]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - crypto/Kconfig
UBUNTU: Start new release
[mirror_ubuntu-zesty-kernel.git] / crypto / Kconfig
1 #
2 # Generic algorithms support
3 #
4 config XOR_BLOCKS
5 tristate
6
7 #
8 # async_tx api: hardware offloaded memory transfer/transform support
9 #
10 source "crypto/async_tx/Kconfig"
11
12 #
13 # Cryptographic API Configuration
14 #
15 menuconfig CRYPTO
16 tristate "Cryptographic API"
17 help
18 This option provides the core Cryptographic API.
19
20 if CRYPTO
21
22 comment "Crypto core or helper"
23
24 config CRYPTO_FIPS
25 bool "FIPS 200 compliance"
26 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27 depends on (MODULE_SIG || !MODULES)
28 help
29 This options enables the fips boot option which is
30 required if you want to system to operate in a FIPS 200
31 certification. You should say no unless you know what
32 this is.
33
34 config CRYPTO_ALGAPI
35 tristate
36 select CRYPTO_ALGAPI2
37 help
38 This option provides the API for cryptographic algorithms.
39
40 config CRYPTO_ALGAPI2
41 tristate
42
43 config CRYPTO_AEAD
44 tristate
45 select CRYPTO_AEAD2
46 select CRYPTO_ALGAPI
47
48 config CRYPTO_AEAD2
49 tristate
50 select CRYPTO_ALGAPI2
51 select CRYPTO_NULL2
52 select CRYPTO_RNG2
53
54 config CRYPTO_BLKCIPHER
55 tristate
56 select CRYPTO_BLKCIPHER2
57 select CRYPTO_ALGAPI
58
59 config CRYPTO_BLKCIPHER2
60 tristate
61 select CRYPTO_ALGAPI2
62 select CRYPTO_RNG2
63 select CRYPTO_WORKQUEUE
64
65 config CRYPTO_HASH
66 tristate
67 select CRYPTO_HASH2
68 select CRYPTO_ALGAPI
69
70 config CRYPTO_HASH2
71 tristate
72 select CRYPTO_ALGAPI2
73
74 config CRYPTO_RNG
75 tristate
76 select CRYPTO_RNG2
77 select CRYPTO_ALGAPI
78
79 config CRYPTO_RNG2
80 tristate
81 select CRYPTO_ALGAPI2
82
83 config CRYPTO_RNG_DEFAULT
84 tristate
85 select CRYPTO_DRBG_MENU
86
87 config CRYPTO_AKCIPHER2
88 tristate
89 select CRYPTO_ALGAPI2
90
91 config CRYPTO_AKCIPHER
92 tristate
93 select CRYPTO_AKCIPHER2
94 select CRYPTO_ALGAPI
95
96 config CRYPTO_KPP2
97 tristate
98 select CRYPTO_ALGAPI2
99
100 config CRYPTO_KPP
101 tristate
102 select CRYPTO_ALGAPI
103 select CRYPTO_KPP2
104
105 config CRYPTO_ACOMP2
106 tristate
107 select CRYPTO_ALGAPI2
108
109 config CRYPTO_ACOMP
110 tristate
111 select CRYPTO_ALGAPI
112 select CRYPTO_ACOMP2
113
114 config CRYPTO_RSA
115 tristate "RSA algorithm"
116 select CRYPTO_AKCIPHER
117 select CRYPTO_MANAGER
118 select MPILIB
119 select ASN1
120 help
121 Generic implementation of the RSA public key algorithm.
122
123 config CRYPTO_DH
124 tristate "Diffie-Hellman algorithm"
125 select CRYPTO_KPP
126 select MPILIB
127 help
128 Generic implementation of the Diffie-Hellman algorithm.
129
130 config CRYPTO_ECDH
131 tristate "ECDH algorithm"
132 select CRYTPO_KPP
133 help
134 Generic implementation of the ECDH algorithm
135
136 config CRYPTO_MANAGER
137 tristate "Cryptographic algorithm manager"
138 select CRYPTO_MANAGER2
139 help
140 Create default cryptographic template instantiations such as
141 cbc(aes).
142
143 config CRYPTO_MANAGER2
144 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
145 select CRYPTO_AEAD2
146 select CRYPTO_HASH2
147 select CRYPTO_BLKCIPHER2
148 select CRYPTO_AKCIPHER2
149 select CRYPTO_KPP2
150 select CRYPTO_ACOMP2
151
152 config CRYPTO_USER
153 tristate "Userspace cryptographic algorithm configuration"
154 depends on NET
155 select CRYPTO_MANAGER
156 help
157 Userspace configuration for cryptographic instantiations such as
158 cbc(aes).
159
160 config CRYPTO_MANAGER_DISABLE_TESTS
161 bool "Disable run-time self tests"
162 default y
163 depends on CRYPTO_MANAGER2
164 help
165 Disable run-time self tests that normally take place at
166 algorithm registration.
167
168 config CRYPTO_GF128MUL
169 tristate "GF(2^128) multiplication functions"
170 help
171 Efficient table driven implementation of multiplications in the
172 field GF(2^128). This is needed by some cypher modes. This
173 option will be selected automatically if you select such a
174 cipher mode. Only select this option by hand if you expect to load
175 an external module that requires these functions.
176
177 config CRYPTO_NULL
178 tristate "Null algorithms"
179 select CRYPTO_NULL2
180 help
181 These are 'Null' algorithms, used by IPsec, which do nothing.
182
183 config CRYPTO_NULL2
184 tristate
185 select CRYPTO_ALGAPI2
186 select CRYPTO_BLKCIPHER2
187 select CRYPTO_HASH2
188
189 config CRYPTO_PCRYPT
190 tristate "Parallel crypto engine"
191 depends on SMP
192 select PADATA
193 select CRYPTO_MANAGER
194 select CRYPTO_AEAD
195 help
196 This converts an arbitrary crypto algorithm into a parallel
197 algorithm that executes in kernel threads.
198
199 config CRYPTO_WORKQUEUE
200 tristate
201
202 config CRYPTO_CRYPTD
203 tristate "Software async crypto daemon"
204 select CRYPTO_BLKCIPHER
205 select CRYPTO_HASH
206 select CRYPTO_MANAGER
207 select CRYPTO_WORKQUEUE
208 help
209 This is a generic software asynchronous crypto daemon that
210 converts an arbitrary synchronous software crypto algorithm
211 into an asynchronous algorithm that executes in a kernel thread.
212
213 config CRYPTO_MCRYPTD
214 tristate "Software async multi-buffer crypto daemon"
215 select CRYPTO_BLKCIPHER
216 select CRYPTO_HASH
217 select CRYPTO_MANAGER
218 select CRYPTO_WORKQUEUE
219 help
220 This is a generic software asynchronous crypto daemon that
221 provides the kernel thread to assist multi-buffer crypto
222 algorithms for submitting jobs and flushing jobs in multi-buffer
223 crypto algorithms. Multi-buffer crypto algorithms are executed
224 in the context of this kernel thread and drivers can post
225 their crypto request asynchronously to be processed by this daemon.
226
227 config CRYPTO_AUTHENC
228 tristate "Authenc support"
229 select CRYPTO_AEAD
230 select CRYPTO_BLKCIPHER
231 select CRYPTO_MANAGER
232 select CRYPTO_HASH
233 select CRYPTO_NULL
234 help
235 Authenc: Combined mode wrapper for IPsec.
236 This is required for IPSec.
237
238 config CRYPTO_TEST
239 tristate "Testing module"
240 depends on m
241 select CRYPTO_MANAGER
242 help
243 Quick & dirty crypto test module.
244
245 config CRYPTO_ABLK_HELPER
246 tristate
247 select CRYPTO_CRYPTD
248
249 config CRYPTO_SIMD
250 tristate
251 select CRYPTO_CRYPTD
252
253 config CRYPTO_GLUE_HELPER_X86
254 tristate
255 depends on X86
256 select CRYPTO_BLKCIPHER
257
258 config CRYPTO_ENGINE
259 tristate
260
261 comment "Authenticated Encryption with Associated Data"
262
263 config CRYPTO_CCM
264 tristate "CCM support"
265 select CRYPTO_CTR
266 select CRYPTO_AEAD
267 help
268 Support for Counter with CBC MAC. Required for IPsec.
269
270 config CRYPTO_GCM
271 tristate "GCM/GMAC support"
272 select CRYPTO_CTR
273 select CRYPTO_AEAD
274 select CRYPTO_GHASH
275 select CRYPTO_NULL
276 help
277 Support for Galois/Counter Mode (GCM) and Galois Message
278 Authentication Code (GMAC). Required for IPSec.
279
280 config CRYPTO_CHACHA20POLY1305
281 tristate "ChaCha20-Poly1305 AEAD support"
282 select CRYPTO_CHACHA20
283 select CRYPTO_POLY1305
284 select CRYPTO_AEAD
285 help
286 ChaCha20-Poly1305 AEAD support, RFC7539.
287
288 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
289 with the Poly1305 authenticator. It is defined in RFC7539 for use in
290 IETF protocols.
291
292 config CRYPTO_SEQIV
293 tristate "Sequence Number IV Generator"
294 select CRYPTO_AEAD
295 select CRYPTO_BLKCIPHER
296 select CRYPTO_NULL
297 select CRYPTO_RNG_DEFAULT
298 help
299 This IV generator generates an IV based on a sequence number by
300 xoring it with a salt. This algorithm is mainly useful for CTR
301
302 config CRYPTO_ECHAINIV
303 tristate "Encrypted Chain IV Generator"
304 select CRYPTO_AEAD
305 select CRYPTO_NULL
306 select CRYPTO_RNG_DEFAULT
307 default m
308 help
309 This IV generator generates an IV based on the encryption of
310 a sequence number xored with a salt. This is the default
311 algorithm for CBC.
312
313 comment "Block modes"
314
315 config CRYPTO_CBC
316 tristate "CBC support"
317 select CRYPTO_BLKCIPHER
318 select CRYPTO_MANAGER
319 help
320 CBC: Cipher Block Chaining mode
321 This block cipher algorithm is required for IPSec.
322
323 config CRYPTO_CTR
324 tristate "CTR support"
325 select CRYPTO_BLKCIPHER
326 select CRYPTO_SEQIV
327 select CRYPTO_MANAGER
328 help
329 CTR: Counter mode
330 This block cipher algorithm is required for IPSec.
331
332 config CRYPTO_CTS
333 tristate "CTS support"
334 select CRYPTO_BLKCIPHER
335 help
336 CTS: Cipher Text Stealing
337 This is the Cipher Text Stealing mode as described by
338 Section 8 of rfc2040 and referenced by rfc3962.
339 (rfc3962 includes errata information in its Appendix A)
340 This mode is required for Kerberos gss mechanism support
341 for AES encryption.
342
343 config CRYPTO_ECB
344 tristate "ECB support"
345 select CRYPTO_BLKCIPHER
346 select CRYPTO_MANAGER
347 help
348 ECB: Electronic CodeBook mode
349 This is the simplest block cipher algorithm. It simply encrypts
350 the input block by block.
351
352 config CRYPTO_LRW
353 tristate "LRW support"
354 select CRYPTO_BLKCIPHER
355 select CRYPTO_MANAGER
356 select CRYPTO_GF128MUL
357 help
358 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
359 narrow block cipher mode for dm-crypt. Use it with cipher
360 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
361 The first 128, 192 or 256 bits in the key are used for AES and the
362 rest is used to tie each cipher block to its logical position.
363
364 config CRYPTO_PCBC
365 tristate "PCBC support"
366 select CRYPTO_BLKCIPHER
367 select CRYPTO_MANAGER
368 help
369 PCBC: Propagating Cipher Block Chaining mode
370 This block cipher algorithm is required for RxRPC.
371
372 config CRYPTO_XTS
373 tristate "XTS support"
374 select CRYPTO_BLKCIPHER
375 select CRYPTO_MANAGER
376 select CRYPTO_GF128MUL
377 select CRYPTO_ECB
378 help
379 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
380 key size 256, 384 or 512 bits. This implementation currently
381 can't handle a sectorsize which is not a multiple of 16 bytes.
382
383 config CRYPTO_KEYWRAP
384 tristate "Key wrapping support"
385 select CRYPTO_BLKCIPHER
386 help
387 Support for key wrapping (NIST SP800-38F / RFC3394) without
388 padding.
389
390 comment "Hash modes"
391
392 config CRYPTO_CMAC
393 tristate "CMAC support"
394 select CRYPTO_HASH
395 select CRYPTO_MANAGER
396 help
397 Cipher-based Message Authentication Code (CMAC) specified by
398 The National Institute of Standards and Technology (NIST).
399
400 https://tools.ietf.org/html/rfc4493
401 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
402
403 config CRYPTO_HMAC
404 tristate "HMAC support"
405 select CRYPTO_HASH
406 select CRYPTO_MANAGER
407 help
408 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
409 This is required for IPSec.
410
411 config CRYPTO_XCBC
412 tristate "XCBC support"
413 select CRYPTO_HASH
414 select CRYPTO_MANAGER
415 help
416 XCBC: Keyed-Hashing with encryption algorithm
417 http://www.ietf.org/rfc/rfc3566.txt
418 http://csrc.nist.gov/encryption/modes/proposedmodes/
419 xcbc-mac/xcbc-mac-spec.pdf
420
421 config CRYPTO_VMAC
422 tristate "VMAC support"
423 select CRYPTO_HASH
424 select CRYPTO_MANAGER
425 help
426 VMAC is a message authentication algorithm designed for
427 very high speed on 64-bit architectures.
428
429 See also:
430 <http://fastcrypto.org/vmac>
431
432 comment "Digest"
433
434 config CRYPTO_CRC32C
435 tristate "CRC32c CRC algorithm"
436 select CRYPTO_HASH
437 select CRC32
438 help
439 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
440 by iSCSI for header and data digests and by others.
441 See Castagnoli93. Module will be crc32c.
442
443 config CRYPTO_CRC32C_INTEL
444 tristate "CRC32c INTEL hardware acceleration"
445 depends on X86
446 select CRYPTO_HASH
447 help
448 In Intel processor with SSE4.2 supported, the processor will
449 support CRC32C implementation using hardware accelerated CRC32
450 instruction. This option will create 'crc32c-intel' module,
451 which will enable any routine to use the CRC32 instruction to
452 gain performance compared with software implementation.
453 Module will be crc32c-intel.
454
455 config CRYPTO_CRC32C_VPMSUM
456 tristate "CRC32c CRC algorithm (powerpc64)"
457 depends on PPC64 && ALTIVEC
458 select CRYPTO_HASH
459 select CRC32
460 help
461 CRC32c algorithm implemented using vector polynomial multiply-sum
462 (vpmsum) instructions, introduced in POWER8. Enable on POWER8
463 and newer processors for improved performance.
464
465
466 config CRYPTO_CRC32C_SPARC64
467 tristate "CRC32c CRC algorithm (SPARC64)"
468 depends on SPARC64
469 select CRYPTO_HASH
470 select CRC32
471 help
472 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
473 when available.
474
475 config CRYPTO_CRC32
476 tristate "CRC32 CRC algorithm"
477 select CRYPTO_HASH
478 select CRC32
479 help
480 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
481 Shash crypto api wrappers to crc32_le function.
482
483 config CRYPTO_CRC32_PCLMUL
484 tristate "CRC32 PCLMULQDQ hardware acceleration"
485 depends on X86
486 select CRYPTO_HASH
487 select CRC32
488 help
489 From Intel Westmere and AMD Bulldozer processor with SSE4.2
490 and PCLMULQDQ supported, the processor will support
491 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
492 instruction. This option will create 'crc32-plcmul' module,
493 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
494 and gain better performance as compared with the table implementation.
495
496 config CRYPTO_CRCT10DIF
497 tristate "CRCT10DIF algorithm"
498 select CRYPTO_HASH
499 help
500 CRC T10 Data Integrity Field computation is being cast as
501 a crypto transform. This allows for faster crc t10 diff
502 transforms to be used if they are available.
503
504 config CRYPTO_CRCT10DIF_PCLMUL
505 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
506 depends on X86 && 64BIT && CRC_T10DIF
507 select CRYPTO_HASH
508 help
509 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
510 CRC T10 DIF PCLMULQDQ computation can be hardware
511 accelerated PCLMULQDQ instruction. This option will create
512 'crct10dif-plcmul' module, which is faster when computing the
513 crct10dif checksum as compared with the generic table implementation.
514
515 config CRYPTO_GHASH
516 tristate "GHASH digest algorithm"
517 select CRYPTO_GF128MUL
518 select CRYPTO_HASH
519 help
520 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
521
522 config CRYPTO_POLY1305
523 tristate "Poly1305 authenticator algorithm"
524 select CRYPTO_HASH
525 help
526 Poly1305 authenticator algorithm, RFC7539.
527
528 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
529 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
530 in IETF protocols. This is the portable C implementation of Poly1305.
531
532 config CRYPTO_POLY1305_X86_64
533 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
534 depends on X86 && 64BIT
535 select CRYPTO_POLY1305
536 help
537 Poly1305 authenticator algorithm, RFC7539.
538
539 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
540 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
541 in IETF protocols. This is the x86_64 assembler implementation using SIMD
542 instructions.
543
544 config CRYPTO_MD4
545 tristate "MD4 digest algorithm"
546 select CRYPTO_HASH
547 help
548 MD4 message digest algorithm (RFC1320).
549
550 config CRYPTO_MD5
551 tristate "MD5 digest algorithm"
552 select CRYPTO_HASH
553 help
554 MD5 message digest algorithm (RFC1321).
555
556 config CRYPTO_MD5_OCTEON
557 tristate "MD5 digest algorithm (OCTEON)"
558 depends on CPU_CAVIUM_OCTEON
559 select CRYPTO_MD5
560 select CRYPTO_HASH
561 help
562 MD5 message digest algorithm (RFC1321) implemented
563 using OCTEON crypto instructions, when available.
564
565 config CRYPTO_MD5_PPC
566 tristate "MD5 digest algorithm (PPC)"
567 depends on PPC
568 select CRYPTO_HASH
569 help
570 MD5 message digest algorithm (RFC1321) implemented
571 in PPC assembler.
572
573 config CRYPTO_MD5_SPARC64
574 tristate "MD5 digest algorithm (SPARC64)"
575 depends on SPARC64
576 select CRYPTO_MD5
577 select CRYPTO_HASH
578 help
579 MD5 message digest algorithm (RFC1321) implemented
580 using sparc64 crypto instructions, when available.
581
582 config CRYPTO_MICHAEL_MIC
583 tristate "Michael MIC keyed digest algorithm"
584 select CRYPTO_HASH
585 help
586 Michael MIC is used for message integrity protection in TKIP
587 (IEEE 802.11i). This algorithm is required for TKIP, but it
588 should not be used for other purposes because of the weakness
589 of the algorithm.
590
591 config CRYPTO_RMD128
592 tristate "RIPEMD-128 digest algorithm"
593 select CRYPTO_HASH
594 help
595 RIPEMD-128 (ISO/IEC 10118-3:2004).
596
597 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
598 be used as a secure replacement for RIPEMD. For other use cases,
599 RIPEMD-160 should be used.
600
601 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
602 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
603
604 config CRYPTO_RMD160
605 tristate "RIPEMD-160 digest algorithm"
606 select CRYPTO_HASH
607 help
608 RIPEMD-160 (ISO/IEC 10118-3:2004).
609
610 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
611 to be used as a secure replacement for the 128-bit hash functions
612 MD4, MD5 and it's predecessor RIPEMD
613 (not to be confused with RIPEMD-128).
614
615 It's speed is comparable to SHA1 and there are no known attacks
616 against RIPEMD-160.
617
618 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
619 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
620
621 config CRYPTO_RMD256
622 tristate "RIPEMD-256 digest algorithm"
623 select CRYPTO_HASH
624 help
625 RIPEMD-256 is an optional extension of RIPEMD-128 with a
626 256 bit hash. It is intended for applications that require
627 longer hash-results, without needing a larger security level
628 (than RIPEMD-128).
629
630 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
631 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
632
633 config CRYPTO_RMD320
634 tristate "RIPEMD-320 digest algorithm"
635 select CRYPTO_HASH
636 help
637 RIPEMD-320 is an optional extension of RIPEMD-160 with a
638 320 bit hash. It is intended for applications that require
639 longer hash-results, without needing a larger security level
640 (than RIPEMD-160).
641
642 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
643 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
644
645 config CRYPTO_SHA1
646 tristate "SHA1 digest algorithm"
647 select CRYPTO_HASH
648 help
649 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
650
651 config CRYPTO_SHA1_SSSE3
652 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
653 depends on X86 && 64BIT
654 select CRYPTO_SHA1
655 select CRYPTO_HASH
656 help
657 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
658 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
659 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
660 when available.
661
662 config CRYPTO_SHA256_SSSE3
663 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
664 depends on X86 && 64BIT
665 select CRYPTO_SHA256
666 select CRYPTO_HASH
667 help
668 SHA-256 secure hash standard (DFIPS 180-2) implemented
669 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
670 Extensions version 1 (AVX1), or Advanced Vector Extensions
671 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
672 Instructions) when available.
673
674 config CRYPTO_SHA512_SSSE3
675 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
676 depends on X86 && 64BIT
677 select CRYPTO_SHA512
678 select CRYPTO_HASH
679 help
680 SHA-512 secure hash standard (DFIPS 180-2) implemented
681 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
682 Extensions version 1 (AVX1), or Advanced Vector Extensions
683 version 2 (AVX2) instructions, when available.
684
685 config CRYPTO_SHA1_OCTEON
686 tristate "SHA1 digest algorithm (OCTEON)"
687 depends on CPU_CAVIUM_OCTEON
688 select CRYPTO_SHA1
689 select CRYPTO_HASH
690 help
691 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
692 using OCTEON crypto instructions, when available.
693
694 config CRYPTO_SHA1_SPARC64
695 tristate "SHA1 digest algorithm (SPARC64)"
696 depends on SPARC64
697 select CRYPTO_SHA1
698 select CRYPTO_HASH
699 help
700 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
701 using sparc64 crypto instructions, when available.
702
703 config CRYPTO_SHA1_PPC
704 tristate "SHA1 digest algorithm (powerpc)"
705 depends on PPC
706 help
707 This is the powerpc hardware accelerated implementation of the
708 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
709
710 config CRYPTO_SHA1_PPC_SPE
711 tristate "SHA1 digest algorithm (PPC SPE)"
712 depends on PPC && SPE
713 help
714 SHA-1 secure hash standard (DFIPS 180-4) implemented
715 using powerpc SPE SIMD instruction set.
716
717 config CRYPTO_SHA1_MB
718 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
719 depends on X86 && 64BIT
720 select CRYPTO_SHA1
721 select CRYPTO_HASH
722 select CRYPTO_MCRYPTD
723 help
724 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
725 using multi-buffer technique. This algorithm computes on
726 multiple data lanes concurrently with SIMD instructions for
727 better throughput. It should not be enabled by default but
728 used when there is significant amount of work to keep the keep
729 the data lanes filled to get performance benefit. If the data
730 lanes remain unfilled, a flush operation will be initiated to
731 process the crypto jobs, adding a slight latency.
732
733 config CRYPTO_SHA256_MB
734 tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
735 depends on X86 && 64BIT
736 select CRYPTO_SHA256
737 select CRYPTO_HASH
738 select CRYPTO_MCRYPTD
739 help
740 SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
741 using multi-buffer technique. This algorithm computes on
742 multiple data lanes concurrently with SIMD instructions for
743 better throughput. It should not be enabled by default but
744 used when there is significant amount of work to keep the keep
745 the data lanes filled to get performance benefit. If the data
746 lanes remain unfilled, a flush operation will be initiated to
747 process the crypto jobs, adding a slight latency.
748
749 config CRYPTO_SHA512_MB
750 tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
751 depends on X86 && 64BIT
752 select CRYPTO_SHA512
753 select CRYPTO_HASH
754 select CRYPTO_MCRYPTD
755 help
756 SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
757 using multi-buffer technique. This algorithm computes on
758 multiple data lanes concurrently with SIMD instructions for
759 better throughput. It should not be enabled by default but
760 used when there is significant amount of work to keep the keep
761 the data lanes filled to get performance benefit. If the data
762 lanes remain unfilled, a flush operation will be initiated to
763 process the crypto jobs, adding a slight latency.
764
765 config CRYPTO_SHA256
766 tristate "SHA224 and SHA256 digest algorithm"
767 select CRYPTO_HASH
768 help
769 SHA256 secure hash standard (DFIPS 180-2).
770
771 This version of SHA implements a 256 bit hash with 128 bits of
772 security against collision attacks.
773
774 This code also includes SHA-224, a 224 bit hash with 112 bits
775 of security against collision attacks.
776
777 config CRYPTO_SHA256_PPC_SPE
778 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
779 depends on PPC && SPE
780 select CRYPTO_SHA256
781 select CRYPTO_HASH
782 help
783 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
784 implemented using powerpc SPE SIMD instruction set.
785
786 config CRYPTO_SHA256_OCTEON
787 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
788 depends on CPU_CAVIUM_OCTEON
789 select CRYPTO_SHA256
790 select CRYPTO_HASH
791 help
792 SHA-256 secure hash standard (DFIPS 180-2) implemented
793 using OCTEON crypto instructions, when available.
794
795 config CRYPTO_SHA256_SPARC64
796 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
797 depends on SPARC64
798 select CRYPTO_SHA256
799 select CRYPTO_HASH
800 help
801 SHA-256 secure hash standard (DFIPS 180-2) implemented
802 using sparc64 crypto instructions, when available.
803
804 config CRYPTO_SHA512
805 tristate "SHA384 and SHA512 digest algorithms"
806 select CRYPTO_HASH
807 help
808 SHA512 secure hash standard (DFIPS 180-2).
809
810 This version of SHA implements a 512 bit hash with 256 bits of
811 security against collision attacks.
812
813 This code also includes SHA-384, a 384 bit hash with 192 bits
814 of security against collision attacks.
815
816 config CRYPTO_SHA512_OCTEON
817 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
818 depends on CPU_CAVIUM_OCTEON
819 select CRYPTO_SHA512
820 select CRYPTO_HASH
821 help
822 SHA-512 secure hash standard (DFIPS 180-2) implemented
823 using OCTEON crypto instructions, when available.
824
825 config CRYPTO_SHA512_SPARC64
826 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
827 depends on SPARC64
828 select CRYPTO_SHA512
829 select CRYPTO_HASH
830 help
831 SHA-512 secure hash standard (DFIPS 180-2) implemented
832 using sparc64 crypto instructions, when available.
833
834 config CRYPTO_SHA3
835 tristate "SHA3 digest algorithm"
836 select CRYPTO_HASH
837 help
838 SHA-3 secure hash standard (DFIPS 202). It's based on
839 cryptographic sponge function family called Keccak.
840
841 References:
842 http://keccak.noekeon.org/
843
844 config CRYPTO_TGR192
845 tristate "Tiger digest algorithms"
846 select CRYPTO_HASH
847 help
848 Tiger hash algorithm 192, 160 and 128-bit hashes
849
850 Tiger is a hash function optimized for 64-bit processors while
851 still having decent performance on 32-bit processors.
852 Tiger was developed by Ross Anderson and Eli Biham.
853
854 See also:
855 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
856
857 config CRYPTO_WP512
858 tristate "Whirlpool digest algorithms"
859 select CRYPTO_HASH
860 help
861 Whirlpool hash algorithm 512, 384 and 256-bit hashes
862
863 Whirlpool-512 is part of the NESSIE cryptographic primitives.
864 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
865
866 See also:
867 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
868
869 config CRYPTO_GHASH_CLMUL_NI_INTEL
870 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
871 depends on X86 && 64BIT
872 select CRYPTO_CRYPTD
873 help
874 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
875 The implementation is accelerated by CLMUL-NI of Intel.
876
877 comment "Ciphers"
878
879 config CRYPTO_AES
880 tristate "AES cipher algorithms"
881 select CRYPTO_ALGAPI
882 help
883 AES cipher algorithms (FIPS-197). AES uses the Rijndael
884 algorithm.
885
886 Rijndael appears to be consistently a very good performer in
887 both hardware and software across a wide range of computing
888 environments regardless of its use in feedback or non-feedback
889 modes. Its key setup time is excellent, and its key agility is
890 good. Rijndael's very low memory requirements make it very well
891 suited for restricted-space environments, in which it also
892 demonstrates excellent performance. Rijndael's operations are
893 among the easiest to defend against power and timing attacks.
894
895 The AES specifies three key sizes: 128, 192 and 256 bits
896
897 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
898
899 config CRYPTO_AES_586
900 tristate "AES cipher algorithms (i586)"
901 depends on (X86 || UML_X86) && !64BIT
902 select CRYPTO_ALGAPI
903 select CRYPTO_AES
904 help
905 AES cipher algorithms (FIPS-197). AES uses the Rijndael
906 algorithm.
907
908 Rijndael appears to be consistently a very good performer in
909 both hardware and software across a wide range of computing
910 environments regardless of its use in feedback or non-feedback
911 modes. Its key setup time is excellent, and its key agility is
912 good. Rijndael's very low memory requirements make it very well
913 suited for restricted-space environments, in which it also
914 demonstrates excellent performance. Rijndael's operations are
915 among the easiest to defend against power and timing attacks.
916
917 The AES specifies three key sizes: 128, 192 and 256 bits
918
919 See <http://csrc.nist.gov/encryption/aes/> for more information.
920
921 config CRYPTO_AES_X86_64
922 tristate "AES cipher algorithms (x86_64)"
923 depends on (X86 || UML_X86) && 64BIT
924 select CRYPTO_ALGAPI
925 select CRYPTO_AES
926 help
927 AES cipher algorithms (FIPS-197). AES uses the Rijndael
928 algorithm.
929
930 Rijndael appears to be consistently a very good performer in
931 both hardware and software across a wide range of computing
932 environments regardless of its use in feedback or non-feedback
933 modes. Its key setup time is excellent, and its key agility is
934 good. Rijndael's very low memory requirements make it very well
935 suited for restricted-space environments, in which it also
936 demonstrates excellent performance. Rijndael's operations are
937 among the easiest to defend against power and timing attacks.
938
939 The AES specifies three key sizes: 128, 192 and 256 bits
940
941 See <http://csrc.nist.gov/encryption/aes/> for more information.
942
943 config CRYPTO_AES_NI_INTEL
944 tristate "AES cipher algorithms (AES-NI)"
945 depends on X86
946 select CRYPTO_AEAD
947 select CRYPTO_AES_X86_64 if 64BIT
948 select CRYPTO_AES_586 if !64BIT
949 select CRYPTO_ALGAPI
950 select CRYPTO_BLKCIPHER
951 select CRYPTO_GLUE_HELPER_X86 if 64BIT
952 select CRYPTO_SIMD
953 help
954 Use Intel AES-NI instructions for AES algorithm.
955
956 AES cipher algorithms (FIPS-197). AES uses the Rijndael
957 algorithm.
958
959 Rijndael appears to be consistently a very good performer in
960 both hardware and software across a wide range of computing
961 environments regardless of its use in feedback or non-feedback
962 modes. Its key setup time is excellent, and its key agility is
963 good. Rijndael's very low memory requirements make it very well
964 suited for restricted-space environments, in which it also
965 demonstrates excellent performance. Rijndael's operations are
966 among the easiest to defend against power and timing attacks.
967
968 The AES specifies three key sizes: 128, 192 and 256 bits
969
970 See <http://csrc.nist.gov/encryption/aes/> for more information.
971
972 In addition to AES cipher algorithm support, the acceleration
973 for some popular block cipher mode is supported too, including
974 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
975 acceleration for CTR.
976
977 config CRYPTO_AES_SPARC64
978 tristate "AES cipher algorithms (SPARC64)"
979 depends on SPARC64
980 select CRYPTO_CRYPTD
981 select CRYPTO_ALGAPI
982 help
983 Use SPARC64 crypto opcodes for AES algorithm.
984
985 AES cipher algorithms (FIPS-197). AES uses the Rijndael
986 algorithm.
987
988 Rijndael appears to be consistently a very good performer in
989 both hardware and software across a wide range of computing
990 environments regardless of its use in feedback or non-feedback
991 modes. Its key setup time is excellent, and its key agility is
992 good. Rijndael's very low memory requirements make it very well
993 suited for restricted-space environments, in which it also
994 demonstrates excellent performance. Rijndael's operations are
995 among the easiest to defend against power and timing attacks.
996
997 The AES specifies three key sizes: 128, 192 and 256 bits
998
999 See <http://csrc.nist.gov/encryption/aes/> for more information.
1000
1001 In addition to AES cipher algorithm support, the acceleration
1002 for some popular block cipher mode is supported too, including
1003 ECB and CBC.
1004
1005 config CRYPTO_AES_PPC_SPE
1006 tristate "AES cipher algorithms (PPC SPE)"
1007 depends on PPC && SPE
1008 help
1009 AES cipher algorithms (FIPS-197). Additionally the acceleration
1010 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1011 This module should only be used for low power (router) devices
1012 without hardware AES acceleration (e.g. caam crypto). It reduces the
1013 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1014 timining attacks. Nevertheless it might be not as secure as other
1015 architecture specific assembler implementations that work on 1KB
1016 tables or 256 bytes S-boxes.
1017
1018 config CRYPTO_ANUBIS
1019 tristate "Anubis cipher algorithm"
1020 select CRYPTO_ALGAPI
1021 help
1022 Anubis cipher algorithm.
1023
1024 Anubis is a variable key length cipher which can use keys from
1025 128 bits to 320 bits in length. It was evaluated as a entrant
1026 in the NESSIE competition.
1027
1028 See also:
1029 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1030 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1031
1032 config CRYPTO_ARC4
1033 tristate "ARC4 cipher algorithm"
1034 select CRYPTO_BLKCIPHER
1035 help
1036 ARC4 cipher algorithm.
1037
1038 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1039 bits in length. This algorithm is required for driver-based
1040 WEP, but it should not be for other purposes because of the
1041 weakness of the algorithm.
1042
1043 config CRYPTO_BLOWFISH
1044 tristate "Blowfish cipher algorithm"
1045 select CRYPTO_ALGAPI
1046 select CRYPTO_BLOWFISH_COMMON
1047 help
1048 Blowfish cipher algorithm, by Bruce Schneier.
1049
1050 This is a variable key length cipher which can use keys from 32
1051 bits to 448 bits in length. It's fast, simple and specifically
1052 designed for use on "large microprocessors".
1053
1054 See also:
1055 <http://www.schneier.com/blowfish.html>
1056
1057 config CRYPTO_BLOWFISH_COMMON
1058 tristate
1059 help
1060 Common parts of the Blowfish cipher algorithm shared by the
1061 generic c and the assembler implementations.
1062
1063 See also:
1064 <http://www.schneier.com/blowfish.html>
1065
1066 config CRYPTO_BLOWFISH_X86_64
1067 tristate "Blowfish cipher algorithm (x86_64)"
1068 depends on X86 && 64BIT
1069 select CRYPTO_ALGAPI
1070 select CRYPTO_BLOWFISH_COMMON
1071 help
1072 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1073
1074 This is a variable key length cipher which can use keys from 32
1075 bits to 448 bits in length. It's fast, simple and specifically
1076 designed for use on "large microprocessors".
1077
1078 See also:
1079 <http://www.schneier.com/blowfish.html>
1080
1081 config CRYPTO_CAMELLIA
1082 tristate "Camellia cipher algorithms"
1083 depends on CRYPTO
1084 select CRYPTO_ALGAPI
1085 help
1086 Camellia cipher algorithms module.
1087
1088 Camellia is a symmetric key block cipher developed jointly
1089 at NTT and Mitsubishi Electric Corporation.
1090
1091 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1092
1093 See also:
1094 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1095
1096 config CRYPTO_CAMELLIA_X86_64
1097 tristate "Camellia cipher algorithm (x86_64)"
1098 depends on X86 && 64BIT
1099 depends on CRYPTO
1100 select CRYPTO_ALGAPI
1101 select CRYPTO_GLUE_HELPER_X86
1102 select CRYPTO_LRW
1103 select CRYPTO_XTS
1104 help
1105 Camellia cipher algorithm module (x86_64).
1106
1107 Camellia is a symmetric key block cipher developed jointly
1108 at NTT and Mitsubishi Electric Corporation.
1109
1110 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1111
1112 See also:
1113 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1114
1115 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1116 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1117 depends on X86 && 64BIT
1118 depends on CRYPTO
1119 select CRYPTO_ALGAPI
1120 select CRYPTO_CRYPTD
1121 select CRYPTO_ABLK_HELPER
1122 select CRYPTO_GLUE_HELPER_X86
1123 select CRYPTO_CAMELLIA_X86_64
1124 select CRYPTO_LRW
1125 select CRYPTO_XTS
1126 help
1127 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1128
1129 Camellia is a symmetric key block cipher developed jointly
1130 at NTT and Mitsubishi Electric Corporation.
1131
1132 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1133
1134 See also:
1135 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1136
1137 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1138 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1139 depends on X86 && 64BIT
1140 depends on CRYPTO
1141 select CRYPTO_ALGAPI
1142 select CRYPTO_CRYPTD
1143 select CRYPTO_ABLK_HELPER
1144 select CRYPTO_GLUE_HELPER_X86
1145 select CRYPTO_CAMELLIA_X86_64
1146 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1147 select CRYPTO_LRW
1148 select CRYPTO_XTS
1149 help
1150 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1151
1152 Camellia is a symmetric key block cipher developed jointly
1153 at NTT and Mitsubishi Electric Corporation.
1154
1155 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1156
1157 See also:
1158 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1159
1160 config CRYPTO_CAMELLIA_SPARC64
1161 tristate "Camellia cipher algorithm (SPARC64)"
1162 depends on SPARC64
1163 depends on CRYPTO
1164 select CRYPTO_ALGAPI
1165 help
1166 Camellia cipher algorithm module (SPARC64).
1167
1168 Camellia is a symmetric key block cipher developed jointly
1169 at NTT and Mitsubishi Electric Corporation.
1170
1171 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1172
1173 See also:
1174 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1175
1176 config CRYPTO_CAST_COMMON
1177 tristate
1178 help
1179 Common parts of the CAST cipher algorithms shared by the
1180 generic c and the assembler implementations.
1181
1182 config CRYPTO_CAST5
1183 tristate "CAST5 (CAST-128) cipher algorithm"
1184 select CRYPTO_ALGAPI
1185 select CRYPTO_CAST_COMMON
1186 help
1187 The CAST5 encryption algorithm (synonymous with CAST-128) is
1188 described in RFC2144.
1189
1190 config CRYPTO_CAST5_AVX_X86_64
1191 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1192 depends on X86 && 64BIT
1193 select CRYPTO_ALGAPI
1194 select CRYPTO_CRYPTD
1195 select CRYPTO_ABLK_HELPER
1196 select CRYPTO_CAST_COMMON
1197 select CRYPTO_CAST5
1198 help
1199 The CAST5 encryption algorithm (synonymous with CAST-128) is
1200 described in RFC2144.
1201
1202 This module provides the Cast5 cipher algorithm that processes
1203 sixteen blocks parallel using the AVX instruction set.
1204
1205 config CRYPTO_CAST6
1206 tristate "CAST6 (CAST-256) cipher algorithm"
1207 select CRYPTO_ALGAPI
1208 select CRYPTO_CAST_COMMON
1209 help
1210 The CAST6 encryption algorithm (synonymous with CAST-256) is
1211 described in RFC2612.
1212
1213 config CRYPTO_CAST6_AVX_X86_64
1214 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1215 depends on X86 && 64BIT
1216 select CRYPTO_ALGAPI
1217 select CRYPTO_CRYPTD
1218 select CRYPTO_ABLK_HELPER
1219 select CRYPTO_GLUE_HELPER_X86
1220 select CRYPTO_CAST_COMMON
1221 select CRYPTO_CAST6
1222 select CRYPTO_LRW
1223 select CRYPTO_XTS
1224 help
1225 The CAST6 encryption algorithm (synonymous with CAST-256) is
1226 described in RFC2612.
1227
1228 This module provides the Cast6 cipher algorithm that processes
1229 eight blocks parallel using the AVX instruction set.
1230
1231 config CRYPTO_DES
1232 tristate "DES and Triple DES EDE cipher algorithms"
1233 select CRYPTO_ALGAPI
1234 help
1235 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1236
1237 config CRYPTO_DES_SPARC64
1238 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1239 depends on SPARC64
1240 select CRYPTO_ALGAPI
1241 select CRYPTO_DES
1242 help
1243 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1244 optimized using SPARC64 crypto opcodes.
1245
1246 config CRYPTO_DES3_EDE_X86_64
1247 tristate "Triple DES EDE cipher algorithm (x86-64)"
1248 depends on X86 && 64BIT
1249 select CRYPTO_ALGAPI
1250 select CRYPTO_DES
1251 help
1252 Triple DES EDE (FIPS 46-3) algorithm.
1253
1254 This module provides implementation of the Triple DES EDE cipher
1255 algorithm that is optimized for x86-64 processors. Two versions of
1256 algorithm are provided; regular processing one input block and
1257 one that processes three blocks parallel.
1258
1259 config CRYPTO_FCRYPT
1260 tristate "FCrypt cipher algorithm"
1261 select CRYPTO_ALGAPI
1262 select CRYPTO_BLKCIPHER
1263 help
1264 FCrypt algorithm used by RxRPC.
1265
1266 config CRYPTO_KHAZAD
1267 tristate "Khazad cipher algorithm"
1268 select CRYPTO_ALGAPI
1269 help
1270 Khazad cipher algorithm.
1271
1272 Khazad was a finalist in the initial NESSIE competition. It is
1273 an algorithm optimized for 64-bit processors with good performance
1274 on 32-bit processors. Khazad uses an 128 bit key size.
1275
1276 See also:
1277 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1278
1279 config CRYPTO_SALSA20
1280 tristate "Salsa20 stream cipher algorithm"
1281 select CRYPTO_BLKCIPHER
1282 help
1283 Salsa20 stream cipher algorithm.
1284
1285 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1286 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1287
1288 The Salsa20 stream cipher algorithm is designed by Daniel J.
1289 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1290
1291 config CRYPTO_SALSA20_586
1292 tristate "Salsa20 stream cipher algorithm (i586)"
1293 depends on (X86 || UML_X86) && !64BIT
1294 select CRYPTO_BLKCIPHER
1295 help
1296 Salsa20 stream cipher algorithm.
1297
1298 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1299 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1300
1301 The Salsa20 stream cipher algorithm is designed by Daniel J.
1302 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1303
1304 config CRYPTO_SALSA20_X86_64
1305 tristate "Salsa20 stream cipher algorithm (x86_64)"
1306 depends on (X86 || UML_X86) && 64BIT
1307 select CRYPTO_BLKCIPHER
1308 help
1309 Salsa20 stream cipher algorithm.
1310
1311 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1312 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1313
1314 The Salsa20 stream cipher algorithm is designed by Daniel J.
1315 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1316
1317 config CRYPTO_CHACHA20
1318 tristate "ChaCha20 cipher algorithm"
1319 select CRYPTO_BLKCIPHER
1320 help
1321 ChaCha20 cipher algorithm, RFC7539.
1322
1323 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1324 Bernstein and further specified in RFC7539 for use in IETF protocols.
1325 This is the portable C implementation of ChaCha20.
1326
1327 See also:
1328 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1329
1330 config CRYPTO_CHACHA20_X86_64
1331 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1332 depends on X86 && 64BIT
1333 select CRYPTO_BLKCIPHER
1334 select CRYPTO_CHACHA20
1335 help
1336 ChaCha20 cipher algorithm, RFC7539.
1337
1338 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1339 Bernstein and further specified in RFC7539 for use in IETF protocols.
1340 This is the x86_64 assembler implementation using SIMD instructions.
1341
1342 See also:
1343 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1344
1345 config CRYPTO_SEED
1346 tristate "SEED cipher algorithm"
1347 select CRYPTO_ALGAPI
1348 help
1349 SEED cipher algorithm (RFC4269).
1350
1351 SEED is a 128-bit symmetric key block cipher that has been
1352 developed by KISA (Korea Information Security Agency) as a
1353 national standard encryption algorithm of the Republic of Korea.
1354 It is a 16 round block cipher with the key size of 128 bit.
1355
1356 See also:
1357 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1358
1359 config CRYPTO_SERPENT
1360 tristate "Serpent cipher algorithm"
1361 select CRYPTO_ALGAPI
1362 help
1363 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1364
1365 Keys are allowed to be from 0 to 256 bits in length, in steps
1366 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1367 variant of Serpent for compatibility with old kerneli.org code.
1368
1369 See also:
1370 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1371
1372 config CRYPTO_SERPENT_SSE2_X86_64
1373 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1374 depends on X86 && 64BIT
1375 select CRYPTO_ALGAPI
1376 select CRYPTO_CRYPTD
1377 select CRYPTO_ABLK_HELPER
1378 select CRYPTO_GLUE_HELPER_X86
1379 select CRYPTO_SERPENT
1380 select CRYPTO_LRW
1381 select CRYPTO_XTS
1382 help
1383 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1384
1385 Keys are allowed to be from 0 to 256 bits in length, in steps
1386 of 8 bits.
1387
1388 This module provides Serpent cipher algorithm that processes eight
1389 blocks parallel using SSE2 instruction set.
1390
1391 See also:
1392 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1393
1394 config CRYPTO_SERPENT_SSE2_586
1395 tristate "Serpent cipher algorithm (i586/SSE2)"
1396 depends on X86 && !64BIT
1397 select CRYPTO_ALGAPI
1398 select CRYPTO_CRYPTD
1399 select CRYPTO_ABLK_HELPER
1400 select CRYPTO_GLUE_HELPER_X86
1401 select CRYPTO_SERPENT
1402 select CRYPTO_LRW
1403 select CRYPTO_XTS
1404 help
1405 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1406
1407 Keys are allowed to be from 0 to 256 bits in length, in steps
1408 of 8 bits.
1409
1410 This module provides Serpent cipher algorithm that processes four
1411 blocks parallel using SSE2 instruction set.
1412
1413 See also:
1414 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1415
1416 config CRYPTO_SERPENT_AVX_X86_64
1417 tristate "Serpent cipher algorithm (x86_64/AVX)"
1418 depends on X86 && 64BIT
1419 select CRYPTO_ALGAPI
1420 select CRYPTO_CRYPTD
1421 select CRYPTO_ABLK_HELPER
1422 select CRYPTO_GLUE_HELPER_X86
1423 select CRYPTO_SERPENT
1424 select CRYPTO_LRW
1425 select CRYPTO_XTS
1426 help
1427 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1428
1429 Keys are allowed to be from 0 to 256 bits in length, in steps
1430 of 8 bits.
1431
1432 This module provides the Serpent cipher algorithm that processes
1433 eight blocks parallel using the AVX instruction set.
1434
1435 See also:
1436 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1437
1438 config CRYPTO_SERPENT_AVX2_X86_64
1439 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1440 depends on X86 && 64BIT
1441 select CRYPTO_ALGAPI
1442 select CRYPTO_CRYPTD
1443 select CRYPTO_ABLK_HELPER
1444 select CRYPTO_GLUE_HELPER_X86
1445 select CRYPTO_SERPENT
1446 select CRYPTO_SERPENT_AVX_X86_64
1447 select CRYPTO_LRW
1448 select CRYPTO_XTS
1449 help
1450 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1451
1452 Keys are allowed to be from 0 to 256 bits in length, in steps
1453 of 8 bits.
1454
1455 This module provides Serpent cipher algorithm that processes 16
1456 blocks parallel using AVX2 instruction set.
1457
1458 See also:
1459 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1460
1461 config CRYPTO_TEA
1462 tristate "TEA, XTEA and XETA cipher algorithms"
1463 select CRYPTO_ALGAPI
1464 help
1465 TEA cipher algorithm.
1466
1467 Tiny Encryption Algorithm is a simple cipher that uses
1468 many rounds for security. It is very fast and uses
1469 little memory.
1470
1471 Xtendend Tiny Encryption Algorithm is a modification to
1472 the TEA algorithm to address a potential key weakness
1473 in the TEA algorithm.
1474
1475 Xtendend Encryption Tiny Algorithm is a mis-implementation
1476 of the XTEA algorithm for compatibility purposes.
1477
1478 config CRYPTO_TWOFISH
1479 tristate "Twofish cipher algorithm"
1480 select CRYPTO_ALGAPI
1481 select CRYPTO_TWOFISH_COMMON
1482 help
1483 Twofish cipher algorithm.
1484
1485 Twofish was submitted as an AES (Advanced Encryption Standard)
1486 candidate cipher by researchers at CounterPane Systems. It is a
1487 16 round block cipher supporting key sizes of 128, 192, and 256
1488 bits.
1489
1490 See also:
1491 <http://www.schneier.com/twofish.html>
1492
1493 config CRYPTO_TWOFISH_COMMON
1494 tristate
1495 help
1496 Common parts of the Twofish cipher algorithm shared by the
1497 generic c and the assembler implementations.
1498
1499 config CRYPTO_TWOFISH_586
1500 tristate "Twofish cipher algorithms (i586)"
1501 depends on (X86 || UML_X86) && !64BIT
1502 select CRYPTO_ALGAPI
1503 select CRYPTO_TWOFISH_COMMON
1504 help
1505 Twofish cipher algorithm.
1506
1507 Twofish was submitted as an AES (Advanced Encryption Standard)
1508 candidate cipher by researchers at CounterPane Systems. It is a
1509 16 round block cipher supporting key sizes of 128, 192, and 256
1510 bits.
1511
1512 See also:
1513 <http://www.schneier.com/twofish.html>
1514
1515 config CRYPTO_TWOFISH_X86_64
1516 tristate "Twofish cipher algorithm (x86_64)"
1517 depends on (X86 || UML_X86) && 64BIT
1518 select CRYPTO_ALGAPI
1519 select CRYPTO_TWOFISH_COMMON
1520 help
1521 Twofish cipher algorithm (x86_64).
1522
1523 Twofish was submitted as an AES (Advanced Encryption Standard)
1524 candidate cipher by researchers at CounterPane Systems. It is a
1525 16 round block cipher supporting key sizes of 128, 192, and 256
1526 bits.
1527
1528 See also:
1529 <http://www.schneier.com/twofish.html>
1530
1531 config CRYPTO_TWOFISH_X86_64_3WAY
1532 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1533 depends on X86 && 64BIT
1534 select CRYPTO_ALGAPI
1535 select CRYPTO_TWOFISH_COMMON
1536 select CRYPTO_TWOFISH_X86_64
1537 select CRYPTO_GLUE_HELPER_X86
1538 select CRYPTO_LRW
1539 select CRYPTO_XTS
1540 help
1541 Twofish cipher algorithm (x86_64, 3-way parallel).
1542
1543 Twofish was submitted as an AES (Advanced Encryption Standard)
1544 candidate cipher by researchers at CounterPane Systems. It is a
1545 16 round block cipher supporting key sizes of 128, 192, and 256
1546 bits.
1547
1548 This module provides Twofish cipher algorithm that processes three
1549 blocks parallel, utilizing resources of out-of-order CPUs better.
1550
1551 See also:
1552 <http://www.schneier.com/twofish.html>
1553
1554 config CRYPTO_TWOFISH_AVX_X86_64
1555 tristate "Twofish cipher algorithm (x86_64/AVX)"
1556 depends on X86 && 64BIT
1557 select CRYPTO_ALGAPI
1558 select CRYPTO_CRYPTD
1559 select CRYPTO_ABLK_HELPER
1560 select CRYPTO_GLUE_HELPER_X86
1561 select CRYPTO_TWOFISH_COMMON
1562 select CRYPTO_TWOFISH_X86_64
1563 select CRYPTO_TWOFISH_X86_64_3WAY
1564 select CRYPTO_LRW
1565 select CRYPTO_XTS
1566 help
1567 Twofish cipher algorithm (x86_64/AVX).
1568
1569 Twofish was submitted as an AES (Advanced Encryption Standard)
1570 candidate cipher by researchers at CounterPane Systems. It is a
1571 16 round block cipher supporting key sizes of 128, 192, and 256
1572 bits.
1573
1574 This module provides the Twofish cipher algorithm that processes
1575 eight blocks parallel using the AVX Instruction Set.
1576
1577 See also:
1578 <http://www.schneier.com/twofish.html>
1579
1580 comment "Compression"
1581
1582 config CRYPTO_DEFLATE
1583 tristate "Deflate compression algorithm"
1584 select CRYPTO_ALGAPI
1585 select CRYPTO_ACOMP2
1586 select ZLIB_INFLATE
1587 select ZLIB_DEFLATE
1588 help
1589 This is the Deflate algorithm (RFC1951), specified for use in
1590 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1591
1592 You will most probably want this if using IPSec.
1593
1594 config CRYPTO_LZO
1595 tristate "LZO compression algorithm"
1596 select CRYPTO_ALGAPI
1597 select CRYPTO_ACOMP2
1598 select LZO_COMPRESS
1599 select LZO_DECOMPRESS
1600 help
1601 This is the LZO algorithm.
1602
1603 config CRYPTO_842
1604 tristate "842 compression algorithm"
1605 select CRYPTO_ALGAPI
1606 select CRYPTO_ACOMP2
1607 select 842_COMPRESS
1608 select 842_DECOMPRESS
1609 help
1610 This is the 842 algorithm.
1611
1612 config CRYPTO_LZ4
1613 tristate "LZ4 compression algorithm"
1614 select CRYPTO_ALGAPI
1615 select CRYPTO_ACOMP2
1616 select LZ4_COMPRESS
1617 select LZ4_DECOMPRESS
1618 help
1619 This is the LZ4 algorithm.
1620
1621 config CRYPTO_LZ4HC
1622 tristate "LZ4HC compression algorithm"
1623 select CRYPTO_ALGAPI
1624 select CRYPTO_ACOMP2
1625 select LZ4HC_COMPRESS
1626 select LZ4_DECOMPRESS
1627 help
1628 This is the LZ4 high compression mode algorithm.
1629
1630 comment "Random Number Generation"
1631
1632 config CRYPTO_ANSI_CPRNG
1633 tristate "Pseudo Random Number Generation for Cryptographic modules"
1634 select CRYPTO_AES
1635 select CRYPTO_RNG
1636 help
1637 This option enables the generic pseudo random number generator
1638 for cryptographic modules. Uses the Algorithm specified in
1639 ANSI X9.31 A.2.4. Note that this option must be enabled if
1640 CRYPTO_FIPS is selected
1641
1642 menuconfig CRYPTO_DRBG_MENU
1643 tristate "NIST SP800-90A DRBG"
1644 help
1645 NIST SP800-90A compliant DRBG. In the following submenu, one or
1646 more of the DRBG types must be selected.
1647
1648 if CRYPTO_DRBG_MENU
1649
1650 config CRYPTO_DRBG_HMAC
1651 bool
1652 default y
1653 select CRYPTO_HMAC
1654 select CRYPTO_SHA256
1655
1656 config CRYPTO_DRBG_HASH
1657 bool "Enable Hash DRBG"
1658 select CRYPTO_SHA256
1659 help
1660 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1661
1662 config CRYPTO_DRBG_CTR
1663 bool "Enable CTR DRBG"
1664 select CRYPTO_AES
1665 depends on CRYPTO_CTR
1666 help
1667 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1668
1669 config CRYPTO_DRBG
1670 tristate
1671 default CRYPTO_DRBG_MENU
1672 select CRYPTO_RNG
1673 select CRYPTO_JITTERENTROPY
1674
1675 endif # if CRYPTO_DRBG_MENU
1676
1677 config CRYPTO_JITTERENTROPY
1678 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1679 select CRYPTO_RNG
1680 help
1681 The Jitterentropy RNG is a noise that is intended
1682 to provide seed to another RNG. The RNG does not
1683 perform any cryptographic whitening of the generated
1684 random numbers. This Jitterentropy RNG registers with
1685 the kernel crypto API and can be used by any caller.
1686
1687 config CRYPTO_USER_API
1688 tristate
1689
1690 config CRYPTO_USER_API_HASH
1691 tristate "User-space interface for hash algorithms"
1692 depends on NET
1693 select CRYPTO_HASH
1694 select CRYPTO_USER_API
1695 help
1696 This option enables the user-spaces interface for hash
1697 algorithms.
1698
1699 config CRYPTO_USER_API_SKCIPHER
1700 tristate "User-space interface for symmetric key cipher algorithms"
1701 depends on NET
1702 select CRYPTO_BLKCIPHER
1703 select CRYPTO_USER_API
1704 help
1705 This option enables the user-spaces interface for symmetric
1706 key cipher algorithms.
1707
1708 config CRYPTO_USER_API_RNG
1709 tristate "User-space interface for random number generator algorithms"
1710 depends on NET
1711 select CRYPTO_RNG
1712 select CRYPTO_USER_API
1713 help
1714 This option enables the user-spaces interface for random
1715 number generator algorithms.
1716
1717 config CRYPTO_USER_API_AEAD
1718 tristate "User-space interface for AEAD cipher algorithms"
1719 depends on NET
1720 select CRYPTO_AEAD
1721 select CRYPTO_USER_API
1722 help
1723 This option enables the user-spaces interface for AEAD
1724 cipher algorithms.
1725
1726 config CRYPTO_HASH_INFO
1727 bool
1728
1729 source "drivers/crypto/Kconfig"
1730 source crypto/asymmetric_keys/Kconfig
1731 source certs/Kconfig
1732
1733 endif # if CRYPTO