]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - block/blk-mq.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
35
36 static DEFINE_MUTEX(all_q_mutex);
37 static LIST_HEAD(all_q_list);
38
39 /*
40 * Check if any of the ctx's have pending work in this hardware queue
41 */
42 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
43 {
44 return sbitmap_any_bit_set(&hctx->ctx_map);
45 }
46
47 /*
48 * Mark this ctx as having pending work in this hardware queue
49 */
50 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52 {
53 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
54 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
55 }
56
57 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
58 struct blk_mq_ctx *ctx)
59 {
60 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
61 }
62
63 void blk_mq_freeze_queue_start(struct request_queue *q)
64 {
65 int freeze_depth;
66
67 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
68 if (freeze_depth == 1) {
69 percpu_ref_kill(&q->q_usage_counter);
70 blk_mq_run_hw_queues(q, false);
71 }
72 }
73 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
74
75 static void blk_mq_freeze_queue_wait(struct request_queue *q)
76 {
77 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
78 }
79
80 /*
81 * Guarantee no request is in use, so we can change any data structure of
82 * the queue afterward.
83 */
84 void blk_freeze_queue(struct request_queue *q)
85 {
86 /*
87 * In the !blk_mq case we are only calling this to kill the
88 * q_usage_counter, otherwise this increases the freeze depth
89 * and waits for it to return to zero. For this reason there is
90 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
91 * exported to drivers as the only user for unfreeze is blk_mq.
92 */
93 blk_mq_freeze_queue_start(q);
94 blk_mq_freeze_queue_wait(q);
95 }
96
97 void blk_mq_freeze_queue(struct request_queue *q)
98 {
99 /*
100 * ...just an alias to keep freeze and unfreeze actions balanced
101 * in the blk_mq_* namespace
102 */
103 blk_freeze_queue(q);
104 }
105 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
106
107 void blk_mq_unfreeze_queue(struct request_queue *q)
108 {
109 int freeze_depth;
110
111 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
112 WARN_ON_ONCE(freeze_depth < 0);
113 if (!freeze_depth) {
114 percpu_ref_reinit(&q->q_usage_counter);
115 wake_up_all(&q->mq_freeze_wq);
116 }
117 }
118 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
119
120 /**
121 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
122 * @q: request queue.
123 *
124 * Note: this function does not prevent that the struct request end_io()
125 * callback function is invoked. Additionally, it is not prevented that
126 * new queue_rq() calls occur unless the queue has been stopped first.
127 */
128 void blk_mq_quiesce_queue(struct request_queue *q)
129 {
130 struct blk_mq_hw_ctx *hctx;
131 unsigned int i;
132 bool rcu = false;
133
134 blk_mq_stop_hw_queues(q);
135
136 queue_for_each_hw_ctx(q, hctx, i) {
137 if (hctx->flags & BLK_MQ_F_BLOCKING)
138 synchronize_srcu(&hctx->queue_rq_srcu);
139 else
140 rcu = true;
141 }
142 if (rcu)
143 synchronize_rcu();
144 }
145 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
146
147 void blk_mq_wake_waiters(struct request_queue *q)
148 {
149 struct blk_mq_hw_ctx *hctx;
150 unsigned int i;
151
152 queue_for_each_hw_ctx(q, hctx, i)
153 if (blk_mq_hw_queue_mapped(hctx))
154 blk_mq_tag_wakeup_all(hctx->tags, true);
155
156 /*
157 * If we are called because the queue has now been marked as
158 * dying, we need to ensure that processes currently waiting on
159 * the queue are notified as well.
160 */
161 wake_up_all(&q->mq_freeze_wq);
162 }
163
164 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
165 {
166 return blk_mq_has_free_tags(hctx->tags);
167 }
168 EXPORT_SYMBOL(blk_mq_can_queue);
169
170 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
171 struct request *rq, unsigned int op)
172 {
173 INIT_LIST_HEAD(&rq->queuelist);
174 /* csd/requeue_work/fifo_time is initialized before use */
175 rq->q = q;
176 rq->mq_ctx = ctx;
177 rq->cmd_flags = op;
178 if (blk_queue_io_stat(q))
179 rq->rq_flags |= RQF_IO_STAT;
180 /* do not touch atomic flags, it needs atomic ops against the timer */
181 rq->cpu = -1;
182 INIT_HLIST_NODE(&rq->hash);
183 RB_CLEAR_NODE(&rq->rb_node);
184 rq->rq_disk = NULL;
185 rq->part = NULL;
186 rq->start_time = jiffies;
187 #ifdef CONFIG_BLK_CGROUP
188 rq->rl = NULL;
189 set_start_time_ns(rq);
190 rq->io_start_time_ns = 0;
191 #endif
192 rq->nr_phys_segments = 0;
193 #if defined(CONFIG_BLK_DEV_INTEGRITY)
194 rq->nr_integrity_segments = 0;
195 #endif
196 rq->special = NULL;
197 /* tag was already set */
198 rq->errors = 0;
199
200 rq->cmd = rq->__cmd;
201
202 rq->extra_len = 0;
203 rq->sense_len = 0;
204 rq->resid_len = 0;
205 rq->sense = NULL;
206
207 INIT_LIST_HEAD(&rq->timeout_list);
208 rq->timeout = 0;
209
210 rq->end_io = NULL;
211 rq->end_io_data = NULL;
212 rq->next_rq = NULL;
213
214 ctx->rq_dispatched[op_is_sync(op)]++;
215 }
216
217 static struct request *
218 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
219 {
220 struct request *rq;
221 unsigned int tag;
222
223 tag = blk_mq_get_tag(data);
224 if (tag != BLK_MQ_TAG_FAIL) {
225 rq = data->hctx->tags->rqs[tag];
226
227 if (blk_mq_tag_busy(data->hctx)) {
228 rq->rq_flags = RQF_MQ_INFLIGHT;
229 atomic_inc(&data->hctx->nr_active);
230 }
231
232 rq->tag = tag;
233 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
234 return rq;
235 }
236
237 return NULL;
238 }
239
240 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
241 unsigned int flags)
242 {
243 struct blk_mq_ctx *ctx;
244 struct blk_mq_hw_ctx *hctx;
245 struct request *rq;
246 struct blk_mq_alloc_data alloc_data;
247 int ret;
248
249 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
250 if (ret)
251 return ERR_PTR(ret);
252
253 ctx = blk_mq_get_ctx(q);
254 hctx = blk_mq_map_queue(q, ctx->cpu);
255 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
256 rq = __blk_mq_alloc_request(&alloc_data, rw);
257 blk_mq_put_ctx(ctx);
258
259 if (!rq) {
260 blk_queue_exit(q);
261 return ERR_PTR(-EWOULDBLOCK);
262 }
263
264 rq->__data_len = 0;
265 rq->__sector = (sector_t) -1;
266 rq->bio = rq->biotail = NULL;
267 return rq;
268 }
269 EXPORT_SYMBOL(blk_mq_alloc_request);
270
271 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
272 unsigned int flags, unsigned int hctx_idx)
273 {
274 struct blk_mq_hw_ctx *hctx;
275 struct blk_mq_ctx *ctx;
276 struct request *rq;
277 struct blk_mq_alloc_data alloc_data;
278 int ret;
279
280 /*
281 * If the tag allocator sleeps we could get an allocation for a
282 * different hardware context. No need to complicate the low level
283 * allocator for this for the rare use case of a command tied to
284 * a specific queue.
285 */
286 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
287 return ERR_PTR(-EINVAL);
288
289 if (hctx_idx >= q->nr_hw_queues)
290 return ERR_PTR(-EIO);
291
292 ret = blk_queue_enter(q, true);
293 if (ret)
294 return ERR_PTR(ret);
295
296 /*
297 * Check if the hardware context is actually mapped to anything.
298 * If not tell the caller that it should skip this queue.
299 */
300 hctx = q->queue_hw_ctx[hctx_idx];
301 if (!blk_mq_hw_queue_mapped(hctx)) {
302 ret = -EXDEV;
303 goto out_queue_exit;
304 }
305 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
306
307 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
308 rq = __blk_mq_alloc_request(&alloc_data, rw);
309 if (!rq) {
310 ret = -EWOULDBLOCK;
311 goto out_queue_exit;
312 }
313
314 return rq;
315
316 out_queue_exit:
317 blk_queue_exit(q);
318 return ERR_PTR(ret);
319 }
320 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
321
322 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
323 struct blk_mq_ctx *ctx, struct request *rq)
324 {
325 const int tag = rq->tag;
326 struct request_queue *q = rq->q;
327
328 if (rq->rq_flags & RQF_MQ_INFLIGHT)
329 atomic_dec(&hctx->nr_active);
330
331 wbt_done(q->rq_wb, &rq->issue_stat);
332 rq->rq_flags = 0;
333
334 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
335 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
336 blk_mq_put_tag(hctx, ctx, tag);
337 blk_queue_exit(q);
338 }
339
340 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
341 {
342 struct blk_mq_ctx *ctx = rq->mq_ctx;
343
344 ctx->rq_completed[rq_is_sync(rq)]++;
345 __blk_mq_free_request(hctx, ctx, rq);
346
347 }
348 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
349
350 void blk_mq_free_request(struct request *rq)
351 {
352 blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
353 }
354 EXPORT_SYMBOL_GPL(blk_mq_free_request);
355
356 inline void __blk_mq_end_request(struct request *rq, int error)
357 {
358 blk_account_io_done(rq);
359
360 if (rq->end_io) {
361 wbt_done(rq->q->rq_wb, &rq->issue_stat);
362 rq->end_io(rq, error);
363 } else {
364 if (unlikely(blk_bidi_rq(rq)))
365 blk_mq_free_request(rq->next_rq);
366 blk_mq_free_request(rq);
367 }
368 }
369 EXPORT_SYMBOL(__blk_mq_end_request);
370
371 void blk_mq_end_request(struct request *rq, int error)
372 {
373 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
374 BUG();
375 __blk_mq_end_request(rq, error);
376 }
377 EXPORT_SYMBOL(blk_mq_end_request);
378
379 static void __blk_mq_complete_request_remote(void *data)
380 {
381 struct request *rq = data;
382
383 rq->q->softirq_done_fn(rq);
384 }
385
386 static void blk_mq_ipi_complete_request(struct request *rq)
387 {
388 struct blk_mq_ctx *ctx = rq->mq_ctx;
389 bool shared = false;
390 int cpu;
391
392 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
393 rq->q->softirq_done_fn(rq);
394 return;
395 }
396
397 cpu = get_cpu();
398 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
399 shared = cpus_share_cache(cpu, ctx->cpu);
400
401 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
402 rq->csd.func = __blk_mq_complete_request_remote;
403 rq->csd.info = rq;
404 rq->csd.flags = 0;
405 smp_call_function_single_async(ctx->cpu, &rq->csd);
406 } else {
407 rq->q->softirq_done_fn(rq);
408 }
409 put_cpu();
410 }
411
412 static void blk_mq_stat_add(struct request *rq)
413 {
414 if (rq->rq_flags & RQF_STATS) {
415 /*
416 * We could rq->mq_ctx here, but there's less of a risk
417 * of races if we have the completion event add the stats
418 * to the local software queue.
419 */
420 struct blk_mq_ctx *ctx;
421
422 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
423 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
424 }
425 }
426
427 static void __blk_mq_complete_request(struct request *rq)
428 {
429 struct request_queue *q = rq->q;
430
431 blk_mq_stat_add(rq);
432
433 if (!q->softirq_done_fn)
434 blk_mq_end_request(rq, rq->errors);
435 else
436 blk_mq_ipi_complete_request(rq);
437 }
438
439 /**
440 * blk_mq_complete_request - end I/O on a request
441 * @rq: the request being processed
442 *
443 * Description:
444 * Ends all I/O on a request. It does not handle partial completions.
445 * The actual completion happens out-of-order, through a IPI handler.
446 **/
447 void blk_mq_complete_request(struct request *rq, int error)
448 {
449 struct request_queue *q = rq->q;
450
451 if (unlikely(blk_should_fake_timeout(q)))
452 return;
453 if (!blk_mark_rq_complete(rq)) {
454 rq->errors = error;
455 __blk_mq_complete_request(rq);
456 }
457 }
458 EXPORT_SYMBOL(blk_mq_complete_request);
459
460 int blk_mq_request_started(struct request *rq)
461 {
462 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
463 }
464 EXPORT_SYMBOL_GPL(blk_mq_request_started);
465
466 void blk_mq_start_request(struct request *rq)
467 {
468 struct request_queue *q = rq->q;
469
470 trace_block_rq_issue(q, rq);
471
472 rq->resid_len = blk_rq_bytes(rq);
473 if (unlikely(blk_bidi_rq(rq)))
474 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
475
476 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
477 blk_stat_set_issue_time(&rq->issue_stat);
478 rq->rq_flags |= RQF_STATS;
479 wbt_issue(q->rq_wb, &rq->issue_stat);
480 }
481
482 blk_add_timer(rq);
483
484 /*
485 * Ensure that ->deadline is visible before set the started
486 * flag and clear the completed flag.
487 */
488 smp_mb__before_atomic();
489
490 /*
491 * Mark us as started and clear complete. Complete might have been
492 * set if requeue raced with timeout, which then marked it as
493 * complete. So be sure to clear complete again when we start
494 * the request, otherwise we'll ignore the completion event.
495 */
496 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
497 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
498 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
499 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
500
501 if (q->dma_drain_size && blk_rq_bytes(rq)) {
502 /*
503 * Make sure space for the drain appears. We know we can do
504 * this because max_hw_segments has been adjusted to be one
505 * fewer than the device can handle.
506 */
507 rq->nr_phys_segments++;
508 }
509 }
510 EXPORT_SYMBOL(blk_mq_start_request);
511
512 static void __blk_mq_requeue_request(struct request *rq)
513 {
514 struct request_queue *q = rq->q;
515
516 trace_block_rq_requeue(q, rq);
517 wbt_requeue(q->rq_wb, &rq->issue_stat);
518
519 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
520 if (q->dma_drain_size && blk_rq_bytes(rq))
521 rq->nr_phys_segments--;
522 }
523 }
524
525 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
526 {
527 __blk_mq_requeue_request(rq);
528
529 BUG_ON(blk_queued_rq(rq));
530 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
531 }
532 EXPORT_SYMBOL(blk_mq_requeue_request);
533
534 static void blk_mq_requeue_work(struct work_struct *work)
535 {
536 struct request_queue *q =
537 container_of(work, struct request_queue, requeue_work.work);
538 LIST_HEAD(rq_list);
539 struct request *rq, *next;
540 unsigned long flags;
541
542 spin_lock_irqsave(&q->requeue_lock, flags);
543 list_splice_init(&q->requeue_list, &rq_list);
544 spin_unlock_irqrestore(&q->requeue_lock, flags);
545
546 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
547 if (!(rq->rq_flags & RQF_SOFTBARRIER))
548 continue;
549
550 rq->rq_flags &= ~RQF_SOFTBARRIER;
551 list_del_init(&rq->queuelist);
552 blk_mq_insert_request(rq, true, false, false);
553 }
554
555 while (!list_empty(&rq_list)) {
556 rq = list_entry(rq_list.next, struct request, queuelist);
557 list_del_init(&rq->queuelist);
558 blk_mq_insert_request(rq, false, false, false);
559 }
560
561 blk_mq_run_hw_queues(q, false);
562 }
563
564 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
565 bool kick_requeue_list)
566 {
567 struct request_queue *q = rq->q;
568 unsigned long flags;
569
570 /*
571 * We abuse this flag that is otherwise used by the I/O scheduler to
572 * request head insertation from the workqueue.
573 */
574 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
575
576 spin_lock_irqsave(&q->requeue_lock, flags);
577 if (at_head) {
578 rq->rq_flags |= RQF_SOFTBARRIER;
579 list_add(&rq->queuelist, &q->requeue_list);
580 } else {
581 list_add_tail(&rq->queuelist, &q->requeue_list);
582 }
583 spin_unlock_irqrestore(&q->requeue_lock, flags);
584
585 if (kick_requeue_list)
586 blk_mq_kick_requeue_list(q);
587 }
588 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
589
590 void blk_mq_kick_requeue_list(struct request_queue *q)
591 {
592 kblockd_schedule_delayed_work(&q->requeue_work, 0);
593 }
594 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
595
596 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
597 unsigned long msecs)
598 {
599 kblockd_schedule_delayed_work(&q->requeue_work,
600 msecs_to_jiffies(msecs));
601 }
602 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
603
604 void blk_mq_abort_requeue_list(struct request_queue *q)
605 {
606 unsigned long flags;
607 LIST_HEAD(rq_list);
608
609 spin_lock_irqsave(&q->requeue_lock, flags);
610 list_splice_init(&q->requeue_list, &rq_list);
611 spin_unlock_irqrestore(&q->requeue_lock, flags);
612
613 while (!list_empty(&rq_list)) {
614 struct request *rq;
615
616 rq = list_first_entry(&rq_list, struct request, queuelist);
617 list_del_init(&rq->queuelist);
618 rq->errors = -EIO;
619 blk_mq_end_request(rq, rq->errors);
620 }
621 }
622 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
623
624 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
625 {
626 if (tag < tags->nr_tags) {
627 prefetch(tags->rqs[tag]);
628 return tags->rqs[tag];
629 }
630
631 return NULL;
632 }
633 EXPORT_SYMBOL(blk_mq_tag_to_rq);
634
635 struct blk_mq_timeout_data {
636 unsigned long next;
637 unsigned int next_set;
638 };
639
640 void blk_mq_rq_timed_out(struct request *req, bool reserved)
641 {
642 struct blk_mq_ops *ops = req->q->mq_ops;
643 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
644
645 /*
646 * We know that complete is set at this point. If STARTED isn't set
647 * anymore, then the request isn't active and the "timeout" should
648 * just be ignored. This can happen due to the bitflag ordering.
649 * Timeout first checks if STARTED is set, and if it is, assumes
650 * the request is active. But if we race with completion, then
651 * we both flags will get cleared. So check here again, and ignore
652 * a timeout event with a request that isn't active.
653 */
654 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
655 return;
656
657 if (ops->timeout)
658 ret = ops->timeout(req, reserved);
659
660 switch (ret) {
661 case BLK_EH_HANDLED:
662 __blk_mq_complete_request(req);
663 break;
664 case BLK_EH_RESET_TIMER:
665 blk_add_timer(req);
666 blk_clear_rq_complete(req);
667 break;
668 case BLK_EH_NOT_HANDLED:
669 break;
670 default:
671 printk(KERN_ERR "block: bad eh return: %d\n", ret);
672 break;
673 }
674 }
675
676 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
677 struct request *rq, void *priv, bool reserved)
678 {
679 struct blk_mq_timeout_data *data = priv;
680
681 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
682 return;
683
684 if (time_after_eq(jiffies, rq->deadline)) {
685 if (!blk_mark_rq_complete(rq))
686 blk_mq_rq_timed_out(rq, reserved);
687 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
688 data->next = rq->deadline;
689 data->next_set = 1;
690 }
691 }
692
693 static void blk_mq_timeout_work(struct work_struct *work)
694 {
695 struct request_queue *q =
696 container_of(work, struct request_queue, timeout_work);
697 struct blk_mq_timeout_data data = {
698 .next = 0,
699 .next_set = 0,
700 };
701 int i;
702
703 /* A deadlock might occur if a request is stuck requiring a
704 * timeout at the same time a queue freeze is waiting
705 * completion, since the timeout code would not be able to
706 * acquire the queue reference here.
707 *
708 * That's why we don't use blk_queue_enter here; instead, we use
709 * percpu_ref_tryget directly, because we need to be able to
710 * obtain a reference even in the short window between the queue
711 * starting to freeze, by dropping the first reference in
712 * blk_mq_freeze_queue_start, and the moment the last request is
713 * consumed, marked by the instant q_usage_counter reaches
714 * zero.
715 */
716 if (!percpu_ref_tryget(&q->q_usage_counter))
717 return;
718
719 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
720
721 if (data.next_set) {
722 data.next = blk_rq_timeout(round_jiffies_up(data.next));
723 mod_timer(&q->timeout, data.next);
724 } else {
725 struct blk_mq_hw_ctx *hctx;
726
727 queue_for_each_hw_ctx(q, hctx, i) {
728 /* the hctx may be unmapped, so check it here */
729 if (blk_mq_hw_queue_mapped(hctx))
730 blk_mq_tag_idle(hctx);
731 }
732 }
733 blk_queue_exit(q);
734 }
735
736 /*
737 * Reverse check our software queue for entries that we could potentially
738 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
739 * too much time checking for merges.
740 */
741 static bool blk_mq_attempt_merge(struct request_queue *q,
742 struct blk_mq_ctx *ctx, struct bio *bio)
743 {
744 struct request *rq;
745 int checked = 8;
746
747 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
748 int el_ret;
749
750 if (!checked--)
751 break;
752
753 if (!blk_rq_merge_ok(rq, bio))
754 continue;
755
756 el_ret = blk_try_merge(rq, bio);
757 if (el_ret == ELEVATOR_BACK_MERGE) {
758 if (bio_attempt_back_merge(q, rq, bio)) {
759 ctx->rq_merged++;
760 return true;
761 }
762 break;
763 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
764 if (bio_attempt_front_merge(q, rq, bio)) {
765 ctx->rq_merged++;
766 return true;
767 }
768 break;
769 }
770 }
771
772 return false;
773 }
774
775 struct flush_busy_ctx_data {
776 struct blk_mq_hw_ctx *hctx;
777 struct list_head *list;
778 };
779
780 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
781 {
782 struct flush_busy_ctx_data *flush_data = data;
783 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
784 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
785
786 sbitmap_clear_bit(sb, bitnr);
787 spin_lock(&ctx->lock);
788 list_splice_tail_init(&ctx->rq_list, flush_data->list);
789 spin_unlock(&ctx->lock);
790 return true;
791 }
792
793 /*
794 * Process software queues that have been marked busy, splicing them
795 * to the for-dispatch
796 */
797 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
798 {
799 struct flush_busy_ctx_data data = {
800 .hctx = hctx,
801 .list = list,
802 };
803
804 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
805 }
806
807 static inline unsigned int queued_to_index(unsigned int queued)
808 {
809 if (!queued)
810 return 0;
811
812 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
813 }
814
815 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
816 {
817 struct request_queue *q = hctx->queue;
818 struct request *rq;
819 LIST_HEAD(driver_list);
820 struct list_head *dptr;
821 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
822
823 /*
824 * Start off with dptr being NULL, so we start the first request
825 * immediately, even if we have more pending.
826 */
827 dptr = NULL;
828
829 /*
830 * Now process all the entries, sending them to the driver.
831 */
832 queued = 0;
833 while (!list_empty(list)) {
834 struct blk_mq_queue_data bd;
835
836 rq = list_first_entry(list, struct request, queuelist);
837 list_del_init(&rq->queuelist);
838
839 bd.rq = rq;
840 bd.list = dptr;
841 bd.last = list_empty(list);
842
843 ret = q->mq_ops->queue_rq(hctx, &bd);
844 switch (ret) {
845 case BLK_MQ_RQ_QUEUE_OK:
846 queued++;
847 break;
848 case BLK_MQ_RQ_QUEUE_BUSY:
849 list_add(&rq->queuelist, list);
850 __blk_mq_requeue_request(rq);
851 break;
852 default:
853 pr_err("blk-mq: bad return on queue: %d\n", ret);
854 case BLK_MQ_RQ_QUEUE_ERROR:
855 rq->errors = -EIO;
856 blk_mq_end_request(rq, rq->errors);
857 break;
858 }
859
860 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
861 break;
862
863 /*
864 * We've done the first request. If we have more than 1
865 * left in the list, set dptr to defer issue.
866 */
867 if (!dptr && list->next != list->prev)
868 dptr = &driver_list;
869 }
870
871 hctx->dispatched[queued_to_index(queued)]++;
872
873 /*
874 * Any items that need requeuing? Stuff them into hctx->dispatch,
875 * that is where we will continue on next queue run.
876 */
877 if (!list_empty(list)) {
878 spin_lock(&hctx->lock);
879 list_splice(list, &hctx->dispatch);
880 spin_unlock(&hctx->lock);
881
882 /*
883 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
884 * it's possible the queue is stopped and restarted again
885 * before this. Queue restart will dispatch requests. And since
886 * requests in rq_list aren't added into hctx->dispatch yet,
887 * the requests in rq_list might get lost.
888 *
889 * blk_mq_run_hw_queue() already checks the STOPPED bit
890 **/
891 blk_mq_run_hw_queue(hctx, true);
892 }
893
894 return ret != BLK_MQ_RQ_QUEUE_BUSY;
895 }
896
897 /*
898 * Run this hardware queue, pulling any software queues mapped to it in.
899 * Note that this function currently has various problems around ordering
900 * of IO. In particular, we'd like FIFO behaviour on handling existing
901 * items on the hctx->dispatch list. Ignore that for now.
902 */
903 static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx)
904 {
905 LIST_HEAD(rq_list);
906
907 if (unlikely(blk_mq_hctx_stopped(hctx)))
908 return;
909
910 hctx->run++;
911
912 /*
913 * Touch any software queue that has pending entries.
914 */
915 flush_busy_ctxs(hctx, &rq_list);
916
917 /*
918 * If we have previous entries on our dispatch list, grab them
919 * and stuff them at the front for more fair dispatch.
920 */
921 if (!list_empty_careful(&hctx->dispatch)) {
922 spin_lock(&hctx->lock);
923 if (!list_empty(&hctx->dispatch))
924 list_splice_init(&hctx->dispatch, &rq_list);
925 spin_unlock(&hctx->lock);
926 }
927
928 blk_mq_dispatch_rq_list(hctx, &rq_list);
929 }
930
931 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
932 {
933 int srcu_idx;
934
935 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
936 cpu_online(hctx->next_cpu));
937
938 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
939 rcu_read_lock();
940 blk_mq_process_rq_list(hctx);
941 rcu_read_unlock();
942 } else {
943 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
944 blk_mq_process_rq_list(hctx);
945 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
946 }
947 }
948
949 /*
950 * It'd be great if the workqueue API had a way to pass
951 * in a mask and had some smarts for more clever placement.
952 * For now we just round-robin here, switching for every
953 * BLK_MQ_CPU_WORK_BATCH queued items.
954 */
955 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
956 {
957 if (hctx->queue->nr_hw_queues == 1)
958 return WORK_CPU_UNBOUND;
959
960 if (--hctx->next_cpu_batch <= 0) {
961 int next_cpu;
962
963 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
964 if (next_cpu >= nr_cpu_ids)
965 next_cpu = cpumask_first(hctx->cpumask);
966
967 hctx->next_cpu = next_cpu;
968 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
969 }
970
971 return hctx->next_cpu;
972 }
973
974 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
975 {
976 if (unlikely(blk_mq_hctx_stopped(hctx) ||
977 !blk_mq_hw_queue_mapped(hctx)))
978 return;
979
980 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
981 int cpu = get_cpu();
982 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
983 __blk_mq_run_hw_queue(hctx);
984 put_cpu();
985 return;
986 }
987
988 put_cpu();
989 }
990
991 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
992 }
993
994 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
995 {
996 struct blk_mq_hw_ctx *hctx;
997 int i;
998
999 queue_for_each_hw_ctx(q, hctx, i) {
1000 if ((!blk_mq_hctx_has_pending(hctx) &&
1001 list_empty_careful(&hctx->dispatch)) ||
1002 blk_mq_hctx_stopped(hctx))
1003 continue;
1004
1005 blk_mq_run_hw_queue(hctx, async);
1006 }
1007 }
1008 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1009
1010 /**
1011 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1012 * @q: request queue.
1013 *
1014 * The caller is responsible for serializing this function against
1015 * blk_mq_{start,stop}_hw_queue().
1016 */
1017 bool blk_mq_queue_stopped(struct request_queue *q)
1018 {
1019 struct blk_mq_hw_ctx *hctx;
1020 int i;
1021
1022 queue_for_each_hw_ctx(q, hctx, i)
1023 if (blk_mq_hctx_stopped(hctx))
1024 return true;
1025
1026 return false;
1027 }
1028 EXPORT_SYMBOL(blk_mq_queue_stopped);
1029
1030 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1031 {
1032 cancel_work(&hctx->run_work);
1033 cancel_delayed_work(&hctx->delay_work);
1034 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1035 }
1036 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1037
1038 void blk_mq_stop_hw_queues(struct request_queue *q)
1039 {
1040 struct blk_mq_hw_ctx *hctx;
1041 int i;
1042
1043 queue_for_each_hw_ctx(q, hctx, i)
1044 blk_mq_stop_hw_queue(hctx);
1045 }
1046 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1047
1048 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1049 {
1050 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1051
1052 blk_mq_run_hw_queue(hctx, false);
1053 }
1054 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1055
1056 void blk_mq_start_hw_queues(struct request_queue *q)
1057 {
1058 struct blk_mq_hw_ctx *hctx;
1059 int i;
1060
1061 queue_for_each_hw_ctx(q, hctx, i)
1062 blk_mq_start_hw_queue(hctx);
1063 }
1064 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1065
1066 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1067 {
1068 if (!blk_mq_hctx_stopped(hctx))
1069 return;
1070
1071 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1072 blk_mq_run_hw_queue(hctx, async);
1073 }
1074 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1075
1076 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1077 {
1078 struct blk_mq_hw_ctx *hctx;
1079 int i;
1080
1081 queue_for_each_hw_ctx(q, hctx, i)
1082 blk_mq_start_stopped_hw_queue(hctx, async);
1083 }
1084 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1085
1086 static void blk_mq_run_work_fn(struct work_struct *work)
1087 {
1088 struct blk_mq_hw_ctx *hctx;
1089
1090 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1091
1092 __blk_mq_run_hw_queue(hctx);
1093 }
1094
1095 static void blk_mq_delay_work_fn(struct work_struct *work)
1096 {
1097 struct blk_mq_hw_ctx *hctx;
1098
1099 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1100
1101 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1102 __blk_mq_run_hw_queue(hctx);
1103 }
1104
1105 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1106 {
1107 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1108 return;
1109
1110 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1111 &hctx->delay_work, msecs_to_jiffies(msecs));
1112 }
1113 EXPORT_SYMBOL(blk_mq_delay_queue);
1114
1115 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1116 struct request *rq,
1117 bool at_head)
1118 {
1119 struct blk_mq_ctx *ctx = rq->mq_ctx;
1120
1121 trace_block_rq_insert(hctx->queue, rq);
1122
1123 if (at_head)
1124 list_add(&rq->queuelist, &ctx->rq_list);
1125 else
1126 list_add_tail(&rq->queuelist, &ctx->rq_list);
1127 }
1128
1129 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1130 struct request *rq, bool at_head)
1131 {
1132 struct blk_mq_ctx *ctx = rq->mq_ctx;
1133
1134 __blk_mq_insert_req_list(hctx, rq, at_head);
1135 blk_mq_hctx_mark_pending(hctx, ctx);
1136 }
1137
1138 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1139 bool async)
1140 {
1141 struct blk_mq_ctx *ctx = rq->mq_ctx;
1142 struct request_queue *q = rq->q;
1143 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1144
1145 spin_lock(&ctx->lock);
1146 __blk_mq_insert_request(hctx, rq, at_head);
1147 spin_unlock(&ctx->lock);
1148
1149 if (run_queue)
1150 blk_mq_run_hw_queue(hctx, async);
1151 }
1152
1153 static void blk_mq_insert_requests(struct request_queue *q,
1154 struct blk_mq_ctx *ctx,
1155 struct list_head *list,
1156 int depth,
1157 bool from_schedule)
1158
1159 {
1160 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1161
1162 trace_block_unplug(q, depth, !from_schedule);
1163
1164 /*
1165 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1166 * offline now
1167 */
1168 spin_lock(&ctx->lock);
1169 while (!list_empty(list)) {
1170 struct request *rq;
1171
1172 rq = list_first_entry(list, struct request, queuelist);
1173 BUG_ON(rq->mq_ctx != ctx);
1174 list_del_init(&rq->queuelist);
1175 __blk_mq_insert_req_list(hctx, rq, false);
1176 }
1177 blk_mq_hctx_mark_pending(hctx, ctx);
1178 spin_unlock(&ctx->lock);
1179
1180 blk_mq_run_hw_queue(hctx, from_schedule);
1181 }
1182
1183 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1184 {
1185 struct request *rqa = container_of(a, struct request, queuelist);
1186 struct request *rqb = container_of(b, struct request, queuelist);
1187
1188 return !(rqa->mq_ctx < rqb->mq_ctx ||
1189 (rqa->mq_ctx == rqb->mq_ctx &&
1190 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1191 }
1192
1193 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1194 {
1195 struct blk_mq_ctx *this_ctx;
1196 struct request_queue *this_q;
1197 struct request *rq;
1198 LIST_HEAD(list);
1199 LIST_HEAD(ctx_list);
1200 unsigned int depth;
1201
1202 list_splice_init(&plug->mq_list, &list);
1203
1204 list_sort(NULL, &list, plug_ctx_cmp);
1205
1206 this_q = NULL;
1207 this_ctx = NULL;
1208 depth = 0;
1209
1210 while (!list_empty(&list)) {
1211 rq = list_entry_rq(list.next);
1212 list_del_init(&rq->queuelist);
1213 BUG_ON(!rq->q);
1214 if (rq->mq_ctx != this_ctx) {
1215 if (this_ctx) {
1216 blk_mq_insert_requests(this_q, this_ctx,
1217 &ctx_list, depth,
1218 from_schedule);
1219 }
1220
1221 this_ctx = rq->mq_ctx;
1222 this_q = rq->q;
1223 depth = 0;
1224 }
1225
1226 depth++;
1227 list_add_tail(&rq->queuelist, &ctx_list);
1228 }
1229
1230 /*
1231 * If 'this_ctx' is set, we know we have entries to complete
1232 * on 'ctx_list'. Do those.
1233 */
1234 if (this_ctx) {
1235 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1236 from_schedule);
1237 }
1238 }
1239
1240 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1241 {
1242 init_request_from_bio(rq, bio);
1243
1244 blk_account_io_start(rq, true);
1245 }
1246
1247 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1248 {
1249 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1250 !blk_queue_nomerges(hctx->queue);
1251 }
1252
1253 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1254 struct blk_mq_ctx *ctx,
1255 struct request *rq, struct bio *bio)
1256 {
1257 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1258 blk_mq_bio_to_request(rq, bio);
1259 spin_lock(&ctx->lock);
1260 insert_rq:
1261 __blk_mq_insert_request(hctx, rq, false);
1262 spin_unlock(&ctx->lock);
1263 return false;
1264 } else {
1265 struct request_queue *q = hctx->queue;
1266
1267 spin_lock(&ctx->lock);
1268 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1269 blk_mq_bio_to_request(rq, bio);
1270 goto insert_rq;
1271 }
1272
1273 spin_unlock(&ctx->lock);
1274 __blk_mq_free_request(hctx, ctx, rq);
1275 return true;
1276 }
1277 }
1278
1279 static struct request *blk_mq_map_request(struct request_queue *q,
1280 struct bio *bio,
1281 struct blk_mq_alloc_data *data)
1282 {
1283 struct blk_mq_hw_ctx *hctx;
1284 struct blk_mq_ctx *ctx;
1285 struct request *rq;
1286
1287 blk_queue_enter_live(q);
1288 ctx = blk_mq_get_ctx(q);
1289 hctx = blk_mq_map_queue(q, ctx->cpu);
1290
1291 trace_block_getrq(q, bio, bio->bi_opf);
1292 blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1293 rq = __blk_mq_alloc_request(data, bio->bi_opf);
1294
1295 data->hctx->queued++;
1296 return rq;
1297 }
1298
1299 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1300 {
1301 int ret;
1302 struct request_queue *q = rq->q;
1303 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1304 struct blk_mq_queue_data bd = {
1305 .rq = rq,
1306 .list = NULL,
1307 .last = 1
1308 };
1309 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1310
1311 if (blk_mq_hctx_stopped(hctx))
1312 goto insert;
1313
1314 /*
1315 * For OK queue, we are done. For error, kill it. Any other
1316 * error (busy), just add it to our list as we previously
1317 * would have done
1318 */
1319 ret = q->mq_ops->queue_rq(hctx, &bd);
1320 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1321 *cookie = new_cookie;
1322 return;
1323 }
1324
1325 __blk_mq_requeue_request(rq);
1326
1327 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1328 *cookie = BLK_QC_T_NONE;
1329 rq->errors = -EIO;
1330 blk_mq_end_request(rq, rq->errors);
1331 return;
1332 }
1333
1334 insert:
1335 blk_mq_insert_request(rq, false, true, true);
1336 }
1337
1338 /*
1339 * Multiple hardware queue variant. This will not use per-process plugs,
1340 * but will attempt to bypass the hctx queueing if we can go straight to
1341 * hardware for SYNC IO.
1342 */
1343 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1344 {
1345 const int is_sync = op_is_sync(bio->bi_opf);
1346 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1347 struct blk_mq_alloc_data data;
1348 struct request *rq;
1349 unsigned int request_count = 0, srcu_idx;
1350 struct blk_plug *plug;
1351 struct request *same_queue_rq = NULL;
1352 blk_qc_t cookie;
1353 unsigned int wb_acct;
1354
1355 blk_queue_bounce(q, &bio);
1356
1357 blk_queue_split(q, &bio, q->bio_split);
1358
1359 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1360 bio_io_error(bio);
1361 return BLK_QC_T_NONE;
1362 }
1363
1364 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1365 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1366 return BLK_QC_T_NONE;
1367
1368 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1369
1370 rq = blk_mq_map_request(q, bio, &data);
1371 if (unlikely(!rq)) {
1372 __wbt_done(q->rq_wb, wb_acct);
1373 return BLK_QC_T_NONE;
1374 }
1375
1376 wbt_track(&rq->issue_stat, wb_acct);
1377
1378 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1379
1380 if (unlikely(is_flush_fua)) {
1381 blk_mq_bio_to_request(rq, bio);
1382 blk_insert_flush(rq);
1383 goto run_queue;
1384 }
1385
1386 plug = current->plug;
1387 /*
1388 * If the driver supports defer issued based on 'last', then
1389 * queue it up like normal since we can potentially save some
1390 * CPU this way.
1391 */
1392 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1393 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1394 struct request *old_rq = NULL;
1395
1396 blk_mq_bio_to_request(rq, bio);
1397
1398 /*
1399 * We do limited plugging. If the bio can be merged, do that.
1400 * Otherwise the existing request in the plug list will be
1401 * issued. So the plug list will have one request at most
1402 */
1403 if (plug) {
1404 /*
1405 * The plug list might get flushed before this. If that
1406 * happens, same_queue_rq is invalid and plug list is
1407 * empty
1408 */
1409 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1410 old_rq = same_queue_rq;
1411 list_del_init(&old_rq->queuelist);
1412 }
1413 list_add_tail(&rq->queuelist, &plug->mq_list);
1414 } else /* is_sync */
1415 old_rq = rq;
1416 blk_mq_put_ctx(data.ctx);
1417 if (!old_rq)
1418 goto done;
1419
1420 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1421 rcu_read_lock();
1422 blk_mq_try_issue_directly(old_rq, &cookie);
1423 rcu_read_unlock();
1424 } else {
1425 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1426 blk_mq_try_issue_directly(old_rq, &cookie);
1427 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1428 }
1429 goto done;
1430 }
1431
1432 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1433 /*
1434 * For a SYNC request, send it to the hardware immediately. For
1435 * an ASYNC request, just ensure that we run it later on. The
1436 * latter allows for merging opportunities and more efficient
1437 * dispatching.
1438 */
1439 run_queue:
1440 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1441 }
1442 blk_mq_put_ctx(data.ctx);
1443 done:
1444 return cookie;
1445 }
1446
1447 /*
1448 * Single hardware queue variant. This will attempt to use any per-process
1449 * plug for merging and IO deferral.
1450 */
1451 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1452 {
1453 const int is_sync = op_is_sync(bio->bi_opf);
1454 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1455 struct blk_plug *plug;
1456 unsigned int request_count = 0;
1457 struct blk_mq_alloc_data data;
1458 struct request *rq;
1459 blk_qc_t cookie;
1460 unsigned int wb_acct;
1461
1462 blk_queue_bounce(q, &bio);
1463
1464 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1465 bio_io_error(bio);
1466 return BLK_QC_T_NONE;
1467 }
1468
1469 blk_queue_split(q, &bio, q->bio_split);
1470
1471 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1472 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1473 return BLK_QC_T_NONE;
1474 } else
1475 request_count = blk_plug_queued_count(q);
1476
1477 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1478
1479 rq = blk_mq_map_request(q, bio, &data);
1480 if (unlikely(!rq)) {
1481 __wbt_done(q->rq_wb, wb_acct);
1482 return BLK_QC_T_NONE;
1483 }
1484
1485 wbt_track(&rq->issue_stat, wb_acct);
1486
1487 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1488
1489 if (unlikely(is_flush_fua)) {
1490 blk_mq_bio_to_request(rq, bio);
1491 blk_insert_flush(rq);
1492 goto run_queue;
1493 }
1494
1495 /*
1496 * A task plug currently exists. Since this is completely lockless,
1497 * utilize that to temporarily store requests until the task is
1498 * either done or scheduled away.
1499 */
1500 plug = current->plug;
1501 if (plug) {
1502 struct request *last = NULL;
1503
1504 blk_mq_bio_to_request(rq, bio);
1505
1506 /*
1507 * @request_count may become stale because of schedule
1508 * out, so check the list again.
1509 */
1510 if (list_empty(&plug->mq_list))
1511 request_count = 0;
1512 if (!request_count)
1513 trace_block_plug(q);
1514 else
1515 last = list_entry_rq(plug->mq_list.prev);
1516
1517 blk_mq_put_ctx(data.ctx);
1518
1519 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1520 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1521 blk_flush_plug_list(plug, false);
1522 trace_block_plug(q);
1523 }
1524
1525 list_add_tail(&rq->queuelist, &plug->mq_list);
1526 return cookie;
1527 }
1528
1529 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1530 /*
1531 * For a SYNC request, send it to the hardware immediately. For
1532 * an ASYNC request, just ensure that we run it later on. The
1533 * latter allows for merging opportunities and more efficient
1534 * dispatching.
1535 */
1536 run_queue:
1537 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1538 }
1539
1540 blk_mq_put_ctx(data.ctx);
1541 return cookie;
1542 }
1543
1544 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1545 struct blk_mq_tags *tags, unsigned int hctx_idx)
1546 {
1547 struct page *page;
1548
1549 if (tags->rqs && set->ops->exit_request) {
1550 int i;
1551
1552 for (i = 0; i < tags->nr_tags; i++) {
1553 if (!tags->rqs[i])
1554 continue;
1555 set->ops->exit_request(set->driver_data, tags->rqs[i],
1556 hctx_idx, i);
1557 tags->rqs[i] = NULL;
1558 }
1559 }
1560
1561 while (!list_empty(&tags->page_list)) {
1562 page = list_first_entry(&tags->page_list, struct page, lru);
1563 list_del_init(&page->lru);
1564 /*
1565 * Remove kmemleak object previously allocated in
1566 * blk_mq_init_rq_map().
1567 */
1568 kmemleak_free(page_address(page));
1569 __free_pages(page, page->private);
1570 }
1571
1572 kfree(tags->rqs);
1573
1574 blk_mq_free_tags(tags);
1575 }
1576
1577 static size_t order_to_size(unsigned int order)
1578 {
1579 return (size_t)PAGE_SIZE << order;
1580 }
1581
1582 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1583 unsigned int hctx_idx)
1584 {
1585 struct blk_mq_tags *tags;
1586 unsigned int i, j, entries_per_page, max_order = 4;
1587 size_t rq_size, left;
1588
1589 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1590 set->numa_node,
1591 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1592 if (!tags)
1593 return NULL;
1594
1595 INIT_LIST_HEAD(&tags->page_list);
1596
1597 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1598 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1599 set->numa_node);
1600 if (!tags->rqs) {
1601 blk_mq_free_tags(tags);
1602 return NULL;
1603 }
1604
1605 /*
1606 * rq_size is the size of the request plus driver payload, rounded
1607 * to the cacheline size
1608 */
1609 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1610 cache_line_size());
1611 left = rq_size * set->queue_depth;
1612
1613 for (i = 0; i < set->queue_depth; ) {
1614 int this_order = max_order;
1615 struct page *page;
1616 int to_do;
1617 void *p;
1618
1619 while (this_order && left < order_to_size(this_order - 1))
1620 this_order--;
1621
1622 do {
1623 page = alloc_pages_node(set->numa_node,
1624 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1625 this_order);
1626 if (page)
1627 break;
1628 if (!this_order--)
1629 break;
1630 if (order_to_size(this_order) < rq_size)
1631 break;
1632 } while (1);
1633
1634 if (!page)
1635 goto fail;
1636
1637 page->private = this_order;
1638 list_add_tail(&page->lru, &tags->page_list);
1639
1640 p = page_address(page);
1641 /*
1642 * Allow kmemleak to scan these pages as they contain pointers
1643 * to additional allocations like via ops->init_request().
1644 */
1645 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1646 entries_per_page = order_to_size(this_order) / rq_size;
1647 to_do = min(entries_per_page, set->queue_depth - i);
1648 left -= to_do * rq_size;
1649 for (j = 0; j < to_do; j++) {
1650 tags->rqs[i] = p;
1651 if (set->ops->init_request) {
1652 if (set->ops->init_request(set->driver_data,
1653 tags->rqs[i], hctx_idx, i,
1654 set->numa_node)) {
1655 tags->rqs[i] = NULL;
1656 goto fail;
1657 }
1658 }
1659
1660 p += rq_size;
1661 i++;
1662 }
1663 }
1664 return tags;
1665
1666 fail:
1667 blk_mq_free_rq_map(set, tags, hctx_idx);
1668 return NULL;
1669 }
1670
1671 /*
1672 * 'cpu' is going away. splice any existing rq_list entries from this
1673 * software queue to the hw queue dispatch list, and ensure that it
1674 * gets run.
1675 */
1676 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1677 {
1678 struct blk_mq_hw_ctx *hctx;
1679 struct blk_mq_ctx *ctx;
1680 LIST_HEAD(tmp);
1681
1682 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1683 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1684
1685 spin_lock(&ctx->lock);
1686 if (!list_empty(&ctx->rq_list)) {
1687 list_splice_init(&ctx->rq_list, &tmp);
1688 blk_mq_hctx_clear_pending(hctx, ctx);
1689 }
1690 spin_unlock(&ctx->lock);
1691
1692 if (list_empty(&tmp))
1693 return 0;
1694
1695 spin_lock(&hctx->lock);
1696 list_splice_tail_init(&tmp, &hctx->dispatch);
1697 spin_unlock(&hctx->lock);
1698
1699 blk_mq_run_hw_queue(hctx, true);
1700 return 0;
1701 }
1702
1703 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1704 {
1705 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1706 &hctx->cpuhp_dead);
1707 }
1708
1709 /* hctx->ctxs will be freed in queue's release handler */
1710 static void blk_mq_exit_hctx(struct request_queue *q,
1711 struct blk_mq_tag_set *set,
1712 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1713 {
1714 unsigned flush_start_tag = set->queue_depth;
1715
1716 blk_mq_tag_idle(hctx);
1717
1718 if (set->ops->exit_request)
1719 set->ops->exit_request(set->driver_data,
1720 hctx->fq->flush_rq, hctx_idx,
1721 flush_start_tag + hctx_idx);
1722
1723 if (set->ops->exit_hctx)
1724 set->ops->exit_hctx(hctx, hctx_idx);
1725
1726 if (hctx->flags & BLK_MQ_F_BLOCKING)
1727 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1728
1729 blk_mq_remove_cpuhp(hctx);
1730 blk_free_flush_queue(hctx->fq);
1731 sbitmap_free(&hctx->ctx_map);
1732 }
1733
1734 static void blk_mq_exit_hw_queues(struct request_queue *q,
1735 struct blk_mq_tag_set *set, int nr_queue)
1736 {
1737 struct blk_mq_hw_ctx *hctx;
1738 unsigned int i;
1739
1740 queue_for_each_hw_ctx(q, hctx, i) {
1741 if (i == nr_queue)
1742 break;
1743 blk_mq_exit_hctx(q, set, hctx, i);
1744 }
1745 }
1746
1747 static void blk_mq_free_hw_queues(struct request_queue *q,
1748 struct blk_mq_tag_set *set)
1749 {
1750 struct blk_mq_hw_ctx *hctx;
1751 unsigned int i;
1752
1753 queue_for_each_hw_ctx(q, hctx, i)
1754 free_cpumask_var(hctx->cpumask);
1755 }
1756
1757 static int blk_mq_init_hctx(struct request_queue *q,
1758 struct blk_mq_tag_set *set,
1759 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1760 {
1761 int node;
1762 unsigned flush_start_tag = set->queue_depth;
1763
1764 node = hctx->numa_node;
1765 if (node == NUMA_NO_NODE)
1766 node = hctx->numa_node = set->numa_node;
1767
1768 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1769 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1770 spin_lock_init(&hctx->lock);
1771 INIT_LIST_HEAD(&hctx->dispatch);
1772 hctx->queue = q;
1773 hctx->queue_num = hctx_idx;
1774 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1775
1776 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1777
1778 hctx->tags = set->tags[hctx_idx];
1779
1780 /*
1781 * Allocate space for all possible cpus to avoid allocation at
1782 * runtime
1783 */
1784 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1785 GFP_KERNEL, node);
1786 if (!hctx->ctxs)
1787 goto unregister_cpu_notifier;
1788
1789 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1790 node))
1791 goto free_ctxs;
1792
1793 hctx->nr_ctx = 0;
1794
1795 if (set->ops->init_hctx &&
1796 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1797 goto free_bitmap;
1798
1799 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1800 if (!hctx->fq)
1801 goto exit_hctx;
1802
1803 if (set->ops->init_request &&
1804 set->ops->init_request(set->driver_data,
1805 hctx->fq->flush_rq, hctx_idx,
1806 flush_start_tag + hctx_idx, node))
1807 goto free_fq;
1808
1809 if (hctx->flags & BLK_MQ_F_BLOCKING)
1810 init_srcu_struct(&hctx->queue_rq_srcu);
1811
1812 return 0;
1813
1814 free_fq:
1815 kfree(hctx->fq);
1816 exit_hctx:
1817 if (set->ops->exit_hctx)
1818 set->ops->exit_hctx(hctx, hctx_idx);
1819 free_bitmap:
1820 sbitmap_free(&hctx->ctx_map);
1821 free_ctxs:
1822 kfree(hctx->ctxs);
1823 unregister_cpu_notifier:
1824 blk_mq_remove_cpuhp(hctx);
1825 return -1;
1826 }
1827
1828 static void blk_mq_init_cpu_queues(struct request_queue *q,
1829 unsigned int nr_hw_queues)
1830 {
1831 unsigned int i;
1832
1833 for_each_possible_cpu(i) {
1834 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1835 struct blk_mq_hw_ctx *hctx;
1836
1837 memset(__ctx, 0, sizeof(*__ctx));
1838 __ctx->cpu = i;
1839 spin_lock_init(&__ctx->lock);
1840 INIT_LIST_HEAD(&__ctx->rq_list);
1841 __ctx->queue = q;
1842 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1843 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1844
1845 /* If the cpu isn't online, the cpu is mapped to first hctx */
1846 if (!cpu_online(i))
1847 continue;
1848
1849 hctx = blk_mq_map_queue(q, i);
1850
1851 /*
1852 * Set local node, IFF we have more than one hw queue. If
1853 * not, we remain on the home node of the device
1854 */
1855 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1856 hctx->numa_node = local_memory_node(cpu_to_node(i));
1857 }
1858 }
1859
1860 static void blk_mq_map_swqueue(struct request_queue *q,
1861 const struct cpumask *online_mask)
1862 {
1863 unsigned int i, hctx_idx;
1864 struct blk_mq_hw_ctx *hctx;
1865 struct blk_mq_ctx *ctx;
1866 struct blk_mq_tag_set *set = q->tag_set;
1867
1868 /*
1869 * Avoid others reading imcomplete hctx->cpumask through sysfs
1870 */
1871 mutex_lock(&q->sysfs_lock);
1872
1873 queue_for_each_hw_ctx(q, hctx, i) {
1874 cpumask_clear(hctx->cpumask);
1875 hctx->nr_ctx = 0;
1876 }
1877
1878 /*
1879 * Map software to hardware queues
1880 */
1881 for_each_possible_cpu(i) {
1882 /* If the cpu isn't online, the cpu is mapped to first hctx */
1883 if (!cpumask_test_cpu(i, online_mask))
1884 continue;
1885
1886 hctx_idx = q->mq_map[i];
1887 /* unmapped hw queue can be remapped after CPU topo changed */
1888 if (!set->tags[hctx_idx]) {
1889 set->tags[hctx_idx] = blk_mq_init_rq_map(set, hctx_idx);
1890
1891 /*
1892 * If tags initialization fail for some hctx,
1893 * that hctx won't be brought online. In this
1894 * case, remap the current ctx to hctx[0] which
1895 * is guaranteed to always have tags allocated
1896 */
1897 if (!set->tags[hctx_idx])
1898 q->mq_map[i] = 0;
1899 }
1900
1901 ctx = per_cpu_ptr(q->queue_ctx, i);
1902 hctx = blk_mq_map_queue(q, i);
1903
1904 cpumask_set_cpu(i, hctx->cpumask);
1905 ctx->index_hw = hctx->nr_ctx;
1906 hctx->ctxs[hctx->nr_ctx++] = ctx;
1907 }
1908
1909 mutex_unlock(&q->sysfs_lock);
1910
1911 queue_for_each_hw_ctx(q, hctx, i) {
1912 /*
1913 * If no software queues are mapped to this hardware queue,
1914 * disable it and free the request entries.
1915 */
1916 if (!hctx->nr_ctx) {
1917 /* Never unmap queue 0. We need it as a
1918 * fallback in case of a new remap fails
1919 * allocation
1920 */
1921 if (i && set->tags[i]) {
1922 blk_mq_free_rq_map(set, set->tags[i], i);
1923 set->tags[i] = NULL;
1924 }
1925 hctx->tags = NULL;
1926 continue;
1927 }
1928
1929 hctx->tags = set->tags[i];
1930 WARN_ON(!hctx->tags);
1931
1932 /*
1933 * Set the map size to the number of mapped software queues.
1934 * This is more accurate and more efficient than looping
1935 * over all possibly mapped software queues.
1936 */
1937 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1938
1939 /*
1940 * Initialize batch roundrobin counts
1941 */
1942 hctx->next_cpu = cpumask_first(hctx->cpumask);
1943 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1944 }
1945 }
1946
1947 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1948 {
1949 struct blk_mq_hw_ctx *hctx;
1950 int i;
1951
1952 queue_for_each_hw_ctx(q, hctx, i) {
1953 if (shared)
1954 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1955 else
1956 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1957 }
1958 }
1959
1960 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1961 {
1962 struct request_queue *q;
1963
1964 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1965 blk_mq_freeze_queue(q);
1966 queue_set_hctx_shared(q, shared);
1967 blk_mq_unfreeze_queue(q);
1968 }
1969 }
1970
1971 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1972 {
1973 struct blk_mq_tag_set *set = q->tag_set;
1974
1975 mutex_lock(&set->tag_list_lock);
1976 list_del_init(&q->tag_set_list);
1977 if (list_is_singular(&set->tag_list)) {
1978 /* just transitioned to unshared */
1979 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1980 /* update existing queue */
1981 blk_mq_update_tag_set_depth(set, false);
1982 }
1983 mutex_unlock(&set->tag_list_lock);
1984 }
1985
1986 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1987 struct request_queue *q)
1988 {
1989 q->tag_set = set;
1990
1991 mutex_lock(&set->tag_list_lock);
1992
1993 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1994 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1995 set->flags |= BLK_MQ_F_TAG_SHARED;
1996 /* update existing queue */
1997 blk_mq_update_tag_set_depth(set, true);
1998 }
1999 if (set->flags & BLK_MQ_F_TAG_SHARED)
2000 queue_set_hctx_shared(q, true);
2001 list_add_tail(&q->tag_set_list, &set->tag_list);
2002
2003 mutex_unlock(&set->tag_list_lock);
2004 }
2005
2006 /*
2007 * It is the actual release handler for mq, but we do it from
2008 * request queue's release handler for avoiding use-after-free
2009 * and headache because q->mq_kobj shouldn't have been introduced,
2010 * but we can't group ctx/kctx kobj without it.
2011 */
2012 void blk_mq_release(struct request_queue *q)
2013 {
2014 struct blk_mq_hw_ctx *hctx;
2015 unsigned int i;
2016
2017 /* hctx kobj stays in hctx */
2018 queue_for_each_hw_ctx(q, hctx, i) {
2019 if (!hctx)
2020 continue;
2021 kfree(hctx->ctxs);
2022 kfree(hctx);
2023 }
2024
2025 q->mq_map = NULL;
2026
2027 kfree(q->queue_hw_ctx);
2028
2029 /* ctx kobj stays in queue_ctx */
2030 free_percpu(q->queue_ctx);
2031 }
2032
2033 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2034 {
2035 struct request_queue *uninit_q, *q;
2036
2037 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2038 if (!uninit_q)
2039 return ERR_PTR(-ENOMEM);
2040
2041 q = blk_mq_init_allocated_queue(set, uninit_q);
2042 if (IS_ERR(q))
2043 blk_cleanup_queue(uninit_q);
2044
2045 return q;
2046 }
2047 EXPORT_SYMBOL(blk_mq_init_queue);
2048
2049 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2050 struct request_queue *q)
2051 {
2052 int i, j;
2053 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2054
2055 blk_mq_sysfs_unregister(q);
2056 for (i = 0; i < set->nr_hw_queues; i++) {
2057 int node;
2058
2059 if (hctxs[i])
2060 continue;
2061
2062 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2063 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2064 GFP_KERNEL, node);
2065 if (!hctxs[i])
2066 break;
2067
2068 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2069 node)) {
2070 kfree(hctxs[i]);
2071 hctxs[i] = NULL;
2072 break;
2073 }
2074
2075 atomic_set(&hctxs[i]->nr_active, 0);
2076 hctxs[i]->numa_node = node;
2077 hctxs[i]->queue_num = i;
2078
2079 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2080 free_cpumask_var(hctxs[i]->cpumask);
2081 kfree(hctxs[i]);
2082 hctxs[i] = NULL;
2083 break;
2084 }
2085 blk_mq_hctx_kobj_init(hctxs[i]);
2086 }
2087 for (j = i; j < q->nr_hw_queues; j++) {
2088 struct blk_mq_hw_ctx *hctx = hctxs[j];
2089
2090 if (hctx) {
2091 if (hctx->tags) {
2092 blk_mq_free_rq_map(set, hctx->tags, j);
2093 set->tags[j] = NULL;
2094 }
2095 blk_mq_exit_hctx(q, set, hctx, j);
2096 free_cpumask_var(hctx->cpumask);
2097 kobject_put(&hctx->kobj);
2098 kfree(hctx->ctxs);
2099 kfree(hctx);
2100 hctxs[j] = NULL;
2101
2102 }
2103 }
2104 q->nr_hw_queues = i;
2105 blk_mq_sysfs_register(q);
2106 }
2107
2108 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2109 struct request_queue *q)
2110 {
2111 /* mark the queue as mq asap */
2112 q->mq_ops = set->ops;
2113
2114 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2115 if (!q->queue_ctx)
2116 goto err_exit;
2117
2118 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2119 GFP_KERNEL, set->numa_node);
2120 if (!q->queue_hw_ctx)
2121 goto err_percpu;
2122
2123 q->mq_map = set->mq_map;
2124
2125 blk_mq_realloc_hw_ctxs(set, q);
2126 if (!q->nr_hw_queues)
2127 goto err_hctxs;
2128
2129 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2130 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2131
2132 q->nr_queues = nr_cpu_ids;
2133
2134 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2135
2136 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2137 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2138
2139 q->sg_reserved_size = INT_MAX;
2140
2141 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2142 INIT_LIST_HEAD(&q->requeue_list);
2143 spin_lock_init(&q->requeue_lock);
2144
2145 if (q->nr_hw_queues > 1)
2146 blk_queue_make_request(q, blk_mq_make_request);
2147 else
2148 blk_queue_make_request(q, blk_sq_make_request);
2149
2150 /*
2151 * Do this after blk_queue_make_request() overrides it...
2152 */
2153 q->nr_requests = set->queue_depth;
2154
2155 /*
2156 * Default to classic polling
2157 */
2158 q->poll_nsec = -1;
2159
2160 if (set->ops->complete)
2161 blk_queue_softirq_done(q, set->ops->complete);
2162
2163 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2164
2165 get_online_cpus();
2166 mutex_lock(&all_q_mutex);
2167
2168 list_add_tail(&q->all_q_node, &all_q_list);
2169 blk_mq_add_queue_tag_set(set, q);
2170 blk_mq_map_swqueue(q, cpu_online_mask);
2171
2172 mutex_unlock(&all_q_mutex);
2173 put_online_cpus();
2174
2175 return q;
2176
2177 err_hctxs:
2178 kfree(q->queue_hw_ctx);
2179 err_percpu:
2180 free_percpu(q->queue_ctx);
2181 err_exit:
2182 q->mq_ops = NULL;
2183 return ERR_PTR(-ENOMEM);
2184 }
2185 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2186
2187 void blk_mq_free_queue(struct request_queue *q)
2188 {
2189 struct blk_mq_tag_set *set = q->tag_set;
2190
2191 mutex_lock(&all_q_mutex);
2192 list_del_init(&q->all_q_node);
2193 mutex_unlock(&all_q_mutex);
2194
2195 wbt_exit(q);
2196
2197 blk_mq_del_queue_tag_set(q);
2198
2199 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2200 blk_mq_free_hw_queues(q, set);
2201 }
2202
2203 /* Basically redo blk_mq_init_queue with queue frozen */
2204 static void blk_mq_queue_reinit(struct request_queue *q,
2205 const struct cpumask *online_mask)
2206 {
2207 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2208
2209 blk_mq_sysfs_unregister(q);
2210
2211 /*
2212 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2213 * we should change hctx numa_node according to new topology (this
2214 * involves free and re-allocate memory, worthy doing?)
2215 */
2216
2217 blk_mq_map_swqueue(q, online_mask);
2218
2219 blk_mq_sysfs_register(q);
2220 }
2221
2222 /*
2223 * New online cpumask which is going to be set in this hotplug event.
2224 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2225 * one-by-one and dynamically allocating this could result in a failure.
2226 */
2227 static struct cpumask cpuhp_online_new;
2228
2229 static void blk_mq_queue_reinit_work(void)
2230 {
2231 struct request_queue *q;
2232
2233 mutex_lock(&all_q_mutex);
2234 /*
2235 * We need to freeze and reinit all existing queues. Freezing
2236 * involves synchronous wait for an RCU grace period and doing it
2237 * one by one may take a long time. Start freezing all queues in
2238 * one swoop and then wait for the completions so that freezing can
2239 * take place in parallel.
2240 */
2241 list_for_each_entry(q, &all_q_list, all_q_node)
2242 blk_mq_freeze_queue_start(q);
2243 list_for_each_entry(q, &all_q_list, all_q_node)
2244 blk_mq_freeze_queue_wait(q);
2245
2246 list_for_each_entry(q, &all_q_list, all_q_node)
2247 blk_mq_queue_reinit(q, &cpuhp_online_new);
2248
2249 list_for_each_entry(q, &all_q_list, all_q_node)
2250 blk_mq_unfreeze_queue(q);
2251
2252 mutex_unlock(&all_q_mutex);
2253 }
2254
2255 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2256 {
2257 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2258 blk_mq_queue_reinit_work();
2259 return 0;
2260 }
2261
2262 /*
2263 * Before hotadded cpu starts handling requests, new mappings must be
2264 * established. Otherwise, these requests in hw queue might never be
2265 * dispatched.
2266 *
2267 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2268 * for CPU0, and ctx1 for CPU1).
2269 *
2270 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2271 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2272 *
2273 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2274 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2275 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2276 * is ignored.
2277 */
2278 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2279 {
2280 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2281 cpumask_set_cpu(cpu, &cpuhp_online_new);
2282 blk_mq_queue_reinit_work();
2283 return 0;
2284 }
2285
2286 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2287 {
2288 int i;
2289
2290 for (i = 0; i < set->nr_hw_queues; i++) {
2291 set->tags[i] = blk_mq_init_rq_map(set, i);
2292 if (!set->tags[i])
2293 goto out_unwind;
2294 }
2295
2296 return 0;
2297
2298 out_unwind:
2299 while (--i >= 0)
2300 blk_mq_free_rq_map(set, set->tags[i], i);
2301
2302 return -ENOMEM;
2303 }
2304
2305 /*
2306 * Allocate the request maps associated with this tag_set. Note that this
2307 * may reduce the depth asked for, if memory is tight. set->queue_depth
2308 * will be updated to reflect the allocated depth.
2309 */
2310 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2311 {
2312 unsigned int depth;
2313 int err;
2314
2315 depth = set->queue_depth;
2316 do {
2317 err = __blk_mq_alloc_rq_maps(set);
2318 if (!err)
2319 break;
2320
2321 set->queue_depth >>= 1;
2322 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2323 err = -ENOMEM;
2324 break;
2325 }
2326 } while (set->queue_depth);
2327
2328 if (!set->queue_depth || err) {
2329 pr_err("blk-mq: failed to allocate request map\n");
2330 return -ENOMEM;
2331 }
2332
2333 if (depth != set->queue_depth)
2334 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2335 depth, set->queue_depth);
2336
2337 return 0;
2338 }
2339
2340 /*
2341 * Alloc a tag set to be associated with one or more request queues.
2342 * May fail with EINVAL for various error conditions. May adjust the
2343 * requested depth down, if if it too large. In that case, the set
2344 * value will be stored in set->queue_depth.
2345 */
2346 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2347 {
2348 int ret;
2349
2350 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2351
2352 if (!set->nr_hw_queues)
2353 return -EINVAL;
2354 if (!set->queue_depth)
2355 return -EINVAL;
2356 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2357 return -EINVAL;
2358
2359 if (!set->ops->queue_rq)
2360 return -EINVAL;
2361
2362 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2363 pr_info("blk-mq: reduced tag depth to %u\n",
2364 BLK_MQ_MAX_DEPTH);
2365 set->queue_depth = BLK_MQ_MAX_DEPTH;
2366 }
2367
2368 /*
2369 * If a crashdump is active, then we are potentially in a very
2370 * memory constrained environment. Limit us to 1 queue and
2371 * 64 tags to prevent using too much memory.
2372 */
2373 if (is_kdump_kernel()) {
2374 set->nr_hw_queues = 1;
2375 set->queue_depth = min(64U, set->queue_depth);
2376 }
2377 /*
2378 * There is no use for more h/w queues than cpus.
2379 */
2380 if (set->nr_hw_queues > nr_cpu_ids)
2381 set->nr_hw_queues = nr_cpu_ids;
2382
2383 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2384 GFP_KERNEL, set->numa_node);
2385 if (!set->tags)
2386 return -ENOMEM;
2387
2388 ret = -ENOMEM;
2389 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2390 GFP_KERNEL, set->numa_node);
2391 if (!set->mq_map)
2392 goto out_free_tags;
2393
2394 if (set->ops->map_queues)
2395 ret = set->ops->map_queues(set);
2396 else
2397 ret = blk_mq_map_queues(set);
2398 if (ret)
2399 goto out_free_mq_map;
2400
2401 ret = blk_mq_alloc_rq_maps(set);
2402 if (ret)
2403 goto out_free_mq_map;
2404
2405 mutex_init(&set->tag_list_lock);
2406 INIT_LIST_HEAD(&set->tag_list);
2407
2408 return 0;
2409
2410 out_free_mq_map:
2411 kfree(set->mq_map);
2412 set->mq_map = NULL;
2413 out_free_tags:
2414 kfree(set->tags);
2415 set->tags = NULL;
2416 return ret;
2417 }
2418 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2419
2420 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2421 {
2422 int i;
2423
2424 for (i = 0; i < nr_cpu_ids; i++) {
2425 if (set->tags[i])
2426 blk_mq_free_rq_map(set, set->tags[i], i);
2427 }
2428
2429 kfree(set->mq_map);
2430 set->mq_map = NULL;
2431
2432 kfree(set->tags);
2433 set->tags = NULL;
2434 }
2435 EXPORT_SYMBOL(blk_mq_free_tag_set);
2436
2437 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2438 {
2439 struct blk_mq_tag_set *set = q->tag_set;
2440 struct blk_mq_hw_ctx *hctx;
2441 int i, ret;
2442
2443 if (!set || nr > set->queue_depth)
2444 return -EINVAL;
2445
2446 ret = 0;
2447 queue_for_each_hw_ctx(q, hctx, i) {
2448 if (!hctx->tags)
2449 continue;
2450 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2451 if (ret)
2452 break;
2453 }
2454
2455 if (!ret)
2456 q->nr_requests = nr;
2457
2458 return ret;
2459 }
2460
2461 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2462 {
2463 struct request_queue *q;
2464
2465 if (nr_hw_queues > nr_cpu_ids)
2466 nr_hw_queues = nr_cpu_ids;
2467 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2468 return;
2469
2470 list_for_each_entry(q, &set->tag_list, tag_set_list)
2471 blk_mq_freeze_queue(q);
2472
2473 set->nr_hw_queues = nr_hw_queues;
2474 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2475 blk_mq_realloc_hw_ctxs(set, q);
2476
2477 if (q->nr_hw_queues > 1)
2478 blk_queue_make_request(q, blk_mq_make_request);
2479 else
2480 blk_queue_make_request(q, blk_sq_make_request);
2481
2482 blk_mq_queue_reinit(q, cpu_online_mask);
2483 }
2484
2485 list_for_each_entry(q, &set->tag_list, tag_set_list)
2486 blk_mq_unfreeze_queue(q);
2487 }
2488 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2489
2490 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2491 struct blk_mq_hw_ctx *hctx,
2492 struct request *rq)
2493 {
2494 struct blk_rq_stat stat[2];
2495 unsigned long ret = 0;
2496
2497 /*
2498 * If stats collection isn't on, don't sleep but turn it on for
2499 * future users
2500 */
2501 if (!blk_stat_enable(q))
2502 return 0;
2503
2504 /*
2505 * We don't have to do this once per IO, should optimize this
2506 * to just use the current window of stats until it changes
2507 */
2508 memset(&stat, 0, sizeof(stat));
2509 blk_hctx_stat_get(hctx, stat);
2510
2511 /*
2512 * As an optimistic guess, use half of the mean service time
2513 * for this type of request. We can (and should) make this smarter.
2514 * For instance, if the completion latencies are tight, we can
2515 * get closer than just half the mean. This is especially
2516 * important on devices where the completion latencies are longer
2517 * than ~10 usec.
2518 */
2519 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2520 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2521 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2522 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2523
2524 return ret;
2525 }
2526
2527 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2528 struct blk_mq_hw_ctx *hctx,
2529 struct request *rq)
2530 {
2531 struct hrtimer_sleeper hs;
2532 enum hrtimer_mode mode;
2533 unsigned int nsecs;
2534 ktime_t kt;
2535
2536 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2537 return false;
2538
2539 /*
2540 * poll_nsec can be:
2541 *
2542 * -1: don't ever hybrid sleep
2543 * 0: use half of prev avg
2544 * >0: use this specific value
2545 */
2546 if (q->poll_nsec == -1)
2547 return false;
2548 else if (q->poll_nsec > 0)
2549 nsecs = q->poll_nsec;
2550 else
2551 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2552
2553 if (!nsecs)
2554 return false;
2555
2556 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2557
2558 /*
2559 * This will be replaced with the stats tracking code, using
2560 * 'avg_completion_time / 2' as the pre-sleep target.
2561 */
2562 kt = nsecs;
2563
2564 mode = HRTIMER_MODE_REL;
2565 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2566 hrtimer_set_expires(&hs.timer, kt);
2567
2568 hrtimer_init_sleeper(&hs, current);
2569 do {
2570 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2571 break;
2572 set_current_state(TASK_UNINTERRUPTIBLE);
2573 hrtimer_start_expires(&hs.timer, mode);
2574 if (hs.task)
2575 io_schedule();
2576 hrtimer_cancel(&hs.timer);
2577 mode = HRTIMER_MODE_ABS;
2578 } while (hs.task && !signal_pending(current));
2579
2580 __set_current_state(TASK_RUNNING);
2581 destroy_hrtimer_on_stack(&hs.timer);
2582 return true;
2583 }
2584
2585 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2586 {
2587 struct request_queue *q = hctx->queue;
2588 long state;
2589
2590 /*
2591 * If we sleep, have the caller restart the poll loop to reset
2592 * the state. Like for the other success return cases, the
2593 * caller is responsible for checking if the IO completed. If
2594 * the IO isn't complete, we'll get called again and will go
2595 * straight to the busy poll loop.
2596 */
2597 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2598 return true;
2599
2600 hctx->poll_considered++;
2601
2602 state = current->state;
2603 while (!need_resched()) {
2604 int ret;
2605
2606 hctx->poll_invoked++;
2607
2608 ret = q->mq_ops->poll(hctx, rq->tag);
2609 if (ret > 0) {
2610 hctx->poll_success++;
2611 set_current_state(TASK_RUNNING);
2612 return true;
2613 }
2614
2615 if (signal_pending_state(state, current))
2616 set_current_state(TASK_RUNNING);
2617
2618 if (current->state == TASK_RUNNING)
2619 return true;
2620 if (ret < 0)
2621 break;
2622 cpu_relax();
2623 }
2624
2625 return false;
2626 }
2627
2628 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2629 {
2630 struct blk_mq_hw_ctx *hctx;
2631 struct blk_plug *plug;
2632 struct request *rq;
2633
2634 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2635 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2636 return false;
2637
2638 plug = current->plug;
2639 if (plug)
2640 blk_flush_plug_list(plug, false);
2641
2642 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2643 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2644
2645 return __blk_mq_poll(hctx, rq);
2646 }
2647 EXPORT_SYMBOL_GPL(blk_mq_poll);
2648
2649 void blk_mq_disable_hotplug(void)
2650 {
2651 mutex_lock(&all_q_mutex);
2652 }
2653
2654 void blk_mq_enable_hotplug(void)
2655 {
2656 mutex_unlock(&all_q_mutex);
2657 }
2658
2659 static int __init blk_mq_init(void)
2660 {
2661 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2662 blk_mq_hctx_notify_dead);
2663
2664 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2665 blk_mq_queue_reinit_prepare,
2666 blk_mq_queue_reinit_dead);
2667 return 0;
2668 }
2669 subsys_initcall(blk_mq_init);