]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/acpi/processor_idle.c
ca0de35d1c3abf9c7c8fc91d329113a53634c7cd
[mirror_ubuntu-zesty-kernel.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25 */
26 #define pr_fmt(fmt) "ACPI: " fmt
27
28 #include <linux/module.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <linux/sched.h> /* need_resched() */
32 #include <linux/tick.h>
33 #include <linux/cpuidle.h>
34 #include <acpi/processor.h>
35
36 /*
37 * Include the apic definitions for x86 to have the APIC timer related defines
38 * available also for UP (on SMP it gets magically included via linux/smp.h).
39 * asm/acpi.h is not an option, as it would require more include magic. Also
40 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
41 */
42 #ifdef CONFIG_X86
43 #include <asm/apic.h>
44 #endif
45
46 #define ACPI_PROCESSOR_CLASS "processor"
47 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
48 ACPI_MODULE_NAME("processor_idle");
49
50 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
51 module_param(max_cstate, uint, 0000);
52 static unsigned int nocst __read_mostly;
53 module_param(nocst, uint, 0000);
54 static int bm_check_disable __read_mostly;
55 module_param(bm_check_disable, uint, 0000);
56
57 static unsigned int latency_factor __read_mostly = 2;
58 module_param(latency_factor, uint, 0644);
59
60 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
61
62 struct cpuidle_driver acpi_idle_driver = {
63 .name = "acpi_idle",
64 .owner = THIS_MODULE,
65 };
66
67 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
68 static
69 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
70
71 static int disabled_by_idle_boot_param(void)
72 {
73 return boot_option_idle_override == IDLE_POLL ||
74 boot_option_idle_override == IDLE_HALT;
75 }
76
77 /*
78 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79 * For now disable this. Probably a bug somewhere else.
80 *
81 * To skip this limit, boot/load with a large max_cstate limit.
82 */
83 static int set_max_cstate(const struct dmi_system_id *id)
84 {
85 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86 return 0;
87
88 pr_notice("%s detected - limiting to C%ld max_cstate."
89 " Override with \"processor.max_cstate=%d\"\n", id->ident,
90 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
91
92 max_cstate = (long)id->driver_data;
93
94 return 0;
95 }
96
97 static const struct dmi_system_id processor_power_dmi_table[] = {
98 { set_max_cstate, "Clevo 5600D", {
99 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
100 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
101 (void *)2},
102 { set_max_cstate, "Pavilion zv5000", {
103 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
104 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
105 (void *)1},
106 { set_max_cstate, "Asus L8400B", {
107 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
108 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
109 (void *)1},
110 {},
111 };
112
113
114 /*
115 * Callers should disable interrupts before the call and enable
116 * interrupts after return.
117 */
118 static void acpi_safe_halt(void)
119 {
120 if (!tif_need_resched()) {
121 safe_halt();
122 local_irq_disable();
123 }
124 }
125
126 #ifdef ARCH_APICTIMER_STOPS_ON_C3
127
128 /*
129 * Some BIOS implementations switch to C3 in the published C2 state.
130 * This seems to be a common problem on AMD boxen, but other vendors
131 * are affected too. We pick the most conservative approach: we assume
132 * that the local APIC stops in both C2 and C3.
133 */
134 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
135 struct acpi_processor_cx *cx)
136 {
137 struct acpi_processor_power *pwr = &pr->power;
138 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
139
140 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
141 return;
142
143 if (amd_e400_c1e_detected)
144 type = ACPI_STATE_C1;
145
146 /*
147 * Check, if one of the previous states already marked the lapic
148 * unstable
149 */
150 if (pwr->timer_broadcast_on_state < state)
151 return;
152
153 if (cx->type >= type)
154 pr->power.timer_broadcast_on_state = state;
155 }
156
157 static void __lapic_timer_propagate_broadcast(void *arg)
158 {
159 struct acpi_processor *pr = (struct acpi_processor *) arg;
160
161 if (pr->power.timer_broadcast_on_state < INT_MAX)
162 tick_broadcast_enable();
163 else
164 tick_broadcast_disable();
165 }
166
167 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
168 {
169 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
170 (void *)pr, 1);
171 }
172
173 /* Power(C) State timer broadcast control */
174 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
175 struct acpi_processor_cx *cx,
176 int broadcast)
177 {
178 int state = cx - pr->power.states;
179
180 if (state >= pr->power.timer_broadcast_on_state) {
181 if (broadcast)
182 tick_broadcast_enter();
183 else
184 tick_broadcast_exit();
185 }
186 }
187
188 #else
189
190 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
191 struct acpi_processor_cx *cstate) { }
192 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
193 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
194 struct acpi_processor_cx *cx,
195 int broadcast)
196 {
197 }
198
199 #endif
200
201 #if defined(CONFIG_X86)
202 static void tsc_check_state(int state)
203 {
204 switch (boot_cpu_data.x86_vendor) {
205 case X86_VENDOR_AMD:
206 case X86_VENDOR_INTEL:
207 /*
208 * AMD Fam10h TSC will tick in all
209 * C/P/S0/S1 states when this bit is set.
210 */
211 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
212 return;
213
214 /*FALL THROUGH*/
215 default:
216 /* TSC could halt in idle, so notify users */
217 if (state > ACPI_STATE_C1)
218 mark_tsc_unstable("TSC halts in idle");
219 }
220 }
221 #else
222 static void tsc_check_state(int state) { return; }
223 #endif
224
225 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
226 {
227
228 if (!pr->pblk)
229 return -ENODEV;
230
231 /* if info is obtained from pblk/fadt, type equals state */
232 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
233 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
234
235 #ifndef CONFIG_HOTPLUG_CPU
236 /*
237 * Check for P_LVL2_UP flag before entering C2 and above on
238 * an SMP system.
239 */
240 if ((num_online_cpus() > 1) &&
241 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
242 return -ENODEV;
243 #endif
244
245 /* determine C2 and C3 address from pblk */
246 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
247 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
248
249 /* determine latencies from FADT */
250 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
251 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
252
253 /*
254 * FADT specified C2 latency must be less than or equal to
255 * 100 microseconds.
256 */
257 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
258 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
259 "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
260 /* invalidate C2 */
261 pr->power.states[ACPI_STATE_C2].address = 0;
262 }
263
264 /*
265 * FADT supplied C3 latency must be less than or equal to
266 * 1000 microseconds.
267 */
268 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
269 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
270 "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
271 /* invalidate C3 */
272 pr->power.states[ACPI_STATE_C3].address = 0;
273 }
274
275 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
276 "lvl2[0x%08x] lvl3[0x%08x]\n",
277 pr->power.states[ACPI_STATE_C2].address,
278 pr->power.states[ACPI_STATE_C3].address));
279
280 return 0;
281 }
282
283 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
284 {
285 if (!pr->power.states[ACPI_STATE_C1].valid) {
286 /* set the first C-State to C1 */
287 /* all processors need to support C1 */
288 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
289 pr->power.states[ACPI_STATE_C1].valid = 1;
290 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
291 }
292 /* the C0 state only exists as a filler in our array */
293 pr->power.states[ACPI_STATE_C0].valid = 1;
294 return 0;
295 }
296
297 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
298 {
299 acpi_status status;
300 u64 count;
301 int current_count;
302 int i, ret = 0;
303 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
304 union acpi_object *cst;
305
306
307 if (nocst)
308 return -ENODEV;
309
310 current_count = 0;
311
312 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
313 if (ACPI_FAILURE(status)) {
314 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
315 return -ENODEV;
316 }
317
318 cst = buffer.pointer;
319
320 /* There must be at least 2 elements */
321 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
322 pr_err("not enough elements in _CST\n");
323 ret = -EFAULT;
324 goto end;
325 }
326
327 count = cst->package.elements[0].integer.value;
328
329 /* Validate number of power states. */
330 if (count < 1 || count != cst->package.count - 1) {
331 pr_err("count given by _CST is not valid\n");
332 ret = -EFAULT;
333 goto end;
334 }
335
336 /* Tell driver that at least _CST is supported. */
337 pr->flags.has_cst = 1;
338
339 for (i = 1; i <= count; i++) {
340 union acpi_object *element;
341 union acpi_object *obj;
342 struct acpi_power_register *reg;
343 struct acpi_processor_cx cx;
344
345 memset(&cx, 0, sizeof(cx));
346
347 element = &(cst->package.elements[i]);
348 if (element->type != ACPI_TYPE_PACKAGE)
349 continue;
350
351 if (element->package.count != 4)
352 continue;
353
354 obj = &(element->package.elements[0]);
355
356 if (obj->type != ACPI_TYPE_BUFFER)
357 continue;
358
359 reg = (struct acpi_power_register *)obj->buffer.pointer;
360
361 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
362 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
363 continue;
364
365 /* There should be an easy way to extract an integer... */
366 obj = &(element->package.elements[1]);
367 if (obj->type != ACPI_TYPE_INTEGER)
368 continue;
369
370 cx.type = obj->integer.value;
371 /*
372 * Some buggy BIOSes won't list C1 in _CST -
373 * Let acpi_processor_get_power_info_default() handle them later
374 */
375 if (i == 1 && cx.type != ACPI_STATE_C1)
376 current_count++;
377
378 cx.address = reg->address;
379 cx.index = current_count + 1;
380
381 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
382 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
383 if (acpi_processor_ffh_cstate_probe
384 (pr->id, &cx, reg) == 0) {
385 cx.entry_method = ACPI_CSTATE_FFH;
386 } else if (cx.type == ACPI_STATE_C1) {
387 /*
388 * C1 is a special case where FIXED_HARDWARE
389 * can be handled in non-MWAIT way as well.
390 * In that case, save this _CST entry info.
391 * Otherwise, ignore this info and continue.
392 */
393 cx.entry_method = ACPI_CSTATE_HALT;
394 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
395 } else {
396 continue;
397 }
398 if (cx.type == ACPI_STATE_C1 &&
399 (boot_option_idle_override == IDLE_NOMWAIT)) {
400 /*
401 * In most cases the C1 space_id obtained from
402 * _CST object is FIXED_HARDWARE access mode.
403 * But when the option of idle=halt is added,
404 * the entry_method type should be changed from
405 * CSTATE_FFH to CSTATE_HALT.
406 * When the option of idle=nomwait is added,
407 * the C1 entry_method type should be
408 * CSTATE_HALT.
409 */
410 cx.entry_method = ACPI_CSTATE_HALT;
411 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
412 }
413 } else {
414 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
415 cx.address);
416 }
417
418 if (cx.type == ACPI_STATE_C1) {
419 cx.valid = 1;
420 }
421
422 obj = &(element->package.elements[2]);
423 if (obj->type != ACPI_TYPE_INTEGER)
424 continue;
425
426 cx.latency = obj->integer.value;
427
428 obj = &(element->package.elements[3]);
429 if (obj->type != ACPI_TYPE_INTEGER)
430 continue;
431
432 current_count++;
433 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
434
435 /*
436 * We support total ACPI_PROCESSOR_MAX_POWER - 1
437 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
438 */
439 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
440 pr_warn("Limiting number of power states to max (%d)\n",
441 ACPI_PROCESSOR_MAX_POWER);
442 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
443 break;
444 }
445 }
446
447 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
448 current_count));
449
450 /* Validate number of power states discovered */
451 if (current_count < 2)
452 ret = -EFAULT;
453
454 end:
455 kfree(buffer.pointer);
456
457 return ret;
458 }
459
460 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
461 struct acpi_processor_cx *cx)
462 {
463 static int bm_check_flag = -1;
464 static int bm_control_flag = -1;
465
466
467 if (!cx->address)
468 return;
469
470 /*
471 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
472 * DMA transfers are used by any ISA device to avoid livelock.
473 * Note that we could disable Type-F DMA (as recommended by
474 * the erratum), but this is known to disrupt certain ISA
475 * devices thus we take the conservative approach.
476 */
477 else if (errata.piix4.fdma) {
478 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
479 "C3 not supported on PIIX4 with Type-F DMA\n"));
480 return;
481 }
482
483 /* All the logic here assumes flags.bm_check is same across all CPUs */
484 if (bm_check_flag == -1) {
485 /* Determine whether bm_check is needed based on CPU */
486 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
487 bm_check_flag = pr->flags.bm_check;
488 bm_control_flag = pr->flags.bm_control;
489 } else {
490 pr->flags.bm_check = bm_check_flag;
491 pr->flags.bm_control = bm_control_flag;
492 }
493
494 if (pr->flags.bm_check) {
495 if (!pr->flags.bm_control) {
496 if (pr->flags.has_cst != 1) {
497 /* bus mastering control is necessary */
498 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
499 "C3 support requires BM control\n"));
500 return;
501 } else {
502 /* Here we enter C3 without bus mastering */
503 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
504 "C3 support without BM control\n"));
505 }
506 }
507 } else {
508 /*
509 * WBINVD should be set in fadt, for C3 state to be
510 * supported on when bm_check is not required.
511 */
512 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
513 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
514 "Cache invalidation should work properly"
515 " for C3 to be enabled on SMP systems\n"));
516 return;
517 }
518 }
519
520 /*
521 * Otherwise we've met all of our C3 requirements.
522 * Normalize the C3 latency to expidite policy. Enable
523 * checking of bus mastering status (bm_check) so we can
524 * use this in our C3 policy
525 */
526 cx->valid = 1;
527
528 /*
529 * On older chipsets, BM_RLD needs to be set
530 * in order for Bus Master activity to wake the
531 * system from C3. Newer chipsets handle DMA
532 * during C3 automatically and BM_RLD is a NOP.
533 * In either case, the proper way to
534 * handle BM_RLD is to set it and leave it set.
535 */
536 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
537
538 return;
539 }
540
541 static int acpi_processor_power_verify(struct acpi_processor *pr)
542 {
543 unsigned int i;
544 unsigned int working = 0;
545
546 pr->power.timer_broadcast_on_state = INT_MAX;
547
548 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
549 struct acpi_processor_cx *cx = &pr->power.states[i];
550
551 switch (cx->type) {
552 case ACPI_STATE_C1:
553 cx->valid = 1;
554 break;
555
556 case ACPI_STATE_C2:
557 if (!cx->address)
558 break;
559 cx->valid = 1;
560 break;
561
562 case ACPI_STATE_C3:
563 acpi_processor_power_verify_c3(pr, cx);
564 break;
565 }
566 if (!cx->valid)
567 continue;
568
569 lapic_timer_check_state(i, pr, cx);
570 tsc_check_state(cx->type);
571 working++;
572 }
573
574 lapic_timer_propagate_broadcast(pr);
575
576 return (working);
577 }
578
579 static int acpi_processor_get_power_info(struct acpi_processor *pr)
580 {
581 unsigned int i;
582 int result;
583
584
585 /* NOTE: the idle thread may not be running while calling
586 * this function */
587
588 /* Zero initialize all the C-states info. */
589 memset(pr->power.states, 0, sizeof(pr->power.states));
590
591 result = acpi_processor_get_power_info_cst(pr);
592 if (result == -ENODEV)
593 result = acpi_processor_get_power_info_fadt(pr);
594
595 if (result)
596 return result;
597
598 acpi_processor_get_power_info_default(pr);
599
600 pr->power.count = acpi_processor_power_verify(pr);
601
602 /*
603 * if one state of type C2 or C3 is available, mark this
604 * CPU as being "idle manageable"
605 */
606 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
607 if (pr->power.states[i].valid) {
608 pr->power.count = i;
609 if (pr->power.states[i].type >= ACPI_STATE_C2)
610 pr->flags.power = 1;
611 }
612 }
613
614 return 0;
615 }
616
617 /**
618 * acpi_idle_bm_check - checks if bus master activity was detected
619 */
620 static int acpi_idle_bm_check(void)
621 {
622 u32 bm_status = 0;
623
624 if (bm_check_disable)
625 return 0;
626
627 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
628 if (bm_status)
629 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
630 /*
631 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
632 * the true state of bus mastering activity; forcing us to
633 * manually check the BMIDEA bit of each IDE channel.
634 */
635 else if (errata.piix4.bmisx) {
636 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
637 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
638 bm_status = 1;
639 }
640 return bm_status;
641 }
642
643 /**
644 * acpi_idle_do_entry - enter idle state using the appropriate method
645 * @cx: cstate data
646 *
647 * Caller disables interrupt before call and enables interrupt after return.
648 */
649 static void acpi_idle_do_entry(struct acpi_processor_cx *cx)
650 {
651 if (cx->entry_method == ACPI_CSTATE_FFH) {
652 /* Call into architectural FFH based C-state */
653 acpi_processor_ffh_cstate_enter(cx);
654 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
655 acpi_safe_halt();
656 } else {
657 /* IO port based C-state */
658 inb(cx->address);
659 /* Dummy wait op - must do something useless after P_LVL2 read
660 because chipsets cannot guarantee that STPCLK# signal
661 gets asserted in time to freeze execution properly. */
662 inl(acpi_gbl_FADT.xpm_timer_block.address);
663 }
664 }
665
666 /**
667 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
668 * @dev: the target CPU
669 * @index: the index of suggested state
670 */
671 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
672 {
673 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
674
675 ACPI_FLUSH_CPU_CACHE();
676
677 while (1) {
678
679 if (cx->entry_method == ACPI_CSTATE_HALT)
680 safe_halt();
681 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
682 inb(cx->address);
683 /* See comment in acpi_idle_do_entry() */
684 inl(acpi_gbl_FADT.xpm_timer_block.address);
685 } else
686 return -ENODEV;
687 }
688
689 /* Never reached */
690 return 0;
691 }
692
693 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
694 {
695 return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
696 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
697 }
698
699 static int c3_cpu_count;
700 static DEFINE_RAW_SPINLOCK(c3_lock);
701
702 /**
703 * acpi_idle_enter_bm - enters C3 with proper BM handling
704 * @pr: Target processor
705 * @cx: Target state context
706 * @timer_bc: Whether or not to change timer mode to broadcast
707 */
708 static void acpi_idle_enter_bm(struct acpi_processor *pr,
709 struct acpi_processor_cx *cx, bool timer_bc)
710 {
711 acpi_unlazy_tlb(smp_processor_id());
712
713 /*
714 * Must be done before busmaster disable as we might need to
715 * access HPET !
716 */
717 if (timer_bc)
718 lapic_timer_state_broadcast(pr, cx, 1);
719
720 /*
721 * disable bus master
722 * bm_check implies we need ARB_DIS
723 * bm_control implies whether we can do ARB_DIS
724 *
725 * That leaves a case where bm_check is set and bm_control is
726 * not set. In that case we cannot do much, we enter C3
727 * without doing anything.
728 */
729 if (pr->flags.bm_control) {
730 raw_spin_lock(&c3_lock);
731 c3_cpu_count++;
732 /* Disable bus master arbitration when all CPUs are in C3 */
733 if (c3_cpu_count == num_online_cpus())
734 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
735 raw_spin_unlock(&c3_lock);
736 }
737
738 acpi_idle_do_entry(cx);
739
740 /* Re-enable bus master arbitration */
741 if (pr->flags.bm_control) {
742 raw_spin_lock(&c3_lock);
743 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
744 c3_cpu_count--;
745 raw_spin_unlock(&c3_lock);
746 }
747
748 if (timer_bc)
749 lapic_timer_state_broadcast(pr, cx, 0);
750 }
751
752 static int acpi_idle_enter(struct cpuidle_device *dev,
753 struct cpuidle_driver *drv, int index)
754 {
755 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
756 struct acpi_processor *pr;
757
758 pr = __this_cpu_read(processors);
759 if (unlikely(!pr))
760 return -EINVAL;
761
762 if (cx->type != ACPI_STATE_C1) {
763 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
764 index = CPUIDLE_DRIVER_STATE_START;
765 cx = per_cpu(acpi_cstate[index], dev->cpu);
766 } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
767 if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
768 acpi_idle_enter_bm(pr, cx, true);
769 return index;
770 } else if (drv->safe_state_index >= 0) {
771 index = drv->safe_state_index;
772 cx = per_cpu(acpi_cstate[index], dev->cpu);
773 } else {
774 acpi_safe_halt();
775 return -EBUSY;
776 }
777 }
778 }
779
780 lapic_timer_state_broadcast(pr, cx, 1);
781
782 if (cx->type == ACPI_STATE_C3)
783 ACPI_FLUSH_CPU_CACHE();
784
785 acpi_idle_do_entry(cx);
786
787 lapic_timer_state_broadcast(pr, cx, 0);
788
789 return index;
790 }
791
792 static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
793 struct cpuidle_driver *drv, int index)
794 {
795 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
796
797 if (cx->type == ACPI_STATE_C3) {
798 struct acpi_processor *pr = __this_cpu_read(processors);
799
800 if (unlikely(!pr))
801 return;
802
803 if (pr->flags.bm_check) {
804 acpi_idle_enter_bm(pr, cx, false);
805 return;
806 } else {
807 ACPI_FLUSH_CPU_CACHE();
808 }
809 }
810 acpi_idle_do_entry(cx);
811 }
812
813 /**
814 * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
815 * device i.e. per-cpu data
816 *
817 * @pr: the ACPI processor
818 * @dev : the cpuidle device
819 */
820 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
821 struct cpuidle_device *dev)
822 {
823 int i, count = CPUIDLE_DRIVER_STATE_START;
824 struct acpi_processor_cx *cx;
825
826 if (!pr->flags.power_setup_done)
827 return -EINVAL;
828
829 if (pr->flags.power == 0) {
830 return -EINVAL;
831 }
832
833 if (!dev)
834 return -EINVAL;
835
836 dev->cpu = pr->id;
837
838 if (max_cstate == 0)
839 max_cstate = 1;
840
841 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
842 cx = &pr->power.states[i];
843
844 if (!cx->valid)
845 continue;
846
847 per_cpu(acpi_cstate[count], dev->cpu) = cx;
848
849 count++;
850 if (count == CPUIDLE_STATE_MAX)
851 break;
852 }
853
854 if (!count)
855 return -EINVAL;
856
857 return 0;
858 }
859
860 /**
861 * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
862 * global state data i.e. idle routines
863 *
864 * @pr: the ACPI processor
865 */
866 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
867 {
868 int i, count = CPUIDLE_DRIVER_STATE_START;
869 struct acpi_processor_cx *cx;
870 struct cpuidle_state *state;
871 struct cpuidle_driver *drv = &acpi_idle_driver;
872
873 if (!pr->flags.power_setup_done)
874 return -EINVAL;
875
876 if (pr->flags.power == 0)
877 return -EINVAL;
878
879 drv->safe_state_index = -1;
880 for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
881 drv->states[i].name[0] = '\0';
882 drv->states[i].desc[0] = '\0';
883 }
884
885 if (max_cstate == 0)
886 max_cstate = 1;
887
888 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
889 cx = &pr->power.states[i];
890
891 if (!cx->valid)
892 continue;
893
894 state = &drv->states[count];
895 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
896 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
897 state->exit_latency = cx->latency;
898 state->target_residency = cx->latency * latency_factor;
899 state->enter = acpi_idle_enter;
900
901 state->flags = 0;
902 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
903 state->enter_dead = acpi_idle_play_dead;
904 drv->safe_state_index = count;
905 }
906 /*
907 * Halt-induced C1 is not good for ->enter_freeze, because it
908 * re-enables interrupts on exit. Moreover, C1 is generally not
909 * particularly interesting from the suspend-to-idle angle, so
910 * avoid C1 and the situations in which we may need to fall back
911 * to it altogether.
912 */
913 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
914 state->enter_freeze = acpi_idle_enter_freeze;
915
916 count++;
917 if (count == CPUIDLE_STATE_MAX)
918 break;
919 }
920
921 drv->state_count = count;
922
923 if (!count)
924 return -EINVAL;
925
926 return 0;
927 }
928
929 static inline void acpi_processor_cstate_first_run_checks(void)
930 {
931 acpi_status status;
932 static int first_run;
933
934 if (first_run)
935 return;
936 dmi_check_system(processor_power_dmi_table);
937 max_cstate = acpi_processor_cstate_check(max_cstate);
938 if (max_cstate < ACPI_C_STATES_MAX)
939 pr_notice("ACPI: processor limited to max C-state %d\n",
940 max_cstate);
941 first_run++;
942
943 if (acpi_gbl_FADT.cst_control && !nocst) {
944 status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
945 acpi_gbl_FADT.cst_control, 8);
946 if (ACPI_FAILURE(status))
947 ACPI_EXCEPTION((AE_INFO, status,
948 "Notifying BIOS of _CST ability failed"));
949 }
950 }
951 #else
952
953 static inline int disabled_by_idle_boot_param(void) { return 0; }
954 static inline void acpi_processor_cstate_first_run_checks(void) { }
955 static int acpi_processor_get_power_info(struct acpi_processor *pr)
956 {
957 return -ENODEV;
958 }
959
960 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
961 struct cpuidle_device *dev)
962 {
963 return -EINVAL;
964 }
965
966 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
967 {
968 return -EINVAL;
969 }
970
971 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
972
973 int acpi_processor_hotplug(struct acpi_processor *pr)
974 {
975 int ret = 0;
976 struct cpuidle_device *dev;
977
978 if (disabled_by_idle_boot_param())
979 return 0;
980
981 if (nocst)
982 return -ENODEV;
983
984 if (!pr->flags.power_setup_done)
985 return -ENODEV;
986
987 dev = per_cpu(acpi_cpuidle_device, pr->id);
988 cpuidle_pause_and_lock();
989 cpuidle_disable_device(dev);
990 acpi_processor_get_power_info(pr);
991 if (pr->flags.power) {
992 acpi_processor_setup_cpuidle_cx(pr, dev);
993 ret = cpuidle_enable_device(dev);
994 }
995 cpuidle_resume_and_unlock();
996
997 return ret;
998 }
999
1000 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1001 {
1002 int cpu;
1003 struct acpi_processor *_pr;
1004 struct cpuidle_device *dev;
1005
1006 if (disabled_by_idle_boot_param())
1007 return 0;
1008
1009 if (nocst)
1010 return -ENODEV;
1011
1012 if (!pr->flags.power_setup_done)
1013 return -ENODEV;
1014
1015 /*
1016 * FIXME: Design the ACPI notification to make it once per
1017 * system instead of once per-cpu. This condition is a hack
1018 * to make the code that updates C-States be called once.
1019 */
1020
1021 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1022
1023 /* Protect against cpu-hotplug */
1024 get_online_cpus();
1025 cpuidle_pause_and_lock();
1026
1027 /* Disable all cpuidle devices */
1028 for_each_online_cpu(cpu) {
1029 _pr = per_cpu(processors, cpu);
1030 if (!_pr || !_pr->flags.power_setup_done)
1031 continue;
1032 dev = per_cpu(acpi_cpuidle_device, cpu);
1033 cpuidle_disable_device(dev);
1034 }
1035
1036 /* Populate Updated C-state information */
1037 acpi_processor_get_power_info(pr);
1038 acpi_processor_setup_cpuidle_states(pr);
1039
1040 /* Enable all cpuidle devices */
1041 for_each_online_cpu(cpu) {
1042 _pr = per_cpu(processors, cpu);
1043 if (!_pr || !_pr->flags.power_setup_done)
1044 continue;
1045 acpi_processor_get_power_info(_pr);
1046 if (_pr->flags.power) {
1047 dev = per_cpu(acpi_cpuidle_device, cpu);
1048 acpi_processor_setup_cpuidle_cx(_pr, dev);
1049 cpuidle_enable_device(dev);
1050 }
1051 }
1052 cpuidle_resume_and_unlock();
1053 put_online_cpus();
1054 }
1055
1056 return 0;
1057 }
1058
1059 static int acpi_processor_registered;
1060
1061 int acpi_processor_power_init(struct acpi_processor *pr)
1062 {
1063 int retval;
1064 struct cpuidle_device *dev;
1065
1066 if (disabled_by_idle_boot_param())
1067 return 0;
1068
1069 acpi_processor_cstate_first_run_checks();
1070
1071 if (!acpi_processor_get_power_info(pr))
1072 pr->flags.power_setup_done = 1;
1073
1074 /*
1075 * Install the idle handler if processor power management is supported.
1076 * Note that we use previously set idle handler will be used on
1077 * platforms that only support C1.
1078 */
1079 if (pr->flags.power) {
1080 /* Register acpi_idle_driver if not already registered */
1081 if (!acpi_processor_registered) {
1082 acpi_processor_setup_cpuidle_states(pr);
1083 retval = cpuidle_register_driver(&acpi_idle_driver);
1084 if (retval)
1085 return retval;
1086 pr_debug("%s registered with cpuidle\n",
1087 acpi_idle_driver.name);
1088 }
1089
1090 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1091 if (!dev)
1092 return -ENOMEM;
1093 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1094
1095 acpi_processor_setup_cpuidle_cx(pr, dev);
1096
1097 /* Register per-cpu cpuidle_device. Cpuidle driver
1098 * must already be registered before registering device
1099 */
1100 retval = cpuidle_register_device(dev);
1101 if (retval) {
1102 if (acpi_processor_registered == 0)
1103 cpuidle_unregister_driver(&acpi_idle_driver);
1104 return retval;
1105 }
1106 acpi_processor_registered++;
1107 }
1108 return 0;
1109 }
1110
1111 int acpi_processor_power_exit(struct acpi_processor *pr)
1112 {
1113 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1114
1115 if (disabled_by_idle_boot_param())
1116 return 0;
1117
1118 if (pr->flags.power) {
1119 cpuidle_unregister_device(dev);
1120 acpi_processor_registered--;
1121 if (acpi_processor_registered == 0)
1122 cpuidle_unregister_driver(&acpi_idle_driver);
1123 }
1124
1125 pr->flags.power_setup_done = 0;
1126 return 0;
1127 }