]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - block/cfq-iosched.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/ktime.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include <linux/blk-cgroup.h>
18 #include "blk.h"
19 #include "blk-wbt.h"
20
21 /*
22 * tunables
23 */
24 /* max queue in one round of service */
25 static const int cfq_quantum = 8;
26 static const u64 cfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
27 /* maximum backwards seek, in KiB */
28 static const int cfq_back_max = 16 * 1024;
29 /* penalty of a backwards seek */
30 static const int cfq_back_penalty = 2;
31 static const u64 cfq_slice_sync = NSEC_PER_SEC / 10;
32 static u64 cfq_slice_async = NSEC_PER_SEC / 25;
33 static const int cfq_slice_async_rq = 2;
34 static u64 cfq_slice_idle = NSEC_PER_SEC / 125;
35 static u64 cfq_group_idle = NSEC_PER_SEC / 125;
36 static const u64 cfq_target_latency = (u64)NSEC_PER_SEC * 3/10; /* 300 ms */
37 static const int cfq_hist_divisor = 4;
38
39 /*
40 * offset from end of service tree
41 */
42 #define CFQ_IDLE_DELAY (NSEC_PER_SEC / 5)
43
44 /*
45 * below this threshold, we consider thinktime immediate
46 */
47 #define CFQ_MIN_TT (2 * NSEC_PER_SEC / HZ)
48
49 #define CFQ_SLICE_SCALE (5)
50 #define CFQ_HW_QUEUE_MIN (5)
51 #define CFQ_SERVICE_SHIFT 12
52
53 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
54 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
55 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
56 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57
58 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
59 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
60 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
61
62 static struct kmem_cache *cfq_pool;
63
64 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
65 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
66 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
68 #define sample_valid(samples) ((samples) > 80)
69 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
70
71 /* blkio-related constants */
72 #define CFQ_WEIGHT_LEGACY_MIN 10
73 #define CFQ_WEIGHT_LEGACY_DFL 500
74 #define CFQ_WEIGHT_LEGACY_MAX 1000
75
76 struct cfq_ttime {
77 u64 last_end_request;
78
79 u64 ttime_total;
80 u64 ttime_mean;
81 unsigned long ttime_samples;
82 };
83
84 /*
85 * Most of our rbtree usage is for sorting with min extraction, so
86 * if we cache the leftmost node we don't have to walk down the tree
87 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
88 * move this into the elevator for the rq sorting as well.
89 */
90 struct cfq_rb_root {
91 struct rb_root rb;
92 struct rb_node *left;
93 unsigned count;
94 u64 min_vdisktime;
95 struct cfq_ttime ttime;
96 };
97 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
98 .ttime = {.last_end_request = ktime_get_ns(),},}
99
100 /*
101 * Per process-grouping structure
102 */
103 struct cfq_queue {
104 /* reference count */
105 int ref;
106 /* various state flags, see below */
107 unsigned int flags;
108 /* parent cfq_data */
109 struct cfq_data *cfqd;
110 /* service_tree member */
111 struct rb_node rb_node;
112 /* service_tree key */
113 u64 rb_key;
114 /* prio tree member */
115 struct rb_node p_node;
116 /* prio tree root we belong to, if any */
117 struct rb_root *p_root;
118 /* sorted list of pending requests */
119 struct rb_root sort_list;
120 /* if fifo isn't expired, next request to serve */
121 struct request *next_rq;
122 /* requests queued in sort_list */
123 int queued[2];
124 /* currently allocated requests */
125 int allocated[2];
126 /* fifo list of requests in sort_list */
127 struct list_head fifo;
128
129 /* time when queue got scheduled in to dispatch first request. */
130 u64 dispatch_start;
131 u64 allocated_slice;
132 u64 slice_dispatch;
133 /* time when first request from queue completed and slice started. */
134 u64 slice_start;
135 u64 slice_end;
136 s64 slice_resid;
137
138 /* pending priority requests */
139 int prio_pending;
140 /* number of requests that are on the dispatch list or inside driver */
141 int dispatched;
142
143 /* io prio of this group */
144 unsigned short ioprio, org_ioprio;
145 unsigned short ioprio_class, org_ioprio_class;
146
147 pid_t pid;
148
149 u32 seek_history;
150 sector_t last_request_pos;
151
152 struct cfq_rb_root *service_tree;
153 struct cfq_queue *new_cfqq;
154 struct cfq_group *cfqg;
155 /* Number of sectors dispatched from queue in single dispatch round */
156 unsigned long nr_sectors;
157 };
158
159 /*
160 * First index in the service_trees.
161 * IDLE is handled separately, so it has negative index
162 */
163 enum wl_class_t {
164 BE_WORKLOAD = 0,
165 RT_WORKLOAD = 1,
166 IDLE_WORKLOAD = 2,
167 CFQ_PRIO_NR,
168 };
169
170 /*
171 * Second index in the service_trees.
172 */
173 enum wl_type_t {
174 ASYNC_WORKLOAD = 0,
175 SYNC_NOIDLE_WORKLOAD = 1,
176 SYNC_WORKLOAD = 2
177 };
178
179 struct cfqg_stats {
180 #ifdef CONFIG_CFQ_GROUP_IOSCHED
181 /* number of ios merged */
182 struct blkg_rwstat merged;
183 /* total time spent on device in ns, may not be accurate w/ queueing */
184 struct blkg_rwstat service_time;
185 /* total time spent waiting in scheduler queue in ns */
186 struct blkg_rwstat wait_time;
187 /* number of IOs queued up */
188 struct blkg_rwstat queued;
189 /* total disk time and nr sectors dispatched by this group */
190 struct blkg_stat time;
191 #ifdef CONFIG_DEBUG_BLK_CGROUP
192 /* time not charged to this cgroup */
193 struct blkg_stat unaccounted_time;
194 /* sum of number of ios queued across all samples */
195 struct blkg_stat avg_queue_size_sum;
196 /* count of samples taken for average */
197 struct blkg_stat avg_queue_size_samples;
198 /* how many times this group has been removed from service tree */
199 struct blkg_stat dequeue;
200 /* total time spent waiting for it to be assigned a timeslice. */
201 struct blkg_stat group_wait_time;
202 /* time spent idling for this blkcg_gq */
203 struct blkg_stat idle_time;
204 /* total time with empty current active q with other requests queued */
205 struct blkg_stat empty_time;
206 /* fields after this shouldn't be cleared on stat reset */
207 uint64_t start_group_wait_time;
208 uint64_t start_idle_time;
209 uint64_t start_empty_time;
210 uint16_t flags;
211 #endif /* CONFIG_DEBUG_BLK_CGROUP */
212 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
213 };
214
215 /* Per-cgroup data */
216 struct cfq_group_data {
217 /* must be the first member */
218 struct blkcg_policy_data cpd;
219
220 unsigned int weight;
221 unsigned int leaf_weight;
222 };
223
224 /* This is per cgroup per device grouping structure */
225 struct cfq_group {
226 /* must be the first member */
227 struct blkg_policy_data pd;
228
229 /* group service_tree member */
230 struct rb_node rb_node;
231
232 /* group service_tree key */
233 u64 vdisktime;
234
235 /*
236 * The number of active cfqgs and sum of their weights under this
237 * cfqg. This covers this cfqg's leaf_weight and all children's
238 * weights, but does not cover weights of further descendants.
239 *
240 * If a cfqg is on the service tree, it's active. An active cfqg
241 * also activates its parent and contributes to the children_weight
242 * of the parent.
243 */
244 int nr_active;
245 unsigned int children_weight;
246
247 /*
248 * vfraction is the fraction of vdisktime that the tasks in this
249 * cfqg are entitled to. This is determined by compounding the
250 * ratios walking up from this cfqg to the root.
251 *
252 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
253 * vfractions on a service tree is approximately 1. The sum may
254 * deviate a bit due to rounding errors and fluctuations caused by
255 * cfqgs entering and leaving the service tree.
256 */
257 unsigned int vfraction;
258
259 /*
260 * There are two weights - (internal) weight is the weight of this
261 * cfqg against the sibling cfqgs. leaf_weight is the wight of
262 * this cfqg against the child cfqgs. For the root cfqg, both
263 * weights are kept in sync for backward compatibility.
264 */
265 unsigned int weight;
266 unsigned int new_weight;
267 unsigned int dev_weight;
268
269 unsigned int leaf_weight;
270 unsigned int new_leaf_weight;
271 unsigned int dev_leaf_weight;
272
273 /* number of cfqq currently on this group */
274 int nr_cfqq;
275
276 /*
277 * Per group busy queues average. Useful for workload slice calc. We
278 * create the array for each prio class but at run time it is used
279 * only for RT and BE class and slot for IDLE class remains unused.
280 * This is primarily done to avoid confusion and a gcc warning.
281 */
282 unsigned int busy_queues_avg[CFQ_PRIO_NR];
283 /*
284 * rr lists of queues with requests. We maintain service trees for
285 * RT and BE classes. These trees are subdivided in subclasses
286 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
287 * class there is no subclassification and all the cfq queues go on
288 * a single tree service_tree_idle.
289 * Counts are embedded in the cfq_rb_root
290 */
291 struct cfq_rb_root service_trees[2][3];
292 struct cfq_rb_root service_tree_idle;
293
294 u64 saved_wl_slice;
295 enum wl_type_t saved_wl_type;
296 enum wl_class_t saved_wl_class;
297
298 /* number of requests that are on the dispatch list or inside driver */
299 int dispatched;
300 struct cfq_ttime ttime;
301 struct cfqg_stats stats; /* stats for this cfqg */
302
303 /* async queue for each priority case */
304 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
305 struct cfq_queue *async_idle_cfqq;
306
307 };
308
309 struct cfq_io_cq {
310 struct io_cq icq; /* must be the first member */
311 struct cfq_queue *cfqq[2];
312 struct cfq_ttime ttime;
313 int ioprio; /* the current ioprio */
314 #ifdef CONFIG_CFQ_GROUP_IOSCHED
315 uint64_t blkcg_serial_nr; /* the current blkcg serial */
316 #endif
317 };
318
319 /*
320 * Per block device queue structure
321 */
322 struct cfq_data {
323 struct request_queue *queue;
324 /* Root service tree for cfq_groups */
325 struct cfq_rb_root grp_service_tree;
326 struct cfq_group *root_group;
327
328 /*
329 * The priority currently being served
330 */
331 enum wl_class_t serving_wl_class;
332 enum wl_type_t serving_wl_type;
333 u64 workload_expires;
334 struct cfq_group *serving_group;
335
336 /*
337 * Each priority tree is sorted by next_request position. These
338 * trees are used when determining if two or more queues are
339 * interleaving requests (see cfq_close_cooperator).
340 */
341 struct rb_root prio_trees[CFQ_PRIO_LISTS];
342
343 unsigned int busy_queues;
344 unsigned int busy_sync_queues;
345
346 int rq_in_driver;
347 int rq_in_flight[2];
348
349 /*
350 * queue-depth detection
351 */
352 int rq_queued;
353 int hw_tag;
354 /*
355 * hw_tag can be
356 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
357 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
358 * 0 => no NCQ
359 */
360 int hw_tag_est_depth;
361 unsigned int hw_tag_samples;
362
363 /*
364 * idle window management
365 */
366 struct hrtimer idle_slice_timer;
367 struct work_struct unplug_work;
368
369 struct cfq_queue *active_queue;
370 struct cfq_io_cq *active_cic;
371
372 sector_t last_position;
373
374 /*
375 * tunables, see top of file
376 */
377 unsigned int cfq_quantum;
378 unsigned int cfq_back_penalty;
379 unsigned int cfq_back_max;
380 unsigned int cfq_slice_async_rq;
381 unsigned int cfq_latency;
382 u64 cfq_fifo_expire[2];
383 u64 cfq_slice[2];
384 u64 cfq_slice_idle;
385 u64 cfq_group_idle;
386 u64 cfq_target_latency;
387
388 /*
389 * Fallback dummy cfqq for extreme OOM conditions
390 */
391 struct cfq_queue oom_cfqq;
392
393 u64 last_delayed_sync;
394 };
395
396 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
397 static void cfq_put_queue(struct cfq_queue *cfqq);
398
399 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
400 enum wl_class_t class,
401 enum wl_type_t type)
402 {
403 if (!cfqg)
404 return NULL;
405
406 if (class == IDLE_WORKLOAD)
407 return &cfqg->service_tree_idle;
408
409 return &cfqg->service_trees[class][type];
410 }
411
412 enum cfqq_state_flags {
413 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
414 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
415 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
416 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
417 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
418 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
419 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
420 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
421 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
422 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
423 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
424 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
425 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
426 };
427
428 #define CFQ_CFQQ_FNS(name) \
429 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
430 { \
431 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
432 } \
433 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
434 { \
435 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
436 } \
437 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
438 { \
439 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
440 }
441
442 CFQ_CFQQ_FNS(on_rr);
443 CFQ_CFQQ_FNS(wait_request);
444 CFQ_CFQQ_FNS(must_dispatch);
445 CFQ_CFQQ_FNS(must_alloc_slice);
446 CFQ_CFQQ_FNS(fifo_expire);
447 CFQ_CFQQ_FNS(idle_window);
448 CFQ_CFQQ_FNS(prio_changed);
449 CFQ_CFQQ_FNS(slice_new);
450 CFQ_CFQQ_FNS(sync);
451 CFQ_CFQQ_FNS(coop);
452 CFQ_CFQQ_FNS(split_coop);
453 CFQ_CFQQ_FNS(deep);
454 CFQ_CFQQ_FNS(wait_busy);
455 #undef CFQ_CFQQ_FNS
456
457 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
458
459 /* cfqg stats flags */
460 enum cfqg_stats_flags {
461 CFQG_stats_waiting = 0,
462 CFQG_stats_idling,
463 CFQG_stats_empty,
464 };
465
466 #define CFQG_FLAG_FNS(name) \
467 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
468 { \
469 stats->flags |= (1 << CFQG_stats_##name); \
470 } \
471 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
472 { \
473 stats->flags &= ~(1 << CFQG_stats_##name); \
474 } \
475 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
476 { \
477 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
478 } \
479
480 CFQG_FLAG_FNS(waiting)
481 CFQG_FLAG_FNS(idling)
482 CFQG_FLAG_FNS(empty)
483 #undef CFQG_FLAG_FNS
484
485 /* This should be called with the queue_lock held. */
486 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
487 {
488 unsigned long long now;
489
490 if (!cfqg_stats_waiting(stats))
491 return;
492
493 now = sched_clock();
494 if (time_after64(now, stats->start_group_wait_time))
495 blkg_stat_add(&stats->group_wait_time,
496 now - stats->start_group_wait_time);
497 cfqg_stats_clear_waiting(stats);
498 }
499
500 /* This should be called with the queue_lock held. */
501 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
502 struct cfq_group *curr_cfqg)
503 {
504 struct cfqg_stats *stats = &cfqg->stats;
505
506 if (cfqg_stats_waiting(stats))
507 return;
508 if (cfqg == curr_cfqg)
509 return;
510 stats->start_group_wait_time = sched_clock();
511 cfqg_stats_mark_waiting(stats);
512 }
513
514 /* This should be called with the queue_lock held. */
515 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
516 {
517 unsigned long long now;
518
519 if (!cfqg_stats_empty(stats))
520 return;
521
522 now = sched_clock();
523 if (time_after64(now, stats->start_empty_time))
524 blkg_stat_add(&stats->empty_time,
525 now - stats->start_empty_time);
526 cfqg_stats_clear_empty(stats);
527 }
528
529 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
530 {
531 blkg_stat_add(&cfqg->stats.dequeue, 1);
532 }
533
534 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
535 {
536 struct cfqg_stats *stats = &cfqg->stats;
537
538 if (blkg_rwstat_total(&stats->queued))
539 return;
540
541 /*
542 * group is already marked empty. This can happen if cfqq got new
543 * request in parent group and moved to this group while being added
544 * to service tree. Just ignore the event and move on.
545 */
546 if (cfqg_stats_empty(stats))
547 return;
548
549 stats->start_empty_time = sched_clock();
550 cfqg_stats_mark_empty(stats);
551 }
552
553 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
554 {
555 struct cfqg_stats *stats = &cfqg->stats;
556
557 if (cfqg_stats_idling(stats)) {
558 unsigned long long now = sched_clock();
559
560 if (time_after64(now, stats->start_idle_time))
561 blkg_stat_add(&stats->idle_time,
562 now - stats->start_idle_time);
563 cfqg_stats_clear_idling(stats);
564 }
565 }
566
567 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
568 {
569 struct cfqg_stats *stats = &cfqg->stats;
570
571 BUG_ON(cfqg_stats_idling(stats));
572
573 stats->start_idle_time = sched_clock();
574 cfqg_stats_mark_idling(stats);
575 }
576
577 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
578 {
579 struct cfqg_stats *stats = &cfqg->stats;
580
581 blkg_stat_add(&stats->avg_queue_size_sum,
582 blkg_rwstat_total(&stats->queued));
583 blkg_stat_add(&stats->avg_queue_size_samples, 1);
584 cfqg_stats_update_group_wait_time(stats);
585 }
586
587 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
588
589 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
590 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
591 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
592 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
593 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
594 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
595 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
596
597 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
598
599 #ifdef CONFIG_CFQ_GROUP_IOSCHED
600
601 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
602 {
603 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
604 }
605
606 static struct cfq_group_data
607 *cpd_to_cfqgd(struct blkcg_policy_data *cpd)
608 {
609 return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
610 }
611
612 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
613 {
614 return pd_to_blkg(&cfqg->pd);
615 }
616
617 static struct blkcg_policy blkcg_policy_cfq;
618
619 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
620 {
621 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
622 }
623
624 static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
625 {
626 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
627 }
628
629 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
630 {
631 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
632
633 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
634 }
635
636 static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
637 struct cfq_group *ancestor)
638 {
639 return cgroup_is_descendant(cfqg_to_blkg(cfqg)->blkcg->css.cgroup,
640 cfqg_to_blkg(ancestor)->blkcg->css.cgroup);
641 }
642
643 static inline void cfqg_get(struct cfq_group *cfqg)
644 {
645 return blkg_get(cfqg_to_blkg(cfqg));
646 }
647
648 static inline void cfqg_put(struct cfq_group *cfqg)
649 {
650 return blkg_put(cfqg_to_blkg(cfqg));
651 }
652
653 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
654 char __pbuf[128]; \
655 \
656 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
657 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
658 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
659 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
660 __pbuf, ##args); \
661 } while (0)
662
663 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
664 char __pbuf[128]; \
665 \
666 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
667 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
668 } while (0)
669
670 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
671 struct cfq_group *curr_cfqg,
672 unsigned int op)
673 {
674 blkg_rwstat_add(&cfqg->stats.queued, op, 1);
675 cfqg_stats_end_empty_time(&cfqg->stats);
676 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
677 }
678
679 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
680 uint64_t time, unsigned long unaccounted_time)
681 {
682 blkg_stat_add(&cfqg->stats.time, time);
683 #ifdef CONFIG_DEBUG_BLK_CGROUP
684 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
685 #endif
686 }
687
688 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg,
689 unsigned int op)
690 {
691 blkg_rwstat_add(&cfqg->stats.queued, op, -1);
692 }
693
694 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg,
695 unsigned int op)
696 {
697 blkg_rwstat_add(&cfqg->stats.merged, op, 1);
698 }
699
700 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
701 uint64_t start_time, uint64_t io_start_time,
702 unsigned int op)
703 {
704 struct cfqg_stats *stats = &cfqg->stats;
705 unsigned long long now = sched_clock();
706
707 if (time_after64(now, io_start_time))
708 blkg_rwstat_add(&stats->service_time, op, now - io_start_time);
709 if (time_after64(io_start_time, start_time))
710 blkg_rwstat_add(&stats->wait_time, op,
711 io_start_time - start_time);
712 }
713
714 /* @stats = 0 */
715 static void cfqg_stats_reset(struct cfqg_stats *stats)
716 {
717 /* queued stats shouldn't be cleared */
718 blkg_rwstat_reset(&stats->merged);
719 blkg_rwstat_reset(&stats->service_time);
720 blkg_rwstat_reset(&stats->wait_time);
721 blkg_stat_reset(&stats->time);
722 #ifdef CONFIG_DEBUG_BLK_CGROUP
723 blkg_stat_reset(&stats->unaccounted_time);
724 blkg_stat_reset(&stats->avg_queue_size_sum);
725 blkg_stat_reset(&stats->avg_queue_size_samples);
726 blkg_stat_reset(&stats->dequeue);
727 blkg_stat_reset(&stats->group_wait_time);
728 blkg_stat_reset(&stats->idle_time);
729 blkg_stat_reset(&stats->empty_time);
730 #endif
731 }
732
733 /* @to += @from */
734 static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
735 {
736 /* queued stats shouldn't be cleared */
737 blkg_rwstat_add_aux(&to->merged, &from->merged);
738 blkg_rwstat_add_aux(&to->service_time, &from->service_time);
739 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
740 blkg_stat_add_aux(&from->time, &from->time);
741 #ifdef CONFIG_DEBUG_BLK_CGROUP
742 blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
743 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
744 blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
745 blkg_stat_add_aux(&to->dequeue, &from->dequeue);
746 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
747 blkg_stat_add_aux(&to->idle_time, &from->idle_time);
748 blkg_stat_add_aux(&to->empty_time, &from->empty_time);
749 #endif
750 }
751
752 /*
753 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
754 * recursive stats can still account for the amount used by this cfqg after
755 * it's gone.
756 */
757 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
758 {
759 struct cfq_group *parent = cfqg_parent(cfqg);
760
761 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
762
763 if (unlikely(!parent))
764 return;
765
766 cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
767 cfqg_stats_reset(&cfqg->stats);
768 }
769
770 #else /* CONFIG_CFQ_GROUP_IOSCHED */
771
772 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
773 static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
774 struct cfq_group *ancestor)
775 {
776 return true;
777 }
778 static inline void cfqg_get(struct cfq_group *cfqg) { }
779 static inline void cfqg_put(struct cfq_group *cfqg) { }
780
781 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
782 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
783 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
784 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
785 ##args)
786 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
787
788 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
789 struct cfq_group *curr_cfqg, unsigned int op) { }
790 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
791 uint64_t time, unsigned long unaccounted_time) { }
792 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg,
793 unsigned int op) { }
794 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg,
795 unsigned int op) { }
796 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
797 uint64_t start_time, uint64_t io_start_time,
798 unsigned int op) { }
799
800 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
801
802 #define cfq_log(cfqd, fmt, args...) \
803 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
804
805 /* Traverses through cfq group service trees */
806 #define for_each_cfqg_st(cfqg, i, j, st) \
807 for (i = 0; i <= IDLE_WORKLOAD; i++) \
808 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
809 : &cfqg->service_tree_idle; \
810 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
811 (i == IDLE_WORKLOAD && j == 0); \
812 j++, st = i < IDLE_WORKLOAD ? \
813 &cfqg->service_trees[i][j]: NULL) \
814
815 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
816 struct cfq_ttime *ttime, bool group_idle)
817 {
818 u64 slice;
819 if (!sample_valid(ttime->ttime_samples))
820 return false;
821 if (group_idle)
822 slice = cfqd->cfq_group_idle;
823 else
824 slice = cfqd->cfq_slice_idle;
825 return ttime->ttime_mean > slice;
826 }
827
828 static inline bool iops_mode(struct cfq_data *cfqd)
829 {
830 /*
831 * If we are not idling on queues and it is a NCQ drive, parallel
832 * execution of requests is on and measuring time is not possible
833 * in most of the cases until and unless we drive shallower queue
834 * depths and that becomes a performance bottleneck. In such cases
835 * switch to start providing fairness in terms of number of IOs.
836 */
837 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
838 return true;
839 else
840 return false;
841 }
842
843 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
844 {
845 if (cfq_class_idle(cfqq))
846 return IDLE_WORKLOAD;
847 if (cfq_class_rt(cfqq))
848 return RT_WORKLOAD;
849 return BE_WORKLOAD;
850 }
851
852
853 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
854 {
855 if (!cfq_cfqq_sync(cfqq))
856 return ASYNC_WORKLOAD;
857 if (!cfq_cfqq_idle_window(cfqq))
858 return SYNC_NOIDLE_WORKLOAD;
859 return SYNC_WORKLOAD;
860 }
861
862 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
863 struct cfq_data *cfqd,
864 struct cfq_group *cfqg)
865 {
866 if (wl_class == IDLE_WORKLOAD)
867 return cfqg->service_tree_idle.count;
868
869 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
870 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
871 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
872 }
873
874 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
875 struct cfq_group *cfqg)
876 {
877 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
878 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
879 }
880
881 static void cfq_dispatch_insert(struct request_queue *, struct request *);
882 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
883 struct cfq_io_cq *cic, struct bio *bio);
884
885 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
886 {
887 /* cic->icq is the first member, %NULL will convert to %NULL */
888 return container_of(icq, struct cfq_io_cq, icq);
889 }
890
891 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
892 struct io_context *ioc)
893 {
894 if (ioc)
895 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
896 return NULL;
897 }
898
899 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
900 {
901 return cic->cfqq[is_sync];
902 }
903
904 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
905 bool is_sync)
906 {
907 cic->cfqq[is_sync] = cfqq;
908 }
909
910 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
911 {
912 return cic->icq.q->elevator->elevator_data;
913 }
914
915 /*
916 * scheduler run of queue, if there are requests pending and no one in the
917 * driver that will restart queueing
918 */
919 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
920 {
921 if (cfqd->busy_queues) {
922 cfq_log(cfqd, "schedule dispatch");
923 kblockd_schedule_work(&cfqd->unplug_work);
924 }
925 }
926
927 /*
928 * Scale schedule slice based on io priority. Use the sync time slice only
929 * if a queue is marked sync and has sync io queued. A sync queue with async
930 * io only, should not get full sync slice length.
931 */
932 static inline u64 cfq_prio_slice(struct cfq_data *cfqd, bool sync,
933 unsigned short prio)
934 {
935 u64 base_slice = cfqd->cfq_slice[sync];
936 u64 slice = div_u64(base_slice, CFQ_SLICE_SCALE);
937
938 WARN_ON(prio >= IOPRIO_BE_NR);
939
940 return base_slice + (slice * (4 - prio));
941 }
942
943 static inline u64
944 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
945 {
946 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
947 }
948
949 /**
950 * cfqg_scale_charge - scale disk time charge according to cfqg weight
951 * @charge: disk time being charged
952 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
953 *
954 * Scale @charge according to @vfraction, which is in range (0, 1]. The
955 * scaling is inversely proportional.
956 *
957 * scaled = charge / vfraction
958 *
959 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
960 */
961 static inline u64 cfqg_scale_charge(u64 charge,
962 unsigned int vfraction)
963 {
964 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
965
966 /* charge / vfraction */
967 c <<= CFQ_SERVICE_SHIFT;
968 return div_u64(c, vfraction);
969 }
970
971 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
972 {
973 s64 delta = (s64)(vdisktime - min_vdisktime);
974 if (delta > 0)
975 min_vdisktime = vdisktime;
976
977 return min_vdisktime;
978 }
979
980 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
981 {
982 s64 delta = (s64)(vdisktime - min_vdisktime);
983 if (delta < 0)
984 min_vdisktime = vdisktime;
985
986 return min_vdisktime;
987 }
988
989 static void update_min_vdisktime(struct cfq_rb_root *st)
990 {
991 struct cfq_group *cfqg;
992
993 if (st->left) {
994 cfqg = rb_entry_cfqg(st->left);
995 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
996 cfqg->vdisktime);
997 }
998 }
999
1000 /*
1001 * get averaged number of queues of RT/BE priority.
1002 * average is updated, with a formula that gives more weight to higher numbers,
1003 * to quickly follows sudden increases and decrease slowly
1004 */
1005
1006 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
1007 struct cfq_group *cfqg, bool rt)
1008 {
1009 unsigned min_q, max_q;
1010 unsigned mult = cfq_hist_divisor - 1;
1011 unsigned round = cfq_hist_divisor / 2;
1012 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1013
1014 min_q = min(cfqg->busy_queues_avg[rt], busy);
1015 max_q = max(cfqg->busy_queues_avg[rt], busy);
1016 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1017 cfq_hist_divisor;
1018 return cfqg->busy_queues_avg[rt];
1019 }
1020
1021 static inline u64
1022 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1023 {
1024 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1025 }
1026
1027 static inline u64
1028 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1029 {
1030 u64 slice = cfq_prio_to_slice(cfqd, cfqq);
1031 if (cfqd->cfq_latency) {
1032 /*
1033 * interested queues (we consider only the ones with the same
1034 * priority class in the cfq group)
1035 */
1036 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1037 cfq_class_rt(cfqq));
1038 u64 sync_slice = cfqd->cfq_slice[1];
1039 u64 expect_latency = sync_slice * iq;
1040 u64 group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1041
1042 if (expect_latency > group_slice) {
1043 u64 base_low_slice = 2 * cfqd->cfq_slice_idle;
1044 u64 low_slice;
1045
1046 /* scale low_slice according to IO priority
1047 * and sync vs async */
1048 low_slice = div64_u64(base_low_slice*slice, sync_slice);
1049 low_slice = min(slice, low_slice);
1050 /* the adapted slice value is scaled to fit all iqs
1051 * into the target latency */
1052 slice = div64_u64(slice*group_slice, expect_latency);
1053 slice = max(slice, low_slice);
1054 }
1055 }
1056 return slice;
1057 }
1058
1059 static inline void
1060 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1061 {
1062 u64 slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1063 u64 now = ktime_get_ns();
1064
1065 cfqq->slice_start = now;
1066 cfqq->slice_end = now + slice;
1067 cfqq->allocated_slice = slice;
1068 cfq_log_cfqq(cfqd, cfqq, "set_slice=%llu", cfqq->slice_end - now);
1069 }
1070
1071 /*
1072 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1073 * isn't valid until the first request from the dispatch is activated
1074 * and the slice time set.
1075 */
1076 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1077 {
1078 if (cfq_cfqq_slice_new(cfqq))
1079 return false;
1080 if (ktime_get_ns() < cfqq->slice_end)
1081 return false;
1082
1083 return true;
1084 }
1085
1086 /*
1087 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1088 * We choose the request that is closest to the head right now. Distance
1089 * behind the head is penalized and only allowed to a certain extent.
1090 */
1091 static struct request *
1092 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1093 {
1094 sector_t s1, s2, d1 = 0, d2 = 0;
1095 unsigned long back_max;
1096 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1097 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1098 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1099
1100 if (rq1 == NULL || rq1 == rq2)
1101 return rq2;
1102 if (rq2 == NULL)
1103 return rq1;
1104
1105 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1106 return rq_is_sync(rq1) ? rq1 : rq2;
1107
1108 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1109 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1110
1111 s1 = blk_rq_pos(rq1);
1112 s2 = blk_rq_pos(rq2);
1113
1114 /*
1115 * by definition, 1KiB is 2 sectors
1116 */
1117 back_max = cfqd->cfq_back_max * 2;
1118
1119 /*
1120 * Strict one way elevator _except_ in the case where we allow
1121 * short backward seeks which are biased as twice the cost of a
1122 * similar forward seek.
1123 */
1124 if (s1 >= last)
1125 d1 = s1 - last;
1126 else if (s1 + back_max >= last)
1127 d1 = (last - s1) * cfqd->cfq_back_penalty;
1128 else
1129 wrap |= CFQ_RQ1_WRAP;
1130
1131 if (s2 >= last)
1132 d2 = s2 - last;
1133 else if (s2 + back_max >= last)
1134 d2 = (last - s2) * cfqd->cfq_back_penalty;
1135 else
1136 wrap |= CFQ_RQ2_WRAP;
1137
1138 /* Found required data */
1139
1140 /*
1141 * By doing switch() on the bit mask "wrap" we avoid having to
1142 * check two variables for all permutations: --> faster!
1143 */
1144 switch (wrap) {
1145 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1146 if (d1 < d2)
1147 return rq1;
1148 else if (d2 < d1)
1149 return rq2;
1150 else {
1151 if (s1 >= s2)
1152 return rq1;
1153 else
1154 return rq2;
1155 }
1156
1157 case CFQ_RQ2_WRAP:
1158 return rq1;
1159 case CFQ_RQ1_WRAP:
1160 return rq2;
1161 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1162 default:
1163 /*
1164 * Since both rqs are wrapped,
1165 * start with the one that's further behind head
1166 * (--> only *one* back seek required),
1167 * since back seek takes more time than forward.
1168 */
1169 if (s1 <= s2)
1170 return rq1;
1171 else
1172 return rq2;
1173 }
1174 }
1175
1176 /*
1177 * The below is leftmost cache rbtree addon
1178 */
1179 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1180 {
1181 /* Service tree is empty */
1182 if (!root->count)
1183 return NULL;
1184
1185 if (!root->left)
1186 root->left = rb_first(&root->rb);
1187
1188 if (root->left)
1189 return rb_entry(root->left, struct cfq_queue, rb_node);
1190
1191 return NULL;
1192 }
1193
1194 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1195 {
1196 if (!root->left)
1197 root->left = rb_first(&root->rb);
1198
1199 if (root->left)
1200 return rb_entry_cfqg(root->left);
1201
1202 return NULL;
1203 }
1204
1205 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1206 {
1207 rb_erase(n, root);
1208 RB_CLEAR_NODE(n);
1209 }
1210
1211 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1212 {
1213 if (root->left == n)
1214 root->left = NULL;
1215 rb_erase_init(n, &root->rb);
1216 --root->count;
1217 }
1218
1219 /*
1220 * would be nice to take fifo expire time into account as well
1221 */
1222 static struct request *
1223 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1224 struct request *last)
1225 {
1226 struct rb_node *rbnext = rb_next(&last->rb_node);
1227 struct rb_node *rbprev = rb_prev(&last->rb_node);
1228 struct request *next = NULL, *prev = NULL;
1229
1230 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1231
1232 if (rbprev)
1233 prev = rb_entry_rq(rbprev);
1234
1235 if (rbnext)
1236 next = rb_entry_rq(rbnext);
1237 else {
1238 rbnext = rb_first(&cfqq->sort_list);
1239 if (rbnext && rbnext != &last->rb_node)
1240 next = rb_entry_rq(rbnext);
1241 }
1242
1243 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1244 }
1245
1246 static u64 cfq_slice_offset(struct cfq_data *cfqd,
1247 struct cfq_queue *cfqq)
1248 {
1249 /*
1250 * just an approximation, should be ok.
1251 */
1252 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1253 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1254 }
1255
1256 static inline s64
1257 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1258 {
1259 return cfqg->vdisktime - st->min_vdisktime;
1260 }
1261
1262 static void
1263 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1264 {
1265 struct rb_node **node = &st->rb.rb_node;
1266 struct rb_node *parent = NULL;
1267 struct cfq_group *__cfqg;
1268 s64 key = cfqg_key(st, cfqg);
1269 int left = 1;
1270
1271 while (*node != NULL) {
1272 parent = *node;
1273 __cfqg = rb_entry_cfqg(parent);
1274
1275 if (key < cfqg_key(st, __cfqg))
1276 node = &parent->rb_left;
1277 else {
1278 node = &parent->rb_right;
1279 left = 0;
1280 }
1281 }
1282
1283 if (left)
1284 st->left = &cfqg->rb_node;
1285
1286 rb_link_node(&cfqg->rb_node, parent, node);
1287 rb_insert_color(&cfqg->rb_node, &st->rb);
1288 }
1289
1290 /*
1291 * This has to be called only on activation of cfqg
1292 */
1293 static void
1294 cfq_update_group_weight(struct cfq_group *cfqg)
1295 {
1296 if (cfqg->new_weight) {
1297 cfqg->weight = cfqg->new_weight;
1298 cfqg->new_weight = 0;
1299 }
1300 }
1301
1302 static void
1303 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1304 {
1305 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1306
1307 if (cfqg->new_leaf_weight) {
1308 cfqg->leaf_weight = cfqg->new_leaf_weight;
1309 cfqg->new_leaf_weight = 0;
1310 }
1311 }
1312
1313 static void
1314 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1315 {
1316 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1317 struct cfq_group *pos = cfqg;
1318 struct cfq_group *parent;
1319 bool propagate;
1320
1321 /* add to the service tree */
1322 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1323
1324 /*
1325 * Update leaf_weight. We cannot update weight at this point
1326 * because cfqg might already have been activated and is
1327 * contributing its current weight to the parent's child_weight.
1328 */
1329 cfq_update_group_leaf_weight(cfqg);
1330 __cfq_group_service_tree_add(st, cfqg);
1331
1332 /*
1333 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1334 * entitled to. vfraction is calculated by walking the tree
1335 * towards the root calculating the fraction it has at each level.
1336 * The compounded ratio is how much vfraction @cfqg owns.
1337 *
1338 * Start with the proportion tasks in this cfqg has against active
1339 * children cfqgs - its leaf_weight against children_weight.
1340 */
1341 propagate = !pos->nr_active++;
1342 pos->children_weight += pos->leaf_weight;
1343 vfr = vfr * pos->leaf_weight / pos->children_weight;
1344
1345 /*
1346 * Compound ->weight walking up the tree. Both activation and
1347 * vfraction calculation are done in the same loop. Propagation
1348 * stops once an already activated node is met. vfraction
1349 * calculation should always continue to the root.
1350 */
1351 while ((parent = cfqg_parent(pos))) {
1352 if (propagate) {
1353 cfq_update_group_weight(pos);
1354 propagate = !parent->nr_active++;
1355 parent->children_weight += pos->weight;
1356 }
1357 vfr = vfr * pos->weight / parent->children_weight;
1358 pos = parent;
1359 }
1360
1361 cfqg->vfraction = max_t(unsigned, vfr, 1);
1362 }
1363
1364 static void
1365 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1366 {
1367 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1368 struct cfq_group *__cfqg;
1369 struct rb_node *n;
1370
1371 cfqg->nr_cfqq++;
1372 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1373 return;
1374
1375 /*
1376 * Currently put the group at the end. Later implement something
1377 * so that groups get lesser vtime based on their weights, so that
1378 * if group does not loose all if it was not continuously backlogged.
1379 */
1380 n = rb_last(&st->rb);
1381 if (n) {
1382 __cfqg = rb_entry_cfqg(n);
1383 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1384 } else
1385 cfqg->vdisktime = st->min_vdisktime;
1386 cfq_group_service_tree_add(st, cfqg);
1387 }
1388
1389 static void
1390 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1391 {
1392 struct cfq_group *pos = cfqg;
1393 bool propagate;
1394
1395 /*
1396 * Undo activation from cfq_group_service_tree_add(). Deactivate
1397 * @cfqg and propagate deactivation upwards.
1398 */
1399 propagate = !--pos->nr_active;
1400 pos->children_weight -= pos->leaf_weight;
1401
1402 while (propagate) {
1403 struct cfq_group *parent = cfqg_parent(pos);
1404
1405 /* @pos has 0 nr_active at this point */
1406 WARN_ON_ONCE(pos->children_weight);
1407 pos->vfraction = 0;
1408
1409 if (!parent)
1410 break;
1411
1412 propagate = !--parent->nr_active;
1413 parent->children_weight -= pos->weight;
1414 pos = parent;
1415 }
1416
1417 /* remove from the service tree */
1418 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1419 cfq_rb_erase(&cfqg->rb_node, st);
1420 }
1421
1422 static void
1423 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1424 {
1425 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1426
1427 BUG_ON(cfqg->nr_cfqq < 1);
1428 cfqg->nr_cfqq--;
1429
1430 /* If there are other cfq queues under this group, don't delete it */
1431 if (cfqg->nr_cfqq)
1432 return;
1433
1434 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1435 cfq_group_service_tree_del(st, cfqg);
1436 cfqg->saved_wl_slice = 0;
1437 cfqg_stats_update_dequeue(cfqg);
1438 }
1439
1440 static inline u64 cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1441 u64 *unaccounted_time)
1442 {
1443 u64 slice_used;
1444 u64 now = ktime_get_ns();
1445
1446 /*
1447 * Queue got expired before even a single request completed or
1448 * got expired immediately after first request completion.
1449 */
1450 if (!cfqq->slice_start || cfqq->slice_start == now) {
1451 /*
1452 * Also charge the seek time incurred to the group, otherwise
1453 * if there are mutiple queues in the group, each can dispatch
1454 * a single request on seeky media and cause lots of seek time
1455 * and group will never know it.
1456 */
1457 slice_used = max_t(u64, (now - cfqq->dispatch_start),
1458 jiffies_to_nsecs(1));
1459 } else {
1460 slice_used = now - cfqq->slice_start;
1461 if (slice_used > cfqq->allocated_slice) {
1462 *unaccounted_time = slice_used - cfqq->allocated_slice;
1463 slice_used = cfqq->allocated_slice;
1464 }
1465 if (cfqq->slice_start > cfqq->dispatch_start)
1466 *unaccounted_time += cfqq->slice_start -
1467 cfqq->dispatch_start;
1468 }
1469
1470 return slice_used;
1471 }
1472
1473 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1474 struct cfq_queue *cfqq)
1475 {
1476 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1477 u64 used_sl, charge, unaccounted_sl = 0;
1478 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1479 - cfqg->service_tree_idle.count;
1480 unsigned int vfr;
1481 u64 now = ktime_get_ns();
1482
1483 BUG_ON(nr_sync < 0);
1484 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1485
1486 if (iops_mode(cfqd))
1487 charge = cfqq->slice_dispatch;
1488 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1489 charge = cfqq->allocated_slice;
1490
1491 /*
1492 * Can't update vdisktime while on service tree and cfqg->vfraction
1493 * is valid only while on it. Cache vfr, leave the service tree,
1494 * update vdisktime and go back on. The re-addition to the tree
1495 * will also update the weights as necessary.
1496 */
1497 vfr = cfqg->vfraction;
1498 cfq_group_service_tree_del(st, cfqg);
1499 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1500 cfq_group_service_tree_add(st, cfqg);
1501
1502 /* This group is being expired. Save the context */
1503 if (cfqd->workload_expires > now) {
1504 cfqg->saved_wl_slice = cfqd->workload_expires - now;
1505 cfqg->saved_wl_type = cfqd->serving_wl_type;
1506 cfqg->saved_wl_class = cfqd->serving_wl_class;
1507 } else
1508 cfqg->saved_wl_slice = 0;
1509
1510 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1511 st->min_vdisktime);
1512 cfq_log_cfqq(cfqq->cfqd, cfqq,
1513 "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1514 used_sl, cfqq->slice_dispatch, charge,
1515 iops_mode(cfqd), cfqq->nr_sectors);
1516 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1517 cfqg_stats_set_start_empty_time(cfqg);
1518 }
1519
1520 /**
1521 * cfq_init_cfqg_base - initialize base part of a cfq_group
1522 * @cfqg: cfq_group to initialize
1523 *
1524 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1525 * is enabled or not.
1526 */
1527 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1528 {
1529 struct cfq_rb_root *st;
1530 int i, j;
1531
1532 for_each_cfqg_st(cfqg, i, j, st)
1533 *st = CFQ_RB_ROOT;
1534 RB_CLEAR_NODE(&cfqg->rb_node);
1535
1536 cfqg->ttime.last_end_request = ktime_get_ns();
1537 }
1538
1539 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1540 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1541 bool on_dfl, bool reset_dev, bool is_leaf_weight);
1542
1543 static void cfqg_stats_exit(struct cfqg_stats *stats)
1544 {
1545 blkg_rwstat_exit(&stats->merged);
1546 blkg_rwstat_exit(&stats->service_time);
1547 blkg_rwstat_exit(&stats->wait_time);
1548 blkg_rwstat_exit(&stats->queued);
1549 blkg_stat_exit(&stats->time);
1550 #ifdef CONFIG_DEBUG_BLK_CGROUP
1551 blkg_stat_exit(&stats->unaccounted_time);
1552 blkg_stat_exit(&stats->avg_queue_size_sum);
1553 blkg_stat_exit(&stats->avg_queue_size_samples);
1554 blkg_stat_exit(&stats->dequeue);
1555 blkg_stat_exit(&stats->group_wait_time);
1556 blkg_stat_exit(&stats->idle_time);
1557 blkg_stat_exit(&stats->empty_time);
1558 #endif
1559 }
1560
1561 static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1562 {
1563 if (blkg_rwstat_init(&stats->merged, gfp) ||
1564 blkg_rwstat_init(&stats->service_time, gfp) ||
1565 blkg_rwstat_init(&stats->wait_time, gfp) ||
1566 blkg_rwstat_init(&stats->queued, gfp) ||
1567 blkg_stat_init(&stats->time, gfp))
1568 goto err;
1569
1570 #ifdef CONFIG_DEBUG_BLK_CGROUP
1571 if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1572 blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1573 blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1574 blkg_stat_init(&stats->dequeue, gfp) ||
1575 blkg_stat_init(&stats->group_wait_time, gfp) ||
1576 blkg_stat_init(&stats->idle_time, gfp) ||
1577 blkg_stat_init(&stats->empty_time, gfp))
1578 goto err;
1579 #endif
1580 return 0;
1581 err:
1582 cfqg_stats_exit(stats);
1583 return -ENOMEM;
1584 }
1585
1586 static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1587 {
1588 struct cfq_group_data *cgd;
1589
1590 cgd = kzalloc(sizeof(*cgd), gfp);
1591 if (!cgd)
1592 return NULL;
1593 return &cgd->cpd;
1594 }
1595
1596 static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1597 {
1598 struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1599 unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
1600 CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1601
1602 if (cpd_to_blkcg(cpd) == &blkcg_root)
1603 weight *= 2;
1604
1605 cgd->weight = weight;
1606 cgd->leaf_weight = weight;
1607 }
1608
1609 static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1610 {
1611 kfree(cpd_to_cfqgd(cpd));
1612 }
1613
1614 static void cfq_cpd_bind(struct blkcg_policy_data *cpd)
1615 {
1616 struct blkcg *blkcg = cpd_to_blkcg(cpd);
1617 bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys);
1618 unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1619
1620 if (blkcg == &blkcg_root)
1621 weight *= 2;
1622
1623 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false));
1624 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true));
1625 }
1626
1627 static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1628 {
1629 struct cfq_group *cfqg;
1630
1631 cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1632 if (!cfqg)
1633 return NULL;
1634
1635 cfq_init_cfqg_base(cfqg);
1636 if (cfqg_stats_init(&cfqg->stats, gfp)) {
1637 kfree(cfqg);
1638 return NULL;
1639 }
1640
1641 return &cfqg->pd;
1642 }
1643
1644 static void cfq_pd_init(struct blkg_policy_data *pd)
1645 {
1646 struct cfq_group *cfqg = pd_to_cfqg(pd);
1647 struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1648
1649 cfqg->weight = cgd->weight;
1650 cfqg->leaf_weight = cgd->leaf_weight;
1651 }
1652
1653 static void cfq_pd_offline(struct blkg_policy_data *pd)
1654 {
1655 struct cfq_group *cfqg = pd_to_cfqg(pd);
1656 int i;
1657
1658 for (i = 0; i < IOPRIO_BE_NR; i++) {
1659 if (cfqg->async_cfqq[0][i])
1660 cfq_put_queue(cfqg->async_cfqq[0][i]);
1661 if (cfqg->async_cfqq[1][i])
1662 cfq_put_queue(cfqg->async_cfqq[1][i]);
1663 }
1664
1665 if (cfqg->async_idle_cfqq)
1666 cfq_put_queue(cfqg->async_idle_cfqq);
1667
1668 /*
1669 * @blkg is going offline and will be ignored by
1670 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1671 * that they don't get lost. If IOs complete after this point, the
1672 * stats for them will be lost. Oh well...
1673 */
1674 cfqg_stats_xfer_dead(cfqg);
1675 }
1676
1677 static void cfq_pd_free(struct blkg_policy_data *pd)
1678 {
1679 struct cfq_group *cfqg = pd_to_cfqg(pd);
1680
1681 cfqg_stats_exit(&cfqg->stats);
1682 return kfree(cfqg);
1683 }
1684
1685 static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1686 {
1687 struct cfq_group *cfqg = pd_to_cfqg(pd);
1688
1689 cfqg_stats_reset(&cfqg->stats);
1690 }
1691
1692 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1693 struct blkcg *blkcg)
1694 {
1695 struct blkcg_gq *blkg;
1696
1697 blkg = blkg_lookup(blkcg, cfqd->queue);
1698 if (likely(blkg))
1699 return blkg_to_cfqg(blkg);
1700 return NULL;
1701 }
1702
1703 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1704 {
1705 cfqq->cfqg = cfqg;
1706 /* cfqq reference on cfqg */
1707 cfqg_get(cfqg);
1708 }
1709
1710 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1711 struct blkg_policy_data *pd, int off)
1712 {
1713 struct cfq_group *cfqg = pd_to_cfqg(pd);
1714
1715 if (!cfqg->dev_weight)
1716 return 0;
1717 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1718 }
1719
1720 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1721 {
1722 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1723 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1724 0, false);
1725 return 0;
1726 }
1727
1728 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1729 struct blkg_policy_data *pd, int off)
1730 {
1731 struct cfq_group *cfqg = pd_to_cfqg(pd);
1732
1733 if (!cfqg->dev_leaf_weight)
1734 return 0;
1735 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1736 }
1737
1738 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1739 {
1740 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1741 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1742 0, false);
1743 return 0;
1744 }
1745
1746 static int cfq_print_weight(struct seq_file *sf, void *v)
1747 {
1748 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1749 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1750 unsigned int val = 0;
1751
1752 if (cgd)
1753 val = cgd->weight;
1754
1755 seq_printf(sf, "%u\n", val);
1756 return 0;
1757 }
1758
1759 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1760 {
1761 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1762 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1763 unsigned int val = 0;
1764
1765 if (cgd)
1766 val = cgd->leaf_weight;
1767
1768 seq_printf(sf, "%u\n", val);
1769 return 0;
1770 }
1771
1772 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1773 char *buf, size_t nbytes, loff_t off,
1774 bool on_dfl, bool is_leaf_weight)
1775 {
1776 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1777 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1778 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1779 struct blkg_conf_ctx ctx;
1780 struct cfq_group *cfqg;
1781 struct cfq_group_data *cfqgd;
1782 int ret;
1783 u64 v;
1784
1785 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1786 if (ret)
1787 return ret;
1788
1789 if (sscanf(ctx.body, "%llu", &v) == 1) {
1790 /* require "default" on dfl */
1791 ret = -ERANGE;
1792 if (!v && on_dfl)
1793 goto out_finish;
1794 } else if (!strcmp(strim(ctx.body), "default")) {
1795 v = 0;
1796 } else {
1797 ret = -EINVAL;
1798 goto out_finish;
1799 }
1800
1801 cfqg = blkg_to_cfqg(ctx.blkg);
1802 cfqgd = blkcg_to_cfqgd(blkcg);
1803
1804 ret = -ERANGE;
1805 if (!v || (v >= min && v <= max)) {
1806 if (!is_leaf_weight) {
1807 cfqg->dev_weight = v;
1808 cfqg->new_weight = v ?: cfqgd->weight;
1809 } else {
1810 cfqg->dev_leaf_weight = v;
1811 cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight;
1812 }
1813 ret = 0;
1814 }
1815 out_finish:
1816 blkg_conf_finish(&ctx);
1817 return ret ?: nbytes;
1818 }
1819
1820 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1821 char *buf, size_t nbytes, loff_t off)
1822 {
1823 return __cfqg_set_weight_device(of, buf, nbytes, off, false, false);
1824 }
1825
1826 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1827 char *buf, size_t nbytes, loff_t off)
1828 {
1829 return __cfqg_set_weight_device(of, buf, nbytes, off, false, true);
1830 }
1831
1832 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1833 bool on_dfl, bool reset_dev, bool is_leaf_weight)
1834 {
1835 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1836 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1837 struct blkcg *blkcg = css_to_blkcg(css);
1838 struct blkcg_gq *blkg;
1839 struct cfq_group_data *cfqgd;
1840 int ret = 0;
1841
1842 if (val < min || val > max)
1843 return -ERANGE;
1844
1845 spin_lock_irq(&blkcg->lock);
1846 cfqgd = blkcg_to_cfqgd(blkcg);
1847 if (!cfqgd) {
1848 ret = -EINVAL;
1849 goto out;
1850 }
1851
1852 if (!is_leaf_weight)
1853 cfqgd->weight = val;
1854 else
1855 cfqgd->leaf_weight = val;
1856
1857 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1858 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1859
1860 if (!cfqg)
1861 continue;
1862
1863 if (!is_leaf_weight) {
1864 if (reset_dev)
1865 cfqg->dev_weight = 0;
1866 if (!cfqg->dev_weight)
1867 cfqg->new_weight = cfqgd->weight;
1868 } else {
1869 if (reset_dev)
1870 cfqg->dev_leaf_weight = 0;
1871 if (!cfqg->dev_leaf_weight)
1872 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1873 }
1874 }
1875
1876 out:
1877 spin_unlock_irq(&blkcg->lock);
1878 return ret;
1879 }
1880
1881 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1882 u64 val)
1883 {
1884 return __cfq_set_weight(css, val, false, false, false);
1885 }
1886
1887 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1888 struct cftype *cft, u64 val)
1889 {
1890 return __cfq_set_weight(css, val, false, false, true);
1891 }
1892
1893 static int cfqg_print_stat(struct seq_file *sf, void *v)
1894 {
1895 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1896 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1897 return 0;
1898 }
1899
1900 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1901 {
1902 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1903 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1904 return 0;
1905 }
1906
1907 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1908 struct blkg_policy_data *pd, int off)
1909 {
1910 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
1911 &blkcg_policy_cfq, off);
1912 return __blkg_prfill_u64(sf, pd, sum);
1913 }
1914
1915 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1916 struct blkg_policy_data *pd, int off)
1917 {
1918 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
1919 &blkcg_policy_cfq, off);
1920 return __blkg_prfill_rwstat(sf, pd, &sum);
1921 }
1922
1923 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1924 {
1925 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1926 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1927 seq_cft(sf)->private, false);
1928 return 0;
1929 }
1930
1931 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1932 {
1933 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1934 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1935 seq_cft(sf)->private, true);
1936 return 0;
1937 }
1938
1939 static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
1940 int off)
1941 {
1942 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
1943
1944 return __blkg_prfill_u64(sf, pd, sum >> 9);
1945 }
1946
1947 static int cfqg_print_stat_sectors(struct seq_file *sf, void *v)
1948 {
1949 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1950 cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false);
1951 return 0;
1952 }
1953
1954 static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf,
1955 struct blkg_policy_data *pd, int off)
1956 {
1957 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
1958 offsetof(struct blkcg_gq, stat_bytes));
1959 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
1960 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
1961
1962 return __blkg_prfill_u64(sf, pd, sum >> 9);
1963 }
1964
1965 static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
1966 {
1967 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1968 cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0,
1969 false);
1970 return 0;
1971 }
1972
1973 #ifdef CONFIG_DEBUG_BLK_CGROUP
1974 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1975 struct blkg_policy_data *pd, int off)
1976 {
1977 struct cfq_group *cfqg = pd_to_cfqg(pd);
1978 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1979 u64 v = 0;
1980
1981 if (samples) {
1982 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1983 v = div64_u64(v, samples);
1984 }
1985 __blkg_prfill_u64(sf, pd, v);
1986 return 0;
1987 }
1988
1989 /* print avg_queue_size */
1990 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1991 {
1992 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1993 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1994 0, false);
1995 return 0;
1996 }
1997 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1998
1999 static struct cftype cfq_blkcg_legacy_files[] = {
2000 /* on root, weight is mapped to leaf_weight */
2001 {
2002 .name = "weight_device",
2003 .flags = CFTYPE_ONLY_ON_ROOT,
2004 .seq_show = cfqg_print_leaf_weight_device,
2005 .write = cfqg_set_leaf_weight_device,
2006 },
2007 {
2008 .name = "weight",
2009 .flags = CFTYPE_ONLY_ON_ROOT,
2010 .seq_show = cfq_print_leaf_weight,
2011 .write_u64 = cfq_set_leaf_weight,
2012 },
2013
2014 /* no such mapping necessary for !roots */
2015 {
2016 .name = "weight_device",
2017 .flags = CFTYPE_NOT_ON_ROOT,
2018 .seq_show = cfqg_print_weight_device,
2019 .write = cfqg_set_weight_device,
2020 },
2021 {
2022 .name = "weight",
2023 .flags = CFTYPE_NOT_ON_ROOT,
2024 .seq_show = cfq_print_weight,
2025 .write_u64 = cfq_set_weight,
2026 },
2027
2028 {
2029 .name = "leaf_weight_device",
2030 .seq_show = cfqg_print_leaf_weight_device,
2031 .write = cfqg_set_leaf_weight_device,
2032 },
2033 {
2034 .name = "leaf_weight",
2035 .seq_show = cfq_print_leaf_weight,
2036 .write_u64 = cfq_set_leaf_weight,
2037 },
2038
2039 /* statistics, covers only the tasks in the cfqg */
2040 {
2041 .name = "time",
2042 .private = offsetof(struct cfq_group, stats.time),
2043 .seq_show = cfqg_print_stat,
2044 },
2045 {
2046 .name = "sectors",
2047 .seq_show = cfqg_print_stat_sectors,
2048 },
2049 {
2050 .name = "io_service_bytes",
2051 .private = (unsigned long)&blkcg_policy_cfq,
2052 .seq_show = blkg_print_stat_bytes,
2053 },
2054 {
2055 .name = "io_serviced",
2056 .private = (unsigned long)&blkcg_policy_cfq,
2057 .seq_show = blkg_print_stat_ios,
2058 },
2059 {
2060 .name = "io_service_time",
2061 .private = offsetof(struct cfq_group, stats.service_time),
2062 .seq_show = cfqg_print_rwstat,
2063 },
2064 {
2065 .name = "io_wait_time",
2066 .private = offsetof(struct cfq_group, stats.wait_time),
2067 .seq_show = cfqg_print_rwstat,
2068 },
2069 {
2070 .name = "io_merged",
2071 .private = offsetof(struct cfq_group, stats.merged),
2072 .seq_show = cfqg_print_rwstat,
2073 },
2074 {
2075 .name = "io_queued",
2076 .private = offsetof(struct cfq_group, stats.queued),
2077 .seq_show = cfqg_print_rwstat,
2078 },
2079
2080 /* the same statictics which cover the cfqg and its descendants */
2081 {
2082 .name = "time_recursive",
2083 .private = offsetof(struct cfq_group, stats.time),
2084 .seq_show = cfqg_print_stat_recursive,
2085 },
2086 {
2087 .name = "sectors_recursive",
2088 .seq_show = cfqg_print_stat_sectors_recursive,
2089 },
2090 {
2091 .name = "io_service_bytes_recursive",
2092 .private = (unsigned long)&blkcg_policy_cfq,
2093 .seq_show = blkg_print_stat_bytes_recursive,
2094 },
2095 {
2096 .name = "io_serviced_recursive",
2097 .private = (unsigned long)&blkcg_policy_cfq,
2098 .seq_show = blkg_print_stat_ios_recursive,
2099 },
2100 {
2101 .name = "io_service_time_recursive",
2102 .private = offsetof(struct cfq_group, stats.service_time),
2103 .seq_show = cfqg_print_rwstat_recursive,
2104 },
2105 {
2106 .name = "io_wait_time_recursive",
2107 .private = offsetof(struct cfq_group, stats.wait_time),
2108 .seq_show = cfqg_print_rwstat_recursive,
2109 },
2110 {
2111 .name = "io_merged_recursive",
2112 .private = offsetof(struct cfq_group, stats.merged),
2113 .seq_show = cfqg_print_rwstat_recursive,
2114 },
2115 {
2116 .name = "io_queued_recursive",
2117 .private = offsetof(struct cfq_group, stats.queued),
2118 .seq_show = cfqg_print_rwstat_recursive,
2119 },
2120 #ifdef CONFIG_DEBUG_BLK_CGROUP
2121 {
2122 .name = "avg_queue_size",
2123 .seq_show = cfqg_print_avg_queue_size,
2124 },
2125 {
2126 .name = "group_wait_time",
2127 .private = offsetof(struct cfq_group, stats.group_wait_time),
2128 .seq_show = cfqg_print_stat,
2129 },
2130 {
2131 .name = "idle_time",
2132 .private = offsetof(struct cfq_group, stats.idle_time),
2133 .seq_show = cfqg_print_stat,
2134 },
2135 {
2136 .name = "empty_time",
2137 .private = offsetof(struct cfq_group, stats.empty_time),
2138 .seq_show = cfqg_print_stat,
2139 },
2140 {
2141 .name = "dequeue",
2142 .private = offsetof(struct cfq_group, stats.dequeue),
2143 .seq_show = cfqg_print_stat,
2144 },
2145 {
2146 .name = "unaccounted_time",
2147 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2148 .seq_show = cfqg_print_stat,
2149 },
2150 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2151 { } /* terminate */
2152 };
2153
2154 static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v)
2155 {
2156 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2157 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
2158
2159 seq_printf(sf, "default %u\n", cgd->weight);
2160 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device,
2161 &blkcg_policy_cfq, 0, false);
2162 return 0;
2163 }
2164
2165 static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of,
2166 char *buf, size_t nbytes, loff_t off)
2167 {
2168 char *endp;
2169 int ret;
2170 u64 v;
2171
2172 buf = strim(buf);
2173
2174 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2175 v = simple_strtoull(buf, &endp, 0);
2176 if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) {
2177 ret = __cfq_set_weight(of_css(of), v, true, false, false);
2178 return ret ?: nbytes;
2179 }
2180
2181 /* "MAJ:MIN WEIGHT" */
2182 return __cfqg_set_weight_device(of, buf, nbytes, off, true, false);
2183 }
2184
2185 static struct cftype cfq_blkcg_files[] = {
2186 {
2187 .name = "weight",
2188 .flags = CFTYPE_NOT_ON_ROOT,
2189 .seq_show = cfq_print_weight_on_dfl,
2190 .write = cfq_set_weight_on_dfl,
2191 },
2192 { } /* terminate */
2193 };
2194
2195 #else /* GROUP_IOSCHED */
2196 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2197 struct blkcg *blkcg)
2198 {
2199 return cfqd->root_group;
2200 }
2201
2202 static inline void
2203 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2204 cfqq->cfqg = cfqg;
2205 }
2206
2207 #endif /* GROUP_IOSCHED */
2208
2209 /*
2210 * The cfqd->service_trees holds all pending cfq_queue's that have
2211 * requests waiting to be processed. It is sorted in the order that
2212 * we will service the queues.
2213 */
2214 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2215 bool add_front)
2216 {
2217 struct rb_node **p, *parent;
2218 struct cfq_queue *__cfqq;
2219 u64 rb_key;
2220 struct cfq_rb_root *st;
2221 int left;
2222 int new_cfqq = 1;
2223 u64 now = ktime_get_ns();
2224
2225 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2226 if (cfq_class_idle(cfqq)) {
2227 rb_key = CFQ_IDLE_DELAY;
2228 parent = rb_last(&st->rb);
2229 if (parent && parent != &cfqq->rb_node) {
2230 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2231 rb_key += __cfqq->rb_key;
2232 } else
2233 rb_key += now;
2234 } else if (!add_front) {
2235 /*
2236 * Get our rb key offset. Subtract any residual slice
2237 * value carried from last service. A negative resid
2238 * count indicates slice overrun, and this should position
2239 * the next service time further away in the tree.
2240 */
2241 rb_key = cfq_slice_offset(cfqd, cfqq) + now;
2242 rb_key -= cfqq->slice_resid;
2243 cfqq->slice_resid = 0;
2244 } else {
2245 rb_key = -NSEC_PER_SEC;
2246 __cfqq = cfq_rb_first(st);
2247 rb_key += __cfqq ? __cfqq->rb_key : now;
2248 }
2249
2250 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2251 new_cfqq = 0;
2252 /*
2253 * same position, nothing more to do
2254 */
2255 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2256 return;
2257
2258 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2259 cfqq->service_tree = NULL;
2260 }
2261
2262 left = 1;
2263 parent = NULL;
2264 cfqq->service_tree = st;
2265 p = &st->rb.rb_node;
2266 while (*p) {
2267 parent = *p;
2268 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2269
2270 /*
2271 * sort by key, that represents service time.
2272 */
2273 if (rb_key < __cfqq->rb_key)
2274 p = &parent->rb_left;
2275 else {
2276 p = &parent->rb_right;
2277 left = 0;
2278 }
2279 }
2280
2281 if (left)
2282 st->left = &cfqq->rb_node;
2283
2284 cfqq->rb_key = rb_key;
2285 rb_link_node(&cfqq->rb_node, parent, p);
2286 rb_insert_color(&cfqq->rb_node, &st->rb);
2287 st->count++;
2288 if (add_front || !new_cfqq)
2289 return;
2290 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2291 }
2292
2293 static struct cfq_queue *
2294 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2295 sector_t sector, struct rb_node **ret_parent,
2296 struct rb_node ***rb_link)
2297 {
2298 struct rb_node **p, *parent;
2299 struct cfq_queue *cfqq = NULL;
2300
2301 parent = NULL;
2302 p = &root->rb_node;
2303 while (*p) {
2304 struct rb_node **n;
2305
2306 parent = *p;
2307 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2308
2309 /*
2310 * Sort strictly based on sector. Smallest to the left,
2311 * largest to the right.
2312 */
2313 if (sector > blk_rq_pos(cfqq->next_rq))
2314 n = &(*p)->rb_right;
2315 else if (sector < blk_rq_pos(cfqq->next_rq))
2316 n = &(*p)->rb_left;
2317 else
2318 break;
2319 p = n;
2320 cfqq = NULL;
2321 }
2322
2323 *ret_parent = parent;
2324 if (rb_link)
2325 *rb_link = p;
2326 return cfqq;
2327 }
2328
2329 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2330 {
2331 struct rb_node **p, *parent;
2332 struct cfq_queue *__cfqq;
2333
2334 if (cfqq->p_root) {
2335 rb_erase(&cfqq->p_node, cfqq->p_root);
2336 cfqq->p_root = NULL;
2337 }
2338
2339 if (cfq_class_idle(cfqq))
2340 return;
2341 if (!cfqq->next_rq)
2342 return;
2343
2344 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2345 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2346 blk_rq_pos(cfqq->next_rq), &parent, &p);
2347 if (!__cfqq) {
2348 rb_link_node(&cfqq->p_node, parent, p);
2349 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2350 } else
2351 cfqq->p_root = NULL;
2352 }
2353
2354 /*
2355 * Update cfqq's position in the service tree.
2356 */
2357 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2358 {
2359 /*
2360 * Resorting requires the cfqq to be on the RR list already.
2361 */
2362 if (cfq_cfqq_on_rr(cfqq)) {
2363 cfq_service_tree_add(cfqd, cfqq, 0);
2364 cfq_prio_tree_add(cfqd, cfqq);
2365 }
2366 }
2367
2368 /*
2369 * add to busy list of queues for service, trying to be fair in ordering
2370 * the pending list according to last request service
2371 */
2372 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2373 {
2374 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2375 BUG_ON(cfq_cfqq_on_rr(cfqq));
2376 cfq_mark_cfqq_on_rr(cfqq);
2377 cfqd->busy_queues++;
2378 if (cfq_cfqq_sync(cfqq))
2379 cfqd->busy_sync_queues++;
2380
2381 cfq_resort_rr_list(cfqd, cfqq);
2382 }
2383
2384 /*
2385 * Called when the cfqq no longer has requests pending, remove it from
2386 * the service tree.
2387 */
2388 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2389 {
2390 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2391 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2392 cfq_clear_cfqq_on_rr(cfqq);
2393
2394 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2395 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2396 cfqq->service_tree = NULL;
2397 }
2398 if (cfqq->p_root) {
2399 rb_erase(&cfqq->p_node, cfqq->p_root);
2400 cfqq->p_root = NULL;
2401 }
2402
2403 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2404 BUG_ON(!cfqd->busy_queues);
2405 cfqd->busy_queues--;
2406 if (cfq_cfqq_sync(cfqq))
2407 cfqd->busy_sync_queues--;
2408 }
2409
2410 /*
2411 * rb tree support functions
2412 */
2413 static void cfq_del_rq_rb(struct request *rq)
2414 {
2415 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2416 const int sync = rq_is_sync(rq);
2417
2418 BUG_ON(!cfqq->queued[sync]);
2419 cfqq->queued[sync]--;
2420
2421 elv_rb_del(&cfqq->sort_list, rq);
2422
2423 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2424 /*
2425 * Queue will be deleted from service tree when we actually
2426 * expire it later. Right now just remove it from prio tree
2427 * as it is empty.
2428 */
2429 if (cfqq->p_root) {
2430 rb_erase(&cfqq->p_node, cfqq->p_root);
2431 cfqq->p_root = NULL;
2432 }
2433 }
2434 }
2435
2436 static void cfq_add_rq_rb(struct request *rq)
2437 {
2438 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2439 struct cfq_data *cfqd = cfqq->cfqd;
2440 struct request *prev;
2441
2442 cfqq->queued[rq_is_sync(rq)]++;
2443
2444 elv_rb_add(&cfqq->sort_list, rq);
2445
2446 if (!cfq_cfqq_on_rr(cfqq))
2447 cfq_add_cfqq_rr(cfqd, cfqq);
2448
2449 /*
2450 * check if this request is a better next-serve candidate
2451 */
2452 prev = cfqq->next_rq;
2453 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2454
2455 /*
2456 * adjust priority tree position, if ->next_rq changes
2457 */
2458 if (prev != cfqq->next_rq)
2459 cfq_prio_tree_add(cfqd, cfqq);
2460
2461 BUG_ON(!cfqq->next_rq);
2462 }
2463
2464 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2465 {
2466 elv_rb_del(&cfqq->sort_list, rq);
2467 cfqq->queued[rq_is_sync(rq)]--;
2468 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2469 cfq_add_rq_rb(rq);
2470 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2471 rq->cmd_flags);
2472 }
2473
2474 static struct request *
2475 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2476 {
2477 struct task_struct *tsk = current;
2478 struct cfq_io_cq *cic;
2479 struct cfq_queue *cfqq;
2480
2481 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2482 if (!cic)
2483 return NULL;
2484
2485 cfqq = cic_to_cfqq(cic, op_is_sync(bio->bi_opf));
2486 if (cfqq)
2487 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2488
2489 return NULL;
2490 }
2491
2492 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2493 {
2494 struct cfq_data *cfqd = q->elevator->elevator_data;
2495
2496 cfqd->rq_in_driver++;
2497 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2498 cfqd->rq_in_driver);
2499
2500 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2501 }
2502
2503 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2504 {
2505 struct cfq_data *cfqd = q->elevator->elevator_data;
2506
2507 WARN_ON(!cfqd->rq_in_driver);
2508 cfqd->rq_in_driver--;
2509 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2510 cfqd->rq_in_driver);
2511 }
2512
2513 static void cfq_remove_request(struct request *rq)
2514 {
2515 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2516
2517 if (cfqq->next_rq == rq)
2518 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2519
2520 list_del_init(&rq->queuelist);
2521 cfq_del_rq_rb(rq);
2522
2523 cfqq->cfqd->rq_queued--;
2524 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2525 if (rq->cmd_flags & REQ_PRIO) {
2526 WARN_ON(!cfqq->prio_pending);
2527 cfqq->prio_pending--;
2528 }
2529 }
2530
2531 static int cfq_merge(struct request_queue *q, struct request **req,
2532 struct bio *bio)
2533 {
2534 struct cfq_data *cfqd = q->elevator->elevator_data;
2535 struct request *__rq;
2536
2537 __rq = cfq_find_rq_fmerge(cfqd, bio);
2538 if (__rq && elv_bio_merge_ok(__rq, bio)) {
2539 *req = __rq;
2540 return ELEVATOR_FRONT_MERGE;
2541 }
2542
2543 return ELEVATOR_NO_MERGE;
2544 }
2545
2546 static void cfq_merged_request(struct request_queue *q, struct request *req,
2547 int type)
2548 {
2549 if (type == ELEVATOR_FRONT_MERGE) {
2550 struct cfq_queue *cfqq = RQ_CFQQ(req);
2551
2552 cfq_reposition_rq_rb(cfqq, req);
2553 }
2554 }
2555
2556 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2557 struct bio *bio)
2558 {
2559 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_opf);
2560 }
2561
2562 static void
2563 cfq_merged_requests(struct request_queue *q, struct request *rq,
2564 struct request *next)
2565 {
2566 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2567 struct cfq_data *cfqd = q->elevator->elevator_data;
2568
2569 /*
2570 * reposition in fifo if next is older than rq
2571 */
2572 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2573 next->fifo_time < rq->fifo_time &&
2574 cfqq == RQ_CFQQ(next)) {
2575 list_move(&rq->queuelist, &next->queuelist);
2576 rq->fifo_time = next->fifo_time;
2577 }
2578
2579 if (cfqq->next_rq == next)
2580 cfqq->next_rq = rq;
2581 cfq_remove_request(next);
2582 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2583
2584 cfqq = RQ_CFQQ(next);
2585 /*
2586 * all requests of this queue are merged to other queues, delete it
2587 * from the service tree. If it's the active_queue,
2588 * cfq_dispatch_requests() will choose to expire it or do idle
2589 */
2590 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2591 cfqq != cfqd->active_queue)
2592 cfq_del_cfqq_rr(cfqd, cfqq);
2593 }
2594
2595 static int cfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2596 struct bio *bio)
2597 {
2598 struct cfq_data *cfqd = q->elevator->elevator_data;
2599 bool is_sync = op_is_sync(bio->bi_opf);
2600 struct cfq_io_cq *cic;
2601 struct cfq_queue *cfqq;
2602
2603 /*
2604 * Disallow merge of a sync bio into an async request.
2605 */
2606 if (is_sync && !rq_is_sync(rq))
2607 return false;
2608
2609 /*
2610 * Lookup the cfqq that this bio will be queued with and allow
2611 * merge only if rq is queued there.
2612 */
2613 cic = cfq_cic_lookup(cfqd, current->io_context);
2614 if (!cic)
2615 return false;
2616
2617 cfqq = cic_to_cfqq(cic, is_sync);
2618 return cfqq == RQ_CFQQ(rq);
2619 }
2620
2621 static int cfq_allow_rq_merge(struct request_queue *q, struct request *rq,
2622 struct request *next)
2623 {
2624 return RQ_CFQQ(rq) == RQ_CFQQ(next);
2625 }
2626
2627 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2628 {
2629 hrtimer_try_to_cancel(&cfqd->idle_slice_timer);
2630 cfqg_stats_update_idle_time(cfqq->cfqg);
2631 }
2632
2633 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2634 struct cfq_queue *cfqq)
2635 {
2636 if (cfqq) {
2637 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2638 cfqd->serving_wl_class, cfqd->serving_wl_type);
2639 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2640 cfqq->slice_start = 0;
2641 cfqq->dispatch_start = ktime_get_ns();
2642 cfqq->allocated_slice = 0;
2643 cfqq->slice_end = 0;
2644 cfqq->slice_dispatch = 0;
2645 cfqq->nr_sectors = 0;
2646
2647 cfq_clear_cfqq_wait_request(cfqq);
2648 cfq_clear_cfqq_must_dispatch(cfqq);
2649 cfq_clear_cfqq_must_alloc_slice(cfqq);
2650 cfq_clear_cfqq_fifo_expire(cfqq);
2651 cfq_mark_cfqq_slice_new(cfqq);
2652
2653 cfq_del_timer(cfqd, cfqq);
2654 }
2655
2656 cfqd->active_queue = cfqq;
2657 }
2658
2659 /*
2660 * current cfqq expired its slice (or was too idle), select new one
2661 */
2662 static void
2663 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2664 bool timed_out)
2665 {
2666 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2667
2668 if (cfq_cfqq_wait_request(cfqq))
2669 cfq_del_timer(cfqd, cfqq);
2670
2671 cfq_clear_cfqq_wait_request(cfqq);
2672 cfq_clear_cfqq_wait_busy(cfqq);
2673
2674 /*
2675 * If this cfqq is shared between multiple processes, check to
2676 * make sure that those processes are still issuing I/Os within
2677 * the mean seek distance. If not, it may be time to break the
2678 * queues apart again.
2679 */
2680 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2681 cfq_mark_cfqq_split_coop(cfqq);
2682
2683 /*
2684 * store what was left of this slice, if the queue idled/timed out
2685 */
2686 if (timed_out) {
2687 if (cfq_cfqq_slice_new(cfqq))
2688 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2689 else
2690 cfqq->slice_resid = cfqq->slice_end - ktime_get_ns();
2691 cfq_log_cfqq(cfqd, cfqq, "resid=%lld", cfqq->slice_resid);
2692 }
2693
2694 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2695
2696 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2697 cfq_del_cfqq_rr(cfqd, cfqq);
2698
2699 cfq_resort_rr_list(cfqd, cfqq);
2700
2701 if (cfqq == cfqd->active_queue)
2702 cfqd->active_queue = NULL;
2703
2704 if (cfqd->active_cic) {
2705 put_io_context(cfqd->active_cic->icq.ioc);
2706 cfqd->active_cic = NULL;
2707 }
2708 }
2709
2710 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2711 {
2712 struct cfq_queue *cfqq = cfqd->active_queue;
2713
2714 if (cfqq)
2715 __cfq_slice_expired(cfqd, cfqq, timed_out);
2716 }
2717
2718 /*
2719 * Get next queue for service. Unless we have a queue preemption,
2720 * we'll simply select the first cfqq in the service tree.
2721 */
2722 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2723 {
2724 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2725 cfqd->serving_wl_class, cfqd->serving_wl_type);
2726
2727 if (!cfqd->rq_queued)
2728 return NULL;
2729
2730 /* There is nothing to dispatch */
2731 if (!st)
2732 return NULL;
2733 if (RB_EMPTY_ROOT(&st->rb))
2734 return NULL;
2735 return cfq_rb_first(st);
2736 }
2737
2738 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2739 {
2740 struct cfq_group *cfqg;
2741 struct cfq_queue *cfqq;
2742 int i, j;
2743 struct cfq_rb_root *st;
2744
2745 if (!cfqd->rq_queued)
2746 return NULL;
2747
2748 cfqg = cfq_get_next_cfqg(cfqd);
2749 if (!cfqg)
2750 return NULL;
2751
2752 for_each_cfqg_st(cfqg, i, j, st)
2753 if ((cfqq = cfq_rb_first(st)) != NULL)
2754 return cfqq;
2755 return NULL;
2756 }
2757
2758 /*
2759 * Get and set a new active queue for service.
2760 */
2761 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2762 struct cfq_queue *cfqq)
2763 {
2764 if (!cfqq)
2765 cfqq = cfq_get_next_queue(cfqd);
2766
2767 __cfq_set_active_queue(cfqd, cfqq);
2768 return cfqq;
2769 }
2770
2771 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2772 struct request *rq)
2773 {
2774 if (blk_rq_pos(rq) >= cfqd->last_position)
2775 return blk_rq_pos(rq) - cfqd->last_position;
2776 else
2777 return cfqd->last_position - blk_rq_pos(rq);
2778 }
2779
2780 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2781 struct request *rq)
2782 {
2783 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2784 }
2785
2786 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2787 struct cfq_queue *cur_cfqq)
2788 {
2789 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2790 struct rb_node *parent, *node;
2791 struct cfq_queue *__cfqq;
2792 sector_t sector = cfqd->last_position;
2793
2794 if (RB_EMPTY_ROOT(root))
2795 return NULL;
2796
2797 /*
2798 * First, if we find a request starting at the end of the last
2799 * request, choose it.
2800 */
2801 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2802 if (__cfqq)
2803 return __cfqq;
2804
2805 /*
2806 * If the exact sector wasn't found, the parent of the NULL leaf
2807 * will contain the closest sector.
2808 */
2809 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2810 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2811 return __cfqq;
2812
2813 if (blk_rq_pos(__cfqq->next_rq) < sector)
2814 node = rb_next(&__cfqq->p_node);
2815 else
2816 node = rb_prev(&__cfqq->p_node);
2817 if (!node)
2818 return NULL;
2819
2820 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2821 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2822 return __cfqq;
2823
2824 return NULL;
2825 }
2826
2827 /*
2828 * cfqd - obvious
2829 * cur_cfqq - passed in so that we don't decide that the current queue is
2830 * closely cooperating with itself.
2831 *
2832 * So, basically we're assuming that that cur_cfqq has dispatched at least
2833 * one request, and that cfqd->last_position reflects a position on the disk
2834 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2835 * assumption.
2836 */
2837 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2838 struct cfq_queue *cur_cfqq)
2839 {
2840 struct cfq_queue *cfqq;
2841
2842 if (cfq_class_idle(cur_cfqq))
2843 return NULL;
2844 if (!cfq_cfqq_sync(cur_cfqq))
2845 return NULL;
2846 if (CFQQ_SEEKY(cur_cfqq))
2847 return NULL;
2848
2849 /*
2850 * Don't search priority tree if it's the only queue in the group.
2851 */
2852 if (cur_cfqq->cfqg->nr_cfqq == 1)
2853 return NULL;
2854
2855 /*
2856 * We should notice if some of the queues are cooperating, eg
2857 * working closely on the same area of the disk. In that case,
2858 * we can group them together and don't waste time idling.
2859 */
2860 cfqq = cfqq_close(cfqd, cur_cfqq);
2861 if (!cfqq)
2862 return NULL;
2863
2864 /* If new queue belongs to different cfq_group, don't choose it */
2865 if (cur_cfqq->cfqg != cfqq->cfqg)
2866 return NULL;
2867
2868 /*
2869 * It only makes sense to merge sync queues.
2870 */
2871 if (!cfq_cfqq_sync(cfqq))
2872 return NULL;
2873 if (CFQQ_SEEKY(cfqq))
2874 return NULL;
2875
2876 /*
2877 * Do not merge queues of different priority classes
2878 */
2879 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2880 return NULL;
2881
2882 return cfqq;
2883 }
2884
2885 /*
2886 * Determine whether we should enforce idle window for this queue.
2887 */
2888
2889 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2890 {
2891 enum wl_class_t wl_class = cfqq_class(cfqq);
2892 struct cfq_rb_root *st = cfqq->service_tree;
2893
2894 BUG_ON(!st);
2895 BUG_ON(!st->count);
2896
2897 if (!cfqd->cfq_slice_idle)
2898 return false;
2899
2900 /* We never do for idle class queues. */
2901 if (wl_class == IDLE_WORKLOAD)
2902 return false;
2903
2904 /* We do for queues that were marked with idle window flag. */
2905 if (cfq_cfqq_idle_window(cfqq) &&
2906 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2907 return true;
2908
2909 /*
2910 * Otherwise, we do only if they are the last ones
2911 * in their service tree.
2912 */
2913 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2914 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2915 return true;
2916 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2917 return false;
2918 }
2919
2920 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2921 {
2922 struct cfq_queue *cfqq = cfqd->active_queue;
2923 struct cfq_rb_root *st = cfqq->service_tree;
2924 struct cfq_io_cq *cic;
2925 u64 sl, group_idle = 0;
2926 u64 now = ktime_get_ns();
2927
2928 /*
2929 * SSD device without seek penalty, disable idling. But only do so
2930 * for devices that support queuing, otherwise we still have a problem
2931 * with sync vs async workloads.
2932 */
2933 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2934 return;
2935
2936 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2937 WARN_ON(cfq_cfqq_slice_new(cfqq));
2938
2939 /*
2940 * idle is disabled, either manually or by past process history
2941 */
2942 if (!cfq_should_idle(cfqd, cfqq)) {
2943 /* no queue idling. Check for group idling */
2944 if (cfqd->cfq_group_idle)
2945 group_idle = cfqd->cfq_group_idle;
2946 else
2947 return;
2948 }
2949
2950 /*
2951 * still active requests from this queue, don't idle
2952 */
2953 if (cfqq->dispatched)
2954 return;
2955
2956 /*
2957 * task has exited, don't wait
2958 */
2959 cic = cfqd->active_cic;
2960 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2961 return;
2962
2963 /*
2964 * If our average think time is larger than the remaining time
2965 * slice, then don't idle. This avoids overrunning the allotted
2966 * time slice.
2967 */
2968 if (sample_valid(cic->ttime.ttime_samples) &&
2969 (cfqq->slice_end - now < cic->ttime.ttime_mean)) {
2970 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%llu",
2971 cic->ttime.ttime_mean);
2972 return;
2973 }
2974
2975 /*
2976 * There are other queues in the group or this is the only group and
2977 * it has too big thinktime, don't do group idle.
2978 */
2979 if (group_idle &&
2980 (cfqq->cfqg->nr_cfqq > 1 ||
2981 cfq_io_thinktime_big(cfqd, &st->ttime, true)))
2982 return;
2983
2984 cfq_mark_cfqq_wait_request(cfqq);
2985
2986 if (group_idle)
2987 sl = cfqd->cfq_group_idle;
2988 else
2989 sl = cfqd->cfq_slice_idle;
2990
2991 hrtimer_start(&cfqd->idle_slice_timer, ns_to_ktime(sl),
2992 HRTIMER_MODE_REL);
2993 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2994 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %llu group_idle: %d", sl,
2995 group_idle ? 1 : 0);
2996 }
2997
2998 /*
2999 * Move request from internal lists to the request queue dispatch list.
3000 */
3001 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
3002 {
3003 struct cfq_data *cfqd = q->elevator->elevator_data;
3004 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3005
3006 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
3007
3008 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
3009 cfq_remove_request(rq);
3010 cfqq->dispatched++;
3011 (RQ_CFQG(rq))->dispatched++;
3012 elv_dispatch_sort(q, rq);
3013
3014 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
3015 cfqq->nr_sectors += blk_rq_sectors(rq);
3016 }
3017
3018 /*
3019 * return expired entry, or NULL to just start from scratch in rbtree
3020 */
3021 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
3022 {
3023 struct request *rq = NULL;
3024
3025 if (cfq_cfqq_fifo_expire(cfqq))
3026 return NULL;
3027
3028 cfq_mark_cfqq_fifo_expire(cfqq);
3029
3030 if (list_empty(&cfqq->fifo))
3031 return NULL;
3032
3033 rq = rq_entry_fifo(cfqq->fifo.next);
3034 if (ktime_get_ns() < rq->fifo_time)
3035 rq = NULL;
3036
3037 return rq;
3038 }
3039
3040 static inline int
3041 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3042 {
3043 const int base_rq = cfqd->cfq_slice_async_rq;
3044
3045 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
3046
3047 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
3048 }
3049
3050 /*
3051 * Must be called with the queue_lock held.
3052 */
3053 static int cfqq_process_refs(struct cfq_queue *cfqq)
3054 {
3055 int process_refs, io_refs;
3056
3057 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
3058 process_refs = cfqq->ref - io_refs;
3059 BUG_ON(process_refs < 0);
3060 return process_refs;
3061 }
3062
3063 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
3064 {
3065 int process_refs, new_process_refs;
3066 struct cfq_queue *__cfqq;
3067
3068 /*
3069 * If there are no process references on the new_cfqq, then it is
3070 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3071 * chain may have dropped their last reference (not just their
3072 * last process reference).
3073 */
3074 if (!cfqq_process_refs(new_cfqq))
3075 return;
3076
3077 /* Avoid a circular list and skip interim queue merges */
3078 while ((__cfqq = new_cfqq->new_cfqq)) {
3079 if (__cfqq == cfqq)
3080 return;
3081 new_cfqq = __cfqq;
3082 }
3083
3084 process_refs = cfqq_process_refs(cfqq);
3085 new_process_refs = cfqq_process_refs(new_cfqq);
3086 /*
3087 * If the process for the cfqq has gone away, there is no
3088 * sense in merging the queues.
3089 */
3090 if (process_refs == 0 || new_process_refs == 0)
3091 return;
3092
3093 /*
3094 * Merge in the direction of the lesser amount of work.
3095 */
3096 if (new_process_refs >= process_refs) {
3097 cfqq->new_cfqq = new_cfqq;
3098 new_cfqq->ref += process_refs;
3099 } else {
3100 new_cfqq->new_cfqq = cfqq;
3101 cfqq->ref += new_process_refs;
3102 }
3103 }
3104
3105 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
3106 struct cfq_group *cfqg, enum wl_class_t wl_class)
3107 {
3108 struct cfq_queue *queue;
3109 int i;
3110 bool key_valid = false;
3111 u64 lowest_key = 0;
3112 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3113
3114 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3115 /* select the one with lowest rb_key */
3116 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3117 if (queue &&
3118 (!key_valid || queue->rb_key < lowest_key)) {
3119 lowest_key = queue->rb_key;
3120 cur_best = i;
3121 key_valid = true;
3122 }
3123 }
3124
3125 return cur_best;
3126 }
3127
3128 static void
3129 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3130 {
3131 u64 slice;
3132 unsigned count;
3133 struct cfq_rb_root *st;
3134 u64 group_slice;
3135 enum wl_class_t original_class = cfqd->serving_wl_class;
3136 u64 now = ktime_get_ns();
3137
3138 /* Choose next priority. RT > BE > IDLE */
3139 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3140 cfqd->serving_wl_class = RT_WORKLOAD;
3141 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3142 cfqd->serving_wl_class = BE_WORKLOAD;
3143 else {
3144 cfqd->serving_wl_class = IDLE_WORKLOAD;
3145 cfqd->workload_expires = now + jiffies_to_nsecs(1);
3146 return;
3147 }
3148
3149 if (original_class != cfqd->serving_wl_class)
3150 goto new_workload;
3151
3152 /*
3153 * For RT and BE, we have to choose also the type
3154 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3155 * expiration time
3156 */
3157 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3158 count = st->count;
3159
3160 /*
3161 * check workload expiration, and that we still have other queues ready
3162 */
3163 if (count && !(now > cfqd->workload_expires))
3164 return;
3165
3166 new_workload:
3167 /* otherwise select new workload type */
3168 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3169 cfqd->serving_wl_class);
3170 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3171 count = st->count;
3172
3173 /*
3174 * the workload slice is computed as a fraction of target latency
3175 * proportional to the number of queues in that workload, over
3176 * all the queues in the same priority class
3177 */
3178 group_slice = cfq_group_slice(cfqd, cfqg);
3179
3180 slice = div_u64(group_slice * count,
3181 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3182 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3183 cfqg)));
3184
3185 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3186 u64 tmp;
3187
3188 /*
3189 * Async queues are currently system wide. Just taking
3190 * proportion of queues with-in same group will lead to higher
3191 * async ratio system wide as generally root group is going
3192 * to have higher weight. A more accurate thing would be to
3193 * calculate system wide asnc/sync ratio.
3194 */
3195 tmp = cfqd->cfq_target_latency *
3196 cfqg_busy_async_queues(cfqd, cfqg);
3197 tmp = div_u64(tmp, cfqd->busy_queues);
3198 slice = min_t(u64, slice, tmp);
3199
3200 /* async workload slice is scaled down according to
3201 * the sync/async slice ratio. */
3202 slice = div64_u64(slice*cfqd->cfq_slice[0], cfqd->cfq_slice[1]);
3203 } else
3204 /* sync workload slice is at least 2 * cfq_slice_idle */
3205 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3206
3207 slice = max_t(u64, slice, CFQ_MIN_TT);
3208 cfq_log(cfqd, "workload slice:%llu", slice);
3209 cfqd->workload_expires = now + slice;
3210 }
3211
3212 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3213 {
3214 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3215 struct cfq_group *cfqg;
3216
3217 if (RB_EMPTY_ROOT(&st->rb))
3218 return NULL;
3219 cfqg = cfq_rb_first_group(st);
3220 update_min_vdisktime(st);
3221 return cfqg;
3222 }
3223
3224 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3225 {
3226 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3227 u64 now = ktime_get_ns();
3228
3229 cfqd->serving_group = cfqg;
3230
3231 /* Restore the workload type data */
3232 if (cfqg->saved_wl_slice) {
3233 cfqd->workload_expires = now + cfqg->saved_wl_slice;
3234 cfqd->serving_wl_type = cfqg->saved_wl_type;
3235 cfqd->serving_wl_class = cfqg->saved_wl_class;
3236 } else
3237 cfqd->workload_expires = now - 1;
3238
3239 choose_wl_class_and_type(cfqd, cfqg);
3240 }
3241
3242 /*
3243 * Select a queue for service. If we have a current active queue,
3244 * check whether to continue servicing it, or retrieve and set a new one.
3245 */
3246 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3247 {
3248 struct cfq_queue *cfqq, *new_cfqq = NULL;
3249 u64 now = ktime_get_ns();
3250
3251 cfqq = cfqd->active_queue;
3252 if (!cfqq)
3253 goto new_queue;
3254
3255 if (!cfqd->rq_queued)
3256 return NULL;
3257
3258 /*
3259 * We were waiting for group to get backlogged. Expire the queue
3260 */
3261 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3262 goto expire;
3263
3264 /*
3265 * The active queue has run out of time, expire it and select new.
3266 */
3267 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3268 /*
3269 * If slice had not expired at the completion of last request
3270 * we might not have turned on wait_busy flag. Don't expire
3271 * the queue yet. Allow the group to get backlogged.
3272 *
3273 * The very fact that we have used the slice, that means we
3274 * have been idling all along on this queue and it should be
3275 * ok to wait for this request to complete.
3276 */
3277 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3278 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3279 cfqq = NULL;
3280 goto keep_queue;
3281 } else
3282 goto check_group_idle;
3283 }
3284
3285 /*
3286 * The active queue has requests and isn't expired, allow it to
3287 * dispatch.
3288 */
3289 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3290 goto keep_queue;
3291
3292 /*
3293 * If another queue has a request waiting within our mean seek
3294 * distance, let it run. The expire code will check for close
3295 * cooperators and put the close queue at the front of the service
3296 * tree. If possible, merge the expiring queue with the new cfqq.
3297 */
3298 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3299 if (new_cfqq) {
3300 if (!cfqq->new_cfqq)
3301 cfq_setup_merge(cfqq, new_cfqq);
3302 goto expire;
3303 }
3304
3305 /*
3306 * No requests pending. If the active queue still has requests in
3307 * flight or is idling for a new request, allow either of these
3308 * conditions to happen (or time out) before selecting a new queue.
3309 */
3310 if (hrtimer_active(&cfqd->idle_slice_timer)) {
3311 cfqq = NULL;
3312 goto keep_queue;
3313 }
3314
3315 /*
3316 * This is a deep seek queue, but the device is much faster than
3317 * the queue can deliver, don't idle
3318 **/
3319 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3320 (cfq_cfqq_slice_new(cfqq) ||
3321 (cfqq->slice_end - now > now - cfqq->slice_start))) {
3322 cfq_clear_cfqq_deep(cfqq);
3323 cfq_clear_cfqq_idle_window(cfqq);
3324 }
3325
3326 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3327 cfqq = NULL;
3328 goto keep_queue;
3329 }
3330
3331 /*
3332 * If group idle is enabled and there are requests dispatched from
3333 * this group, wait for requests to complete.
3334 */
3335 check_group_idle:
3336 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3337 cfqq->cfqg->dispatched &&
3338 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3339 cfqq = NULL;
3340 goto keep_queue;
3341 }
3342
3343 expire:
3344 cfq_slice_expired(cfqd, 0);
3345 new_queue:
3346 /*
3347 * Current queue expired. Check if we have to switch to a new
3348 * service tree
3349 */
3350 if (!new_cfqq)
3351 cfq_choose_cfqg(cfqd);
3352
3353 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3354 keep_queue:
3355 return cfqq;
3356 }
3357
3358 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3359 {
3360 int dispatched = 0;
3361
3362 while (cfqq->next_rq) {
3363 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3364 dispatched++;
3365 }
3366
3367 BUG_ON(!list_empty(&cfqq->fifo));
3368
3369 /* By default cfqq is not expired if it is empty. Do it explicitly */
3370 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3371 return dispatched;
3372 }
3373
3374 /*
3375 * Drain our current requests. Used for barriers and when switching
3376 * io schedulers on-the-fly.
3377 */
3378 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3379 {
3380 struct cfq_queue *cfqq;
3381 int dispatched = 0;
3382
3383 /* Expire the timeslice of the current active queue first */
3384 cfq_slice_expired(cfqd, 0);
3385 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3386 __cfq_set_active_queue(cfqd, cfqq);
3387 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3388 }
3389
3390 BUG_ON(cfqd->busy_queues);
3391
3392 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3393 return dispatched;
3394 }
3395
3396 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3397 struct cfq_queue *cfqq)
3398 {
3399 u64 now = ktime_get_ns();
3400
3401 /* the queue hasn't finished any request, can't estimate */
3402 if (cfq_cfqq_slice_new(cfqq))
3403 return true;
3404 if (now + cfqd->cfq_slice_idle * cfqq->dispatched > cfqq->slice_end)
3405 return true;
3406
3407 return false;
3408 }
3409
3410 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3411 {
3412 unsigned int max_dispatch;
3413
3414 if (cfq_cfqq_must_dispatch(cfqq))
3415 return true;
3416
3417 /*
3418 * Drain async requests before we start sync IO
3419 */
3420 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3421 return false;
3422
3423 /*
3424 * If this is an async queue and we have sync IO in flight, let it wait
3425 */
3426 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3427 return false;
3428
3429 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3430 if (cfq_class_idle(cfqq))
3431 max_dispatch = 1;
3432
3433 /*
3434 * Does this cfqq already have too much IO in flight?
3435 */
3436 if (cfqq->dispatched >= max_dispatch) {
3437 bool promote_sync = false;
3438 /*
3439 * idle queue must always only have a single IO in flight
3440 */
3441 if (cfq_class_idle(cfqq))
3442 return false;
3443
3444 /*
3445 * If there is only one sync queue
3446 * we can ignore async queue here and give the sync
3447 * queue no dispatch limit. The reason is a sync queue can
3448 * preempt async queue, limiting the sync queue doesn't make
3449 * sense. This is useful for aiostress test.
3450 */
3451 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3452 promote_sync = true;
3453
3454 /*
3455 * We have other queues, don't allow more IO from this one
3456 */
3457 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3458 !promote_sync)
3459 return false;
3460
3461 /*
3462 * Sole queue user, no limit
3463 */
3464 if (cfqd->busy_queues == 1 || promote_sync)
3465 max_dispatch = -1;
3466 else
3467 /*
3468 * Normally we start throttling cfqq when cfq_quantum/2
3469 * requests have been dispatched. But we can drive
3470 * deeper queue depths at the beginning of slice
3471 * subjected to upper limit of cfq_quantum.
3472 * */
3473 max_dispatch = cfqd->cfq_quantum;
3474 }
3475
3476 /*
3477 * Async queues must wait a bit before being allowed dispatch.
3478 * We also ramp up the dispatch depth gradually for async IO,
3479 * based on the last sync IO we serviced
3480 */
3481 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3482 u64 last_sync = ktime_get_ns() - cfqd->last_delayed_sync;
3483 unsigned int depth;
3484
3485 depth = div64_u64(last_sync, cfqd->cfq_slice[1]);
3486 if (!depth && !cfqq->dispatched)
3487 depth = 1;
3488 if (depth < max_dispatch)
3489 max_dispatch = depth;
3490 }
3491
3492 /*
3493 * If we're below the current max, allow a dispatch
3494 */
3495 return cfqq->dispatched < max_dispatch;
3496 }
3497
3498 /*
3499 * Dispatch a request from cfqq, moving them to the request queue
3500 * dispatch list.
3501 */
3502 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3503 {
3504 struct request *rq;
3505
3506 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3507
3508 rq = cfq_check_fifo(cfqq);
3509 if (rq)
3510 cfq_mark_cfqq_must_dispatch(cfqq);
3511
3512 if (!cfq_may_dispatch(cfqd, cfqq))
3513 return false;
3514
3515 /*
3516 * follow expired path, else get first next available
3517 */
3518 if (!rq)
3519 rq = cfqq->next_rq;
3520 else
3521 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
3522
3523 /*
3524 * insert request into driver dispatch list
3525 */
3526 cfq_dispatch_insert(cfqd->queue, rq);
3527
3528 if (!cfqd->active_cic) {
3529 struct cfq_io_cq *cic = RQ_CIC(rq);
3530
3531 atomic_long_inc(&cic->icq.ioc->refcount);
3532 cfqd->active_cic = cic;
3533 }
3534
3535 return true;
3536 }
3537
3538 /*
3539 * Find the cfqq that we need to service and move a request from that to the
3540 * dispatch list
3541 */
3542 static int cfq_dispatch_requests(struct request_queue *q, int force)
3543 {
3544 struct cfq_data *cfqd = q->elevator->elevator_data;
3545 struct cfq_queue *cfqq;
3546
3547 if (!cfqd->busy_queues)
3548 return 0;
3549
3550 if (unlikely(force))
3551 return cfq_forced_dispatch(cfqd);
3552
3553 cfqq = cfq_select_queue(cfqd);
3554 if (!cfqq)
3555 return 0;
3556
3557 /*
3558 * Dispatch a request from this cfqq, if it is allowed
3559 */
3560 if (!cfq_dispatch_request(cfqd, cfqq))
3561 return 0;
3562
3563 cfqq->slice_dispatch++;
3564 cfq_clear_cfqq_must_dispatch(cfqq);
3565
3566 /*
3567 * expire an async queue immediately if it has used up its slice. idle
3568 * queue always expire after 1 dispatch round.
3569 */
3570 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3571 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3572 cfq_class_idle(cfqq))) {
3573 cfqq->slice_end = ktime_get_ns() + 1;
3574 cfq_slice_expired(cfqd, 0);
3575 }
3576
3577 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3578 return 1;
3579 }
3580
3581 /*
3582 * task holds one reference to the queue, dropped when task exits. each rq
3583 * in-flight on this queue also holds a reference, dropped when rq is freed.
3584 *
3585 * Each cfq queue took a reference on the parent group. Drop it now.
3586 * queue lock must be held here.
3587 */
3588 static void cfq_put_queue(struct cfq_queue *cfqq)
3589 {
3590 struct cfq_data *cfqd = cfqq->cfqd;
3591 struct cfq_group *cfqg;
3592
3593 BUG_ON(cfqq->ref <= 0);
3594
3595 cfqq->ref--;
3596 if (cfqq->ref)
3597 return;
3598
3599 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3600 BUG_ON(rb_first(&cfqq->sort_list));
3601 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3602 cfqg = cfqq->cfqg;
3603
3604 if (unlikely(cfqd->active_queue == cfqq)) {
3605 __cfq_slice_expired(cfqd, cfqq, 0);
3606 cfq_schedule_dispatch(cfqd);
3607 }
3608
3609 BUG_ON(cfq_cfqq_on_rr(cfqq));
3610 kmem_cache_free(cfq_pool, cfqq);
3611 cfqg_put(cfqg);
3612 }
3613
3614 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3615 {
3616 struct cfq_queue *__cfqq, *next;
3617
3618 /*
3619 * If this queue was scheduled to merge with another queue, be
3620 * sure to drop the reference taken on that queue (and others in
3621 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3622 */
3623 __cfqq = cfqq->new_cfqq;
3624 while (__cfqq) {
3625 if (__cfqq == cfqq) {
3626 WARN(1, "cfqq->new_cfqq loop detected\n");
3627 break;
3628 }
3629 next = __cfqq->new_cfqq;
3630 cfq_put_queue(__cfqq);
3631 __cfqq = next;
3632 }
3633 }
3634
3635 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3636 {
3637 if (unlikely(cfqq == cfqd->active_queue)) {
3638 __cfq_slice_expired(cfqd, cfqq, 0);
3639 cfq_schedule_dispatch(cfqd);
3640 }
3641
3642 cfq_put_cooperator(cfqq);
3643
3644 cfq_put_queue(cfqq);
3645 }
3646
3647 static void cfq_init_icq(struct io_cq *icq)
3648 {
3649 struct cfq_io_cq *cic = icq_to_cic(icq);
3650
3651 cic->ttime.last_end_request = ktime_get_ns();
3652 }
3653
3654 static void cfq_exit_icq(struct io_cq *icq)
3655 {
3656 struct cfq_io_cq *cic = icq_to_cic(icq);
3657 struct cfq_data *cfqd = cic_to_cfqd(cic);
3658
3659 if (cic_to_cfqq(cic, false)) {
3660 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3661 cic_set_cfqq(cic, NULL, false);
3662 }
3663
3664 if (cic_to_cfqq(cic, true)) {
3665 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3666 cic_set_cfqq(cic, NULL, true);
3667 }
3668 }
3669
3670 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3671 {
3672 struct task_struct *tsk = current;
3673 int ioprio_class;
3674
3675 if (!cfq_cfqq_prio_changed(cfqq))
3676 return;
3677
3678 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3679 switch (ioprio_class) {
3680 default:
3681 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3682 case IOPRIO_CLASS_NONE:
3683 /*
3684 * no prio set, inherit CPU scheduling settings
3685 */
3686 cfqq->ioprio = task_nice_ioprio(tsk);
3687 cfqq->ioprio_class = task_nice_ioclass(tsk);
3688 break;
3689 case IOPRIO_CLASS_RT:
3690 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3691 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3692 break;
3693 case IOPRIO_CLASS_BE:
3694 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3695 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3696 break;
3697 case IOPRIO_CLASS_IDLE:
3698 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3699 cfqq->ioprio = 7;
3700 cfq_clear_cfqq_idle_window(cfqq);
3701 break;
3702 }
3703
3704 /*
3705 * keep track of original prio settings in case we have to temporarily
3706 * elevate the priority of this queue
3707 */
3708 cfqq->org_ioprio = cfqq->ioprio;
3709 cfqq->org_ioprio_class = cfqq->ioprio_class;
3710 cfq_clear_cfqq_prio_changed(cfqq);
3711 }
3712
3713 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3714 {
3715 int ioprio = cic->icq.ioc->ioprio;
3716 struct cfq_data *cfqd = cic_to_cfqd(cic);
3717 struct cfq_queue *cfqq;
3718
3719 /*
3720 * Check whether ioprio has changed. The condition may trigger
3721 * spuriously on a newly created cic but there's no harm.
3722 */
3723 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3724 return;
3725
3726 cfqq = cic_to_cfqq(cic, false);
3727 if (cfqq) {
3728 cfq_put_queue(cfqq);
3729 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3730 cic_set_cfqq(cic, cfqq, false);
3731 }
3732
3733 cfqq = cic_to_cfqq(cic, true);
3734 if (cfqq)
3735 cfq_mark_cfqq_prio_changed(cfqq);
3736
3737 cic->ioprio = ioprio;
3738 }
3739
3740 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3741 pid_t pid, bool is_sync)
3742 {
3743 RB_CLEAR_NODE(&cfqq->rb_node);
3744 RB_CLEAR_NODE(&cfqq->p_node);
3745 INIT_LIST_HEAD(&cfqq->fifo);
3746
3747 cfqq->ref = 0;
3748 cfqq->cfqd = cfqd;
3749
3750 cfq_mark_cfqq_prio_changed(cfqq);
3751
3752 if (is_sync) {
3753 if (!cfq_class_idle(cfqq))
3754 cfq_mark_cfqq_idle_window(cfqq);
3755 cfq_mark_cfqq_sync(cfqq);
3756 }
3757 cfqq->pid = pid;
3758 }
3759
3760 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3761 static bool check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3762 {
3763 struct cfq_data *cfqd = cic_to_cfqd(cic);
3764 struct cfq_queue *cfqq;
3765 uint64_t serial_nr;
3766 bool nonroot_cg;
3767
3768 rcu_read_lock();
3769 serial_nr = bio_blkcg(bio)->css.serial_nr;
3770 nonroot_cg = bio_blkcg(bio) != &blkcg_root;
3771 rcu_read_unlock();
3772
3773 /*
3774 * Check whether blkcg has changed. The condition may trigger
3775 * spuriously on a newly created cic but there's no harm.
3776 */
3777 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3778 return nonroot_cg;
3779
3780 /*
3781 * Drop reference to queues. New queues will be assigned in new
3782 * group upon arrival of fresh requests.
3783 */
3784 cfqq = cic_to_cfqq(cic, false);
3785 if (cfqq) {
3786 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3787 cic_set_cfqq(cic, NULL, false);
3788 cfq_put_queue(cfqq);
3789 }
3790
3791 cfqq = cic_to_cfqq(cic, true);
3792 if (cfqq) {
3793 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3794 cic_set_cfqq(cic, NULL, true);
3795 cfq_put_queue(cfqq);
3796 }
3797
3798 cic->blkcg_serial_nr = serial_nr;
3799 return nonroot_cg;
3800 }
3801 #else
3802 static inline bool check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3803 {
3804 return false;
3805 }
3806 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3807
3808 static struct cfq_queue **
3809 cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3810 {
3811 switch (ioprio_class) {
3812 case IOPRIO_CLASS_RT:
3813 return &cfqg->async_cfqq[0][ioprio];
3814 case IOPRIO_CLASS_NONE:
3815 ioprio = IOPRIO_NORM;
3816 /* fall through */
3817 case IOPRIO_CLASS_BE:
3818 return &cfqg->async_cfqq[1][ioprio];
3819 case IOPRIO_CLASS_IDLE:
3820 return &cfqg->async_idle_cfqq;
3821 default:
3822 BUG();
3823 }
3824 }
3825
3826 static struct cfq_queue *
3827 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3828 struct bio *bio)
3829 {
3830 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3831 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3832 struct cfq_queue **async_cfqq = NULL;
3833 struct cfq_queue *cfqq;
3834 struct cfq_group *cfqg;
3835
3836 rcu_read_lock();
3837 cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3838 if (!cfqg) {
3839 cfqq = &cfqd->oom_cfqq;
3840 goto out;
3841 }
3842
3843 if (!is_sync) {
3844 if (!ioprio_valid(cic->ioprio)) {
3845 struct task_struct *tsk = current;
3846 ioprio = task_nice_ioprio(tsk);
3847 ioprio_class = task_nice_ioclass(tsk);
3848 }
3849 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3850 cfqq = *async_cfqq;
3851 if (cfqq)
3852 goto out;
3853 }
3854
3855 cfqq = kmem_cache_alloc_node(cfq_pool,
3856 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
3857 cfqd->queue->node);
3858 if (!cfqq) {
3859 cfqq = &cfqd->oom_cfqq;
3860 goto out;
3861 }
3862
3863 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3864 cfq_init_prio_data(cfqq, cic);
3865 cfq_link_cfqq_cfqg(cfqq, cfqg);
3866 cfq_log_cfqq(cfqd, cfqq, "alloced");
3867
3868 if (async_cfqq) {
3869 /* a new async queue is created, pin and remember */
3870 cfqq->ref++;
3871 *async_cfqq = cfqq;
3872 }
3873 out:
3874 cfqq->ref++;
3875 rcu_read_unlock();
3876 return cfqq;
3877 }
3878
3879 static void
3880 __cfq_update_io_thinktime(struct cfq_ttime *ttime, u64 slice_idle)
3881 {
3882 u64 elapsed = ktime_get_ns() - ttime->last_end_request;
3883 elapsed = min(elapsed, 2UL * slice_idle);
3884
3885 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3886 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
3887 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
3888 ttime->ttime_samples);
3889 }
3890
3891 static void
3892 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3893 struct cfq_io_cq *cic)
3894 {
3895 if (cfq_cfqq_sync(cfqq)) {
3896 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3897 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3898 cfqd->cfq_slice_idle);
3899 }
3900 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3901 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3902 #endif
3903 }
3904
3905 static void
3906 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3907 struct request *rq)
3908 {
3909 sector_t sdist = 0;
3910 sector_t n_sec = blk_rq_sectors(rq);
3911 if (cfqq->last_request_pos) {
3912 if (cfqq->last_request_pos < blk_rq_pos(rq))
3913 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3914 else
3915 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3916 }
3917
3918 cfqq->seek_history <<= 1;
3919 if (blk_queue_nonrot(cfqd->queue))
3920 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3921 else
3922 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3923 }
3924
3925 static inline bool req_noidle(struct request *req)
3926 {
3927 return req_op(req) == REQ_OP_WRITE &&
3928 (req->cmd_flags & (REQ_SYNC | REQ_IDLE)) == REQ_SYNC;
3929 }
3930
3931 /*
3932 * Disable idle window if the process thinks too long or seeks so much that
3933 * it doesn't matter
3934 */
3935 static void
3936 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3937 struct cfq_io_cq *cic)
3938 {
3939 int old_idle, enable_idle;
3940
3941 /*
3942 * Don't idle for async or idle io prio class
3943 */
3944 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3945 return;
3946
3947 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3948
3949 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3950 cfq_mark_cfqq_deep(cfqq);
3951
3952 if (cfqq->next_rq && req_noidle(cfqq->next_rq))
3953 enable_idle = 0;
3954 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3955 !cfqd->cfq_slice_idle ||
3956 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3957 enable_idle = 0;
3958 else if (sample_valid(cic->ttime.ttime_samples)) {
3959 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3960 enable_idle = 0;
3961 else
3962 enable_idle = 1;
3963 }
3964
3965 if (old_idle != enable_idle) {
3966 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3967 if (enable_idle)
3968 cfq_mark_cfqq_idle_window(cfqq);
3969 else
3970 cfq_clear_cfqq_idle_window(cfqq);
3971 }
3972 }
3973
3974 /*
3975 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3976 * no or if we aren't sure, a 1 will cause a preempt.
3977 */
3978 static bool
3979 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3980 struct request *rq)
3981 {
3982 struct cfq_queue *cfqq;
3983
3984 cfqq = cfqd->active_queue;
3985 if (!cfqq)
3986 return false;
3987
3988 if (cfq_class_idle(new_cfqq))
3989 return false;
3990
3991 if (cfq_class_idle(cfqq))
3992 return true;
3993
3994 /*
3995 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3996 */
3997 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3998 return false;
3999
4000 /*
4001 * if the new request is sync, but the currently running queue is
4002 * not, let the sync request have priority.
4003 */
4004 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
4005 return true;
4006
4007 /*
4008 * Treat ancestors of current cgroup the same way as current cgroup.
4009 * For anybody else we disallow preemption to guarantee service
4010 * fairness among cgroups.
4011 */
4012 if (!cfqg_is_descendant(cfqq->cfqg, new_cfqq->cfqg))
4013 return false;
4014
4015 if (cfq_slice_used(cfqq))
4016 return true;
4017
4018 /*
4019 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
4020 */
4021 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
4022 return true;
4023
4024 WARN_ON_ONCE(cfqq->ioprio_class != new_cfqq->ioprio_class);
4025 /* Allow preemption only if we are idling on sync-noidle tree */
4026 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
4027 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
4028 RB_EMPTY_ROOT(&cfqq->sort_list))
4029 return true;
4030
4031 /*
4032 * So both queues are sync. Let the new request get disk time if
4033 * it's a metadata request and the current queue is doing regular IO.
4034 */
4035 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
4036 return true;
4037
4038 /* An idle queue should not be idle now for some reason */
4039 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
4040 return true;
4041
4042 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
4043 return false;
4044
4045 /*
4046 * if this request is as-good as one we would expect from the
4047 * current cfqq, let it preempt
4048 */
4049 if (cfq_rq_close(cfqd, cfqq, rq))
4050 return true;
4051
4052 return false;
4053 }
4054
4055 /*
4056 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4057 * let it have half of its nominal slice.
4058 */
4059 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4060 {
4061 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
4062
4063 cfq_log_cfqq(cfqd, cfqq, "preempt");
4064 cfq_slice_expired(cfqd, 1);
4065
4066 /*
4067 * workload type is changed, don't save slice, otherwise preempt
4068 * doesn't happen
4069 */
4070 if (old_type != cfqq_type(cfqq))
4071 cfqq->cfqg->saved_wl_slice = 0;
4072
4073 /*
4074 * Put the new queue at the front of the of the current list,
4075 * so we know that it will be selected next.
4076 */
4077 BUG_ON(!cfq_cfqq_on_rr(cfqq));
4078
4079 cfq_service_tree_add(cfqd, cfqq, 1);
4080
4081 cfqq->slice_end = 0;
4082 cfq_mark_cfqq_slice_new(cfqq);
4083 }
4084
4085 /*
4086 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4087 * something we should do about it
4088 */
4089 static void
4090 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
4091 struct request *rq)
4092 {
4093 struct cfq_io_cq *cic = RQ_CIC(rq);
4094
4095 cfqd->rq_queued++;
4096 if (rq->cmd_flags & REQ_PRIO)
4097 cfqq->prio_pending++;
4098
4099 cfq_update_io_thinktime(cfqd, cfqq, cic);
4100 cfq_update_io_seektime(cfqd, cfqq, rq);
4101 cfq_update_idle_window(cfqd, cfqq, cic);
4102
4103 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4104
4105 if (cfqq == cfqd->active_queue) {
4106 /*
4107 * Remember that we saw a request from this process, but
4108 * don't start queuing just yet. Otherwise we risk seeing lots
4109 * of tiny requests, because we disrupt the normal plugging
4110 * and merging. If the request is already larger than a single
4111 * page, let it rip immediately. For that case we assume that
4112 * merging is already done. Ditto for a busy system that
4113 * has other work pending, don't risk delaying until the
4114 * idle timer unplug to continue working.
4115 */
4116 if (cfq_cfqq_wait_request(cfqq)) {
4117 if (blk_rq_bytes(rq) > PAGE_SIZE ||
4118 cfqd->busy_queues > 1) {
4119 cfq_del_timer(cfqd, cfqq);
4120 cfq_clear_cfqq_wait_request(cfqq);
4121 __blk_run_queue(cfqd->queue);
4122 } else {
4123 cfqg_stats_update_idle_time(cfqq->cfqg);
4124 cfq_mark_cfqq_must_dispatch(cfqq);
4125 }
4126 }
4127 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
4128 /*
4129 * not the active queue - expire current slice if it is
4130 * idle and has expired it's mean thinktime or this new queue
4131 * has some old slice time left and is of higher priority or
4132 * this new queue is RT and the current one is BE
4133 */
4134 cfq_preempt_queue(cfqd, cfqq);
4135 __blk_run_queue(cfqd->queue);
4136 }
4137 }
4138
4139 static void cfq_insert_request(struct request_queue *q, struct request *rq)
4140 {
4141 struct cfq_data *cfqd = q->elevator->elevator_data;
4142 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4143
4144 cfq_log_cfqq(cfqd, cfqq, "insert_request");
4145 cfq_init_prio_data(cfqq, RQ_CIC(rq));
4146
4147 rq->fifo_time = ktime_get_ns() + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4148 list_add_tail(&rq->queuelist, &cfqq->fifo);
4149 cfq_add_rq_rb(rq);
4150 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
4151 rq->cmd_flags);
4152 cfq_rq_enqueued(cfqd, cfqq, rq);
4153 }
4154
4155 /*
4156 * Update hw_tag based on peak queue depth over 50 samples under
4157 * sufficient load.
4158 */
4159 static void cfq_update_hw_tag(struct cfq_data *cfqd)
4160 {
4161 struct cfq_queue *cfqq = cfqd->active_queue;
4162
4163 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4164 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4165
4166 if (cfqd->hw_tag == 1)
4167 return;
4168
4169 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4170 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4171 return;
4172
4173 /*
4174 * If active queue hasn't enough requests and can idle, cfq might not
4175 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4176 * case
4177 */
4178 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4179 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4180 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4181 return;
4182
4183 if (cfqd->hw_tag_samples++ < 50)
4184 return;
4185
4186 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4187 cfqd->hw_tag = 1;
4188 else
4189 cfqd->hw_tag = 0;
4190 }
4191
4192 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4193 {
4194 struct cfq_io_cq *cic = cfqd->active_cic;
4195 u64 now = ktime_get_ns();
4196
4197 /* If the queue already has requests, don't wait */
4198 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4199 return false;
4200
4201 /* If there are other queues in the group, don't wait */
4202 if (cfqq->cfqg->nr_cfqq > 1)
4203 return false;
4204
4205 /* the only queue in the group, but think time is big */
4206 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4207 return false;
4208
4209 if (cfq_slice_used(cfqq))
4210 return true;
4211
4212 /* if slice left is less than think time, wait busy */
4213 if (cic && sample_valid(cic->ttime.ttime_samples)
4214 && (cfqq->slice_end - now < cic->ttime.ttime_mean))
4215 return true;
4216
4217 /*
4218 * If think times is less than a jiffy than ttime_mean=0 and above
4219 * will not be true. It might happen that slice has not expired yet
4220 * but will expire soon (4-5 ns) during select_queue(). To cover the
4221 * case where think time is less than a jiffy, mark the queue wait
4222 * busy if only 1 jiffy is left in the slice.
4223 */
4224 if (cfqq->slice_end - now <= jiffies_to_nsecs(1))
4225 return true;
4226
4227 return false;
4228 }
4229
4230 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4231 {
4232 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4233 struct cfq_data *cfqd = cfqq->cfqd;
4234 const int sync = rq_is_sync(rq);
4235 u64 now = ktime_get_ns();
4236
4237 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", req_noidle(rq));
4238
4239 cfq_update_hw_tag(cfqd);
4240
4241 WARN_ON(!cfqd->rq_in_driver);
4242 WARN_ON(!cfqq->dispatched);
4243 cfqd->rq_in_driver--;
4244 cfqq->dispatched--;
4245 (RQ_CFQG(rq))->dispatched--;
4246 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4247 rq_io_start_time_ns(rq), rq->cmd_flags);
4248
4249 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4250
4251 if (sync) {
4252 struct cfq_rb_root *st;
4253
4254 RQ_CIC(rq)->ttime.last_end_request = now;
4255
4256 if (cfq_cfqq_on_rr(cfqq))
4257 st = cfqq->service_tree;
4258 else
4259 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4260 cfqq_type(cfqq));
4261
4262 st->ttime.last_end_request = now;
4263 /*
4264 * We have to do this check in jiffies since start_time is in
4265 * jiffies and it is not trivial to convert to ns. If
4266 * cfq_fifo_expire[1] ever comes close to 1 jiffie, this test
4267 * will become problematic but so far we are fine (the default
4268 * is 128 ms).
4269 */
4270 if (!time_after(rq->start_time +
4271 nsecs_to_jiffies(cfqd->cfq_fifo_expire[1]),
4272 jiffies))
4273 cfqd->last_delayed_sync = now;
4274 }
4275
4276 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4277 cfqq->cfqg->ttime.last_end_request = now;
4278 #endif
4279
4280 /*
4281 * If this is the active queue, check if it needs to be expired,
4282 * or if we want to idle in case it has no pending requests.
4283 */
4284 if (cfqd->active_queue == cfqq) {
4285 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4286
4287 if (cfq_cfqq_slice_new(cfqq)) {
4288 cfq_set_prio_slice(cfqd, cfqq);
4289 cfq_clear_cfqq_slice_new(cfqq);
4290 }
4291
4292 /*
4293 * Should we wait for next request to come in before we expire
4294 * the queue.
4295 */
4296 if (cfq_should_wait_busy(cfqd, cfqq)) {
4297 u64 extend_sl = cfqd->cfq_slice_idle;
4298 if (!cfqd->cfq_slice_idle)
4299 extend_sl = cfqd->cfq_group_idle;
4300 cfqq->slice_end = now + extend_sl;
4301 cfq_mark_cfqq_wait_busy(cfqq);
4302 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4303 }
4304
4305 /*
4306 * Idling is not enabled on:
4307 * - expired queues
4308 * - idle-priority queues
4309 * - async queues
4310 * - queues with still some requests queued
4311 * - when there is a close cooperator
4312 */
4313 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4314 cfq_slice_expired(cfqd, 1);
4315 else if (sync && cfqq_empty &&
4316 !cfq_close_cooperator(cfqd, cfqq)) {
4317 cfq_arm_slice_timer(cfqd);
4318 }
4319 }
4320
4321 if (!cfqd->rq_in_driver)
4322 cfq_schedule_dispatch(cfqd);
4323 }
4324
4325 static void cfqq_boost_on_prio(struct cfq_queue *cfqq, unsigned int op)
4326 {
4327 /*
4328 * If REQ_PRIO is set, boost class and prio level, if it's below
4329 * BE/NORM. If prio is not set, restore the potentially boosted
4330 * class/prio level.
4331 */
4332 if (!(op & REQ_PRIO)) {
4333 cfqq->ioprio_class = cfqq->org_ioprio_class;
4334 cfqq->ioprio = cfqq->org_ioprio;
4335 } else {
4336 if (cfq_class_idle(cfqq))
4337 cfqq->ioprio_class = IOPRIO_CLASS_BE;
4338 if (cfqq->ioprio > IOPRIO_NORM)
4339 cfqq->ioprio = IOPRIO_NORM;
4340 }
4341 }
4342
4343 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4344 {
4345 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4346 cfq_mark_cfqq_must_alloc_slice(cfqq);
4347 return ELV_MQUEUE_MUST;
4348 }
4349
4350 return ELV_MQUEUE_MAY;
4351 }
4352
4353 static int cfq_may_queue(struct request_queue *q, unsigned int op)
4354 {
4355 struct cfq_data *cfqd = q->elevator->elevator_data;
4356 struct task_struct *tsk = current;
4357 struct cfq_io_cq *cic;
4358 struct cfq_queue *cfqq;
4359
4360 /*
4361 * don't force setup of a queue from here, as a call to may_queue
4362 * does not necessarily imply that a request actually will be queued.
4363 * so just lookup a possibly existing queue, or return 'may queue'
4364 * if that fails
4365 */
4366 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4367 if (!cic)
4368 return ELV_MQUEUE_MAY;
4369
4370 cfqq = cic_to_cfqq(cic, op_is_sync(op));
4371 if (cfqq) {
4372 cfq_init_prio_data(cfqq, cic);
4373 cfqq_boost_on_prio(cfqq, op);
4374
4375 return __cfq_may_queue(cfqq);
4376 }
4377
4378 return ELV_MQUEUE_MAY;
4379 }
4380
4381 /*
4382 * queue lock held here
4383 */
4384 static void cfq_put_request(struct request *rq)
4385 {
4386 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4387
4388 if (cfqq) {
4389 const int rw = rq_data_dir(rq);
4390
4391 BUG_ON(!cfqq->allocated[rw]);
4392 cfqq->allocated[rw]--;
4393
4394 /* Put down rq reference on cfqg */
4395 cfqg_put(RQ_CFQG(rq));
4396 rq->elv.priv[0] = NULL;
4397 rq->elv.priv[1] = NULL;
4398
4399 cfq_put_queue(cfqq);
4400 }
4401 }
4402
4403 static struct cfq_queue *
4404 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4405 struct cfq_queue *cfqq)
4406 {
4407 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4408 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4409 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4410 cfq_put_queue(cfqq);
4411 return cic_to_cfqq(cic, 1);
4412 }
4413
4414 /*
4415 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4416 * was the last process referring to said cfqq.
4417 */
4418 static struct cfq_queue *
4419 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4420 {
4421 if (cfqq_process_refs(cfqq) == 1) {
4422 cfqq->pid = current->pid;
4423 cfq_clear_cfqq_coop(cfqq);
4424 cfq_clear_cfqq_split_coop(cfqq);
4425 return cfqq;
4426 }
4427
4428 cic_set_cfqq(cic, NULL, 1);
4429
4430 cfq_put_cooperator(cfqq);
4431
4432 cfq_put_queue(cfqq);
4433 return NULL;
4434 }
4435 /*
4436 * Allocate cfq data structures associated with this request.
4437 */
4438 static int
4439 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4440 gfp_t gfp_mask)
4441 {
4442 struct cfq_data *cfqd = q->elevator->elevator_data;
4443 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4444 const int rw = rq_data_dir(rq);
4445 const bool is_sync = rq_is_sync(rq);
4446 struct cfq_queue *cfqq;
4447 bool disable_wbt;
4448
4449 spin_lock_irq(q->queue_lock);
4450
4451 check_ioprio_changed(cic, bio);
4452 disable_wbt = check_blkcg_changed(cic, bio);
4453 new_queue:
4454 cfqq = cic_to_cfqq(cic, is_sync);
4455 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4456 if (cfqq)
4457 cfq_put_queue(cfqq);
4458 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4459 cic_set_cfqq(cic, cfqq, is_sync);
4460 } else {
4461 /*
4462 * If the queue was seeky for too long, break it apart.
4463 */
4464 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4465 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4466 cfqq = split_cfqq(cic, cfqq);
4467 if (!cfqq)
4468 goto new_queue;
4469 }
4470
4471 /*
4472 * Check to see if this queue is scheduled to merge with
4473 * another, closely cooperating queue. The merging of
4474 * queues happens here as it must be done in process context.
4475 * The reference on new_cfqq was taken in merge_cfqqs.
4476 */
4477 if (cfqq->new_cfqq)
4478 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4479 }
4480
4481 cfqq->allocated[rw]++;
4482
4483 cfqq->ref++;
4484 cfqg_get(cfqq->cfqg);
4485 rq->elv.priv[0] = cfqq;
4486 rq->elv.priv[1] = cfqq->cfqg;
4487 spin_unlock_irq(q->queue_lock);
4488
4489 if (disable_wbt)
4490 wbt_disable_default(q);
4491
4492 return 0;
4493 }
4494
4495 static void cfq_kick_queue(struct work_struct *work)
4496 {
4497 struct cfq_data *cfqd =
4498 container_of(work, struct cfq_data, unplug_work);
4499 struct request_queue *q = cfqd->queue;
4500
4501 spin_lock_irq(q->queue_lock);
4502 __blk_run_queue(cfqd->queue);
4503 spin_unlock_irq(q->queue_lock);
4504 }
4505
4506 /*
4507 * Timer running if the active_queue is currently idling inside its time slice
4508 */
4509 static enum hrtimer_restart cfq_idle_slice_timer(struct hrtimer *timer)
4510 {
4511 struct cfq_data *cfqd = container_of(timer, struct cfq_data,
4512 idle_slice_timer);
4513 struct cfq_queue *cfqq;
4514 unsigned long flags;
4515 int timed_out = 1;
4516
4517 cfq_log(cfqd, "idle timer fired");
4518
4519 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4520
4521 cfqq = cfqd->active_queue;
4522 if (cfqq) {
4523 timed_out = 0;
4524
4525 /*
4526 * We saw a request before the queue expired, let it through
4527 */
4528 if (cfq_cfqq_must_dispatch(cfqq))
4529 goto out_kick;
4530
4531 /*
4532 * expired
4533 */
4534 if (cfq_slice_used(cfqq))
4535 goto expire;
4536
4537 /*
4538 * only expire and reinvoke request handler, if there are
4539 * other queues with pending requests
4540 */
4541 if (!cfqd->busy_queues)
4542 goto out_cont;
4543
4544 /*
4545 * not expired and it has a request pending, let it dispatch
4546 */
4547 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4548 goto out_kick;
4549
4550 /*
4551 * Queue depth flag is reset only when the idle didn't succeed
4552 */
4553 cfq_clear_cfqq_deep(cfqq);
4554 }
4555 expire:
4556 cfq_slice_expired(cfqd, timed_out);
4557 out_kick:
4558 cfq_schedule_dispatch(cfqd);
4559 out_cont:
4560 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4561 return HRTIMER_NORESTART;
4562 }
4563
4564 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4565 {
4566 hrtimer_cancel(&cfqd->idle_slice_timer);
4567 cancel_work_sync(&cfqd->unplug_work);
4568 }
4569
4570 static void cfq_exit_queue(struct elevator_queue *e)
4571 {
4572 struct cfq_data *cfqd = e->elevator_data;
4573 struct request_queue *q = cfqd->queue;
4574
4575 cfq_shutdown_timer_wq(cfqd);
4576
4577 spin_lock_irq(q->queue_lock);
4578
4579 if (cfqd->active_queue)
4580 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4581
4582 spin_unlock_irq(q->queue_lock);
4583
4584 cfq_shutdown_timer_wq(cfqd);
4585
4586 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4587 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4588 #else
4589 kfree(cfqd->root_group);
4590 #endif
4591 kfree(cfqd);
4592 }
4593
4594 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4595 {
4596 struct cfq_data *cfqd;
4597 struct blkcg_gq *blkg __maybe_unused;
4598 int i, ret;
4599 struct elevator_queue *eq;
4600
4601 eq = elevator_alloc(q, e);
4602 if (!eq)
4603 return -ENOMEM;
4604
4605 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4606 if (!cfqd) {
4607 kobject_put(&eq->kobj);
4608 return -ENOMEM;
4609 }
4610 eq->elevator_data = cfqd;
4611
4612 cfqd->queue = q;
4613 spin_lock_irq(q->queue_lock);
4614 q->elevator = eq;
4615 spin_unlock_irq(q->queue_lock);
4616
4617 /* Init root service tree */
4618 cfqd->grp_service_tree = CFQ_RB_ROOT;
4619
4620 /* Init root group and prefer root group over other groups by default */
4621 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4622 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4623 if (ret)
4624 goto out_free;
4625
4626 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4627 #else
4628 ret = -ENOMEM;
4629 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4630 GFP_KERNEL, cfqd->queue->node);
4631 if (!cfqd->root_group)
4632 goto out_free;
4633
4634 cfq_init_cfqg_base(cfqd->root_group);
4635 cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4636 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4637 #endif
4638
4639 /*
4640 * Not strictly needed (since RB_ROOT just clears the node and we
4641 * zeroed cfqd on alloc), but better be safe in case someone decides
4642 * to add magic to the rb code
4643 */
4644 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4645 cfqd->prio_trees[i] = RB_ROOT;
4646
4647 /*
4648 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4649 * Grab a permanent reference to it, so that the normal code flow
4650 * will not attempt to free it. oom_cfqq is linked to root_group
4651 * but shouldn't hold a reference as it'll never be unlinked. Lose
4652 * the reference from linking right away.
4653 */
4654 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4655 cfqd->oom_cfqq.ref++;
4656
4657 spin_lock_irq(q->queue_lock);
4658 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4659 cfqg_put(cfqd->root_group);
4660 spin_unlock_irq(q->queue_lock);
4661
4662 hrtimer_init(&cfqd->idle_slice_timer, CLOCK_MONOTONIC,
4663 HRTIMER_MODE_REL);
4664 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4665
4666 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4667
4668 cfqd->cfq_quantum = cfq_quantum;
4669 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4670 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4671 cfqd->cfq_back_max = cfq_back_max;
4672 cfqd->cfq_back_penalty = cfq_back_penalty;
4673 cfqd->cfq_slice[0] = cfq_slice_async;
4674 cfqd->cfq_slice[1] = cfq_slice_sync;
4675 cfqd->cfq_target_latency = cfq_target_latency;
4676 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4677 cfqd->cfq_slice_idle = cfq_slice_idle;
4678 cfqd->cfq_group_idle = cfq_group_idle;
4679 cfqd->cfq_latency = 1;
4680 cfqd->hw_tag = -1;
4681 /*
4682 * we optimistically start assuming sync ops weren't delayed in last
4683 * second, in order to have larger depth for async operations.
4684 */
4685 cfqd->last_delayed_sync = ktime_get_ns() - NSEC_PER_SEC;
4686 return 0;
4687
4688 out_free:
4689 kfree(cfqd);
4690 kobject_put(&eq->kobj);
4691 return ret;
4692 }
4693
4694 static void cfq_registered_queue(struct request_queue *q)
4695 {
4696 struct elevator_queue *e = q->elevator;
4697 struct cfq_data *cfqd = e->elevator_data;
4698
4699 /*
4700 * Default to IOPS mode with no idling for SSDs
4701 */
4702 if (blk_queue_nonrot(q))
4703 cfqd->cfq_slice_idle = 0;
4704 }
4705
4706 /*
4707 * sysfs parts below -->
4708 */
4709 static ssize_t
4710 cfq_var_show(unsigned int var, char *page)
4711 {
4712 return sprintf(page, "%u\n", var);
4713 }
4714
4715 static ssize_t
4716 cfq_var_store(unsigned int *var, const char *page, size_t count)
4717 {
4718 char *p = (char *) page;
4719
4720 *var = simple_strtoul(p, &p, 10);
4721 return count;
4722 }
4723
4724 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4725 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4726 { \
4727 struct cfq_data *cfqd = e->elevator_data; \
4728 u64 __data = __VAR; \
4729 if (__CONV) \
4730 __data = div_u64(__data, NSEC_PER_MSEC); \
4731 return cfq_var_show(__data, (page)); \
4732 }
4733 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4734 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4735 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4736 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4737 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4738 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4739 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4740 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4741 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4742 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4743 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4744 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4745 #undef SHOW_FUNCTION
4746
4747 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
4748 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4749 { \
4750 struct cfq_data *cfqd = e->elevator_data; \
4751 u64 __data = __VAR; \
4752 __data = div_u64(__data, NSEC_PER_USEC); \
4753 return cfq_var_show(__data, (page)); \
4754 }
4755 USEC_SHOW_FUNCTION(cfq_slice_idle_us_show, cfqd->cfq_slice_idle);
4756 USEC_SHOW_FUNCTION(cfq_group_idle_us_show, cfqd->cfq_group_idle);
4757 USEC_SHOW_FUNCTION(cfq_slice_sync_us_show, cfqd->cfq_slice[1]);
4758 USEC_SHOW_FUNCTION(cfq_slice_async_us_show, cfqd->cfq_slice[0]);
4759 USEC_SHOW_FUNCTION(cfq_target_latency_us_show, cfqd->cfq_target_latency);
4760 #undef USEC_SHOW_FUNCTION
4761
4762 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4763 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4764 { \
4765 struct cfq_data *cfqd = e->elevator_data; \
4766 unsigned int __data; \
4767 int ret = cfq_var_store(&__data, (page), count); \
4768 if (__data < (MIN)) \
4769 __data = (MIN); \
4770 else if (__data > (MAX)) \
4771 __data = (MAX); \
4772 if (__CONV) \
4773 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
4774 else \
4775 *(__PTR) = __data; \
4776 return ret; \
4777 }
4778 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4779 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4780 UINT_MAX, 1);
4781 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4782 UINT_MAX, 1);
4783 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4784 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4785 UINT_MAX, 0);
4786 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4787 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4788 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4789 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4790 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4791 UINT_MAX, 0);
4792 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4793 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4794 #undef STORE_FUNCTION
4795
4796 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
4797 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4798 { \
4799 struct cfq_data *cfqd = e->elevator_data; \
4800 unsigned int __data; \
4801 int ret = cfq_var_store(&__data, (page), count); \
4802 if (__data < (MIN)) \
4803 __data = (MIN); \
4804 else if (__data > (MAX)) \
4805 __data = (MAX); \
4806 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
4807 return ret; \
4808 }
4809 USEC_STORE_FUNCTION(cfq_slice_idle_us_store, &cfqd->cfq_slice_idle, 0, UINT_MAX);
4810 USEC_STORE_FUNCTION(cfq_group_idle_us_store, &cfqd->cfq_group_idle, 0, UINT_MAX);
4811 USEC_STORE_FUNCTION(cfq_slice_sync_us_store, &cfqd->cfq_slice[1], 1, UINT_MAX);
4812 USEC_STORE_FUNCTION(cfq_slice_async_us_store, &cfqd->cfq_slice[0], 1, UINT_MAX);
4813 USEC_STORE_FUNCTION(cfq_target_latency_us_store, &cfqd->cfq_target_latency, 1, UINT_MAX);
4814 #undef USEC_STORE_FUNCTION
4815
4816 #define CFQ_ATTR(name) \
4817 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4818
4819 static struct elv_fs_entry cfq_attrs[] = {
4820 CFQ_ATTR(quantum),
4821 CFQ_ATTR(fifo_expire_sync),
4822 CFQ_ATTR(fifo_expire_async),
4823 CFQ_ATTR(back_seek_max),
4824 CFQ_ATTR(back_seek_penalty),
4825 CFQ_ATTR(slice_sync),
4826 CFQ_ATTR(slice_sync_us),
4827 CFQ_ATTR(slice_async),
4828 CFQ_ATTR(slice_async_us),
4829 CFQ_ATTR(slice_async_rq),
4830 CFQ_ATTR(slice_idle),
4831 CFQ_ATTR(slice_idle_us),
4832 CFQ_ATTR(group_idle),
4833 CFQ_ATTR(group_idle_us),
4834 CFQ_ATTR(low_latency),
4835 CFQ_ATTR(target_latency),
4836 CFQ_ATTR(target_latency_us),
4837 __ATTR_NULL
4838 };
4839
4840 static struct elevator_type iosched_cfq = {
4841 .ops = {
4842 .elevator_merge_fn = cfq_merge,
4843 .elevator_merged_fn = cfq_merged_request,
4844 .elevator_merge_req_fn = cfq_merged_requests,
4845 .elevator_allow_bio_merge_fn = cfq_allow_bio_merge,
4846 .elevator_allow_rq_merge_fn = cfq_allow_rq_merge,
4847 .elevator_bio_merged_fn = cfq_bio_merged,
4848 .elevator_dispatch_fn = cfq_dispatch_requests,
4849 .elevator_add_req_fn = cfq_insert_request,
4850 .elevator_activate_req_fn = cfq_activate_request,
4851 .elevator_deactivate_req_fn = cfq_deactivate_request,
4852 .elevator_completed_req_fn = cfq_completed_request,
4853 .elevator_former_req_fn = elv_rb_former_request,
4854 .elevator_latter_req_fn = elv_rb_latter_request,
4855 .elevator_init_icq_fn = cfq_init_icq,
4856 .elevator_exit_icq_fn = cfq_exit_icq,
4857 .elevator_set_req_fn = cfq_set_request,
4858 .elevator_put_req_fn = cfq_put_request,
4859 .elevator_may_queue_fn = cfq_may_queue,
4860 .elevator_init_fn = cfq_init_queue,
4861 .elevator_exit_fn = cfq_exit_queue,
4862 .elevator_registered_fn = cfq_registered_queue,
4863 },
4864 .icq_size = sizeof(struct cfq_io_cq),
4865 .icq_align = __alignof__(struct cfq_io_cq),
4866 .elevator_attrs = cfq_attrs,
4867 .elevator_name = "cfq",
4868 .elevator_owner = THIS_MODULE,
4869 };
4870
4871 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4872 static struct blkcg_policy blkcg_policy_cfq = {
4873 .dfl_cftypes = cfq_blkcg_files,
4874 .legacy_cftypes = cfq_blkcg_legacy_files,
4875
4876 .cpd_alloc_fn = cfq_cpd_alloc,
4877 .cpd_init_fn = cfq_cpd_init,
4878 .cpd_free_fn = cfq_cpd_free,
4879 .cpd_bind_fn = cfq_cpd_bind,
4880
4881 .pd_alloc_fn = cfq_pd_alloc,
4882 .pd_init_fn = cfq_pd_init,
4883 .pd_offline_fn = cfq_pd_offline,
4884 .pd_free_fn = cfq_pd_free,
4885 .pd_reset_stats_fn = cfq_pd_reset_stats,
4886 };
4887 #endif
4888
4889 static int __init cfq_init(void)
4890 {
4891 int ret;
4892
4893 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4894 ret = blkcg_policy_register(&blkcg_policy_cfq);
4895 if (ret)
4896 return ret;
4897 #else
4898 cfq_group_idle = 0;
4899 #endif
4900
4901 ret = -ENOMEM;
4902 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4903 if (!cfq_pool)
4904 goto err_pol_unreg;
4905
4906 ret = elv_register(&iosched_cfq);
4907 if (ret)
4908 goto err_free_pool;
4909
4910 return 0;
4911
4912 err_free_pool:
4913 kmem_cache_destroy(cfq_pool);
4914 err_pol_unreg:
4915 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4916 blkcg_policy_unregister(&blkcg_policy_cfq);
4917 #endif
4918 return ret;
4919 }
4920
4921 static void __exit cfq_exit(void)
4922 {
4923 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4924 blkcg_policy_unregister(&blkcg_policy_cfq);
4925 #endif
4926 elv_unregister(&iosched_cfq);
4927 kmem_cache_destroy(cfq_pool);
4928 }
4929
4930 module_init(cfq_init);
4931 module_exit(cfq_exit);
4932
4933 MODULE_AUTHOR("Jens Axboe");
4934 MODULE_LICENSE("GPL");
4935 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");