 trace_kvm_emulate_insn_start(vcpu);
5579 ++vcpu->stat.insn_emulation;
5580 if (r != EMULATION_OK) {
5581 if (emulation_type & EMULTYPE_TRAP_UD)
5582 return EMULATE_FAIL;
5583 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5584 emulation_type))
5585 return EMULATE_DONE;
5586 if (emulation_type & EMULTYPE_SKIP)
5587 return EMULATE_FAIL;
5588 return handle_emulation_failure(vcpu);
5589 }
5590 }
5591
5592 if (emulation_type & EMULTYPE_SKIP) {
5593 kvm_rip_write(vcpu, ctxt->_eip);
5594 if (ctxt->eflags & X86_EFLAGS_RF)
5595 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5596 return EMULATE_DONE;
5597 }
5598
5599 if (retry_instruction(ctxt, cr2, emulation_type))
5600 return EMULATE_DONE;
5601
5602 /* this is needed for vmware backdoor interface to work since it
5603 changes registers values during IO operation */
5604 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5605 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5606 emulator_invalidate_register_cache(ctxt);
5607 }
5608
5609 restart:
5610 r = x86_emulate_insn(ctxt);
5611
5612 if (r == EMULATION_INTERCEPTED)
5613 return EMULATE_DONE;
5614
5615 if (r == EMULATION_FAILED) {
5616 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5617 emulation_type))
5618 return EMULATE_DONE;
5619
5620 return handle_emulation_failure(vcpu);
5621 }
5622
5623 if (ctxt->have_exception) {
5624 r = EMULATE_DONE;
5625 if (inject_emulated_exception(vcpu))
5626 return r;
5627 } else if (vcpu->arch.pio.count) {
5628 if (!vcpu->arch.pio.in) {
5629 /* FIXME: return into emulator if single-stepping. */
5630 vcpu->arch.pio.count = 0;
5631 } else {
5632 writeback = false;
5633 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5634 }
5635 r = EMULATE_USER_EXIT;
5636 } else if (vcpu->mmio_needed) {
5637 if (!vcpu->mmio_is_write)
5638 writeback = false;
5639 r = EMULATE_USER_EXIT;
5640 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5641 } else if (r == EMULATION_RESTART)
5642 goto restart;
5643 else
5644 r = EMULATE_DONE;
5645
5646 if (writeback) {
5647 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5648 toggle_interruptibility(vcpu, ctxt->interruptibility);
5649 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5650 if (vcpu->arch.hflags != ctxt->emul_flags)
5651 kvm_set_hflags(vcpu, ctxt->emul_flags);
5652 kvm_rip_write(vcpu, ctxt->eip);
5653 if (r == EMULATE_DONE)
5654 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5655 if (!ctxt->have_exception ||
5656 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5657 __kvm_set_rflags(vcpu, ctxt->eflags);
5658
5659 /*
5660 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5661 * do nothing, and it will be requested again as soon as
5662 * the shadow expires. But we still need to check here,
5663 * because POPF has no interrupt shadow.
5664 */
5665 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5666 kvm_make_request(KVM_REQ_EVENT, vcpu);
5667 } else
5668 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5669
5670 return r;
5671 }
5672 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5673
5674 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5675 {
5676 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5677 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5678 size, port, &val, 1);
5679 /* do not return to emulator after return from userspace */
5680 vcpu->arch.pio.count = 0;
5681 return ret;
5682 }
5683 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5684
5685 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5686 {
5687 unsigned long val;
5688
5689 /* We should only ever be called with arch.pio.count equal to 1 */
5690 BUG_ON(vcpu->arch.pio.count != 1);
5691
5692 /* For size less than 4 we merge, else we zero extend */
5693 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5694 : 0;
5695
5696 /*
5697 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5698 * the copy and tracing
5699 */
5700 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5701 vcpu->arch.pio.port, &val, 1);
5702 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5703
5704 return 1;
5705 }
5706
5707 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5708 {
5709 unsigned long val;
5710 int ret;
5711
5712 /* For size less than 4 we merge, else we zero extend */
5713 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5714
5715 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5716 &val, 1);
5717 if (ret) {
5718 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5719 return ret;
5720 }
5721
5722 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5723
5724 return 0;
5725 }
5726 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5727
5728 static int kvmclock_cpu_down_prep(unsigned int cpu)
5729 {
5730 __this_cpu_write(cpu_tsc_khz, 0);
5731 return 0;
5732 }
5733
5734 static void tsc_khz_changed(void *data)
5735 {
5736 struct cpufreq_freqs *freq = data;
5737 unsigned long khz = 0;
5738
5739 if (data)
5740 khz = freq->new;
5741 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5742 khz = cpufreq_quick_get(raw_smp_processor_id());
5743 if (!khz)
5744 khz = tsc_khz;
5745 __this_cpu_write(cpu_tsc_khz, khz);
5746 }
5747
5748 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5749 void *data)
5750 {
5751 struct cpufreq_freqs *freq = data;
5752 struct kvm *kvm;
5753 struct kvm_vcpu *vcpu;
5754 int i, send_ipi = 0;
5755
5756 /*
5757 * We allow guests to temporarily run on slowing clocks,
5758 * provided we notify them after, or to run on accelerating
5759 * clocks, provided we notify them before. Thus time never
5760 * goes backwards.
5761 *
5762 * However, we have a problem. We can't atomically update
5763 * the frequency of a given CPU from this function; it is
5764 * merely a notifier, which can be called from any CPU.
5765 * Changing the TSC frequency at arbitrary points in time
5766 * requires a recomputation of local variables related to
5767 * the TSC for each VCPU. We must flag these local variables
5768 * to be updated and be sure the update takes place with the
5769 * new frequency before any guests proceed.
5770 *
5771 * Unfortunately, the combination of hotplug CPU and frequency
5772 * change creates an intractable locking scenario; the order
5773 * of when these callouts happen is undefined with respect to
5774 * CPU hotplug, and they can race with each other. As such,
5775 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5776 * undefined; you can actually have a CPU frequency change take
5777 * place in between the computation of X and the setting of the
5778 * variable. To protect against this problem, all updates of
5779 * the per_cpu tsc_khz variable are done in an interrupt
5780 * protected IPI, and all callers wishing to update the value
5781 * must wait for a synchronous IPI to complete (which is trivial
5782 * if the caller is on the CPU already). This establishes the
5783 * necessary total order on variable updates.
5784 *
5785 * Note that because a guest time update may take place
5786 * anytime after the setting of the VCPU's request bit, the
5787 * correct TSC value must be set before the request. However,
5788 * to ensure the update actually makes it to any guest which
5789 * starts running in hardware virtualization between the set
5790 * and the acquisition of the spinlock, we must also ping the
5791 * CPU after setting the request bit.
5792 *
5793 */
5794
5795 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5796 return 0;
5797 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5798 return 0;
5799
5800 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5801
5802 spin_lock(&kvm_lock);
5803 list_for_each_entry(kvm, &vm_list, vm_list) {
5804 kvm_for_each_vcpu(i, vcpu, kvm) {
5805 if (vcpu->cpu != freq->cpu)
5806 continue;
5807 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5808 if (vcpu->cpu != smp_processor_id())
5809 send_ipi = 1;
5810 }
5811 }
5812 spin_unlock(&kvm_lock);
5813
5814 if (freq->old < freq->new && send_ipi) {
5815 /*
5816 * We upscale the frequency. Must make the guest
5817 * doesn't see old kvmclock values while running with
5818 * the new frequency, otherwise we risk the guest sees
5819 * time go backwards.
5820 *
5821 * In case we update the frequency for another cpu
5822 * (which might be in guest context) send an interrupt
5823 * to kick the cpu out of guest context. Next time
5824 * guest context is entered kvmclock will be updated,
5825 * so the guest will not see stale values.
5826 */
5827 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5828 }
5829 return 0;
5830 }
5831
5832 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5833 .notifier_call = kvmclock_cpufreq_notifier
5834 };
5835
5836 static int kvmclock_cpu_online(unsigned int cpu)
5837 {
5838 tsc_khz_changed(NULL);
5839 return 0;
5840 }
5841
5842 static void kvm_timer_init(void)
5843 {
5844 max_tsc_khz = tsc_khz;
5845
5846 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5847 #ifdef CONFIG_CPU_FREQ
5848 struct cpufreq_policy policy;
5849 int cpu;
5850
5851 memset(&policy, 0, sizeof(policy));
5852 cpu = get_cpu();
5853 cpufreq_get_policy(&policy, cpu);
5854 if (policy.cpuinfo.max_freq)
5855 max_tsc_khz = policy.cpuinfo.max_freq;
5856 put_cpu();
5857 #endif
5858 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5859 CPUFREQ_TRANSITION_NOTIFIER);
5860 }
5861 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5862
5863 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5864 kvmclock_cpu_online, kvmclock_cpu_down_prep);
5865 }
5866
5867 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5868
5869 int kvm_is_in_guest(void)
5870 {
5871 return __this_cpu_read(current_vcpu) != NULL;
5872 }
5873
5874 static int kvm_is_user_mode(void)
5875 {
5876 int user_mode = 3;
5877
5878 if (__this_cpu_read(current_vcpu))
5879 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5880
5881 return user_mode != 0;
5882 }
5883
5884 static unsigned long kvm_get_guest_ip(void)
5885 {
5886 unsigned long ip = 0;
5887
5888 if (__this_cpu_read(current_vcpu))
5889 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5890
5891 return ip;
5892 }
5893
5894 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5895 .is_in_guest = kvm_is_in_guest,
5896 .is_user_mode = kvm_is_user_mode,
5897 .get_guest_ip = kvm_get_guest_ip,
5898 };
5899
5900 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5901 {
5902 __this_cpu_write(current_vcpu, vcpu);
5903 }
5904 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5905
5906 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5907 {
5908 __this_cpu_write(current_vcpu, NULL);
5909 }
5910 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5911
5912 static void kvm_set_mmio_spte_mask(void)
5913 {
5914 u64 mask;
5915 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5916
5917 /*
5918 * Set the reserved bits and the present bit of an paging-structure
5919 * entry to generate page fault with PFER.RSV = 1.
5920 */
5921 /* Mask the reserved physical address bits. */
5922 mask = rsvd_bits(maxphyaddr, 51);
5923
5924 /* Bit 62 is always reserved for 32bit host. */
5925 mask |= 0x3ull << 62;
5926
5927 /* Set the present bit. */
5928 mask |= 1ull;
5929
5930 #ifdef CONFIG_X86_64
5931 /*
5932 * If reserved bit is not supported, clear the present bit to disable
5933 * mmio page fault.
5934 */
5935 if (maxphyaddr == 52)
5936 mask &= ~1ull;
5937 #endif
5938
5939 kvm_mmu_set_mmio_spte_mask(mask);
5940 }
5941
5942 #ifdef CONFIG_X86_64
5943 static void pvclock_gtod_update_fn(struct work_struct *work)
5944 {
5945 struct kvm *kvm;
5946
5947 struct kvm_vcpu *vcpu;
5948 int i;
5949
5950 spin_lock(&kvm_lock);
5951 list_for_each_entry(kvm, &vm_list, vm_list)
5952 kvm_for_each_vcpu(i, vcpu, kvm)
5953 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5954 atomic_set(&kvm_guest_has_master_clock, 0);
5955 spin_unlock(&kvm_lock);
5956 }
5957
5958 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5959
5960 /*
5961 * Notification about pvclock gtod data update.
5962 */
5963 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5964 void *priv)
5965 {
5966 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5967 struct timekeeper *tk = priv;
5968
5969 update_pvclock_gtod(tk);
5970
5971 /* disable master clock if host does not trust, or does not
5972 * use, TSC clocksource
5973 */
5974 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5975 atomic_read(&kvm_guest_has_master_clock) != 0)
5976 queue_work(system_long_wq, &pvclock_gtod_work);
5977
5978 return 0;
5979 }
5980
5981 static struct notifier_block pvclock_gtod_notifier = {
5982 .notifier_call = pvclock_gtod_notify,
5983 };
5984 #endif
5985
5986 int kvm_arch_init(void *opaque)
5987 {
5988 int r;
5989 struct kvm_x86_ops *ops = opaque;
5990
5991 if (kvm_x86_ops) {
5992 printk(KERN_ERR "kvm: already loaded the other module\n");
5993 r = -EEXIST;
5994 goto out;
5995 }
5996
5997 if (!ops->cpu_has_kvm_support()) {
5998 printk(KERN_ERR "kvm: no hardware support\n");
5999 r = -EOPNOTSUPP;
6000 goto out;
6001 }
6002 if (ops->disabled_by_bios()) {
6003 printk(KERN_ERR "kvm: disabled by bios\n");
6004 r = -EOPNOTSUPP;
6005 goto out;
6006 }
6007
6008 r = -ENOMEM;
6009 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6010 if (!shared_msrs) {
6011 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6012 goto out;
6013 }
6014
6015 r = kvm_mmu_module_init();
6016 if (r)
6017 goto out_free_percpu;
6018
6019 kvm_set_mmio_spte_mask();
6020
6021 kvm_x86_ops = ops;
6022
6023 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6024 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6025 PT_PRESENT_MASK);
6026 kvm_timer_init();
6027
6028 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6029
6030 if (boot_cpu_has(X86_FEATURE_XSAVE))
6031 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6032
6033 kvm_lapic_init();
6034 #ifdef CONFIG_X86_64
6035 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6036 #endif
6037
6038 return 0;
6039
6040 out_free_percpu:
6041 free_percpu(shared_msrs);
6042 out:
6043 return r;
6044 }
6045
6046 void kvm_arch_exit(void)
6047 {
6048 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6049
6050 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6051 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6052 CPUFREQ_TRANSITION_NOTIFIER);
6053 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6054 #ifdef CONFIG_X86_64
6055 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6056 #endif
6057 kvm_x86_ops = NULL;
6058 kvm_mmu_module_exit();
6059 free_percpu(shared_msrs);
6060 }
6061
6062 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6063 {
6064 ++vcpu->stat.halt_exits;
6065 if (lapic_in_kernel(vcpu)) {
6066 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6067 return 1;
6068 } else {
6069 vcpu->run->exit_reason = KVM_EXIT_HLT;
6070 return 0;
6071 }
6072 }
6073 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6074
6075 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6076 {
6077 int ret = kvm_skip_emulated_instruction(vcpu);
6078 /*
6079 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6080 * KVM_EXIT_DEBUG here.
6081 */
6082 return kvm_vcpu_halt(vcpu) && ret;
6083 }
6084 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6085
6086 /*
6087 * kvm_pv_kick_cpu_op: Kick a vcpu.
6088 *
6089 * @apicid - apicid of vcpu to be kicked.
6090 */
6091 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6092 {
6093 struct kvm_lapic_irq lapic_irq;
6094
6095 lapic_irq.shorthand = 0;
6096 lapic_irq.dest_mode = 0;
6097 lapic_irq.dest_id = apicid;
6098 lapic_irq.msi_redir_hint = false;
6099
6100 lapic_irq.delivery_mode = APIC_DM_REMRD;
6101 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6102 }
6103
6104 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6105 {
6106 vcpu->arch.apicv_active = false;
6107 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6108 }
6109
6110 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6111 {
6112 unsigned long nr, a0, a1, a2, a3, ret;
6113 int op_64_bit, r;
6114
6115 r = kvm_skip_emulated_instruction(vcpu);
6116
6117 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6118 return kvm_hv_hypercall(vcpu);
6119
6120 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6121 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6122 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6123 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6124 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6125
6126 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6127
6128 op_64_bit = is_64_bit_mode(vcpu);
6129 if (!op_64_bit) {
6130 nr &= 0xFFFFFFFF;
6131 a0 &= 0xFFFFFFFF;
6132 a1 &= 0xFFFFFFFF;
6133 a2 &= 0xFFFFFFFF;
6134 a3 &= 0xFFFFFFFF;
6135 }
6136
6137 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6138 ret = -KVM_EPERM;
6139 goto out;
6140 }
6141
6142 switch (nr) {
6143 case KVM_HC_VAPIC_POLL_IRQ:
6144 ret = 0;
6145 break;
6146 case KVM_HC_KICK_CPU:
6147 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6148 ret = 0;
6149 break;
6150 default:
6151 ret = -KVM_ENOSYS;
6152 break;
6153 }
6154 out:
6155 if (!op_64_bit)
6156 ret = (u32)ret;
6157 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6158 ++vcpu->stat.hypercalls;
6159 return r;
6160 }
6161 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6162
6163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6164 {
6165 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6166 char instruction[3];
6167 unsigned long rip = kvm_rip_read(vcpu);
6168
6169 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6170
6171 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6172 }
6173
6174 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6175 {
6176 return vcpu->run->request_interrupt_window &&
6177 likely(!pic_in_kernel(vcpu->kvm));
6178 }
6179
6180 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6181 {
6182 struct kvm_run *kvm_run = vcpu->run;
6183
6184 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6185 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6186 kvm_run->cr8 = kvm_get_cr8(vcpu);
6187 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6188 kvm_run->ready_for_interrupt_injection =
6189 pic_in_kernel(vcpu->kvm) ||
6190 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6191 }
6192
6193 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6194 {
6195 int max_irr, tpr;
6196
6197 if (!kvm_x86_ops->update_cr8_intercept)
6198 return;
6199
6200 if (!lapic_in_kernel(vcpu))
6201 return;
6202
6203 if (vcpu->arch.apicv_active)
6204 return;
6205
6206 if (!vcpu->arch.apic->vapic_addr)
6207 max_irr = kvm_lapic_find_highest_irr(vcpu);
6208 else
6209 max_irr = -1;
6210
6211 if (max_irr != -1)
6212 max_irr >>= 4;
6213
6214 tpr = kvm_lapic_get_cr8(vcpu);
6215
6216 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6217 }
6218
6219 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6220 {
6221 int r;
6222
6223 /* try to reinject previous events if any */
6224 if (vcpu->arch.exception.pending) {
6225 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6226 vcpu->arch.exception.has_error_code,
6227 vcpu->arch.exception.error_code);
6228
6229 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6230 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6231 X86_EFLAGS_RF);
6232
6233 if (vcpu->arch.exception.nr == DB_VECTOR &&
6234 (vcpu->arch.dr7 & DR7_GD)) {
6235 vcpu->arch.dr7 &= ~DR7_GD;
6236 kvm_update_dr7(vcpu);
6237 }
6238
6239 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6240 vcpu->arch.exception.has_error_code,
6241 vcpu->arch.exception.error_code,
6242 vcpu->arch.exception.reinject);
6243 return 0;
6244 }
6245
6246 if (vcpu->arch.nmi_injected) {
6247 kvm_x86_ops->set_nmi(vcpu);
6248 return 0;
6249 }
6250
6251 if (vcpu->arch.interrupt.pending) {
6252 kvm_x86_ops->set_irq(vcpu);
6253 return 0;
6254 }
6255
6256 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6257 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6258 if (r != 0)
6259 return r;
6260 }
6261
6262 /* try to inject new event if pending */
6263 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6264 vcpu->arch.smi_pending = false;
6265 enter_smm(vcpu);
6266 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6267 --vcpu->arch.nmi_pending;
6268 vcpu->arch.nmi_injected = true;
6269 kvm_x86_ops->set_nmi(vcpu);
6270 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6271 /*
6272 * Because interrupts can be injected asynchronously, we are
6273 * calling check_nested_events again here to avoid a race condition.
6274 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6275 * proposal and current concerns. Perhaps we should be setting
6276 * KVM_REQ_EVENT only on certain events and not unconditionally?
6277 */
6278 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6279 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6280 if (r != 0)
6281 return r;
6282 }
6283 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6284 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6285 false);
6286 kvm_x86_ops->set_irq(vcpu);
6287 }
6288 }
6289
6290 return 0;
6291 }
6292
6293 static void process_nmi(struct kvm_vcpu *vcpu)
6294 {
6295 unsigned limit = 2;
6296
6297 /*
6298 * x86 is limited to one NMI running, and one NMI pending after it.
6299 * If an NMI is already in progress, limit further NMIs to just one.
6300 * Otherwise, allow two (and we'll inject the first one immediately).
6301 */
6302 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6303 limit = 1;
6304
6305 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6306 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6307 kvm_make_request(KVM_REQ_EVENT, vcpu);
6308 }
6309
6310 #define put_smstate(type, buf, offset, val) \
6311 *(type *)((buf) + (offset) - 0x7e00) = val
6312
6313 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6314 {
6315 u32 flags = 0;
6316 flags |= seg->g << 23;
6317 flags |= seg->db << 22;
6318 flags |= seg->l << 21;
6319 flags |= seg->avl << 20;
6320 flags |= seg->present << 15;
6321 flags |= seg->dpl << 13;
6322 flags |= seg->s << 12;
6323 flags |= seg->type << 8;
6324 return flags;
6325 }
6326
6327 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6328 {
6329 struct kvm_segment seg;
6330 int offset;
6331
6332 kvm_get_segment(vcpu, &seg, n);
6333 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6334
6335 if (n < 3)
6336 offset = 0x7f84 + n * 12;
6337 else
6338 offset = 0x7f2c + (n - 3) * 12;
6339
6340 put_smstate(u32, buf, offset + 8, seg.base);
6341 put_smstate(u32, buf, offset + 4, seg.limit);
6342 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6343 }
6344
6345 #ifdef CONFIG_X86_64
6346 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6347 {
6348 struct kvm_segment seg;
6349 int offset;
6350 u16 flags;
6351
6352 kvm_get_segment(vcpu, &seg, n);
6353 offset = 0x7e00 + n * 16;
6354
6355 flags = enter_smm_get_segment_flags(&seg) >> 8;
6356 put_smstate(u16, buf, offset, seg.selector);
6357 put_smstate(u16, buf, offset + 2, flags);
6358 put_smstate(u32, buf, offset + 4, seg.limit);
6359 put_smstate(u64, buf, offset + 8, seg.base);
6360 }
6361 #endif
6362
6363 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6364 {
6365 struct desc_ptr dt;
6366 struct kvm_segment seg;
6367 unsigned long val;
6368 int i;
6369
6370 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6371 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6372 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6373 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6374
6375 for (i = 0; i < 8; i++)
6376 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6377
6378 kvm_get_dr(vcpu, 6, &val);
6379 put_smstate(u32, buf, 0x7fcc, (u32)val);
6380 kvm_get_dr(vcpu, 7, &val);
6381 put_smstate(u32, buf, 0x7fc8, (u32)val);
6382
6383 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6384 put_smstate(u32, buf, 0x7fc4, seg.selector);
6385 put_smstate(u32, buf, 0x7f64, seg.base);
6386 put_smstate(u32, buf, 0x7f60, seg.limit);
6387 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6388
6389 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6390 put_smstate(u32, buf, 0x7fc0, seg.selector);
6391 put_smstate(u32, buf, 0x7f80, seg.base);
6392 put_smstate(u32, buf, 0x7f7c, seg.limit);
6393 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6394
6395 kvm_x86_ops->get_gdt(vcpu, &dt);
6396 put_smstate(u32, buf, 0x7f74, dt.address);
6397 put_smstate(u32, buf, 0x7f70, dt.size);
6398
6399 kvm_x86_ops->get_idt(vcpu, &dt);
6400 put_smstate(u32, buf, 0x7f58, dt.address);
6401 put_smstate(u32, buf, 0x7f54, dt.size);
6402
6403 for (i = 0; i < 6; i++)
6404 enter_smm_save_seg_32(vcpu, buf, i);
6405
6406 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6407
6408 /* revision id */
6409 put_smstate(u32, buf, 0x7efc, 0x00020000);
6410 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6411 }
6412
6413 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6414 {
6415 #ifdef CONFIG_X86_64
6416 struct desc_ptr dt;
6417 struct kvm_segment seg;
6418 unsigned long val;
6419 int i;
6420
6421 for (i = 0; i < 16; i++)
6422 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6423
6424 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6425 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6426
6427 kvm_get_dr(vcpu, 6, &val);
6428 put_smstate(u64, buf, 0x7f68, val);
6429 kvm_get_dr(vcpu, 7, &val);
6430 put_smstate(u64, buf, 0x7f60, val);
6431
6432 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6433 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6434 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6435
6436 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6437
6438 /* revision id */
6439 put_smstate(u32, buf, 0x7efc, 0x00020064);
6440
6441 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6442
6443 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6444 put_smstate(u16, buf, 0x7e90, seg.selector);
6445 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6446 put_smstate(u32, buf, 0x7e94, seg.limit);
6447 put_smstate(u64, buf, 0x7e98, seg.base);
6448
6449 kvm_x86_ops->get_idt(vcpu, &dt);
6450 put_smstate(u32, buf, 0x7e84, dt.size);
6451 put_smstate(u64, buf, 0x7e88, dt.address);
6452
6453 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6454 put_smstate(u16, buf, 0x7e70, seg.selector);
6455 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6456 put_smstate(u32, buf, 0x7e74, seg.limit);
6457 put_smstate(u64, buf, 0x7e78, seg.base);
6458
6459 kvm_x86_ops->get_gdt(vcpu, &dt);
6460 put_smstate(u32, buf, 0x7e64, dt.size);
6461 put_smstate(u64, buf, 0x7e68, dt.address);
6462
6463 for (i = 0; i < 6; i++)
6464 enter_smm_save_seg_64(vcpu, buf, i);
6465 #else
6466 WARN_ON_ONCE(1);
6467 #endif
6468 }
6469
6470 static void enter_smm(struct kvm_vcpu *vcpu)
6471 {
6472 struct kvm_segment cs, ds;
6473 struct desc_ptr dt;
6474 char buf[512];
6475 u32 cr0;
6476
6477 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6478 vcpu->arch.hflags |= HF_SMM_MASK;
6479 memset(buf, 0, 512);
6480 if (guest_cpuid_has_longmode(vcpu))
6481 enter_smm_save_state_64(vcpu, buf);
6482 else
6483 enter_smm_save_state_32(vcpu, buf);
6484
6485 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6486
6487 if (kvm_x86_ops->get_nmi_mask(vcpu))
6488 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6489 else
6490 kvm_x86_ops->set_nmi_mask(vcpu, true);
6491
6492 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6493 kvm_rip_write(vcpu, 0x8000);
6494
6495 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6496 kvm_x86_ops->set_cr0(vcpu, cr0);
6497 vcpu->arch.cr0 = cr0;
6498
6499 kvm_x86_ops->set_cr4(vcpu, 0);
6500
6501 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6502 dt.address = dt.size = 0;
6503 kvm_x86_ops->set_idt(vcpu, &dt);
6504
6505 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6506
6507 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6508 cs.base = vcpu->arch.smbase;
6509
6510 ds.selector = 0;
6511 ds.base = 0;
6512
6513 cs.limit = ds.limit = 0xffffffff;
6514 cs.type = ds.type = 0x3;
6515 cs.dpl = ds.dpl = 0;
6516 cs.db = ds.db = 0;
6517 cs.s = ds.s = 1;
6518 cs.l = ds.l = 0;
6519 cs.g = ds.g = 1;
6520 cs.avl = ds.avl = 0;
6521 cs.present = ds.present = 1;
6522 cs.unusable = ds.unusable = 0;
6523 cs.padding = ds.padding = 0;
6524
6525 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6526 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6527 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6528 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6529 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6530 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6531
6532 if (guest_cpuid_has_longmode(vcpu))
6533 kvm_x86_ops->set_efer(vcpu, 0);
6534
6535 kvm_update_cpuid(vcpu);
6536 kvm_mmu_reset_context(vcpu);
6537 }
6538
6539 static void process_smi(struct kvm_vcpu *vcpu)
6540 {
6541 vcpu->arch.smi_pending = true;
6542 kvm_make_request(KVM_REQ_EVENT, vcpu);
6543 }
6544
6545 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6546 {
6547 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6548 }
6549
6550 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6551 {
6552 u64 eoi_exit_bitmap[4];
6553
6554 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6555 return;
6556
6557 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6558
6559 if (irqchip_split(vcpu->kvm))
6560 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6561 else {
6562 if (vcpu->arch.apicv_active)
6563 kvm_x86_ops->sync_pir_to_irr(vcpu);
6564 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6565 }
6566 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6567 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6568 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6569 }
6570
6571 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6572 {
6573 ++vcpu->stat.tlb_flush;
6574 kvm_x86_ops->tlb_flush(vcpu);
6575 }
6576
6577 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6578 {
6579 struct page *page = NULL;
6580
6581 if (!lapic_in_kernel(vcpu))
6582 return;
6583
6584 if (!kvm_x86_ops->set_apic_access_page_addr)
6585 return;
6586
6587 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6588 if (is_error_page(page))
6589 return;
6590 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6591
6592 /*
6593 * Do not pin apic access page in memory, the MMU notifier
6594 * will call us again if it is migrated or swapped out.
6595 */
6596 put_page(page);
6597 }
6598 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6599
6600 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6601 unsigned long address)
6602 {
6603 /*
6604 * The physical address of apic access page is stored in the VMCS.
6605 * Update it when it becomes invalid.
6606 */
6607 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6608 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6609 }
6610
6611 /*
6612 * Returns 1 to let vcpu_run() continue the guest execution loop without
6613 * exiting to the userspace. Otherwise, the value will be returned to the
6614 * userspace.
6615 */
6616 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6617 {
6618 int r;
6619 bool req_int_win =
6620 dm_request_for_irq_injection(vcpu) &&
6621 kvm_cpu_accept_dm_intr(vcpu);
6622
6623 bool req_immediate_exit = false;
6624
6625 if (vcpu->requests) {
6626 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6627 kvm_mmu_unload(vcpu);
6628 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6629 __kvm_migrate_timers(vcpu);
6630 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6631 kvm_gen_update_masterclock(vcpu->kvm);
6632 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6633 kvm_gen_kvmclock_update(vcpu);
6634 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6635 r = kvm_guest_time_update(vcpu);
6636 if (unlikely(r))
6637 goto out;
6638 }
6639 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6640 kvm_mmu_sync_roots(vcpu);
6641 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6642 kvm_vcpu_flush_tlb(vcpu);
6643 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6644 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6645 r = 0;
6646 goto out;
6647 }
6648 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6649 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6650 r = 0;
6651 goto out;
6652 }
6653 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6654 vcpu->fpu_active = 0;
6655 kvm_x86_ops->fpu_deactivate(vcpu);
6656 }
6657 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6658 /* Page is swapped out. Do synthetic halt */
6659 vcpu->arch.apf.halted = true;
6660 r = 1;
6661 goto out;
6662 }
6663 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6664 record_steal_time(vcpu);
6665 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6666 process_smi(vcpu);
6667 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6668 process_nmi(vcpu);
6669 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6670 kvm_pmu_handle_event(vcpu);
6671 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6672 kvm_pmu_deliver_pmi(vcpu);
6673 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6674 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6675 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6676 vcpu->arch.ioapic_handled_vectors)) {
6677 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6678 vcpu->run->eoi.vector =
6679 vcpu->arch.pending_ioapic_eoi;
6680 r = 0;
6681 goto out;
6682 }
6683 }
6684 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6685 vcpu_scan_ioapic(vcpu);
6686 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6687 kvm_vcpu_reload_apic_access_page(vcpu);
6688 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6689 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6690 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6691 r = 0;
6692 goto out;
6693 }
6694 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6695 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6696 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6697 r = 0;
6698 goto out;
6699 }
6700 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6701 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6702 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6703 r = 0;
6704 goto out;
6705 }
6706
6707 /*
6708 * KVM_REQ_HV_STIMER has to be processed after
6709 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6710 * depend on the guest clock being up-to-date
6711 */
6712 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6713 kvm_hv_process_stimers(vcpu);
6714 }
6715
6716 /*
6717 * KVM_REQ_EVENT is not set when posted interrupts are set by
6718 * VT-d hardware, so we have to update RVI unconditionally.
6719 */
6720 if (kvm_lapic_enabled(vcpu)) {
6721 /*
6722 * Update architecture specific hints for APIC
6723 * virtual interrupt delivery.
6724 */
6725 if (vcpu->arch.apicv_active)
6726 kvm_x86_ops->hwapic_irr_update(vcpu,
6727 kvm_lapic_find_highest_irr(vcpu));
6728 }
6729
6730 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6731 kvm_apic_accept_events(vcpu);
6732 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6733 r = 1;
6734 goto out;
6735 }
6736
6737 if (inject_pending_event(vcpu, req_int_win) != 0)
6738 req_immediate_exit = true;
6739 else {
6740 /* Enable NMI/IRQ window open exits if needed.
6741 *
6742 * SMIs have two cases: 1) they can be nested, and
6743 * then there is nothing to do here because RSM will
6744 * cause a vmexit anyway; 2) or the SMI can be pending
6745 * because inject_pending_event has completed the
6746 * injection of an IRQ or NMI from the previous vmexit,
6747 * and then we request an immediate exit to inject the SMI.
6748 */
6749 if (vcpu->arch.smi_pending && !is_smm(vcpu))
6750 req_immediate_exit = true;
6751 if (vcpu->arch.nmi_pending)
6752 kvm_x86_ops->enable_nmi_window(vcpu);
6753 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6754 kvm_x86_ops->enable_irq_window(vcpu);
6755 }
6756
6757 if (kvm_lapic_enabled(vcpu)) {
6758 update_cr8_intercept(vcpu);
6759 kvm_lapic_sync_to_vapic(vcpu);
6760 }
6761 }
6762
6763 r = kvm_mmu_reload(vcpu);
6764 if (unlikely(r)) {
6765 goto cancel_injection;
6766 }
6767
6768 preempt_disable();
6769
6770 kvm_x86_ops->prepare_guest_switch(vcpu);
6771 if (vcpu->fpu_active)
6772 kvm_load_guest_fpu(vcpu);
6773 vcpu->mode = IN_GUEST_MODE;
6774
6775 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6776
6777 /*
6778 * We should set ->mode before check ->requests,
6779 * Please see the comment in kvm_make_all_cpus_request.
6780 * This also orders the write to mode from any reads
6781 * to the page tables done while the VCPU is running.
6782 * Please see the comment in kvm_flush_remote_tlbs.
6783 */
6784 smp_mb__after_srcu_read_unlock();
6785
6786 local_irq_disable();
6787
6788 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6789 || need_resched() || signal_pending(current)) {
6790 vcpu->mode = OUTSIDE_GUEST_MODE;
6791 smp_wmb();
6792 local_irq_enable();
6793 preempt_enable();
6794 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6795 r = 1;
6796 goto cancel_injection;
6797 }
6798
6799 kvm_load_guest_xcr0(vcpu);
6800
6801 if (req_immediate_exit) {
6802 kvm_make_request(KVM_REQ_EVENT, vcpu);
6803 smp_send_reschedule(vcpu->cpu);
6804 }
6805
6806 trace_kvm_entry(vcpu->vcpu_id);
6807 wait_lapic_expire(vcpu);
6808 guest_enter_irqoff();
6809
6810 if (unlikely(vcpu->arch.switch_db_regs)) {
6811 set_debugreg(0, 7);
6812 set_debugreg(vcpu->arch.eff_db[0], 0);
6813 set_debugreg(vcpu->arch.eff_db[1], 1);
6814 set_debugreg(vcpu->arch.eff_db[2], 2);
6815 set_debugreg(vcpu->arch.eff_db[3], 3);
6816 set_debugreg(vcpu->arch.dr6, 6);
6817 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6818 }
6819
6820 kvm_x86_ops->run(vcpu);
6821
6822 /*
6823 * Do this here before restoring debug registers on the host. And
6824 * since we do this before handling the vmexit, a DR access vmexit
6825 * can (a) read the correct value of the debug registers, (b) set
6826 * KVM_DEBUGREG_WONT_EXIT again.
6827 */
6828 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6829 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6830 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6831 kvm_update_dr0123(vcpu);
6832 kvm_update_dr6(vcpu);
6833 kvm_update_dr7(vcpu);
6834 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6835 }
6836
6837 /*
6838 * If the guest has used debug registers, at least dr7
6839 * will be disabled while returning to the host.
6840 * If we don't have active breakpoints in the host, we don't
6841 * care about the messed up debug address registers. But if
6842 * we have some of them active, restore the old state.
6843 */
6844 if (hw_breakpoint_active())
6845 hw_breakpoint_restore();
6846
6847 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6848
6849 vcpu->mode = OUTSIDE_GUEST_MODE;
6850 smp_wmb();
6851
6852 kvm_put_guest_xcr0(vcpu);
6853
6854 kvm_x86_ops->handle_external_intr(vcpu);
6855
6856 ++vcpu->stat.exits;
6857
6858 guest_exit_irqoff();
6859
6860 local_irq_enable();
6861 preempt_enable();
6862
6863 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6864
6865 /*
6866 * Profile KVM exit RIPs:
6867 */
6868 if (unlikely(prof_on == KVM_PROFILING)) {
6869 unsigned long rip = kvm_rip_read(vcpu);
6870 profile_hit(KVM_PROFILING, (void *)rip);
6871 }
6872
6873 if (unlikely(vcpu->arch.tsc_always_catchup))
6874 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6875
6876 if (vcpu->arch.apic_attention)
6877 kvm_lapic_sync_from_vapic(vcpu);
6878
6879 r = kvm_x86_ops->handle_exit(vcpu);
6880 return r;
6881
6882 cancel_injection:
6883 kvm_x86_ops->cancel_injection(vcpu);
6884 if (unlikely(vcpu->arch.apic_attention))
6885 kvm_lapic_sync_from_vapic(vcpu);
6886 out:
6887 return r;
6888 }
6889
6890 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6891 {
6892 if (!kvm_arch_vcpu_runnable(vcpu) &&
6893 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6894 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6895 kvm_vcpu_block(vcpu);
6896 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6897
6898 if (kvm_x86_ops->post_block)
6899 kvm_x86_ops->post_block(vcpu);
6900
6901 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6902 return 1;
6903 }
6904
6905 kvm_apic_accept_events(vcpu);
6906 switch(vcpu->arch.mp_state) {
6907 case KVM_MP_STATE_HALTED:
6908 vcpu->arch.pv.pv_unhalted = false;
6909 vcpu->arch.mp_state =
6910 KVM_MP_STATE_RUNNABLE;
6911 case KVM_MP_STATE_RUNNABLE:
6912 vcpu->arch.apf.halted = false;
6913 break;
6914 case KVM_MP_STATE_INIT_RECEIVED:
6915 break;
6916 default:
6917 return -EINTR;
6918 break;
6919 }
6920 return 1;
6921 }
6922
6923 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6924 {
6925 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6926 !vcpu->arch.apf.halted);
6927 }
6928
6929 static int vcpu_run(struct kvm_vcpu *vcpu)
6930 {
6931 int r;
6932 struct kvm *kvm = vcpu->kvm;
6933
6934 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6935
6936 for (;;) {
6937 if (kvm_vcpu_running(vcpu)) {
6938 r = vcpu_enter_guest(vcpu);
6939 } else {
6940 r = vcpu_block(kvm, vcpu);
6941 }
6942
6943 if (r <= 0)
6944 break;
6945
6946 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6947 if (kvm_cpu_has_pending_timer(vcpu))
6948 kvm_inject_pending_timer_irqs(vcpu);
6949
6950 if (dm_request_for_irq_injection(vcpu) &&
6951 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6952 r = 0;
6953 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6954 ++vcpu->stat.request_irq_exits;
6955 break;
6956 }
6957
6958 kvm_check_async_pf_completion(vcpu);
6959
6960 if (signal_pending(current)) {
6961 r = -EINTR;
6962 vcpu->run->exit_reason = KVM_EXIT_INTR;
6963 ++vcpu->stat.signal_exits;
6964 break;
6965 }
6966 if (need_resched()) {
6967 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6968 cond_resched();
6969 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6970 }
6971 }
6972
6973 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6974
6975 return r;
6976 }
6977
6978 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6979 {
6980 int r;
6981 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6982 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6983 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6984 if (r != EMULATE_DONE)
6985 return 0;
6986 return 1;
6987 }
6988
6989 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6990 {
6991 BUG_ON(!vcpu->arch.pio.count);
6992
6993 return complete_emulated_io(vcpu);
6994 }
6995
6996 /*
6997 * Implements the following, as a state machine:
6998 *
6999 * read:
7000 * for each fragment
7001 * for each mmio piece in the fragment
7002 * write gpa, len
7003 * exit
7004 * copy data
7005 * execute insn
7006 *
7007 * write:
7008 * for each fragment
7009 * for each mmio piece in the fragment
7010 * write gpa, len
7011 * copy data
7012 * exit
7013 */
7014 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7015 {
7016 struct kvm_run *run = vcpu->run;
7017 struct kvm_mmio_fragment *frag;
7018 unsigned len;
7019
7020 BUG_ON(!vcpu->mmio_needed);
7021
7022 /* Complete previous fragment */
7023 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7024 len = min(8u, frag->len);
7025 if (!vcpu->mmio_is_write)
7026 memcpy(frag->data, run->mmio.data, len);
7027
7028 if (frag->len <= 8) {
7029 /* Switch to the next fragment. */
7030 frag++;
7031 vcpu->mmio_cur_fragment++;
7032 } else {
7033 /* Go forward to the next mmio piece. */
7034 frag->data += len;
7035 frag->gpa += len;
7036 frag->len -= len;
7037 }
7038
7039 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7040 vcpu->mmio_needed = 0;
7041
7042 /* FIXME: return into emulator if single-stepping. */
7043 if (vcpu->mmio_is_write)
7044 return 1;
7045 vcpu->mmio_read_completed = 1;
7046 return complete_emulated_io(vcpu);
7047 }
7048
7049 run->exit_reason = KVM_EXIT_MMIO;
7050 run->mmio.phys_addr = frag->gpa;
7051 if (vcpu->mmio_is_write)
7052 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7053 run->mmio.len = min(8u, frag->len);
7054 run->mmio.is_write = vcpu->mmio_is_write;
7055 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7056 return 0;
7057 }
7058
7059
7060 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7061 {
7062 struct fpu *fpu = &current->thread.fpu;
7063 int r;
7064 sigset_t sigsaved;
7065
7066 fpu__activate_curr(fpu);
7067
7068 if (vcpu->sigset_active)
7069 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7070
7071 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7072 kvm_vcpu_block(vcpu);
7073 kvm_apic_accept_events(vcpu);
7074 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
7075 r = -EAGAIN;
7076 goto out;
7077 }
7078
7079 /* re-sync apic's tpr */
7080 if (!lapic_in_kernel(vcpu)) {
7081 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7082 r = -EINVAL;
7083 goto out;
7084 }
7085 }
7086
7087 if (unlikely(vcpu->arch.complete_userspace_io)) {
7088 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7089 vcpu->arch.complete_userspace_io = NULL;
7090 r = cui(vcpu);
7091 if (r <= 0)
7092 goto out;
7093 } else
7094 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7095
7096 r = vcpu_run(vcpu);
7097
7098 out:
7099 post_kvm_run_save(vcpu);
7100 if (vcpu->sigset_active)
7101 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7102
7103 return r;
7104 }
7105
7106 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7107 {
7108 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7109 /*
7110 * We are here if userspace calls get_regs() in the middle of
7111 * instruction emulation. Registers state needs to be copied
7112 * back from emulation context to vcpu. Userspace shouldn't do
7113 * that usually, but some bad designed PV devices (vmware
7114 * backdoor interface) need this to work
7115 */
7116 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7117 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7118 }
7119 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7120 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7121 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7122 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7123 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7124 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7125 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7126 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7127 #ifdef CONFIG_X86_64
7128 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7129 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7130 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7131 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7132 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7133 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7134 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7135 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7136 #endif
7137
7138 regs->rip = kvm_rip_read(vcpu);
7139 regs->rflags = kvm_get_rflags(vcpu);
7140
7141 return 0;
7142 }
7143
7144 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7145 {
7146 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7147 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7148
7149 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7150 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7151 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7152 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7153 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7154 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7155 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7156 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7157 #ifdef CONFIG_X86_64
7158 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7159 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7160 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7161 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7162 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7163 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7164 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7165 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7166 #endif
7167
7168 kvm_rip_write(vcpu, regs->rip);
7169 kvm_set_rflags(vcpu, regs->rflags);
7170
7171 vcpu->arch.exception.pending = false;
7172
7173 kvm_make_request(KVM_REQ_EVENT, vcpu);
7174
7175 return 0;
7176 }
7177
7178 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7179 {
7180 struct kvm_segment cs;
7181
7182 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7183 *db = cs.db;
7184 *l = cs.l;
7185 }
7186 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7187
7188 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7189 struct kvm_sregs *sregs)
7190 {
7191 struct desc_ptr dt;
7192
7193 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7194 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7195 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7196 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7197 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7198 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7199
7200 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7201 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7202
7203 kvm_x86_ops->get_idt(vcpu, &dt);
7204 sregs->idt.limit = dt.size;
7205 sregs->idt.base = dt.address;
7206 kvm_x86_ops->get_gdt(vcpu, &dt);
7207 sregs->gdt.limit = dt.size;
7208 sregs->gdt.base = dt.address;
7209
7210 sregs->cr0 = kvm_read_cr0(vcpu);
7211 sregs->cr2 = vcpu->arch.cr2;
7212 sregs->cr3 = kvm_read_cr3(vcpu);
7213 sregs->cr4 = kvm_read_cr4(vcpu);
7214 sregs->cr8 = kvm_get_cr8(vcpu);
7215 sregs->efer = vcpu->arch.efer;
7216 sregs->apic_base = kvm_get_apic_base(vcpu);
7217
7218 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7219
7220 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7221 set_bit(vcpu->arch.interrupt.nr,
7222 (unsigned long *)sregs->interrupt_bitmap);
7223
7224 return 0;
7225 }
7226
7227 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7228 struct kvm_mp_state *mp_state)
7229 {
7230 kvm_apic_accept_events(vcpu);
7231 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7232 vcpu->arch.pv.pv_unhalted)
7233 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7234 else
7235 mp_state->mp_state = vcpu->arch.mp_state;
7236
7237 return 0;
7238 }
7239
7240 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7241 struct kvm_mp_state *mp_state)
7242 {
7243 if (!lapic_in_kernel(vcpu) &&
7244 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7245 return -EINVAL;
7246
7247 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7248 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7249 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7250 } else
7251 vcpu->arch.mp_state = mp_state->mp_state;
7252 kvm_make_request(KVM_REQ_EVENT, vcpu);
7253 return 0;
7254 }
7255
7256 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7257 int reason, bool has_error_code, u32 error_code)
7258 {
7259 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7260 int ret;
7261
7262 init_emulate_ctxt(vcpu);
7263
7264 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7265 has_error_code, error_code);
7266
7267 if (ret)
7268 return EMULATE_FAIL;
7269
7270 kvm_rip_write(vcpu, ctxt->eip);
7271 kvm_set_rflags(vcpu, ctxt->eflags);
7272 kvm_make_request(KVM_REQ_EVENT, vcpu);
7273 return EMULATE_DONE;
7274 }
7275 EXPORT_SYMBOL_GPL(kvm_task_switch);
7276
7277 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7278 struct kvm_sregs *sregs)
7279 {
7280 struct msr_data apic_base_msr;
7281 int mmu_reset_needed = 0;
7282 int pending_vec, max_bits, idx;
7283 struct desc_ptr dt;
7284
7285 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7286 return -EINVAL;
7287
7288 dt.size = sregs->idt.limit;
7289 dt.address = sregs->idt.base;
7290 kvm_x86_ops->set_idt(vcpu, &dt);
7291 dt.size = sregs->gdt.limit;
7292 dt.address = sregs->gdt.base;
7293 kvm_x86_ops->set_gdt(vcpu, &dt);
7294
7295 vcpu->arch.cr2 = sregs->cr2;
7296 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7297 vcpu->arch.cr3 = sregs->cr3;
7298 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7299
7300 kvm_set_cr8(vcpu, sregs->cr8);
7301
7302 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7303 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7304 apic_base_msr.data = sregs->apic_base;
7305 apic_base_msr.host_initiated = true;
7306 kvm_set_apic_base(vcpu, &apic_base_msr);
7307
7308 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7309 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7310 vcpu->arch.cr0 = sregs->cr0;
7311
7312 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7313 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7314 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7315 kvm_update_cpuid(vcpu);
7316
7317 idx = srcu_read_lock(&vcpu->kvm->srcu);
7318 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7319 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7320 mmu_reset_needed = 1;
7321 }
7322 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7323
7324 if (mmu_reset_needed)
7325 kvm_mmu_reset_context(vcpu);
7326
7327 max_bits = KVM_NR_INTERRUPTS;
7328 pending_vec = find_first_bit(
7329 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7330 if (pending_vec < max_bits) {
7331 kvm_queue_interrupt(vcpu, pending_vec, false);
7332 pr_debug("Set back pending irq %d\n", pending_vec);
7333 }
7334
7335 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7336 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7337 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7338 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7339 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7340 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7341
7342 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7343 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7344
7345 update_cr8_intercept(vcpu);
7346
7347 /* Older userspace won't unhalt the vcpu on reset. */
7348 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7349 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7350 !is_protmode(vcpu))
7351 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7352
7353 kvm_make_request(KVM_REQ_EVENT, vcpu);
7354
7355 return 0;
7356 }
7357
7358 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7359 struct kvm_guest_debug *dbg)
7360 {
7361 unsigned long rflags;
7362 int i, r;
7363
7364 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7365 r = -EBUSY;
7366 if (vcpu->arch.exception.pending)
7367 goto out;
7368 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7369 kvm_queue_exception(vcpu, DB_VECTOR);
7370 else
7371 kvm_queue_exception(vcpu, BP_VECTOR);
7372 }
7373
7374 /*
7375 * Read rflags as long as potentially injected trace flags are still
7376 * filtered out.
7377 */
7378 rflags = kvm_get_rflags(vcpu);
7379
7380 vcpu->guest_debug = dbg->control;
7381 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7382 vcpu->guest_debug = 0;
7383
7384 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7385 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7386 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7387 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7388 } else {
7389 for (i = 0; i < KVM_NR_DB_REGS; i++)
7390 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7391 }
7392 kvm_update_dr7(vcpu);
7393
7394 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7395 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7396 get_segment_base(vcpu, VCPU_SREG_CS);
7397
7398 /*
7399 * Trigger an rflags update that will inject or remove the trace
7400 * flags.
7401 */
7402 kvm_set_rflags(vcpu, rflags);
7403
7404 kvm_x86_ops->update_bp_intercept(vcpu);
7405
7406 r = 0;
7407
7408 out:
7409
7410 return r;
7411 }
7412
7413 /*
7414 * Translate a guest virtual address to a guest physical address.
7415 */
7416 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7417 struct kvm_translation *tr)
7418 {
7419 unsigned long vaddr = tr->linear_address;
7420 gpa_t gpa;
7421 int idx;
7422
7423 idx = srcu_read_lock(&vcpu->kvm->srcu);
7424 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7425 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7426 tr->physical_address = gpa;
7427 tr->valid = gpa != UNMAPPED_GVA;
7428 tr->writeable = 1;
7429 tr->usermode = 0;
7430
7431 return 0;
7432 }
7433
7434 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7435 {
7436 struct fxregs_state *fxsave =
7437 &vcpu->arch.guest_fpu.state.fxsave;
7438
7439 memcpy(fpu->fpr, fxsave->st_space, 128);
7440 fpu->fcw = fxsave->cwd;
7441 fpu->fsw = fxsave->swd;
7442 fpu->ftwx = fxsave->twd;
7443 fpu->last_opcode = fxsave->fop;
7444 fpu->last_ip = fxsave->rip;
7445 fpu->last_dp = fxsave->rdp;
7446 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7447
7448 return 0;
7449 }
7450
7451 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7452 {
7453 struct fxregs_state *fxsave =
7454 &vcpu->arch.guest_fpu.state.fxsave;
7455
7456 memcpy(fxsave->st_space, fpu->fpr, 128);
7457 fxsave->cwd = fpu->fcw;
7458 fxsave->swd = fpu->fsw;
7459 fxsave->twd = fpu->ftwx;
7460 fxsave->fop = fpu->last_opcode;
7461 fxsave->rip = fpu->last_ip;
7462 fxsave->rdp = fpu->last_dp;
7463 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7464
7465 return 0;
7466 }
7467
7468 static void fx_init(struct kvm_vcpu *vcpu)
7469 {
7470 fpstate_init(&vcpu->arch.guest_fpu.state);
7471 if (boot_cpu_has(X86_FEATURE_XSAVES))
7472 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7473 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7474
7475 /*
7476 * Ensure guest xcr0 is valid for loading
7477 */
7478 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7479
7480 vcpu->arch.cr0 |= X86_CR0_ET;
7481 }
7482
7483 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7484 {
7485 if (vcpu->guest_fpu_loaded)
7486 return;
7487
7488 /*
7489 * Restore all possible states in the guest,
7490 * and assume host would use all available bits.
7491 * Guest xcr0 would be loaded later.
7492 */
7493 vcpu->guest_fpu_loaded = 1;
7494 __kernel_fpu_begin();
7495 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7496 trace_kvm_fpu(1);
7497 }
7498
7499 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7500 {
7501 if (!vcpu->guest_fpu_loaded)
7502 return;
7503
7504 vcpu->guest_fpu_loaded = 0;
7505 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7506 __kernel_fpu_end();
7507 ++vcpu->stat.fpu_reload;
7508 trace_kvm_fpu(0);
7509 }
7510
7511 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7512 {
7513 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7514
7515 kvmclock_reset(vcpu);
7516
7517 kvm_x86_ops->vcpu_free(vcpu);
7518 free_cpumask_var(wbinvd_dirty_mask);
7519 }
7520
7521 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7522 unsigned int id)
7523 {
7524 struct kvm_vcpu *vcpu;
7525
7526 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7527 printk_once(KERN_WARNING
7528 "kvm: SMP vm created on host with unstable TSC; "
7529 "guest TSC will not be reliable\n");
7530
7531 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7532
7533 return vcpu;
7534 }
7535
7536 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7537 {
7538 int r;
7539
7540 kvm_vcpu_mtrr_init(vcpu);
7541 r = vcpu_load(vcpu);
7542 if (r)
7543 return r;
7544 kvm_vcpu_reset(vcpu, false);
7545 kvm_mmu_setup(vcpu);
7546 vcpu_put(vcpu);
7547 return r;
7548 }
7549
7550 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7551 {
7552 struct msr_data msr;
7553 struct kvm *kvm = vcpu->kvm;
7554
7555 if (vcpu_load(vcpu))
7556 return;
7557 msr.data = 0x0;
7558 msr.index = MSR_IA32_TSC;
7559 msr.host_initiated = true;
7560 kvm_write_tsc(vcpu, &msr);
7561 vcpu_put(vcpu);
7562
7563 if (!kvmclock_periodic_sync)
7564 return;
7565
7566 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7567 KVMCLOCK_SYNC_PERIOD);
7568 }
7569
7570 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7571 {
7572 int r;
7573 vcpu->arch.apf.msr_val = 0;
7574
7575 r = vcpu_load(vcpu);
7576 BUG_ON(r);
7577 kvm_mmu_unload(vcpu);
7578 vcpu_put(vcpu);
7579
7580 kvm_x86_ops->vcpu_free(vcpu);
7581 }
7582
7583 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7584 {
7585 vcpu->arch.hflags = 0;
7586
7587 vcpu->arch.smi_pending = 0;
7588 atomic_set(&vcpu->arch.nmi_queued, 0);
7589 vcpu->arch.nmi_pending = 0;
7590 vcpu->arch.nmi_injected = false;
7591 kvm_clear_interrupt_queue(vcpu);
7592 kvm_clear_exception_queue(vcpu);
7593
7594 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7595 kvm_update_dr0123(vcpu);
7596 vcpu->arch.dr6 = DR6_INIT;
7597 kvm_update_dr6(vcpu);
7598 vcpu->arch.dr7 = DR7_FIXED_1;
7599 kvm_update_dr7(vcpu);
7600
7601 vcpu->arch.cr2 = 0;
7602
7603 kvm_make_request(KVM_REQ_EVENT, vcpu);
7604 vcpu->arch.apf.msr_val = 0;
7605 vcpu->arch.st.msr_val = 0;
7606
7607 kvmclock_reset(vcpu);
7608
7609 kvm_clear_async_pf_completion_queue(vcpu);
7610 kvm_async_pf_hash_reset(vcpu);
7611 vcpu->arch.apf.halted = false;
7612
7613 if (!init_event) {
7614 kvm_pmu_reset(vcpu);
7615 vcpu->arch.smbase = 0x30000;
7616 }
7617
7618 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7619 vcpu->arch.regs_avail = ~0;
7620 vcpu->arch.regs_dirty = ~0;
7621
7622 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7623 }
7624
7625 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7626 {
7627 struct kvm_segment cs;
7628
7629 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7630 cs.selector = vector << 8;
7631 cs.base = vector << 12;
7632 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7633 kvm_rip_write(vcpu, 0);
7634 }
7635
7636 int kvm_arch_hardware_enable(void)
7637 {
7638 struct kvm *kvm;
7639 struct kvm_vcpu *vcpu;
7640 int i;
7641 int ret;
7642 u64 local_tsc;
7643 u64 max_tsc = 0;
7644 bool stable, backwards_tsc = false;
7645
7646 kvm_shared_msr_cpu_online();
7647 ret = kvm_x86_ops->hardware_enable();
7648 if (ret != 0)
7649 return ret;
7650
7651 local_tsc = rdtsc();
7652 stable = !check_tsc_unstable();
7653 list_for_each_entry(kvm, &vm_list, vm_list) {
7654 kvm_for_each_vcpu(i, vcpu, kvm) {
7655 if (!stable && vcpu->cpu == smp_processor_id())
7656 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7657 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7658 backwards_tsc = true;
7659 if (vcpu->arch.last_host_tsc > max_tsc)
7660 max_tsc = vcpu->arch.last_host_tsc;
7661 }
7662 }
7663 }
7664
7665 /*
7666 * Sometimes, even reliable TSCs go backwards. This happens on
7667 * platforms that reset TSC during suspend or hibernate actions, but
7668 * maintain synchronization. We must compensate. Fortunately, we can
7669 * detect that condition here, which happens early in CPU bringup,
7670 * before any KVM threads can be running. Unfortunately, we can't
7671 * bring the TSCs fully up to date with real time, as we aren't yet far
7672 * enough into CPU bringup that we know how much real time has actually
7673 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7674 * variables that haven't been updated yet.
7675 *
7676 * So we simply find the maximum observed TSC above, then record the
7677 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7678 * the adjustment will be applied. Note that we accumulate
7679 * adjustments, in case multiple suspend cycles happen before some VCPU
7680 * gets a chance to run again. In the event that no KVM threads get a
7681 * chance to run, we will miss the entire elapsed period, as we'll have
7682 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7683 * loose cycle time. This isn't too big a deal, since the loss will be
7684 * uniform across all VCPUs (not to mention the scenario is extremely
7685 * unlikely). It is possible that a second hibernate recovery happens
7686 * much faster than a first, causing the observed TSC here to be
7687 * smaller; this would require additional padding adjustment, which is
7688 * why we set last_host_tsc to the local tsc observed here.
7689 *
7690 * N.B. - this code below runs only on platforms with reliable TSC,
7691 * as that is the only way backwards_tsc is set above. Also note
7692 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7693 * have the same delta_cyc adjustment applied if backwards_tsc
7694 * is detected. Note further, this adjustment is only done once,
7695 * as we reset last_host_tsc on all VCPUs to stop this from being
7696 * called multiple times (one for each physical CPU bringup).
7697 *
7698 * Platforms with unreliable TSCs don't have to deal with this, they
7699 * will be compensated by the logic in vcpu_load, which sets the TSC to
7700 * catchup mode. This will catchup all VCPUs to real time, but cannot
7701 * guarantee that they stay in perfect synchronization.
7702 */
7703 if (backwards_tsc) {
7704 u64 delta_cyc = max_tsc - local_tsc;
7705 backwards_tsc_observed = true;
7706 list_for_each_entry(kvm, &vm_list, vm_list) {
7707 kvm_for_each_vcpu(i, vcpu, kvm) {
7708 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7709 vcpu->arch.last_host_tsc = local_tsc;
7710 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7711 }
7712
7713 /*
7714 * We have to disable TSC offset matching.. if you were
7715 * booting a VM while issuing an S4 host suspend....
7716 * you may have some problem. Solving this issue is
7717 * left as an exercise to the reader.
7718 */
7719 kvm->arch.last_tsc_nsec = 0;
7720 kvm->arch.last_tsc_write = 0;
7721 }
7722
7723 }
7724 return 0;
7725 }
7726
7727 void kvm_arch_hardware_disable(void)
7728 {
7729 kvm_x86_ops->hardware_disable();
7730 drop_user_return_notifiers();
7731 }
7732
7733 int kvm_arch_hardware_setup(void)
7734 {
7735 int r;
7736
7737 r = kvm_x86_ops->hardware_setup();
7738 if (r != 0)
7739 return r;
7740
7741 if (kvm_has_tsc_control) {
7742 /*
7743 * Make sure the user can only configure tsc_khz values that
7744 * fit into a signed integer.
7745 * A min value is not calculated needed because it will always
7746 * be 1 on all machines.
7747 */
7748 u64 max = min(0x7fffffffULL,
7749 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7750 kvm_max_guest_tsc_khz = max;
7751
7752 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7753 }
7754
7755 kvm_init_msr_list();
7756 return 0;
7757 }
7758
7759 void kvm_arch_hardware_unsetup(void)
7760 {
7761 kvm_x86_ops->hardware_unsetup();
7762 }
7763
7764 void kvm_arch_check_processor_compat(void *rtn)
7765 {
7766 kvm_x86_ops->check_processor_compatibility(rtn);
7767 }
7768
7769 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7770 {
7771 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7772 }
7773 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7774
7775 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7776 {
7777 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7778 }
7779
7780 struct static_key kvm_no_apic_vcpu __read_mostly;
7781 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7782
7783 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7784 {
7785 struct page *page;
7786 struct kvm *kvm;
7787 int r;
7788
7789 BUG_ON(vcpu->kvm == NULL);
7790 kvm = vcpu->kvm;
7791
7792 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7793 vcpu->arch.pv.pv_unhalted = false;
7794 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7795 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7796 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7797 else
7798 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7799
7800 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7801 if (!page) {
7802 r = -ENOMEM;
7803 goto fail;
7804 }
7805 vcpu->arch.pio_data = page_address(page);
7806
7807 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7808
7809 r = kvm_mmu_create(vcpu);
7810 if (r < 0)
7811 goto fail_free_pio_data;
7812
7813 if (irqchip_in_kernel(kvm)) {
7814 r = kvm_create_lapic(vcpu);
7815 if (r < 0)
7816 goto fail_mmu_destroy;
7817 } else
7818 static_key_slow_inc(&kvm_no_apic_vcpu);
7819
7820 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7821 GFP_KERNEL);
7822 if (!vcpu->arch.mce_banks) {
7823 r = -ENOMEM;
7824 goto fail_free_lapic;
7825 }
7826 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7827
7828 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7829 r = -ENOMEM;
7830 goto fail_free_mce_banks;
7831 }
7832
7833 fx_init(vcpu);
7834
7835 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7836 vcpu->arch.pv_time_enabled = false;
7837
7838 vcpu->arch.guest_supported_xcr0 = 0;
7839 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7840
7841 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7842
7843 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7844
7845 kvm_async_pf_hash_reset(vcpu);
7846 kvm_pmu_init(vcpu);
7847
7848 vcpu->arch.pending_external_vector = -1;
7849
7850 kvm_hv_vcpu_init(vcpu);
7851
7852 return 0;
7853
7854 fail_free_mce_banks:
7855 kfree(vcpu->arch.mce_banks);
7856 fail_free_lapic:
7857 kvm_free_lapic(vcpu);
7858 fail_mmu_destroy:
7859 kvm_mmu_destroy(vcpu);
7860 fail_free_pio_data:
7861 free_page((unsigned long)vcpu->arch.pio_data);
7862 fail:
7863 return r;
7864 }
7865
7866 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7867 {
7868 int idx;
7869
7870 kvm_hv_vcpu_uninit(vcpu);
7871 kvm_pmu_destroy(vcpu);
7872 kfree(vcpu->arch.mce_banks);
7873 kvm_free_lapic(vcpu);
7874 idx = srcu_read_lock(&vcpu->kvm->srcu);
7875 kvm_mmu_destroy(vcpu);
7876 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7877 free_page((unsigned long)vcpu->arch.pio_data);
7878 if (!lapic_in_kernel(vcpu))
7879 static_key_slow_dec(&kvm_no_apic_vcpu);
7880 }
7881
7882 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7883 {
7884 kvm_x86_ops->sched_in(vcpu, cpu);
7885 }
7886
7887 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7888 {
7889 if (type)
7890 return -EINVAL;
7891
7892 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7893 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7894 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7895 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7896 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7897
7898 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7899 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7900 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7901 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7902 &kvm->arch.irq_sources_bitmap);
7903
7904 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7905 mutex_init(&kvm->arch.apic_map_lock);
7906 mutex_init(&kvm->arch.hyperv.hv_lock);
7907 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7908
7909 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
7910 pvclock_update_vm_gtod_copy(kvm);
7911
7912 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7913 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7914
7915 kvm_page_track_init(kvm);
7916 kvm_mmu_init_vm(kvm);
7917
7918 if (kvm_x86_ops->vm_init)
7919 return kvm_x86_ops->vm_init(kvm);
7920
7921 return 0;
7922 }
7923
7924 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7925 {
7926 int r;
7927 r = vcpu_load(vcpu);
7928 BUG_ON(r);
7929 kvm_mmu_unload(vcpu);
7930 vcpu_put(vcpu);
7931 }
7932
7933 static void kvm_free_vcpus(struct kvm *kvm)
7934 {
7935 unsigned int i;
7936 struct kvm_vcpu *vcpu;
7937
7938 /*
7939 * Unpin any mmu pages first.
7940 */
7941 kvm_for_each_vcpu(i, vcpu, kvm) {
7942 kvm_clear_async_pf_completion_queue(vcpu);
7943 kvm_unload_vcpu_mmu(vcpu);
7944 }
7945 kvm_for_each_vcpu(i, vcpu, kvm)
7946 kvm_arch_vcpu_free(vcpu);
7947
7948 mutex_lock(&kvm->lock);
7949 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7950 kvm->vcpus[i] = NULL;
7951
7952 atomic_set(&kvm->online_vcpus, 0);
7953 mutex_unlock(&kvm->lock);
7954 }
7955
7956 void kvm_arch_sync_events(struct kvm *kvm)
7957 {
7958 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7959 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7960 kvm_free_all_assigned_devices(kvm);
7961 kvm_free_pit(kvm);
7962 }
7963
7964 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7965 {
7966 int i, r;
7967 unsigned long hva;
7968 struct kvm_memslots *slots = kvm_memslots(kvm);
7969 struct kvm_memory_slot *slot, old;
7970
7971 /* Called with kvm->slots_lock held. */
7972 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7973 return -EINVAL;
7974
7975 slot = id_to_memslot(slots, id);
7976 if (size) {
7977 if (slot->npages)
7978 return -EEXIST;
7979
7980 /*
7981 * MAP_SHARED to prevent internal slot pages from being moved
7982 * by fork()/COW.
7983 */
7984 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7985 MAP_SHARED | MAP_ANONYMOUS, 0);
7986 if (IS_ERR((void *)hva))
7987 return PTR_ERR((void *)hva);
7988 } else {
7989 if (!slot->npages)
7990 return 0;
7991
7992 hva = 0;
7993 }
7994
7995 old = *slot;
7996 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7997 struct kvm_userspace_memory_region m;
7998
7999 m.slot = id | (i << 16);
8000 m.flags = 0;
8001 m.guest_phys_addr = gpa;
8002 m.userspace_addr = hva;
8003 m.memory_size = size;
8004 r = __kvm_set_memory_region(kvm, &m);
8005 if (r < 0)
8006 return r;
8007 }
8008
8009 if (!size) {
8010 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8011 WARN_ON(r < 0);
8012 }
8013
8014 return 0;
8015 }
8016 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8017
8018 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8019 {
8020 int r;
8021
8022 mutex_lock(&kvm->slots_lock);
8023 r = __x86_set_memory_region(kvm, id, gpa, size);
8024 mutex_unlock(&kvm->slots_lock);
8025
8026 return r;
8027 }
8028 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8029
8030 void kvm_arch_destroy_vm(struct kvm *kvm)
8031 {
8032 if (current->mm == kvm->mm) {
8033 /*
8034 * Free memory regions allocated on behalf of userspace,
8035 * unless the the memory map has changed due to process exit
8036 * or fd copying.
8037 */
8038 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8039 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8040 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8041 }
8042 if (kvm_x86_ops->vm_destroy)
8043 kvm_x86_ops->vm_destroy(kvm);
8044 kvm_iommu_unmap_guest(kvm);
8045 kfree(kvm->arch.vpic);
8046 kfree(kvm->arch.vioapic);
8047 kvm_free_vcpus(kvm);
8048 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8049 kvm_mmu_uninit_vm(kvm);
8050 }
8051
8052 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8053 struct kvm_memory_slot *dont)
8054 {
8055 int i;
8056
8057 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8058 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8059 kvfree(free->arch.rmap[i]);
8060 free->arch.rmap[i] = NULL;
8061 }
8062 if (i == 0)
8063 continue;
8064
8065 if (!dont || free->arch.lpage_info[i - 1] !=
8066 dont->arch.lpage_info[i - 1]) {
8067 kvfree(free->arch.lpage_info[i - 1]);
8068 free->arch.lpage_info[i - 1] = NULL;
8069 }
8070 }
8071
8072 kvm_page_track_free_memslot(free, dont);
8073 }
8074
8075 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8076 unsigned long npages)
8077 {
8078 int i;
8079
8080 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8081 struct kvm_lpage_info *linfo;
8082 unsigned long ugfn;
8083 int lpages;
8084 int level = i + 1;
8085
8086 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8087 slot->base_gfn, level) + 1;
8088
8089 slot->arch.rmap[i] =
8090 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8091 if (!slot->arch.rmap[i])
8092 goto out_free;
8093 if (i == 0)
8094 continue;
8095
8096 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
8097 if (!linfo)
8098 goto out_free;
8099
8100 slot->arch.lpage_info[i - 1] = linfo;
8101
8102 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8103 linfo[0].disallow_lpage = 1;
8104 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8105 linfo[lpages - 1].disallow_lpage = 1;
8106 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8107 /*
8108 * If the gfn and userspace address are not aligned wrt each
8109 * other, or if explicitly asked to, disable large page
8110 * support for this slot
8111 */
8112 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8113 !kvm_largepages_enabled()) {
8114 unsigned long j;
8115
8116 for (j = 0; j < lpages; ++j)
8117 linfo[j].disallow_lpage = 1;
8118 }
8119 }
8120
8121 if (kvm_page_track_create_memslot(slot, npages))
8122 goto out_free;
8123
8124 return 0;
8125
8126 out_free:
8127 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8128 kvfree(slot->arch.rmap[i]);
8129 slot->arch.rmap[i] = NULL;
8130 if (i == 0)
8131 continue;
8132
8133 kvfree(slot->arch.lpage_info[i - 1]);
8134 slot->arch.lpage_info[i - 1] = NULL;
8135 }
8136 return -ENOMEM;
8137 }
8138
8139 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8140 {
8141 /*
8142 * memslots->generation has been incremented.
8143 * mmio generation may have reached its maximum value.
8144 */
8145 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8146 }
8147
8148 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8149 struct kvm_memory_slot *memslot,
8150 const struct kvm_userspace_memory_region *mem,
8151 enum kvm_mr_change change)
8152 {
8153 return 0;
8154 }
8155
8156 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8157 struct kvm_memory_slot *new)
8158 {
8159 /* Still write protect RO slot */
8160 if (new->flags & KVM_MEM_READONLY) {
8161 kvm_mmu_slot_remove_write_access(kvm, new);
8162 return;
8163 }
8164
8165 /*
8166 * Call kvm_x86_ops dirty logging hooks when they are valid.
8167 *
8168 * kvm_x86_ops->slot_disable_log_dirty is called when:
8169 *
8170 * - KVM_MR_CREATE with dirty logging is disabled
8171 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8172 *
8173 * The reason is, in case of PML, we need to set D-bit for any slots
8174 * with dirty logging disabled in order to eliminate unnecessary GPA
8175 * logging in PML buffer (and potential PML buffer full VMEXT). This
8176 * guarantees leaving PML enabled during guest's lifetime won't have
8177 * any additonal overhead from PML when guest is running with dirty
8178 * logging disabled for memory slots.
8179 *
8180 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8181 * to dirty logging mode.
8182 *
8183 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8184 *
8185 * In case of write protect:
8186 *
8187 * Write protect all pages for dirty logging.
8188 *
8189 * All the sptes including the large sptes which point to this
8190 * slot are set to readonly. We can not create any new large
8191 * spte on this slot until the end of the logging.
8192 *
8193 * See the comments in fast_page_fault().
8194 */
8195 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8196 if (kvm_x86_ops->slot_enable_log_dirty)
8197 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8198 else
8199 kvm_mmu_slot_remove_write_access(kvm, new);
8200 } else {
8201 if (kvm_x86_ops->slot_disable_log_dirty)
8202 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8203 }
8204 }
8205
8206 void kvm_arch_commit_memory_region(struct kvm *kvm,
8207 const struct kvm_userspace_memory_region *mem,
8208 const struct kvm_memory_slot *old,
8209 const struct kvm_memory_slot *new,
8210 enum kvm_mr_change change)
8211 {
8212 int nr_mmu_pages = 0;
8213
8214 if (!kvm->arch.n_requested_mmu_pages)
8215 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8216
8217 if (nr_mmu_pages)
8218 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8219
8220 /*
8221 * Dirty logging tracks sptes in 4k granularity, meaning that large
8222 * sptes have to be split. If live migration is successful, the guest
8223 * in the source machine will be destroyed and large sptes will be
8224 * created in the destination. However, if the guest continues to run
8225 * in the source machine (for example if live migration fails), small
8226 * sptes will remain around and cause bad performance.
8227 *
8228 * Scan sptes if dirty logging has been stopped, dropping those
8229 * which can be collapsed into a single large-page spte. Later
8230 * page faults will create the large-page sptes.
8231 */
8232 if ((change != KVM_MR_DELETE) &&
8233 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8234 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8235 kvm_mmu_zap_collapsible_sptes(kvm, new);
8236
8237 /*
8238 * Set up write protection and/or dirty logging for the new slot.
8239 *
8240 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8241 * been zapped so no dirty logging staff is needed for old slot. For
8242 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8243 * new and it's also covered when dealing with the new slot.
8244 *
8245 * FIXME: const-ify all uses of struct kvm_memory_slot.
8246 */
8247 if (change != KVM_MR_DELETE)
8248 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8249 }
8250
8251 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8252 {
8253 kvm_mmu_invalidate_zap_all_pages(kvm);
8254 }
8255
8256 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8257 struct kvm_memory_slot *slot)
8258 {
8259 kvm_page_track_flush_slot(kvm, slot);
8260 }
8261
8262 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8263 {
8264 if (!list_empty_careful(&vcpu->async_pf.done))
8265 return true;
8266
8267 if (kvm_apic_has_events(vcpu))
8268 return true;
8269
8270 if (vcpu->arch.pv.pv_unhalted)
8271 return true;
8272
8273 if (atomic_read(&vcpu->arch.nmi_queued))
8274 return true;
8275
8276 if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8277 return true;
8278
8279 if (kvm_arch_interrupt_allowed(vcpu) &&
8280 kvm_cpu_has_interrupt(vcpu))
8281 return true;
8282
8283 if (kvm_hv_has_stimer_pending(vcpu))
8284 return true;
8285
8286 return false;
8287 }
8288
8289 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8290 {
8291 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8292 kvm_x86_ops->check_nested_events(vcpu, false);
8293
8294 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8295 }
8296
8297 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8298 {
8299 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8300 }
8301
8302 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8303 {
8304 return kvm_x86_ops->interrupt_allowed(vcpu);
8305 }
8306
8307 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8308 {
8309 if (is_64_bit_mode(vcpu))
8310 return kvm_rip_read(vcpu);
8311 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8312 kvm_rip_read(vcpu));
8313 }
8314 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8315
8316 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8317 {
8318 return kvm_get_linear_rip(vcpu) == linear_rip;
8319 }
8320 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8321
8322 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8323 {
8324 unsigned long rflags;
8325
8326 rflags = kvm_x86_ops->get_rflags(vcpu);
8327 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8328 rflags &= ~X86_EFLAGS_TF;
8329 return rflags;
8330 }
8331 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8332
8333 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8334 {
8335 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8336 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8337 rflags |= X86_EFLAGS_TF;
8338 kvm_x86_ops->set_rflags(vcpu, rflags);
8339 }
8340
8341 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8342 {
8343 __kvm_set_rflags(vcpu, rflags);
8344 kvm_make_request(KVM_REQ_EVENT, vcpu);
8345 }
8346 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8347
8348 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8349 {
8350 int r;
8351
8352 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8353 work->wakeup_all)
8354 return;
8355
8356 r = kvm_mmu_reload(vcpu);
8357 if (unlikely(r))
8358 return;
8359
8360 if (!vcpu->arch.mmu.direct_map &&
8361 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8362 return;
8363
8364 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8365 }
8366
8367 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8368 {
8369 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8370 }
8371
8372 static inline u32 kvm_async_pf_next_probe(u32 key)
8373 {
8374 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8375 }
8376
8377 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8378 {
8379 u32 key = kvm_async_pf_hash_fn(gfn);
8380
8381 while (vcpu->arch.apf.gfns[key] != ~0)
8382 key = kvm_async_pf_next_probe(key);
8383
8384 vcpu->arch.apf.gfns[key] = gfn;
8385 }
8386
8387 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8388 {
8389 int i;
8390 u32 key = kvm_async_pf_hash_fn(gfn);
8391
8392 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8393 (vcpu->arch.apf.gfns[key] != gfn &&
8394 vcpu->arch.apf.gfns[key] != ~0); i++)
8395 key = kvm_async_pf_next_probe(key);
8396
8397 return key;
8398 }
8399
8400 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8401 {
8402 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8403 }
8404
8405 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8406 {
8407 u32 i, j, k;
8408
8409 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8410 while (true) {
8411 vcpu->arch.apf.gfns[i] = ~0;
8412 do {
8413 j = kvm_async_pf_next_probe(j);
8414 if (vcpu->arch.apf.gfns[j] == ~0)
8415 return;
8416 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8417 /*
8418 * k lies cyclically in ]i,j]
8419 * | i.k.j |
8420 * |....j i.k.| or |.k..j i...|
8421 */
8422 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8423 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8424 i = j;
8425 }
8426 }
8427
8428 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8429 {
8430
8431 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8432 sizeof(val));
8433 }
8434
8435 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8436 struct kvm_async_pf *work)
8437 {
8438 struct x86_exception fault;
8439
8440 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8441 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8442
8443 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8444 (vcpu->arch.apf.send_user_only &&
8445 kvm_x86_ops->get_cpl(vcpu) == 0))
8446 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8447 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8448 fault.vector = PF_VECTOR;
8449 fault.error_code_valid = true;
8450 fault.error_code = 0;
8451 fault.nested_page_fault = false;
8452 fault.address = work->arch.token;
8453 kvm_inject_page_fault(vcpu, &fault);
8454 }
8455 }
8456
8457 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8458 struct kvm_async_pf *work)
8459 {
8460 struct x86_exception fault;
8461
8462 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8463 if (work->wakeup_all)
8464 work->arch.token = ~0; /* broadcast wakeup */
8465 else
8466 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8467
8468 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8469 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8470 fault.vector = PF_VECTOR;
8471 fault.error_code_valid = true;
8472 fault.error_code = 0;
8473 fault.nested_page_fault = false;
8474 fault.address = work->arch.token;
8475 kvm_inject_page_fault(vcpu, &fault);
8476 }
8477 vcpu->arch.apf.halted = false;
8478 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8479 }
8480
8481 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8482 {
8483 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8484 return true;
8485 else
8486 return !kvm_event_needs_reinjection(vcpu) &&
8487 kvm_x86_ops->interrupt_allowed(vcpu);
8488 }
8489
8490 void kvm_arch_start_assignment(struct kvm *kvm)
8491 {
8492 atomic_inc(&kvm->arch.assigned_device_count);
8493 }
8494 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8495
8496 void kvm_arch_end_assignment(struct kvm *kvm)
8497 {
8498 atomic_dec(&kvm->arch.assigned_device_count);
8499 }
8500 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8501
8502 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8503 {
8504 return atomic_read(&kvm->arch.assigned_device_count);
8505 }
8506 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8507
8508 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8509 {
8510 atomic_inc(&kvm->arch.noncoherent_dma_count);
8511 }
8512 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8513
8514 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8515 {
8516 atomic_dec(&kvm->arch.noncoherent_dma_count);
8517 }
8518 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8519
8520 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8521 {
8522 return atomic_read(&kvm->arch.noncoherent_dma_count);
8523 }
8524 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8525
8526 bool kvm_arch_has_irq_bypass(void)
8527 {
8528 return kvm_x86_ops->update_pi_irte != NULL;
8529 }
8530
8531 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8532 struct irq_bypass_producer *prod)
8533 {
8534 struct kvm_kernel_irqfd *irqfd =
8535 container_of(cons, struct kvm_kernel_irqfd, consumer);
8536
8537 irqfd->producer = prod;
8538
8539 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8540 prod->irq, irqfd->gsi, 1);
8541 }
8542
8543 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8544 struct irq_bypass_producer *prod)
8545 {
8546 int ret;
8547 struct kvm_kernel_irqfd *irqfd =
8548 container_of(cons, struct kvm_kernel_irqfd, consumer);
8549
8550 WARN_ON(irqfd->producer != prod);
8551 irqfd->producer = NULL;
8552
8553 /*
8554 * When producer of consumer is unregistered, we change back to
8555 * remapped mode, so we can re-use the current implementation
8556 * when the irq is masked/disabled or the consumer side (KVM
8557 * int this case doesn't want to receive the interrupts.
8558 */
8559 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8560 if (ret)
8561 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8562 " fails: %d\n", irqfd->consumer.token, ret);
8563 }
8564
8565 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8566 uint32_t guest_irq, bool set)
8567 {
8568 if (!kvm_x86_ops->update_pi_irte)
8569 return -EINVAL;
8570
8571 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8572 }
8573
8574 bool kvm_vector_hashing_enabled(void)
8575 {
8576 return vector_hashing;
8577 }
8578 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8579
8580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8584 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8585 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8586 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8587 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8588 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8589 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8590 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8591 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8592 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8593 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8594 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8595 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8596 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8597 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8598 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);