]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - block/bio.c
clocksource/drivers/arm_arch_timer: Avoid infinite recursion when ftrace is enabled
[mirror_ubuntu-zesty-kernel.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33
34 /*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38 #define BIO_INLINE_VECS 4
39
40 /*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50
51 /*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57
58 /*
59 * Our slab pool management
60 */
61 struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
75 struct bio_slab *bslab, *new_bio_slabs;
76 unsigned int new_bio_slab_max;
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
83 bslab = &bio_slabs[i];
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 new_bio_slab_max = bio_slab_max << 1;
100 new_bio_slabs = krealloc(bio_slabs,
101 new_bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
104 goto out_unlock;
105 bio_slab_max = new_bio_slab_max;
106 bio_slabs = new_bio_slabs;
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
118
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122 out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125 }
126
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152 out:
153 mutex_unlock(&bio_slab_lock);
154 }
155
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 return bvec_slabs[idx].nr_vecs;
159 }
160
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 if (!idx)
164 return;
165 idx--;
166
167 BIO_BUG_ON(idx >= BVEC_POOL_NR);
168
169 if (idx == BVEC_POOL_MAX) {
170 mempool_free(bv, pool);
171 } else {
172 struct biovec_slab *bvs = bvec_slabs + idx;
173
174 kmem_cache_free(bvs->slab, bv);
175 }
176 }
177
178 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
179 mempool_t *pool)
180 {
181 struct bio_vec *bvl;
182
183 /*
184 * see comment near bvec_array define!
185 */
186 switch (nr) {
187 case 1:
188 *idx = 0;
189 break;
190 case 2 ... 4:
191 *idx = 1;
192 break;
193 case 5 ... 16:
194 *idx = 2;
195 break;
196 case 17 ... 64:
197 *idx = 3;
198 break;
199 case 65 ... 128:
200 *idx = 4;
201 break;
202 case 129 ... BIO_MAX_PAGES:
203 *idx = 5;
204 break;
205 default:
206 return NULL;
207 }
208
209 /*
210 * idx now points to the pool we want to allocate from. only the
211 * 1-vec entry pool is mempool backed.
212 */
213 if (*idx == BVEC_POOL_MAX) {
214 fallback:
215 bvl = mempool_alloc(pool, gfp_mask);
216 } else {
217 struct biovec_slab *bvs = bvec_slabs + *idx;
218 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
219
220 /*
221 * Make this allocation restricted and don't dump info on
222 * allocation failures, since we'll fallback to the mempool
223 * in case of failure.
224 */
225 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
226
227 /*
228 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
229 * is set, retry with the 1-entry mempool
230 */
231 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
232 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
233 *idx = BVEC_POOL_MAX;
234 goto fallback;
235 }
236 }
237
238 (*idx)++;
239 return bvl;
240 }
241
242 static void __bio_free(struct bio *bio)
243 {
244 bio_disassociate_task(bio);
245
246 if (bio_integrity(bio))
247 bio_integrity_free(bio);
248 }
249
250 static void bio_free(struct bio *bio)
251 {
252 struct bio_set *bs = bio->bi_pool;
253 void *p;
254
255 __bio_free(bio);
256
257 if (bs) {
258 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
259
260 /*
261 * If we have front padding, adjust the bio pointer before freeing
262 */
263 p = bio;
264 p -= bs->front_pad;
265
266 mempool_free(p, bs->bio_pool);
267 } else {
268 /* Bio was allocated by bio_kmalloc() */
269 kfree(bio);
270 }
271 }
272
273 void bio_init(struct bio *bio, struct bio_vec *table,
274 unsigned short max_vecs)
275 {
276 memset(bio, 0, sizeof(*bio));
277 atomic_set(&bio->__bi_remaining, 1);
278 atomic_set(&bio->__bi_cnt, 1);
279
280 bio->bi_io_vec = table;
281 bio->bi_max_vecs = max_vecs;
282 }
283 EXPORT_SYMBOL(bio_init);
284
285 /**
286 * bio_reset - reinitialize a bio
287 * @bio: bio to reset
288 *
289 * Description:
290 * After calling bio_reset(), @bio will be in the same state as a freshly
291 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
292 * preserved are the ones that are initialized by bio_alloc_bioset(). See
293 * comment in struct bio.
294 */
295 void bio_reset(struct bio *bio)
296 {
297 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
298
299 __bio_free(bio);
300
301 memset(bio, 0, BIO_RESET_BYTES);
302 bio->bi_flags = flags;
303 atomic_set(&bio->__bi_remaining, 1);
304 }
305 EXPORT_SYMBOL(bio_reset);
306
307 static struct bio *__bio_chain_endio(struct bio *bio)
308 {
309 struct bio *parent = bio->bi_private;
310
311 if (!parent->bi_error)
312 parent->bi_error = bio->bi_error;
313 bio_put(bio);
314 return parent;
315 }
316
317 static void bio_chain_endio(struct bio *bio)
318 {
319 bio_endio(__bio_chain_endio(bio));
320 }
321
322 /**
323 * bio_chain - chain bio completions
324 * @bio: the target bio
325 * @parent: the @bio's parent bio
326 *
327 * The caller won't have a bi_end_io called when @bio completes - instead,
328 * @parent's bi_end_io won't be called until both @parent and @bio have
329 * completed; the chained bio will also be freed when it completes.
330 *
331 * The caller must not set bi_private or bi_end_io in @bio.
332 */
333 void bio_chain(struct bio *bio, struct bio *parent)
334 {
335 BUG_ON(bio->bi_private || bio->bi_end_io);
336
337 bio->bi_private = parent;
338 bio->bi_end_io = bio_chain_endio;
339 bio_inc_remaining(parent);
340 }
341 EXPORT_SYMBOL(bio_chain);
342
343 static void bio_alloc_rescue(struct work_struct *work)
344 {
345 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
346 struct bio *bio;
347
348 while (1) {
349 spin_lock(&bs->rescue_lock);
350 bio = bio_list_pop(&bs->rescue_list);
351 spin_unlock(&bs->rescue_lock);
352
353 if (!bio)
354 break;
355
356 generic_make_request(bio);
357 }
358 }
359
360 static void punt_bios_to_rescuer(struct bio_set *bs)
361 {
362 struct bio_list punt, nopunt;
363 struct bio *bio;
364
365 /*
366 * In order to guarantee forward progress we must punt only bios that
367 * were allocated from this bio_set; otherwise, if there was a bio on
368 * there for a stacking driver higher up in the stack, processing it
369 * could require allocating bios from this bio_set, and doing that from
370 * our own rescuer would be bad.
371 *
372 * Since bio lists are singly linked, pop them all instead of trying to
373 * remove from the middle of the list:
374 */
375
376 bio_list_init(&punt);
377 bio_list_init(&nopunt);
378
379 while ((bio = bio_list_pop(&current->bio_list[0])))
380 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381 current->bio_list[0] = nopunt;
382
383 bio_list_init(&nopunt);
384 while ((bio = bio_list_pop(&current->bio_list[1])))
385 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
386 current->bio_list[1] = nopunt;
387
388 spin_lock(&bs->rescue_lock);
389 bio_list_merge(&bs->rescue_list, &punt);
390 spin_unlock(&bs->rescue_lock);
391
392 queue_work(bs->rescue_workqueue, &bs->rescue_work);
393 }
394
395 /**
396 * bio_alloc_bioset - allocate a bio for I/O
397 * @gfp_mask: the GFP_ mask given to the slab allocator
398 * @nr_iovecs: number of iovecs to pre-allocate
399 * @bs: the bio_set to allocate from.
400 *
401 * Description:
402 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
403 * backed by the @bs's mempool.
404 *
405 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
406 * always be able to allocate a bio. This is due to the mempool guarantees.
407 * To make this work, callers must never allocate more than 1 bio at a time
408 * from this pool. Callers that need to allocate more than 1 bio must always
409 * submit the previously allocated bio for IO before attempting to allocate
410 * a new one. Failure to do so can cause deadlocks under memory pressure.
411 *
412 * Note that when running under generic_make_request() (i.e. any block
413 * driver), bios are not submitted until after you return - see the code in
414 * generic_make_request() that converts recursion into iteration, to prevent
415 * stack overflows.
416 *
417 * This would normally mean allocating multiple bios under
418 * generic_make_request() would be susceptible to deadlocks, but we have
419 * deadlock avoidance code that resubmits any blocked bios from a rescuer
420 * thread.
421 *
422 * However, we do not guarantee forward progress for allocations from other
423 * mempools. Doing multiple allocations from the same mempool under
424 * generic_make_request() should be avoided - instead, use bio_set's front_pad
425 * for per bio allocations.
426 *
427 * RETURNS:
428 * Pointer to new bio on success, NULL on failure.
429 */
430 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
431 {
432 gfp_t saved_gfp = gfp_mask;
433 unsigned front_pad;
434 unsigned inline_vecs;
435 struct bio_vec *bvl = NULL;
436 struct bio *bio;
437 void *p;
438
439 if (!bs) {
440 if (nr_iovecs > UIO_MAXIOV)
441 return NULL;
442
443 p = kmalloc(sizeof(struct bio) +
444 nr_iovecs * sizeof(struct bio_vec),
445 gfp_mask);
446 front_pad = 0;
447 inline_vecs = nr_iovecs;
448 } else {
449 /* should not use nobvec bioset for nr_iovecs > 0 */
450 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
451 return NULL;
452 /*
453 * generic_make_request() converts recursion to iteration; this
454 * means if we're running beneath it, any bios we allocate and
455 * submit will not be submitted (and thus freed) until after we
456 * return.
457 *
458 * This exposes us to a potential deadlock if we allocate
459 * multiple bios from the same bio_set() while running
460 * underneath generic_make_request(). If we were to allocate
461 * multiple bios (say a stacking block driver that was splitting
462 * bios), we would deadlock if we exhausted the mempool's
463 * reserve.
464 *
465 * We solve this, and guarantee forward progress, with a rescuer
466 * workqueue per bio_set. If we go to allocate and there are
467 * bios on current->bio_list, we first try the allocation
468 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
469 * bios we would be blocking to the rescuer workqueue before
470 * we retry with the original gfp_flags.
471 */
472
473 if (current->bio_list &&
474 (!bio_list_empty(&current->bio_list[0]) ||
475 !bio_list_empty(&current->bio_list[1])))
476 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
477
478 p = mempool_alloc(bs->bio_pool, gfp_mask);
479 if (!p && gfp_mask != saved_gfp) {
480 punt_bios_to_rescuer(bs);
481 gfp_mask = saved_gfp;
482 p = mempool_alloc(bs->bio_pool, gfp_mask);
483 }
484
485 front_pad = bs->front_pad;
486 inline_vecs = BIO_INLINE_VECS;
487 }
488
489 if (unlikely(!p))
490 return NULL;
491
492 bio = p + front_pad;
493 bio_init(bio, NULL, 0);
494
495 if (nr_iovecs > inline_vecs) {
496 unsigned long idx = 0;
497
498 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
499 if (!bvl && gfp_mask != saved_gfp) {
500 punt_bios_to_rescuer(bs);
501 gfp_mask = saved_gfp;
502 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
503 }
504
505 if (unlikely(!bvl))
506 goto err_free;
507
508 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
509 } else if (nr_iovecs) {
510 bvl = bio->bi_inline_vecs;
511 }
512
513 bio->bi_pool = bs;
514 bio->bi_max_vecs = nr_iovecs;
515 bio->bi_io_vec = bvl;
516 return bio;
517
518 err_free:
519 mempool_free(p, bs->bio_pool);
520 return NULL;
521 }
522 EXPORT_SYMBOL(bio_alloc_bioset);
523
524 void zero_fill_bio(struct bio *bio)
525 {
526 unsigned long flags;
527 struct bio_vec bv;
528 struct bvec_iter iter;
529
530 bio_for_each_segment(bv, bio, iter) {
531 char *data = bvec_kmap_irq(&bv, &flags);
532 memset(data, 0, bv.bv_len);
533 flush_dcache_page(bv.bv_page);
534 bvec_kunmap_irq(data, &flags);
535 }
536 }
537 EXPORT_SYMBOL(zero_fill_bio);
538
539 /**
540 * bio_put - release a reference to a bio
541 * @bio: bio to release reference to
542 *
543 * Description:
544 * Put a reference to a &struct bio, either one you have gotten with
545 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
546 **/
547 void bio_put(struct bio *bio)
548 {
549 if (!bio_flagged(bio, BIO_REFFED))
550 bio_free(bio);
551 else {
552 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
553
554 /*
555 * last put frees it
556 */
557 if (atomic_dec_and_test(&bio->__bi_cnt))
558 bio_free(bio);
559 }
560 }
561 EXPORT_SYMBOL(bio_put);
562
563 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
564 {
565 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
566 blk_recount_segments(q, bio);
567
568 return bio->bi_phys_segments;
569 }
570 EXPORT_SYMBOL(bio_phys_segments);
571
572 /**
573 * __bio_clone_fast - clone a bio that shares the original bio's biovec
574 * @bio: destination bio
575 * @bio_src: bio to clone
576 *
577 * Clone a &bio. Caller will own the returned bio, but not
578 * the actual data it points to. Reference count of returned
579 * bio will be one.
580 *
581 * Caller must ensure that @bio_src is not freed before @bio.
582 */
583 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
584 {
585 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
586
587 /*
588 * most users will be overriding ->bi_bdev with a new target,
589 * so we don't set nor calculate new physical/hw segment counts here
590 */
591 bio->bi_bdev = bio_src->bi_bdev;
592 bio_set_flag(bio, BIO_CLONED);
593 bio->bi_opf = bio_src->bi_opf;
594 bio->bi_iter = bio_src->bi_iter;
595 bio->bi_io_vec = bio_src->bi_io_vec;
596
597 bio_clone_blkcg_association(bio, bio_src);
598 }
599 EXPORT_SYMBOL(__bio_clone_fast);
600
601 /**
602 * bio_clone_fast - clone a bio that shares the original bio's biovec
603 * @bio: bio to clone
604 * @gfp_mask: allocation priority
605 * @bs: bio_set to allocate from
606 *
607 * Like __bio_clone_fast, only also allocates the returned bio
608 */
609 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
610 {
611 struct bio *b;
612
613 b = bio_alloc_bioset(gfp_mask, 0, bs);
614 if (!b)
615 return NULL;
616
617 __bio_clone_fast(b, bio);
618
619 if (bio_integrity(bio)) {
620 int ret;
621
622 ret = bio_integrity_clone(b, bio, gfp_mask);
623
624 if (ret < 0) {
625 bio_put(b);
626 return NULL;
627 }
628 }
629
630 return b;
631 }
632 EXPORT_SYMBOL(bio_clone_fast);
633
634 /**
635 * bio_clone_bioset - clone a bio
636 * @bio_src: bio to clone
637 * @gfp_mask: allocation priority
638 * @bs: bio_set to allocate from
639 *
640 * Clone bio. Caller will own the returned bio, but not the actual data it
641 * points to. Reference count of returned bio will be one.
642 */
643 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
644 struct bio_set *bs)
645 {
646 struct bvec_iter iter;
647 struct bio_vec bv;
648 struct bio *bio;
649
650 /*
651 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
652 * bio_src->bi_io_vec to bio->bi_io_vec.
653 *
654 * We can't do that anymore, because:
655 *
656 * - The point of cloning the biovec is to produce a bio with a biovec
657 * the caller can modify: bi_idx and bi_bvec_done should be 0.
658 *
659 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
660 * we tried to clone the whole thing bio_alloc_bioset() would fail.
661 * But the clone should succeed as long as the number of biovecs we
662 * actually need to allocate is fewer than BIO_MAX_PAGES.
663 *
664 * - Lastly, bi_vcnt should not be looked at or relied upon by code
665 * that does not own the bio - reason being drivers don't use it for
666 * iterating over the biovec anymore, so expecting it to be kept up
667 * to date (i.e. for clones that share the parent biovec) is just
668 * asking for trouble and would force extra work on
669 * __bio_clone_fast() anyways.
670 */
671
672 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
673 if (!bio)
674 return NULL;
675 bio->bi_bdev = bio_src->bi_bdev;
676 bio->bi_opf = bio_src->bi_opf;
677 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
678 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
679
680 switch (bio_op(bio)) {
681 case REQ_OP_DISCARD:
682 case REQ_OP_SECURE_ERASE:
683 case REQ_OP_WRITE_ZEROES:
684 break;
685 case REQ_OP_WRITE_SAME:
686 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
687 break;
688 default:
689 bio_for_each_segment(bv, bio_src, iter)
690 bio->bi_io_vec[bio->bi_vcnt++] = bv;
691 break;
692 }
693
694 if (bio_integrity(bio_src)) {
695 int ret;
696
697 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
698 if (ret < 0) {
699 bio_put(bio);
700 return NULL;
701 }
702 }
703
704 bio_clone_blkcg_association(bio, bio_src);
705
706 return bio;
707 }
708 EXPORT_SYMBOL(bio_clone_bioset);
709
710 /**
711 * bio_add_pc_page - attempt to add page to bio
712 * @q: the target queue
713 * @bio: destination bio
714 * @page: page to add
715 * @len: vec entry length
716 * @offset: vec entry offset
717 *
718 * Attempt to add a page to the bio_vec maplist. This can fail for a
719 * number of reasons, such as the bio being full or target block device
720 * limitations. The target block device must allow bio's up to PAGE_SIZE,
721 * so it is always possible to add a single page to an empty bio.
722 *
723 * This should only be used by REQ_PC bios.
724 */
725 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
726 *page, unsigned int len, unsigned int offset)
727 {
728 int retried_segments = 0;
729 struct bio_vec *bvec;
730
731 /*
732 * cloned bio must not modify vec list
733 */
734 if (unlikely(bio_flagged(bio, BIO_CLONED)))
735 return 0;
736
737 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
738 return 0;
739
740 /*
741 * For filesystems with a blocksize smaller than the pagesize
742 * we will often be called with the same page as last time and
743 * a consecutive offset. Optimize this special case.
744 */
745 if (bio->bi_vcnt > 0) {
746 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
747
748 if (page == prev->bv_page &&
749 offset == prev->bv_offset + prev->bv_len) {
750 prev->bv_len += len;
751 bio->bi_iter.bi_size += len;
752 goto done;
753 }
754
755 /*
756 * If the queue doesn't support SG gaps and adding this
757 * offset would create a gap, disallow it.
758 */
759 if (bvec_gap_to_prev(q, prev, offset))
760 return 0;
761 }
762
763 if (bio->bi_vcnt >= bio->bi_max_vecs)
764 return 0;
765
766 /*
767 * setup the new entry, we might clear it again later if we
768 * cannot add the page
769 */
770 bvec = &bio->bi_io_vec[bio->bi_vcnt];
771 bvec->bv_page = page;
772 bvec->bv_len = len;
773 bvec->bv_offset = offset;
774 bio->bi_vcnt++;
775 bio->bi_phys_segments++;
776 bio->bi_iter.bi_size += len;
777
778 /*
779 * Perform a recount if the number of segments is greater
780 * than queue_max_segments(q).
781 */
782
783 while (bio->bi_phys_segments > queue_max_segments(q)) {
784
785 if (retried_segments)
786 goto failed;
787
788 retried_segments = 1;
789 blk_recount_segments(q, bio);
790 }
791
792 /* If we may be able to merge these biovecs, force a recount */
793 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
794 bio_clear_flag(bio, BIO_SEG_VALID);
795
796 done:
797 return len;
798
799 failed:
800 bvec->bv_page = NULL;
801 bvec->bv_len = 0;
802 bvec->bv_offset = 0;
803 bio->bi_vcnt--;
804 bio->bi_iter.bi_size -= len;
805 blk_recount_segments(q, bio);
806 return 0;
807 }
808 EXPORT_SYMBOL(bio_add_pc_page);
809
810 /**
811 * bio_add_page - attempt to add page to bio
812 * @bio: destination bio
813 * @page: page to add
814 * @len: vec entry length
815 * @offset: vec entry offset
816 *
817 * Attempt to add a page to the bio_vec maplist. This will only fail
818 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
819 */
820 int bio_add_page(struct bio *bio, struct page *page,
821 unsigned int len, unsigned int offset)
822 {
823 struct bio_vec *bv;
824
825 /*
826 * cloned bio must not modify vec list
827 */
828 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
829 return 0;
830
831 /*
832 * For filesystems with a blocksize smaller than the pagesize
833 * we will often be called with the same page as last time and
834 * a consecutive offset. Optimize this special case.
835 */
836 if (bio->bi_vcnt > 0) {
837 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
838
839 if (page == bv->bv_page &&
840 offset == bv->bv_offset + bv->bv_len) {
841 bv->bv_len += len;
842 goto done;
843 }
844 }
845
846 if (bio->bi_vcnt >= bio->bi_max_vecs)
847 return 0;
848
849 bv = &bio->bi_io_vec[bio->bi_vcnt];
850 bv->bv_page = page;
851 bv->bv_len = len;
852 bv->bv_offset = offset;
853
854 bio->bi_vcnt++;
855 done:
856 bio->bi_iter.bi_size += len;
857 return len;
858 }
859 EXPORT_SYMBOL(bio_add_page);
860
861 /**
862 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
863 * @bio: bio to add pages to
864 * @iter: iov iterator describing the region to be mapped
865 *
866 * Pins as many pages from *iter and appends them to @bio's bvec array. The
867 * pages will have to be released using put_page() when done.
868 */
869 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
870 {
871 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
872 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
873 struct page **pages = (struct page **)bv;
874 size_t offset, diff;
875 ssize_t size;
876
877 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
878 if (unlikely(size <= 0))
879 return size ? size : -EFAULT;
880 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
881
882 /*
883 * Deep magic below: We need to walk the pinned pages backwards
884 * because we are abusing the space allocated for the bio_vecs
885 * for the page array. Because the bio_vecs are larger than the
886 * page pointers by definition this will always work. But it also
887 * means we can't use bio_add_page, so any changes to it's semantics
888 * need to be reflected here as well.
889 */
890 bio->bi_iter.bi_size += size;
891 bio->bi_vcnt += nr_pages;
892
893 diff = (nr_pages * PAGE_SIZE - offset) - size;
894 while (nr_pages--) {
895 bv[nr_pages].bv_page = pages[nr_pages];
896 bv[nr_pages].bv_len = PAGE_SIZE;
897 bv[nr_pages].bv_offset = 0;
898 }
899
900 bv[0].bv_offset += offset;
901 bv[0].bv_len -= offset;
902 if (diff)
903 bv[bio->bi_vcnt - 1].bv_len -= diff;
904
905 iov_iter_advance(iter, size);
906 return 0;
907 }
908 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
909
910 struct submit_bio_ret {
911 struct completion event;
912 int error;
913 };
914
915 static void submit_bio_wait_endio(struct bio *bio)
916 {
917 struct submit_bio_ret *ret = bio->bi_private;
918
919 ret->error = bio->bi_error;
920 complete(&ret->event);
921 }
922
923 /**
924 * submit_bio_wait - submit a bio, and wait until it completes
925 * @bio: The &struct bio which describes the I/O
926 *
927 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
928 * bio_endio() on failure.
929 */
930 int submit_bio_wait(struct bio *bio)
931 {
932 struct submit_bio_ret ret;
933
934 init_completion(&ret.event);
935 bio->bi_private = &ret;
936 bio->bi_end_io = submit_bio_wait_endio;
937 bio->bi_opf |= REQ_SYNC;
938 submit_bio(bio);
939 wait_for_completion_io(&ret.event);
940
941 return ret.error;
942 }
943 EXPORT_SYMBOL(submit_bio_wait);
944
945 /**
946 * bio_advance - increment/complete a bio by some number of bytes
947 * @bio: bio to advance
948 * @bytes: number of bytes to complete
949 *
950 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
951 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
952 * be updated on the last bvec as well.
953 *
954 * @bio will then represent the remaining, uncompleted portion of the io.
955 */
956 void bio_advance(struct bio *bio, unsigned bytes)
957 {
958 if (bio_integrity(bio))
959 bio_integrity_advance(bio, bytes);
960
961 bio_advance_iter(bio, &bio->bi_iter, bytes);
962 }
963 EXPORT_SYMBOL(bio_advance);
964
965 /**
966 * bio_alloc_pages - allocates a single page for each bvec in a bio
967 * @bio: bio to allocate pages for
968 * @gfp_mask: flags for allocation
969 *
970 * Allocates pages up to @bio->bi_vcnt.
971 *
972 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
973 * freed.
974 */
975 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
976 {
977 int i;
978 struct bio_vec *bv;
979
980 bio_for_each_segment_all(bv, bio, i) {
981 bv->bv_page = alloc_page(gfp_mask);
982 if (!bv->bv_page) {
983 while (--bv >= bio->bi_io_vec)
984 __free_page(bv->bv_page);
985 return -ENOMEM;
986 }
987 }
988
989 return 0;
990 }
991 EXPORT_SYMBOL(bio_alloc_pages);
992
993 /**
994 * bio_copy_data - copy contents of data buffers from one chain of bios to
995 * another
996 * @src: source bio list
997 * @dst: destination bio list
998 *
999 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1000 * @src and @dst as linked lists of bios.
1001 *
1002 * Stops when it reaches the end of either @src or @dst - that is, copies
1003 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1004 */
1005 void bio_copy_data(struct bio *dst, struct bio *src)
1006 {
1007 struct bvec_iter src_iter, dst_iter;
1008 struct bio_vec src_bv, dst_bv;
1009 void *src_p, *dst_p;
1010 unsigned bytes;
1011
1012 src_iter = src->bi_iter;
1013 dst_iter = dst->bi_iter;
1014
1015 while (1) {
1016 if (!src_iter.bi_size) {
1017 src = src->bi_next;
1018 if (!src)
1019 break;
1020
1021 src_iter = src->bi_iter;
1022 }
1023
1024 if (!dst_iter.bi_size) {
1025 dst = dst->bi_next;
1026 if (!dst)
1027 break;
1028
1029 dst_iter = dst->bi_iter;
1030 }
1031
1032 src_bv = bio_iter_iovec(src, src_iter);
1033 dst_bv = bio_iter_iovec(dst, dst_iter);
1034
1035 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1036
1037 src_p = kmap_atomic(src_bv.bv_page);
1038 dst_p = kmap_atomic(dst_bv.bv_page);
1039
1040 memcpy(dst_p + dst_bv.bv_offset,
1041 src_p + src_bv.bv_offset,
1042 bytes);
1043
1044 kunmap_atomic(dst_p);
1045 kunmap_atomic(src_p);
1046
1047 bio_advance_iter(src, &src_iter, bytes);
1048 bio_advance_iter(dst, &dst_iter, bytes);
1049 }
1050 }
1051 EXPORT_SYMBOL(bio_copy_data);
1052
1053 struct bio_map_data {
1054 int is_our_pages;
1055 struct iov_iter iter;
1056 struct iovec iov[];
1057 };
1058
1059 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1060 gfp_t gfp_mask)
1061 {
1062 if (iov_count > UIO_MAXIOV)
1063 return NULL;
1064
1065 return kmalloc(sizeof(struct bio_map_data) +
1066 sizeof(struct iovec) * iov_count, gfp_mask);
1067 }
1068
1069 /**
1070 * bio_copy_from_iter - copy all pages from iov_iter to bio
1071 * @bio: The &struct bio which describes the I/O as destination
1072 * @iter: iov_iter as source
1073 *
1074 * Copy all pages from iov_iter to bio.
1075 * Returns 0 on success, or error on failure.
1076 */
1077 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1078 {
1079 int i;
1080 struct bio_vec *bvec;
1081
1082 bio_for_each_segment_all(bvec, bio, i) {
1083 ssize_t ret;
1084
1085 ret = copy_page_from_iter(bvec->bv_page,
1086 bvec->bv_offset,
1087 bvec->bv_len,
1088 &iter);
1089
1090 if (!iov_iter_count(&iter))
1091 break;
1092
1093 if (ret < bvec->bv_len)
1094 return -EFAULT;
1095 }
1096
1097 return 0;
1098 }
1099
1100 /**
1101 * bio_copy_to_iter - copy all pages from bio to iov_iter
1102 * @bio: The &struct bio which describes the I/O as source
1103 * @iter: iov_iter as destination
1104 *
1105 * Copy all pages from bio to iov_iter.
1106 * Returns 0 on success, or error on failure.
1107 */
1108 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1109 {
1110 int i;
1111 struct bio_vec *bvec;
1112
1113 bio_for_each_segment_all(bvec, bio, i) {
1114 ssize_t ret;
1115
1116 ret = copy_page_to_iter(bvec->bv_page,
1117 bvec->bv_offset,
1118 bvec->bv_len,
1119 &iter);
1120
1121 if (!iov_iter_count(&iter))
1122 break;
1123
1124 if (ret < bvec->bv_len)
1125 return -EFAULT;
1126 }
1127
1128 return 0;
1129 }
1130
1131 void bio_free_pages(struct bio *bio)
1132 {
1133 struct bio_vec *bvec;
1134 int i;
1135
1136 bio_for_each_segment_all(bvec, bio, i)
1137 __free_page(bvec->bv_page);
1138 }
1139 EXPORT_SYMBOL(bio_free_pages);
1140
1141 /**
1142 * bio_uncopy_user - finish previously mapped bio
1143 * @bio: bio being terminated
1144 *
1145 * Free pages allocated from bio_copy_user_iov() and write back data
1146 * to user space in case of a read.
1147 */
1148 int bio_uncopy_user(struct bio *bio)
1149 {
1150 struct bio_map_data *bmd = bio->bi_private;
1151 int ret = 0;
1152
1153 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1154 /*
1155 * if we're in a workqueue, the request is orphaned, so
1156 * don't copy into a random user address space, just free
1157 * and return -EINTR so user space doesn't expect any data.
1158 */
1159 if (!current->mm)
1160 ret = -EINTR;
1161 else if (bio_data_dir(bio) == READ)
1162 ret = bio_copy_to_iter(bio, bmd->iter);
1163 if (bmd->is_our_pages)
1164 bio_free_pages(bio);
1165 }
1166 kfree(bmd);
1167 bio_put(bio);
1168 return ret;
1169 }
1170
1171 /**
1172 * bio_copy_user_iov - copy user data to bio
1173 * @q: destination block queue
1174 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1175 * @iter: iovec iterator
1176 * @gfp_mask: memory allocation flags
1177 *
1178 * Prepares and returns a bio for indirect user io, bouncing data
1179 * to/from kernel pages as necessary. Must be paired with
1180 * call bio_uncopy_user() on io completion.
1181 */
1182 struct bio *bio_copy_user_iov(struct request_queue *q,
1183 struct rq_map_data *map_data,
1184 const struct iov_iter *iter,
1185 gfp_t gfp_mask)
1186 {
1187 struct bio_map_data *bmd;
1188 struct page *page;
1189 struct bio *bio;
1190 int i, ret;
1191 int nr_pages = 0;
1192 unsigned int len = iter->count;
1193 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1194
1195 for (i = 0; i < iter->nr_segs; i++) {
1196 unsigned long uaddr;
1197 unsigned long end;
1198 unsigned long start;
1199
1200 uaddr = (unsigned long) iter->iov[i].iov_base;
1201 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1202 >> PAGE_SHIFT;
1203 start = uaddr >> PAGE_SHIFT;
1204
1205 /*
1206 * Overflow, abort
1207 */
1208 if (end < start)
1209 return ERR_PTR(-EINVAL);
1210
1211 nr_pages += end - start;
1212 }
1213
1214 if (offset)
1215 nr_pages++;
1216
1217 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1218 if (!bmd)
1219 return ERR_PTR(-ENOMEM);
1220
1221 /*
1222 * We need to do a deep copy of the iov_iter including the iovecs.
1223 * The caller provided iov might point to an on-stack or otherwise
1224 * shortlived one.
1225 */
1226 bmd->is_our_pages = map_data ? 0 : 1;
1227 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1228 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1229 iter->nr_segs, iter->count);
1230
1231 ret = -ENOMEM;
1232 bio = bio_kmalloc(gfp_mask, nr_pages);
1233 if (!bio)
1234 goto out_bmd;
1235
1236 if (iter->type & WRITE)
1237 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1238
1239 ret = 0;
1240
1241 if (map_data) {
1242 nr_pages = 1 << map_data->page_order;
1243 i = map_data->offset / PAGE_SIZE;
1244 }
1245 while (len) {
1246 unsigned int bytes = PAGE_SIZE;
1247
1248 bytes -= offset;
1249
1250 if (bytes > len)
1251 bytes = len;
1252
1253 if (map_data) {
1254 if (i == map_data->nr_entries * nr_pages) {
1255 ret = -ENOMEM;
1256 break;
1257 }
1258
1259 page = map_data->pages[i / nr_pages];
1260 page += (i % nr_pages);
1261
1262 i++;
1263 } else {
1264 page = alloc_page(q->bounce_gfp | gfp_mask);
1265 if (!page) {
1266 ret = -ENOMEM;
1267 break;
1268 }
1269 }
1270
1271 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1272 break;
1273
1274 len -= bytes;
1275 offset = 0;
1276 }
1277
1278 if (ret)
1279 goto cleanup;
1280
1281 /*
1282 * success
1283 */
1284 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1285 (map_data && map_data->from_user)) {
1286 ret = bio_copy_from_iter(bio, *iter);
1287 if (ret)
1288 goto cleanup;
1289 }
1290
1291 bio->bi_private = bmd;
1292 return bio;
1293 cleanup:
1294 if (!map_data)
1295 bio_free_pages(bio);
1296 bio_put(bio);
1297 out_bmd:
1298 kfree(bmd);
1299 return ERR_PTR(ret);
1300 }
1301
1302 /**
1303 * bio_map_user_iov - map user iovec into bio
1304 * @q: the struct request_queue for the bio
1305 * @iter: iovec iterator
1306 * @gfp_mask: memory allocation flags
1307 *
1308 * Map the user space address into a bio suitable for io to a block
1309 * device. Returns an error pointer in case of error.
1310 */
1311 struct bio *bio_map_user_iov(struct request_queue *q,
1312 const struct iov_iter *iter,
1313 gfp_t gfp_mask)
1314 {
1315 int j;
1316 int nr_pages = 0;
1317 struct page **pages;
1318 struct bio *bio;
1319 int cur_page = 0;
1320 int ret, offset;
1321 struct iov_iter i;
1322 struct iovec iov;
1323
1324 iov_for_each(iov, i, *iter) {
1325 unsigned long uaddr = (unsigned long) iov.iov_base;
1326 unsigned long len = iov.iov_len;
1327 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1328 unsigned long start = uaddr >> PAGE_SHIFT;
1329
1330 /*
1331 * Overflow, abort
1332 */
1333 if (end < start)
1334 return ERR_PTR(-EINVAL);
1335
1336 nr_pages += end - start;
1337 /*
1338 * buffer must be aligned to at least logical block size for now
1339 */
1340 if (uaddr & queue_dma_alignment(q))
1341 return ERR_PTR(-EINVAL);
1342 }
1343
1344 if (!nr_pages)
1345 return ERR_PTR(-EINVAL);
1346
1347 bio = bio_kmalloc(gfp_mask, nr_pages);
1348 if (!bio)
1349 return ERR_PTR(-ENOMEM);
1350
1351 ret = -ENOMEM;
1352 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1353 if (!pages)
1354 goto out;
1355
1356 iov_for_each(iov, i, *iter) {
1357 unsigned long uaddr = (unsigned long) iov.iov_base;
1358 unsigned long len = iov.iov_len;
1359 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1360 unsigned long start = uaddr >> PAGE_SHIFT;
1361 const int local_nr_pages = end - start;
1362 const int page_limit = cur_page + local_nr_pages;
1363
1364 ret = get_user_pages_fast(uaddr, local_nr_pages,
1365 (iter->type & WRITE) != WRITE,
1366 &pages[cur_page]);
1367 if (ret < local_nr_pages) {
1368 ret = -EFAULT;
1369 goto out_unmap;
1370 }
1371
1372 offset = offset_in_page(uaddr);
1373 for (j = cur_page; j < page_limit; j++) {
1374 unsigned int bytes = PAGE_SIZE - offset;
1375
1376 if (len <= 0)
1377 break;
1378
1379 if (bytes > len)
1380 bytes = len;
1381
1382 /*
1383 * sorry...
1384 */
1385 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1386 bytes)
1387 break;
1388
1389 len -= bytes;
1390 offset = 0;
1391 }
1392
1393 cur_page = j;
1394 /*
1395 * release the pages we didn't map into the bio, if any
1396 */
1397 while (j < page_limit)
1398 put_page(pages[j++]);
1399 }
1400
1401 kfree(pages);
1402
1403 /*
1404 * set data direction, and check if mapped pages need bouncing
1405 */
1406 if (iter->type & WRITE)
1407 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1408
1409 bio_set_flag(bio, BIO_USER_MAPPED);
1410
1411 /*
1412 * subtle -- if __bio_map_user() ended up bouncing a bio,
1413 * it would normally disappear when its bi_end_io is run.
1414 * however, we need it for the unmap, so grab an extra
1415 * reference to it
1416 */
1417 bio_get(bio);
1418 return bio;
1419
1420 out_unmap:
1421 for (j = 0; j < nr_pages; j++) {
1422 if (!pages[j])
1423 break;
1424 put_page(pages[j]);
1425 }
1426 out:
1427 kfree(pages);
1428 bio_put(bio);
1429 return ERR_PTR(ret);
1430 }
1431
1432 static void __bio_unmap_user(struct bio *bio)
1433 {
1434 struct bio_vec *bvec;
1435 int i;
1436
1437 /*
1438 * make sure we dirty pages we wrote to
1439 */
1440 bio_for_each_segment_all(bvec, bio, i) {
1441 if (bio_data_dir(bio) == READ)
1442 set_page_dirty_lock(bvec->bv_page);
1443
1444 put_page(bvec->bv_page);
1445 }
1446
1447 bio_put(bio);
1448 }
1449
1450 /**
1451 * bio_unmap_user - unmap a bio
1452 * @bio: the bio being unmapped
1453 *
1454 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1455 * a process context.
1456 *
1457 * bio_unmap_user() may sleep.
1458 */
1459 void bio_unmap_user(struct bio *bio)
1460 {
1461 __bio_unmap_user(bio);
1462 bio_put(bio);
1463 }
1464
1465 static void bio_map_kern_endio(struct bio *bio)
1466 {
1467 bio_put(bio);
1468 }
1469
1470 /**
1471 * bio_map_kern - map kernel address into bio
1472 * @q: the struct request_queue for the bio
1473 * @data: pointer to buffer to map
1474 * @len: length in bytes
1475 * @gfp_mask: allocation flags for bio allocation
1476 *
1477 * Map the kernel address into a bio suitable for io to a block
1478 * device. Returns an error pointer in case of error.
1479 */
1480 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1481 gfp_t gfp_mask)
1482 {
1483 unsigned long kaddr = (unsigned long)data;
1484 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1485 unsigned long start = kaddr >> PAGE_SHIFT;
1486 const int nr_pages = end - start;
1487 int offset, i;
1488 struct bio *bio;
1489
1490 bio = bio_kmalloc(gfp_mask, nr_pages);
1491 if (!bio)
1492 return ERR_PTR(-ENOMEM);
1493
1494 offset = offset_in_page(kaddr);
1495 for (i = 0; i < nr_pages; i++) {
1496 unsigned int bytes = PAGE_SIZE - offset;
1497
1498 if (len <= 0)
1499 break;
1500
1501 if (bytes > len)
1502 bytes = len;
1503
1504 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1505 offset) < bytes) {
1506 /* we don't support partial mappings */
1507 bio_put(bio);
1508 return ERR_PTR(-EINVAL);
1509 }
1510
1511 data += bytes;
1512 len -= bytes;
1513 offset = 0;
1514 }
1515
1516 bio->bi_end_io = bio_map_kern_endio;
1517 return bio;
1518 }
1519 EXPORT_SYMBOL(bio_map_kern);
1520
1521 static void bio_copy_kern_endio(struct bio *bio)
1522 {
1523 bio_free_pages(bio);
1524 bio_put(bio);
1525 }
1526
1527 static void bio_copy_kern_endio_read(struct bio *bio)
1528 {
1529 char *p = bio->bi_private;
1530 struct bio_vec *bvec;
1531 int i;
1532
1533 bio_for_each_segment_all(bvec, bio, i) {
1534 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1535 p += bvec->bv_len;
1536 }
1537
1538 bio_copy_kern_endio(bio);
1539 }
1540
1541 /**
1542 * bio_copy_kern - copy kernel address into bio
1543 * @q: the struct request_queue for the bio
1544 * @data: pointer to buffer to copy
1545 * @len: length in bytes
1546 * @gfp_mask: allocation flags for bio and page allocation
1547 * @reading: data direction is READ
1548 *
1549 * copy the kernel address into a bio suitable for io to a block
1550 * device. Returns an error pointer in case of error.
1551 */
1552 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1553 gfp_t gfp_mask, int reading)
1554 {
1555 unsigned long kaddr = (unsigned long)data;
1556 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1557 unsigned long start = kaddr >> PAGE_SHIFT;
1558 struct bio *bio;
1559 void *p = data;
1560 int nr_pages = 0;
1561
1562 /*
1563 * Overflow, abort
1564 */
1565 if (end < start)
1566 return ERR_PTR(-EINVAL);
1567
1568 nr_pages = end - start;
1569 bio = bio_kmalloc(gfp_mask, nr_pages);
1570 if (!bio)
1571 return ERR_PTR(-ENOMEM);
1572
1573 while (len) {
1574 struct page *page;
1575 unsigned int bytes = PAGE_SIZE;
1576
1577 if (bytes > len)
1578 bytes = len;
1579
1580 page = alloc_page(q->bounce_gfp | gfp_mask);
1581 if (!page)
1582 goto cleanup;
1583
1584 if (!reading)
1585 memcpy(page_address(page), p, bytes);
1586
1587 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1588 break;
1589
1590 len -= bytes;
1591 p += bytes;
1592 }
1593
1594 if (reading) {
1595 bio->bi_end_io = bio_copy_kern_endio_read;
1596 bio->bi_private = data;
1597 } else {
1598 bio->bi_end_io = bio_copy_kern_endio;
1599 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1600 }
1601
1602 return bio;
1603
1604 cleanup:
1605 bio_free_pages(bio);
1606 bio_put(bio);
1607 return ERR_PTR(-ENOMEM);
1608 }
1609
1610 /*
1611 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1612 * for performing direct-IO in BIOs.
1613 *
1614 * The problem is that we cannot run set_page_dirty() from interrupt context
1615 * because the required locks are not interrupt-safe. So what we can do is to
1616 * mark the pages dirty _before_ performing IO. And in interrupt context,
1617 * check that the pages are still dirty. If so, fine. If not, redirty them
1618 * in process context.
1619 *
1620 * We special-case compound pages here: normally this means reads into hugetlb
1621 * pages. The logic in here doesn't really work right for compound pages
1622 * because the VM does not uniformly chase down the head page in all cases.
1623 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1624 * handle them at all. So we skip compound pages here at an early stage.
1625 *
1626 * Note that this code is very hard to test under normal circumstances because
1627 * direct-io pins the pages with get_user_pages(). This makes
1628 * is_page_cache_freeable return false, and the VM will not clean the pages.
1629 * But other code (eg, flusher threads) could clean the pages if they are mapped
1630 * pagecache.
1631 *
1632 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1633 * deferred bio dirtying paths.
1634 */
1635
1636 /*
1637 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1638 */
1639 void bio_set_pages_dirty(struct bio *bio)
1640 {
1641 struct bio_vec *bvec;
1642 int i;
1643
1644 bio_for_each_segment_all(bvec, bio, i) {
1645 struct page *page = bvec->bv_page;
1646
1647 if (page && !PageCompound(page))
1648 set_page_dirty_lock(page);
1649 }
1650 }
1651
1652 static void bio_release_pages(struct bio *bio)
1653 {
1654 struct bio_vec *bvec;
1655 int i;
1656
1657 bio_for_each_segment_all(bvec, bio, i) {
1658 struct page *page = bvec->bv_page;
1659
1660 if (page)
1661 put_page(page);
1662 }
1663 }
1664
1665 /*
1666 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1667 * If they are, then fine. If, however, some pages are clean then they must
1668 * have been written out during the direct-IO read. So we take another ref on
1669 * the BIO and the offending pages and re-dirty the pages in process context.
1670 *
1671 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1672 * here on. It will run one put_page() against each page and will run one
1673 * bio_put() against the BIO.
1674 */
1675
1676 static void bio_dirty_fn(struct work_struct *work);
1677
1678 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1679 static DEFINE_SPINLOCK(bio_dirty_lock);
1680 static struct bio *bio_dirty_list;
1681
1682 /*
1683 * This runs in process context
1684 */
1685 static void bio_dirty_fn(struct work_struct *work)
1686 {
1687 unsigned long flags;
1688 struct bio *bio;
1689
1690 spin_lock_irqsave(&bio_dirty_lock, flags);
1691 bio = bio_dirty_list;
1692 bio_dirty_list = NULL;
1693 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1694
1695 while (bio) {
1696 struct bio *next = bio->bi_private;
1697
1698 bio_set_pages_dirty(bio);
1699 bio_release_pages(bio);
1700 bio_put(bio);
1701 bio = next;
1702 }
1703 }
1704
1705 void bio_check_pages_dirty(struct bio *bio)
1706 {
1707 struct bio_vec *bvec;
1708 int nr_clean_pages = 0;
1709 int i;
1710
1711 bio_for_each_segment_all(bvec, bio, i) {
1712 struct page *page = bvec->bv_page;
1713
1714 if (PageDirty(page) || PageCompound(page)) {
1715 put_page(page);
1716 bvec->bv_page = NULL;
1717 } else {
1718 nr_clean_pages++;
1719 }
1720 }
1721
1722 if (nr_clean_pages) {
1723 unsigned long flags;
1724
1725 spin_lock_irqsave(&bio_dirty_lock, flags);
1726 bio->bi_private = bio_dirty_list;
1727 bio_dirty_list = bio;
1728 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1729 schedule_work(&bio_dirty_work);
1730 } else {
1731 bio_put(bio);
1732 }
1733 }
1734
1735 void generic_start_io_acct(int rw, unsigned long sectors,
1736 struct hd_struct *part)
1737 {
1738 int cpu = part_stat_lock();
1739
1740 part_round_stats(cpu, part);
1741 part_stat_inc(cpu, part, ios[rw]);
1742 part_stat_add(cpu, part, sectors[rw], sectors);
1743 part_inc_in_flight(part, rw);
1744
1745 part_stat_unlock();
1746 }
1747 EXPORT_SYMBOL(generic_start_io_acct);
1748
1749 void generic_end_io_acct(int rw, struct hd_struct *part,
1750 unsigned long start_time)
1751 {
1752 unsigned long duration = jiffies - start_time;
1753 int cpu = part_stat_lock();
1754
1755 part_stat_add(cpu, part, ticks[rw], duration);
1756 part_round_stats(cpu, part);
1757 part_dec_in_flight(part, rw);
1758
1759 part_stat_unlock();
1760 }
1761 EXPORT_SYMBOL(generic_end_io_acct);
1762
1763 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1764 void bio_flush_dcache_pages(struct bio *bi)
1765 {
1766 struct bio_vec bvec;
1767 struct bvec_iter iter;
1768
1769 bio_for_each_segment(bvec, bi, iter)
1770 flush_dcache_page(bvec.bv_page);
1771 }
1772 EXPORT_SYMBOL(bio_flush_dcache_pages);
1773 #endif
1774
1775 static inline bool bio_remaining_done(struct bio *bio)
1776 {
1777 /*
1778 * If we're not chaining, then ->__bi_remaining is always 1 and
1779 * we always end io on the first invocation.
1780 */
1781 if (!bio_flagged(bio, BIO_CHAIN))
1782 return true;
1783
1784 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1785
1786 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1787 bio_clear_flag(bio, BIO_CHAIN);
1788 return true;
1789 }
1790
1791 return false;
1792 }
1793
1794 /**
1795 * bio_endio - end I/O on a bio
1796 * @bio: bio
1797 *
1798 * Description:
1799 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1800 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1801 * bio unless they own it and thus know that it has an end_io function.
1802 **/
1803 void bio_endio(struct bio *bio)
1804 {
1805 again:
1806 if (!bio_remaining_done(bio))
1807 return;
1808
1809 /*
1810 * Need to have a real endio function for chained bios, otherwise
1811 * various corner cases will break (like stacking block devices that
1812 * save/restore bi_end_io) - however, we want to avoid unbounded
1813 * recursion and blowing the stack. Tail call optimization would
1814 * handle this, but compiling with frame pointers also disables
1815 * gcc's sibling call optimization.
1816 */
1817 if (bio->bi_end_io == bio_chain_endio) {
1818 bio = __bio_chain_endio(bio);
1819 goto again;
1820 }
1821
1822 if (bio->bi_end_io)
1823 bio->bi_end_io(bio);
1824 }
1825 EXPORT_SYMBOL(bio_endio);
1826
1827 /**
1828 * bio_split - split a bio
1829 * @bio: bio to split
1830 * @sectors: number of sectors to split from the front of @bio
1831 * @gfp: gfp mask
1832 * @bs: bio set to allocate from
1833 *
1834 * Allocates and returns a new bio which represents @sectors from the start of
1835 * @bio, and updates @bio to represent the remaining sectors.
1836 *
1837 * Unless this is a discard request the newly allocated bio will point
1838 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1839 * @bio is not freed before the split.
1840 */
1841 struct bio *bio_split(struct bio *bio, int sectors,
1842 gfp_t gfp, struct bio_set *bs)
1843 {
1844 struct bio *split = NULL;
1845
1846 BUG_ON(sectors <= 0);
1847 BUG_ON(sectors >= bio_sectors(bio));
1848
1849 split = bio_clone_fast(bio, gfp, bs);
1850 if (!split)
1851 return NULL;
1852
1853 split->bi_iter.bi_size = sectors << 9;
1854
1855 if (bio_integrity(split))
1856 bio_integrity_trim(split, 0, sectors);
1857
1858 bio_advance(bio, split->bi_iter.bi_size);
1859
1860 return split;
1861 }
1862 EXPORT_SYMBOL(bio_split);
1863
1864 /**
1865 * bio_trim - trim a bio
1866 * @bio: bio to trim
1867 * @offset: number of sectors to trim from the front of @bio
1868 * @size: size we want to trim @bio to, in sectors
1869 */
1870 void bio_trim(struct bio *bio, int offset, int size)
1871 {
1872 /* 'bio' is a cloned bio which we need to trim to match
1873 * the given offset and size.
1874 */
1875
1876 size <<= 9;
1877 if (offset == 0 && size == bio->bi_iter.bi_size)
1878 return;
1879
1880 bio_clear_flag(bio, BIO_SEG_VALID);
1881
1882 bio_advance(bio, offset << 9);
1883
1884 bio->bi_iter.bi_size = size;
1885 }
1886 EXPORT_SYMBOL_GPL(bio_trim);
1887
1888 /*
1889 * create memory pools for biovec's in a bio_set.
1890 * use the global biovec slabs created for general use.
1891 */
1892 mempool_t *biovec_create_pool(int pool_entries)
1893 {
1894 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1895
1896 return mempool_create_slab_pool(pool_entries, bp->slab);
1897 }
1898
1899 void bioset_free(struct bio_set *bs)
1900 {
1901 if (bs->rescue_workqueue)
1902 destroy_workqueue(bs->rescue_workqueue);
1903
1904 if (bs->bio_pool)
1905 mempool_destroy(bs->bio_pool);
1906
1907 if (bs->bvec_pool)
1908 mempool_destroy(bs->bvec_pool);
1909
1910 bioset_integrity_free(bs);
1911 bio_put_slab(bs);
1912
1913 kfree(bs);
1914 }
1915 EXPORT_SYMBOL(bioset_free);
1916
1917 static struct bio_set *__bioset_create(unsigned int pool_size,
1918 unsigned int front_pad,
1919 bool create_bvec_pool)
1920 {
1921 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1922 struct bio_set *bs;
1923
1924 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1925 if (!bs)
1926 return NULL;
1927
1928 bs->front_pad = front_pad;
1929
1930 spin_lock_init(&bs->rescue_lock);
1931 bio_list_init(&bs->rescue_list);
1932 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1933
1934 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1935 if (!bs->bio_slab) {
1936 kfree(bs);
1937 return NULL;
1938 }
1939
1940 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1941 if (!bs->bio_pool)
1942 goto bad;
1943
1944 if (create_bvec_pool) {
1945 bs->bvec_pool = biovec_create_pool(pool_size);
1946 if (!bs->bvec_pool)
1947 goto bad;
1948 }
1949
1950 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1951 if (!bs->rescue_workqueue)
1952 goto bad;
1953
1954 return bs;
1955 bad:
1956 bioset_free(bs);
1957 return NULL;
1958 }
1959
1960 /**
1961 * bioset_create - Create a bio_set
1962 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1963 * @front_pad: Number of bytes to allocate in front of the returned bio
1964 *
1965 * Description:
1966 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1967 * to ask for a number of bytes to be allocated in front of the bio.
1968 * Front pad allocation is useful for embedding the bio inside
1969 * another structure, to avoid allocating extra data to go with the bio.
1970 * Note that the bio must be embedded at the END of that structure always,
1971 * or things will break badly.
1972 */
1973 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1974 {
1975 return __bioset_create(pool_size, front_pad, true);
1976 }
1977 EXPORT_SYMBOL(bioset_create);
1978
1979 /**
1980 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1981 * @pool_size: Number of bio to cache in the mempool
1982 * @front_pad: Number of bytes to allocate in front of the returned bio
1983 *
1984 * Description:
1985 * Same functionality as bioset_create() except that mempool is not
1986 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1987 */
1988 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1989 {
1990 return __bioset_create(pool_size, front_pad, false);
1991 }
1992 EXPORT_SYMBOL(bioset_create_nobvec);
1993
1994 #ifdef CONFIG_BLK_CGROUP
1995
1996 /**
1997 * bio_associate_blkcg - associate a bio with the specified blkcg
1998 * @bio: target bio
1999 * @blkcg_css: css of the blkcg to associate
2000 *
2001 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2002 * treat @bio as if it were issued by a task which belongs to the blkcg.
2003 *
2004 * This function takes an extra reference of @blkcg_css which will be put
2005 * when @bio is released. The caller must own @bio and is responsible for
2006 * synchronizing calls to this function.
2007 */
2008 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2009 {
2010 if (unlikely(bio->bi_css))
2011 return -EBUSY;
2012 css_get(blkcg_css);
2013 bio->bi_css = blkcg_css;
2014 return 0;
2015 }
2016 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2017
2018 /**
2019 * bio_associate_current - associate a bio with %current
2020 * @bio: target bio
2021 *
2022 * Associate @bio with %current if it hasn't been associated yet. Block
2023 * layer will treat @bio as if it were issued by %current no matter which
2024 * task actually issues it.
2025 *
2026 * This function takes an extra reference of @task's io_context and blkcg
2027 * which will be put when @bio is released. The caller must own @bio,
2028 * ensure %current->io_context exists, and is responsible for synchronizing
2029 * calls to this function.
2030 */
2031 int bio_associate_current(struct bio *bio)
2032 {
2033 struct io_context *ioc;
2034
2035 if (bio->bi_css)
2036 return -EBUSY;
2037
2038 ioc = current->io_context;
2039 if (!ioc)
2040 return -ENOENT;
2041
2042 get_io_context_active(ioc);
2043 bio->bi_ioc = ioc;
2044 bio->bi_css = task_get_css(current, io_cgrp_id);
2045 return 0;
2046 }
2047 EXPORT_SYMBOL_GPL(bio_associate_current);
2048
2049 /**
2050 * bio_disassociate_task - undo bio_associate_current()
2051 * @bio: target bio
2052 */
2053 void bio_disassociate_task(struct bio *bio)
2054 {
2055 if (bio->bi_ioc) {
2056 put_io_context(bio->bi_ioc);
2057 bio->bi_ioc = NULL;
2058 }
2059 if (bio->bi_css) {
2060 css_put(bio->bi_css);
2061 bio->bi_css = NULL;
2062 }
2063 }
2064
2065 /**
2066 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2067 * @dst: destination bio
2068 * @src: source bio
2069 */
2070 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2071 {
2072 if (src->bi_css)
2073 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2074 }
2075
2076 #endif /* CONFIG_BLK_CGROUP */
2077
2078 static void __init biovec_init_slabs(void)
2079 {
2080 int i;
2081
2082 for (i = 0; i < BVEC_POOL_NR; i++) {
2083 int size;
2084 struct biovec_slab *bvs = bvec_slabs + i;
2085
2086 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2087 bvs->slab = NULL;
2088 continue;
2089 }
2090
2091 size = bvs->nr_vecs * sizeof(struct bio_vec);
2092 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2093 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2094 }
2095 }
2096
2097 static int __init init_bio(void)
2098 {
2099 bio_slab_max = 2;
2100 bio_slab_nr = 0;
2101 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2102 if (!bio_slabs)
2103 panic("bio: can't allocate bios\n");
2104
2105 bio_integrity_init();
2106 biovec_init_slabs();
2107
2108 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2109 if (!fs_bio_set)
2110 panic("bio: can't allocate bios\n");
2111
2112 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2113 panic("bio: can't create integrity pool\n");
2114
2115 return 0;
2116 }
2117 subsys_initcall(init_bio);