]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - block/blk-flush.c
UBUNTU: Start new release
[mirror_ubuntu-zesty-kernel.git] / block / blk-flush.c
1 /*
2 * Functions to sequence FLUSH and FUA writes.
3 *
4 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics
5 * Copyright (C) 2011 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three
10 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
11 * properties and hardware capability.
12 *
13 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
14 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates
15 * that the device cache should be flushed before the data is executed, and
16 * REQ_FUA means that the data must be on non-volatile media on request
17 * completion.
18 *
19 * If the device doesn't have writeback cache, FLUSH and FUA don't make any
20 * difference. The requests are either completed immediately if there's no
21 * data or executed as normal requests otherwise.
22 *
23 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
24 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
25 *
26 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
27 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
28 *
29 * The actual execution of flush is double buffered. Whenever a request
30 * needs to execute PRE or POSTFLUSH, it queues at
31 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a
32 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush
33 * completes, all the requests which were pending are proceeded to the next
34 * step. This allows arbitrary merging of different types of FLUSH/FUA
35 * requests.
36 *
37 * Currently, the following conditions are used to determine when to issue
38 * flush.
39 *
40 * C1. At any given time, only one flush shall be in progress. This makes
41 * double buffering sufficient.
42 *
43 * C2. Flush is deferred if any request is executing DATA of its sequence.
44 * This avoids issuing separate POSTFLUSHes for requests which shared
45 * PREFLUSH.
46 *
47 * C3. The second condition is ignored if there is a request which has
48 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid
49 * starvation in the unlikely case where there are continuous stream of
50 * FUA (without FLUSH) requests.
51 *
52 * For devices which support FUA, it isn't clear whether C2 (and thus C3)
53 * is beneficial.
54 *
55 * Note that a sequenced FLUSH/FUA request with DATA is completed twice.
56 * Once while executing DATA and again after the whole sequence is
57 * complete. The first completion updates the contained bio but doesn't
58 * finish it so that the bio submitter is notified only after the whole
59 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in
60 * req_bio_endio().
61 *
62 * The above peculiarity requires that each FLUSH/FUA request has only one
63 * bio attached to it, which is guaranteed as they aren't allowed to be
64 * merged in the usual way.
65 */
66
67 #include <linux/kernel.h>
68 #include <linux/module.h>
69 #include <linux/bio.h>
70 #include <linux/blkdev.h>
71 #include <linux/gfp.h>
72 #include <linux/blk-mq.h>
73
74 #include "blk.h"
75 #include "blk-mq.h"
76 #include "blk-mq-tag.h"
77
78 /* FLUSH/FUA sequences */
79 enum {
80 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */
81 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */
82 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */
83 REQ_FSEQ_DONE = (1 << 3),
84
85 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
86 REQ_FSEQ_POSTFLUSH,
87
88 /*
89 * If flush has been pending longer than the following timeout,
90 * it's issued even if flush_data requests are still in flight.
91 */
92 FLUSH_PENDING_TIMEOUT = 5 * HZ,
93 };
94
95 static bool blk_kick_flush(struct request_queue *q,
96 struct blk_flush_queue *fq);
97
98 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
99 {
100 unsigned int policy = 0;
101
102 if (blk_rq_sectors(rq))
103 policy |= REQ_FSEQ_DATA;
104
105 if (fflags & (1UL << QUEUE_FLAG_WC)) {
106 if (rq->cmd_flags & REQ_PREFLUSH)
107 policy |= REQ_FSEQ_PREFLUSH;
108 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
109 (rq->cmd_flags & REQ_FUA))
110 policy |= REQ_FSEQ_POSTFLUSH;
111 }
112 return policy;
113 }
114
115 static unsigned int blk_flush_cur_seq(struct request *rq)
116 {
117 return 1 << ffz(rq->flush.seq);
118 }
119
120 static void blk_flush_restore_request(struct request *rq)
121 {
122 /*
123 * After flush data completion, @rq->bio is %NULL but we need to
124 * complete the bio again. @rq->biotail is guaranteed to equal the
125 * original @rq->bio. Restore it.
126 */
127 rq->bio = rq->biotail;
128
129 /* make @rq a normal request */
130 rq->rq_flags &= ~RQF_FLUSH_SEQ;
131 rq->end_io = rq->flush.saved_end_io;
132 }
133
134 static bool blk_flush_queue_rq(struct request *rq, bool add_front)
135 {
136 if (rq->q->mq_ops) {
137 blk_mq_add_to_requeue_list(rq, add_front, true);
138 return false;
139 } else {
140 if (add_front)
141 list_add(&rq->queuelist, &rq->q->queue_head);
142 else
143 list_add_tail(&rq->queuelist, &rq->q->queue_head);
144 return true;
145 }
146 }
147
148 /**
149 * blk_flush_complete_seq - complete flush sequence
150 * @rq: FLUSH/FUA request being sequenced
151 * @fq: flush queue
152 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
153 * @error: whether an error occurred
154 *
155 * @rq just completed @seq part of its flush sequence, record the
156 * completion and trigger the next step.
157 *
158 * CONTEXT:
159 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
160 *
161 * RETURNS:
162 * %true if requests were added to the dispatch queue, %false otherwise.
163 */
164 static bool blk_flush_complete_seq(struct request *rq,
165 struct blk_flush_queue *fq,
166 unsigned int seq, int error)
167 {
168 struct request_queue *q = rq->q;
169 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
170 bool queued = false, kicked;
171
172 BUG_ON(rq->flush.seq & seq);
173 rq->flush.seq |= seq;
174
175 if (likely(!error))
176 seq = blk_flush_cur_seq(rq);
177 else
178 seq = REQ_FSEQ_DONE;
179
180 switch (seq) {
181 case REQ_FSEQ_PREFLUSH:
182 case REQ_FSEQ_POSTFLUSH:
183 /* queue for flush */
184 if (list_empty(pending))
185 fq->flush_pending_since = jiffies;
186 list_move_tail(&rq->flush.list, pending);
187 break;
188
189 case REQ_FSEQ_DATA:
190 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
191 queued = blk_flush_queue_rq(rq, true);
192 break;
193
194 case REQ_FSEQ_DONE:
195 /*
196 * @rq was previously adjusted by blk_flush_issue() for
197 * flush sequencing and may already have gone through the
198 * flush data request completion path. Restore @rq for
199 * normal completion and end it.
200 */
201 BUG_ON(!list_empty(&rq->queuelist));
202 list_del_init(&rq->flush.list);
203 blk_flush_restore_request(rq);
204 if (q->mq_ops)
205 blk_mq_end_request(rq, error);
206 else
207 __blk_end_request_all(rq, error);
208 break;
209
210 default:
211 BUG();
212 }
213
214 kicked = blk_kick_flush(q, fq);
215 return kicked | queued;
216 }
217
218 static void flush_end_io(struct request *flush_rq, int error)
219 {
220 struct request_queue *q = flush_rq->q;
221 struct list_head *running;
222 bool queued = false;
223 struct request *rq, *n;
224 unsigned long flags = 0;
225 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
226
227 if (q->mq_ops) {
228 struct blk_mq_hw_ctx *hctx;
229
230 /* release the tag's ownership to the req cloned from */
231 spin_lock_irqsave(&fq->mq_flush_lock, flags);
232 hctx = blk_mq_map_queue(q, flush_rq->mq_ctx->cpu);
233 blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq);
234 flush_rq->tag = -1;
235 }
236
237 running = &fq->flush_queue[fq->flush_running_idx];
238 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
239
240 /* account completion of the flush request */
241 fq->flush_running_idx ^= 1;
242
243 if (!q->mq_ops)
244 elv_completed_request(q, flush_rq);
245
246 /* and push the waiting requests to the next stage */
247 list_for_each_entry_safe(rq, n, running, flush.list) {
248 unsigned int seq = blk_flush_cur_seq(rq);
249
250 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
251 queued |= blk_flush_complete_seq(rq, fq, seq, error);
252 }
253
254 /*
255 * Kick the queue to avoid stall for two cases:
256 * 1. Moving a request silently to empty queue_head may stall the
257 * queue.
258 * 2. When flush request is running in non-queueable queue, the
259 * queue is hold. Restart the queue after flush request is finished
260 * to avoid stall.
261 * This function is called from request completion path and calling
262 * directly into request_fn may confuse the driver. Always use
263 * kblockd.
264 */
265 if (queued || fq->flush_queue_delayed) {
266 WARN_ON(q->mq_ops);
267 blk_run_queue_async(q);
268 }
269 fq->flush_queue_delayed = 0;
270 if (q->mq_ops)
271 spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
272 }
273
274 /**
275 * blk_kick_flush - consider issuing flush request
276 * @q: request_queue being kicked
277 * @fq: flush queue
278 *
279 * Flush related states of @q have changed, consider issuing flush request.
280 * Please read the comment at the top of this file for more info.
281 *
282 * CONTEXT:
283 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
284 *
285 * RETURNS:
286 * %true if flush was issued, %false otherwise.
287 */
288 static bool blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq)
289 {
290 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
291 struct request *first_rq =
292 list_first_entry(pending, struct request, flush.list);
293 struct request *flush_rq = fq->flush_rq;
294
295 /* C1 described at the top of this file */
296 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
297 return false;
298
299 /* C2 and C3 */
300 if (!list_empty(&fq->flush_data_in_flight) &&
301 time_before(jiffies,
302 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
303 return false;
304
305 /*
306 * Issue flush and toggle pending_idx. This makes pending_idx
307 * different from running_idx, which means flush is in flight.
308 */
309 fq->flush_pending_idx ^= 1;
310
311 blk_rq_init(q, flush_rq);
312
313 /*
314 * Borrow tag from the first request since they can't
315 * be in flight at the same time. And acquire the tag's
316 * ownership for flush req.
317 */
318 if (q->mq_ops) {
319 struct blk_mq_hw_ctx *hctx;
320
321 flush_rq->mq_ctx = first_rq->mq_ctx;
322 flush_rq->tag = first_rq->tag;
323 fq->orig_rq = first_rq;
324
325 hctx = blk_mq_map_queue(q, first_rq->mq_ctx->cpu);
326 blk_mq_tag_set_rq(hctx, first_rq->tag, flush_rq);
327 }
328
329 flush_rq->cmd_type = REQ_TYPE_FS;
330 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
331 flush_rq->rq_flags |= RQF_FLUSH_SEQ;
332 flush_rq->rq_disk = first_rq->rq_disk;
333 flush_rq->end_io = flush_end_io;
334
335 return blk_flush_queue_rq(flush_rq, false);
336 }
337
338 static void flush_data_end_io(struct request *rq, int error)
339 {
340 struct request_queue *q = rq->q;
341 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
342
343 /*
344 * Updating q->in_flight[] here for making this tag usable
345 * early. Because in blk_queue_start_tag(),
346 * q->in_flight[BLK_RW_ASYNC] is used to limit async I/O and
347 * reserve tags for sync I/O.
348 *
349 * More importantly this way can avoid the following I/O
350 * deadlock:
351 *
352 * - suppose there are 40 fua requests comming to flush queue
353 * and queue depth is 31
354 * - 30 rqs are scheduled then blk_queue_start_tag() can't alloc
355 * tag for async I/O any more
356 * - all the 30 rqs are completed before FLUSH_PENDING_TIMEOUT
357 * and flush_data_end_io() is called
358 * - the other rqs still can't go ahead if not updating
359 * q->in_flight[BLK_RW_ASYNC] here, meantime these rqs
360 * are held in flush data queue and make no progress of
361 * handling post flush rq
362 * - only after the post flush rq is handled, all these rqs
363 * can be completed
364 */
365
366 elv_completed_request(q, rq);
367
368 /* for avoiding double accounting */
369 rq->rq_flags &= ~RQF_STARTED;
370
371 /*
372 * After populating an empty queue, kick it to avoid stall. Read
373 * the comment in flush_end_io().
374 */
375 if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
376 blk_run_queue_async(q);
377 }
378
379 static void mq_flush_data_end_io(struct request *rq, int error)
380 {
381 struct request_queue *q = rq->q;
382 struct blk_mq_hw_ctx *hctx;
383 struct blk_mq_ctx *ctx = rq->mq_ctx;
384 unsigned long flags;
385 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
386
387 hctx = blk_mq_map_queue(q, ctx->cpu);
388
389 /*
390 * After populating an empty queue, kick it to avoid stall. Read
391 * the comment in flush_end_io().
392 */
393 spin_lock_irqsave(&fq->mq_flush_lock, flags);
394 if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
395 blk_mq_run_hw_queue(hctx, true);
396 spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
397 }
398
399 /**
400 * blk_insert_flush - insert a new FLUSH/FUA request
401 * @rq: request to insert
402 *
403 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
404 * or __blk_mq_run_hw_queue() to dispatch request.
405 * @rq is being submitted. Analyze what needs to be done and put it on the
406 * right queue.
407 *
408 * CONTEXT:
409 * spin_lock_irq(q->queue_lock) in !mq case
410 */
411 void blk_insert_flush(struct request *rq)
412 {
413 struct request_queue *q = rq->q;
414 unsigned long fflags = q->queue_flags; /* may change, cache */
415 unsigned int policy = blk_flush_policy(fflags, rq);
416 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
417
418 /*
419 * @policy now records what operations need to be done. Adjust
420 * REQ_PREFLUSH and FUA for the driver.
421 */
422 rq->cmd_flags &= ~REQ_PREFLUSH;
423 if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
424 rq->cmd_flags &= ~REQ_FUA;
425
426 /*
427 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
428 * of those flags, we have to set REQ_SYNC to avoid skewing
429 * the request accounting.
430 */
431 rq->cmd_flags |= REQ_SYNC;
432
433 /*
434 * An empty flush handed down from a stacking driver may
435 * translate into nothing if the underlying device does not
436 * advertise a write-back cache. In this case, simply
437 * complete the request.
438 */
439 if (!policy) {
440 if (q->mq_ops)
441 blk_mq_end_request(rq, 0);
442 else
443 __blk_end_bidi_request(rq, 0, 0, 0);
444 return;
445 }
446
447 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
448
449 /*
450 * If there's data but flush is not necessary, the request can be
451 * processed directly without going through flush machinery. Queue
452 * for normal execution.
453 */
454 if ((policy & REQ_FSEQ_DATA) &&
455 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
456 if (q->mq_ops) {
457 blk_mq_insert_request(rq, false, true, false);
458 } else
459 list_add_tail(&rq->queuelist, &q->queue_head);
460 return;
461 }
462
463 /*
464 * @rq should go through flush machinery. Mark it part of flush
465 * sequence and submit for further processing.
466 */
467 memset(&rq->flush, 0, sizeof(rq->flush));
468 INIT_LIST_HEAD(&rq->flush.list);
469 rq->rq_flags |= RQF_FLUSH_SEQ;
470 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
471 if (q->mq_ops) {
472 rq->end_io = mq_flush_data_end_io;
473
474 spin_lock_irq(&fq->mq_flush_lock);
475 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
476 spin_unlock_irq(&fq->mq_flush_lock);
477 return;
478 }
479 rq->end_io = flush_data_end_io;
480
481 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
482 }
483
484 /**
485 * blkdev_issue_flush - queue a flush
486 * @bdev: blockdev to issue flush for
487 * @gfp_mask: memory allocation flags (for bio_alloc)
488 * @error_sector: error sector
489 *
490 * Description:
491 * Issue a flush for the block device in question. Caller can supply
492 * room for storing the error offset in case of a flush error, if they
493 * wish to. If WAIT flag is not passed then caller may check only what
494 * request was pushed in some internal queue for later handling.
495 */
496 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
497 sector_t *error_sector)
498 {
499 struct request_queue *q;
500 struct bio *bio;
501 int ret = 0;
502
503 if (bdev->bd_disk == NULL)
504 return -ENXIO;
505
506 q = bdev_get_queue(bdev);
507 if (!q)
508 return -ENXIO;
509
510 /*
511 * some block devices may not have their queue correctly set up here
512 * (e.g. loop device without a backing file) and so issuing a flush
513 * here will panic. Ensure there is a request function before issuing
514 * the flush.
515 */
516 if (!q->make_request_fn)
517 return -ENXIO;
518
519 bio = bio_alloc(gfp_mask, 0);
520 bio->bi_bdev = bdev;
521 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
522
523 ret = submit_bio_wait(bio);
524
525 /*
526 * The driver must store the error location in ->bi_sector, if
527 * it supports it. For non-stacked drivers, this should be
528 * copied from blk_rq_pos(rq).
529 */
530 if (error_sector)
531 *error_sector = bio->bi_iter.bi_sector;
532
533 bio_put(bio);
534 return ret;
535 }
536 EXPORT_SYMBOL(blkdev_issue_flush);
537
538 struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
539 int node, int cmd_size)
540 {
541 struct blk_flush_queue *fq;
542 int rq_sz = sizeof(struct request);
543
544 fq = kzalloc_node(sizeof(*fq), GFP_KERNEL, node);
545 if (!fq)
546 goto fail;
547
548 if (q->mq_ops) {
549 spin_lock_init(&fq->mq_flush_lock);
550 rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
551 }
552
553 fq->flush_rq = kzalloc_node(rq_sz, GFP_KERNEL, node);
554 if (!fq->flush_rq)
555 goto fail_rq;
556
557 INIT_LIST_HEAD(&fq->flush_queue[0]);
558 INIT_LIST_HEAD(&fq->flush_queue[1]);
559 INIT_LIST_HEAD(&fq->flush_data_in_flight);
560
561 return fq;
562
563 fail_rq:
564 kfree(fq);
565 fail:
566 return NULL;
567 }
568
569 void blk_free_flush_queue(struct blk_flush_queue *fq)
570 {
571 /* bio based request queue hasn't flush queue */
572 if (!fq)
573 return;
574
575 kfree(fq->flush_rq);
576 kfree(fq);
577 }