]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/clk/bcm/clk-bcm2835.c
3acf61ddeda8c27e6da0fd7e2beb46341679eb66
[mirror_ubuntu-zesty-kernel.git] / drivers / clk / bcm / clk-bcm2835.c
1 /*
2 * Copyright (C) 2010,2015 Broadcom
3 * Copyright (C) 2012 Stephen Warren
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 */
16
17 /**
18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19 *
20 * The clock tree on the 2835 has several levels. There's a root
21 * oscillator running at 19.2Mhz. After the oscillator there are 5
22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23 * and "HDMI displays". Those 5 PLLs each can divide their output to
24 * produce up to 4 channels. Finally, there is the level of clocks to
25 * be consumed by other hardware components (like "H264" or "HDMI
26 * state machine"), which divide off of some subset of the PLL
27 * channels.
28 *
29 * All of the clocks in the tree are exposed in the DT, because the DT
30 * may want to make assignments of the final layer of clocks to the
31 * PLL channels, and some components of the hardware will actually
32 * skip layers of the tree (for example, the pixel clock comes
33 * directly from the PLLH PIX channel without using a CM_*CTL clock
34 * generator).
35 */
36
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk.h>
40 #include <linux/clk/bcm2835.h>
41 #include <linux/debugfs.h>
42 #include <linux/module.h>
43 #include <linux/of.h>
44 #include <linux/platform_device.h>
45 #include <linux/slab.h>
46 #include <dt-bindings/clock/bcm2835.h>
47 #include <soc/bcm2835/raspberrypi-firmware.h>
48
49 #define CM_PASSWORD 0x5a000000
50
51 #define CM_GNRICCTL 0x000
52 #define CM_GNRICDIV 0x004
53 # define CM_DIV_FRAC_BITS 12
54 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
55
56 #define CM_VPUCTL 0x008
57 #define CM_VPUDIV 0x00c
58 #define CM_SYSCTL 0x010
59 #define CM_SYSDIV 0x014
60 #define CM_PERIACTL 0x018
61 #define CM_PERIADIV 0x01c
62 #define CM_PERIICTL 0x020
63 #define CM_PERIIDIV 0x024
64 #define CM_H264CTL 0x028
65 #define CM_H264DIV 0x02c
66 #define CM_ISPCTL 0x030
67 #define CM_ISPDIV 0x034
68 #define CM_V3DCTL 0x038
69 #define CM_V3DDIV 0x03c
70 #define CM_CAM0CTL 0x040
71 #define CM_CAM0DIV 0x044
72 #define CM_CAM1CTL 0x048
73 #define CM_CAM1DIV 0x04c
74 #define CM_CCP2CTL 0x050
75 #define CM_CCP2DIV 0x054
76 #define CM_DSI0ECTL 0x058
77 #define CM_DSI0EDIV 0x05c
78 #define CM_DSI0PCTL 0x060
79 #define CM_DSI0PDIV 0x064
80 #define CM_DPICTL 0x068
81 #define CM_DPIDIV 0x06c
82 #define CM_GP0CTL 0x070
83 #define CM_GP0DIV 0x074
84 #define CM_GP1CTL 0x078
85 #define CM_GP1DIV 0x07c
86 #define CM_GP2CTL 0x080
87 #define CM_GP2DIV 0x084
88 #define CM_HSMCTL 0x088
89 #define CM_HSMDIV 0x08c
90 #define CM_OTPCTL 0x090
91 #define CM_OTPDIV 0x094
92 #define CM_PCMCTL 0x098
93 #define CM_PCMDIV 0x09c
94 #define CM_PWMCTL 0x0a0
95 #define CM_PWMDIV 0x0a4
96 #define CM_SLIMCTL 0x0a8
97 #define CM_SLIMDIV 0x0ac
98 #define CM_SMICTL 0x0b0
99 #define CM_SMIDIV 0x0b4
100 /* no definition for 0x0b8 and 0x0bc */
101 #define CM_TCNTCTL 0x0c0
102 #define CM_TCNTDIV 0x0c4
103 #define CM_TECCTL 0x0c8
104 #define CM_TECDIV 0x0cc
105 #define CM_TD0CTL 0x0d0
106 #define CM_TD0DIV 0x0d4
107 #define CM_TD1CTL 0x0d8
108 #define CM_TD1DIV 0x0dc
109 #define CM_TSENSCTL 0x0e0
110 #define CM_TSENSDIV 0x0e4
111 #define CM_TIMERCTL 0x0e8
112 #define CM_TIMERDIV 0x0ec
113 #define CM_UARTCTL 0x0f0
114 #define CM_UARTDIV 0x0f4
115 #define CM_VECCTL 0x0f8
116 #define CM_VECDIV 0x0fc
117 #define CM_PULSECTL 0x190
118 #define CM_PULSEDIV 0x194
119 #define CM_SDCCTL 0x1a8
120 #define CM_SDCDIV 0x1ac
121 #define CM_ARMCTL 0x1b0
122 #define CM_AVEOCTL 0x1b8
123 #define CM_AVEODIV 0x1bc
124 #define CM_EMMCCTL 0x1c0
125 #define CM_EMMCDIV 0x1c4
126
127 /* General bits for the CM_*CTL regs */
128 # define CM_ENABLE BIT(4)
129 # define CM_KILL BIT(5)
130 # define CM_GATE_BIT 6
131 # define CM_GATE BIT(CM_GATE_BIT)
132 # define CM_BUSY BIT(7)
133 # define CM_BUSYD BIT(8)
134 # define CM_FRAC BIT(9)
135 # define CM_SRC_SHIFT 0
136 # define CM_SRC_BITS 4
137 # define CM_SRC_MASK 0xf
138 # define CM_SRC_GND 0
139 # define CM_SRC_OSC 1
140 # define CM_SRC_TESTDEBUG0 2
141 # define CM_SRC_TESTDEBUG1 3
142 # define CM_SRC_PLLA_CORE 4
143 # define CM_SRC_PLLA_PER 4
144 # define CM_SRC_PLLC_CORE0 5
145 # define CM_SRC_PLLC_PER 5
146 # define CM_SRC_PLLC_CORE1 8
147 # define CM_SRC_PLLD_CORE 6
148 # define CM_SRC_PLLD_PER 6
149 # define CM_SRC_PLLH_AUX 7
150 # define CM_SRC_PLLC_CORE1 8
151 # define CM_SRC_PLLC_CORE2 9
152
153 #define CM_OSCCOUNT 0x100
154
155 #define CM_PLLA 0x104
156 # define CM_PLL_ANARST BIT(8)
157 # define CM_PLLA_HOLDPER BIT(7)
158 # define CM_PLLA_LOADPER BIT(6)
159 # define CM_PLLA_HOLDCORE BIT(5)
160 # define CM_PLLA_LOADCORE BIT(4)
161 # define CM_PLLA_HOLDCCP2 BIT(3)
162 # define CM_PLLA_LOADCCP2 BIT(2)
163 # define CM_PLLA_HOLDDSI0 BIT(1)
164 # define CM_PLLA_LOADDSI0 BIT(0)
165
166 #define CM_PLLC 0x108
167 # define CM_PLLC_HOLDPER BIT(7)
168 # define CM_PLLC_LOADPER BIT(6)
169 # define CM_PLLC_HOLDCORE2 BIT(5)
170 # define CM_PLLC_LOADCORE2 BIT(4)
171 # define CM_PLLC_HOLDCORE1 BIT(3)
172 # define CM_PLLC_LOADCORE1 BIT(2)
173 # define CM_PLLC_HOLDCORE0 BIT(1)
174 # define CM_PLLC_LOADCORE0 BIT(0)
175
176 #define CM_PLLD 0x10c
177 # define CM_PLLD_HOLDPER BIT(7)
178 # define CM_PLLD_LOADPER BIT(6)
179 # define CM_PLLD_HOLDCORE BIT(5)
180 # define CM_PLLD_LOADCORE BIT(4)
181 # define CM_PLLD_HOLDDSI1 BIT(3)
182 # define CM_PLLD_LOADDSI1 BIT(2)
183 # define CM_PLLD_HOLDDSI0 BIT(1)
184 # define CM_PLLD_LOADDSI0 BIT(0)
185
186 #define CM_PLLH 0x110
187 # define CM_PLLH_LOADRCAL BIT(2)
188 # define CM_PLLH_LOADAUX BIT(1)
189 # define CM_PLLH_LOADPIX BIT(0)
190
191 #define CM_LOCK 0x114
192 # define CM_LOCK_FLOCKH BIT(12)
193 # define CM_LOCK_FLOCKD BIT(11)
194 # define CM_LOCK_FLOCKC BIT(10)
195 # define CM_LOCK_FLOCKB BIT(9)
196 # define CM_LOCK_FLOCKA BIT(8)
197
198 #define CM_EVENT 0x118
199 #define CM_DSI1ECTL 0x158
200 #define CM_DSI1EDIV 0x15c
201 #define CM_DSI1PCTL 0x160
202 #define CM_DSI1PDIV 0x164
203 #define CM_DFTCTL 0x168
204 #define CM_DFTDIV 0x16c
205
206 #define CM_PLLB 0x170
207 # define CM_PLLB_HOLDARM BIT(1)
208 # define CM_PLLB_LOADARM BIT(0)
209
210 #define A2W_PLLA_CTRL 0x1100
211 #define A2W_PLLC_CTRL 0x1120
212 #define A2W_PLLD_CTRL 0x1140
213 #define A2W_PLLH_CTRL 0x1160
214 #define A2W_PLLB_CTRL 0x11e0
215 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
216 # define A2W_PLL_CTRL_PWRDN BIT(16)
217 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000
218 # define A2W_PLL_CTRL_PDIV_SHIFT 12
219 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
220 # define A2W_PLL_CTRL_NDIV_SHIFT 0
221
222 #define A2W_PLLA_ANA0 0x1010
223 #define A2W_PLLC_ANA0 0x1030
224 #define A2W_PLLD_ANA0 0x1050
225 #define A2W_PLLH_ANA0 0x1070
226 #define A2W_PLLB_ANA0 0x10f0
227
228 #define A2W_PLL_KA_SHIFT 7
229 #define A2W_PLL_KA_MASK GENMASK(9, 7)
230 #define A2W_PLL_KI_SHIFT 19
231 #define A2W_PLL_KI_MASK GENMASK(21, 19)
232 #define A2W_PLL_KP_SHIFT 15
233 #define A2W_PLL_KP_MASK GENMASK(18, 15)
234
235 #define A2W_PLLH_KA_SHIFT 19
236 #define A2W_PLLH_KA_MASK GENMASK(21, 19)
237 #define A2W_PLLH_KI_LOW_SHIFT 22
238 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
239 #define A2W_PLLH_KI_HIGH_SHIFT 0
240 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
241 #define A2W_PLLH_KP_SHIFT 1
242 #define A2W_PLLH_KP_MASK GENMASK(4, 1)
243
244 #define A2W_XOSC_CTRL 0x1190
245 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
246 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
247 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
248 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
249 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
250 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
251 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
252 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
253
254 #define A2W_PLLA_FRAC 0x1200
255 #define A2W_PLLC_FRAC 0x1220
256 #define A2W_PLLD_FRAC 0x1240
257 #define A2W_PLLH_FRAC 0x1260
258 #define A2W_PLLB_FRAC 0x12e0
259 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
260 # define A2W_PLL_FRAC_BITS 20
261
262 #define A2W_PLL_CHANNEL_DISABLE BIT(8)
263 #define A2W_PLL_DIV_BITS 8
264 #define A2W_PLL_DIV_SHIFT 0
265
266 #define A2W_PLLA_DSI0 0x1300
267 #define A2W_PLLA_CORE 0x1400
268 #define A2W_PLLA_PER 0x1500
269 #define A2W_PLLA_CCP2 0x1600
270
271 #define A2W_PLLC_CORE2 0x1320
272 #define A2W_PLLC_CORE1 0x1420
273 #define A2W_PLLC_PER 0x1520
274 #define A2W_PLLC_CORE0 0x1620
275
276 #define A2W_PLLD_DSI0 0x1340
277 #define A2W_PLLD_CORE 0x1440
278 #define A2W_PLLD_PER 0x1540
279 #define A2W_PLLD_DSI1 0x1640
280
281 #define A2W_PLLH_AUX 0x1360
282 #define A2W_PLLH_RCAL 0x1460
283 #define A2W_PLLH_PIX 0x1560
284 #define A2W_PLLH_STS 0x1660
285
286 #define A2W_PLLH_CTRLR 0x1960
287 #define A2W_PLLH_FRACR 0x1a60
288 #define A2W_PLLH_AUXR 0x1b60
289 #define A2W_PLLH_RCALR 0x1c60
290 #define A2W_PLLH_PIXR 0x1d60
291 #define A2W_PLLH_STSR 0x1e60
292
293 #define A2W_PLLB_ARM 0x13e0
294 #define A2W_PLLB_SP0 0x14e0
295 #define A2W_PLLB_SP1 0x15e0
296 #define A2W_PLLB_SP2 0x16e0
297
298 #define LOCK_TIMEOUT_NS 100000000
299 #define BCM2835_MAX_FB_RATE 1750000000u
300
301 #define VCMSG_ID_CORE_CLOCK 4
302
303 struct bcm2835_cprman {
304 struct device *dev;
305 void __iomem *regs;
306 struct rpi_firmware *fw;
307 spinlock_t regs_lock; /* spinlock for all clocks */
308 const char *osc_name;
309
310 /* Must be last */
311 struct clk_hw_onecell_data onecell;
312 };
313
314 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
315 {
316 writel(CM_PASSWORD | val, cprman->regs + reg);
317 }
318
319 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
320 {
321 return readl(cprman->regs + reg);
322 }
323
324 static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
325 struct debugfs_reg32 *regs, size_t nregs,
326 struct dentry *dentry)
327 {
328 struct dentry *regdump;
329 struct debugfs_regset32 *regset;
330
331 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
332 if (!regset)
333 return -ENOMEM;
334
335 regset->regs = regs;
336 regset->nregs = nregs;
337 regset->base = cprman->regs + base;
338
339 regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
340 regset);
341
342 return regdump ? 0 : -ENOMEM;
343 }
344
345 /*
346 * These are fixed clocks. They're probably not all root clocks and it may
347 * be possible to turn them on and off but until this is mapped out better
348 * it's the only way they can be used.
349 */
350 void __init bcm2835_init_clocks(void)
351 {
352 struct clk_hw *hw;
353 int ret;
354
355 hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
356 if (IS_ERR(hw))
357 pr_err("apb_pclk not registered\n");
358
359 hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
360 if (IS_ERR(hw))
361 pr_err("uart0_pclk not registered\n");
362 ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
363 if (ret)
364 pr_err("uart0_pclk alias not registered\n");
365
366 hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
367 if (IS_ERR(hw))
368 pr_err("uart1_pclk not registered\n");
369 ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
370 if (ret)
371 pr_err("uart1_pclk alias not registered\n");
372 }
373
374 struct bcm2835_pll_data {
375 const char *name;
376 u32 cm_ctrl_reg;
377 u32 a2w_ctrl_reg;
378 u32 frac_reg;
379 u32 ana_reg_base;
380 u32 reference_enable_mask;
381 /* Bit in CM_LOCK to indicate when the PLL has locked. */
382 u32 lock_mask;
383
384 const struct bcm2835_pll_ana_bits *ana;
385
386 unsigned long min_rate;
387 unsigned long max_rate;
388 /*
389 * Highest rate for the VCO before we have to use the
390 * pre-divide-by-2.
391 */
392 unsigned long max_fb_rate;
393 };
394
395 struct bcm2835_pll_ana_bits {
396 u32 mask0;
397 u32 set0;
398 u32 mask1;
399 u32 set1;
400 u32 mask3;
401 u32 set3;
402 u32 fb_prediv_mask;
403 };
404
405 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
406 .mask0 = 0,
407 .set0 = 0,
408 .mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
409 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
410 .mask3 = (u32)~A2W_PLL_KA_MASK,
411 .set3 = (2 << A2W_PLL_KA_SHIFT),
412 .fb_prediv_mask = BIT(14),
413 };
414
415 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
416 .mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
417 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
418 .mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
419 .set1 = (6 << A2W_PLLH_KP_SHIFT),
420 .mask3 = 0,
421 .set3 = 0,
422 .fb_prediv_mask = BIT(11),
423 };
424
425 struct bcm2835_pll_divider_data {
426 const char *name;
427 const char *source_pll;
428
429 u32 cm_reg;
430 u32 a2w_reg;
431
432 u32 load_mask;
433 u32 hold_mask;
434 u32 fixed_divider;
435 u32 flags;
436 };
437
438 struct bcm2835_clock_data {
439 const char *name;
440
441 const char *const *parents;
442 int num_mux_parents;
443
444 /* Bitmap encoding which parents accept rate change propagation. */
445 unsigned int set_rate_parent;
446
447 u32 ctl_reg;
448 u32 div_reg;
449
450 /* Number of integer bits in the divider */
451 u32 int_bits;
452 /* Number of fractional bits in the divider */
453 u32 frac_bits;
454
455 u32 flags;
456
457 bool is_vpu_clock;
458 bool is_mash_clock;
459 };
460
461 struct bcm2835_gate_data {
462 const char *name;
463 const char *parent;
464
465 u32 ctl_reg;
466 };
467
468 struct bcm2835_pll {
469 struct clk_hw hw;
470 struct bcm2835_cprman *cprman;
471 const struct bcm2835_pll_data *data;
472 };
473
474 static int bcm2835_pll_is_on(struct clk_hw *hw)
475 {
476 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
477 struct bcm2835_cprman *cprman = pll->cprman;
478 const struct bcm2835_pll_data *data = pll->data;
479
480 return cprman_read(cprman, data->a2w_ctrl_reg) &
481 A2W_PLL_CTRL_PRST_DISABLE;
482 }
483
484 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
485 unsigned long parent_rate,
486 u32 *ndiv, u32 *fdiv)
487 {
488 u64 div;
489
490 div = (u64)rate << A2W_PLL_FRAC_BITS;
491 do_div(div, parent_rate);
492
493 *ndiv = div >> A2W_PLL_FRAC_BITS;
494 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
495 }
496
497 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
498 u32 ndiv, u32 fdiv, u32 pdiv)
499 {
500 u64 rate;
501
502 if (pdiv == 0)
503 return 0;
504
505 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
506 do_div(rate, pdiv);
507 return rate >> A2W_PLL_FRAC_BITS;
508 }
509
510 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
511 unsigned long *parent_rate)
512 {
513 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
514 const struct bcm2835_pll_data *data = pll->data;
515 u32 ndiv, fdiv;
516
517 rate = clamp(rate, data->min_rate, data->max_rate);
518
519 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
520
521 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
522 }
523
524 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
525 unsigned long parent_rate)
526 {
527 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
528 struct bcm2835_cprman *cprman = pll->cprman;
529 const struct bcm2835_pll_data *data = pll->data;
530 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
531 u32 ndiv, pdiv, fdiv;
532 bool using_prediv;
533
534 if (parent_rate == 0)
535 return 0;
536
537 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
538 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
539 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
540 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
541 data->ana->fb_prediv_mask;
542
543 if (using_prediv) {
544 ndiv *= 2;
545 fdiv *= 2;
546 }
547
548 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
549 }
550
551 static void bcm2835_pll_off(struct clk_hw *hw)
552 {
553 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
554 struct bcm2835_cprman *cprman = pll->cprman;
555 const struct bcm2835_pll_data *data = pll->data;
556
557 spin_lock(&cprman->regs_lock);
558 cprman_write(cprman, data->cm_ctrl_reg,
559 cprman_read(cprman, data->cm_ctrl_reg) |
560 CM_PLL_ANARST);
561 cprman_write(cprman, data->a2w_ctrl_reg,
562 cprman_read(cprman, data->a2w_ctrl_reg) |
563 A2W_PLL_CTRL_PWRDN);
564 spin_unlock(&cprman->regs_lock);
565 }
566
567 static int bcm2835_pll_on(struct clk_hw *hw)
568 {
569 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
570 struct bcm2835_cprman *cprman = pll->cprman;
571 const struct bcm2835_pll_data *data = pll->data;
572 ktime_t timeout;
573
574 cprman_write(cprman, data->a2w_ctrl_reg,
575 cprman_read(cprman, data->a2w_ctrl_reg) &
576 ~A2W_PLL_CTRL_PWRDN);
577
578 /* Take the PLL out of reset. */
579 cprman_write(cprman, data->cm_ctrl_reg,
580 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
581
582 /* Wait for the PLL to lock. */
583 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
584 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
585 if (ktime_after(ktime_get(), timeout)) {
586 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
587 clk_hw_get_name(hw));
588 return -ETIMEDOUT;
589 }
590
591 cpu_relax();
592 }
593
594 return 0;
595 }
596
597 static void
598 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
599 {
600 int i;
601
602 /*
603 * ANA register setup is done as a series of writes to
604 * ANA3-ANA0, in that order. This lets us write all 4
605 * registers as a single cycle of the serdes interface (taking
606 * 100 xosc clocks), whereas if we were to update ana0, 1, and
607 * 3 individually through their partial-write registers, each
608 * would be their own serdes cycle.
609 */
610 for (i = 3; i >= 0; i--)
611 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
612 }
613
614 static int bcm2835_pll_set_rate(struct clk_hw *hw,
615 unsigned long rate, unsigned long parent_rate)
616 {
617 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
618 struct bcm2835_cprman *cprman = pll->cprman;
619 const struct bcm2835_pll_data *data = pll->data;
620 bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
621 u32 ndiv, fdiv, a2w_ctl;
622 u32 ana[4];
623 int i;
624
625 if (rate > data->max_fb_rate) {
626 use_fb_prediv = true;
627 rate /= 2;
628 } else {
629 use_fb_prediv = false;
630 }
631
632 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
633
634 for (i = 3; i >= 0; i--)
635 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
636
637 was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
638
639 ana[0] &= ~data->ana->mask0;
640 ana[0] |= data->ana->set0;
641 ana[1] &= ~data->ana->mask1;
642 ana[1] |= data->ana->set1;
643 ana[3] &= ~data->ana->mask3;
644 ana[3] |= data->ana->set3;
645
646 if (was_using_prediv && !use_fb_prediv) {
647 ana[1] &= ~data->ana->fb_prediv_mask;
648 do_ana_setup_first = true;
649 } else if (!was_using_prediv && use_fb_prediv) {
650 ana[1] |= data->ana->fb_prediv_mask;
651 do_ana_setup_first = false;
652 } else {
653 do_ana_setup_first = true;
654 }
655
656 /* Unmask the reference clock from the oscillator. */
657 cprman_write(cprman, A2W_XOSC_CTRL,
658 cprman_read(cprman, A2W_XOSC_CTRL) |
659 data->reference_enable_mask);
660
661 if (do_ana_setup_first)
662 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
663
664 /* Set the PLL multiplier from the oscillator. */
665 cprman_write(cprman, data->frac_reg, fdiv);
666
667 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
668 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
669 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
670 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
671 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
672 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
673
674 if (!do_ana_setup_first)
675 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
676
677 return 0;
678 }
679
680 static int bcm2835_pll_debug_init(struct clk_hw *hw,
681 struct dentry *dentry)
682 {
683 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
684 struct bcm2835_cprman *cprman = pll->cprman;
685 const struct bcm2835_pll_data *data = pll->data;
686 struct debugfs_reg32 *regs;
687
688 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
689 if (!regs)
690 return -ENOMEM;
691
692 regs[0].name = "cm_ctrl";
693 regs[0].offset = data->cm_ctrl_reg;
694 regs[1].name = "a2w_ctrl";
695 regs[1].offset = data->a2w_ctrl_reg;
696 regs[2].name = "frac";
697 regs[2].offset = data->frac_reg;
698 regs[3].name = "ana0";
699 regs[3].offset = data->ana_reg_base + 0 * 4;
700 regs[4].name = "ana1";
701 regs[4].offset = data->ana_reg_base + 1 * 4;
702 regs[5].name = "ana2";
703 regs[5].offset = data->ana_reg_base + 2 * 4;
704 regs[6].name = "ana3";
705 regs[6].offset = data->ana_reg_base + 3 * 4;
706
707 return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
708 }
709
710 static const struct clk_ops bcm2835_pll_clk_ops = {
711 .is_prepared = bcm2835_pll_is_on,
712 .prepare = bcm2835_pll_on,
713 .unprepare = bcm2835_pll_off,
714 .recalc_rate = bcm2835_pll_get_rate,
715 .set_rate = bcm2835_pll_set_rate,
716 .round_rate = bcm2835_pll_round_rate,
717 .debug_init = bcm2835_pll_debug_init,
718 };
719
720 struct bcm2835_pll_divider {
721 struct clk_divider div;
722 struct bcm2835_cprman *cprman;
723 const struct bcm2835_pll_divider_data *data;
724 };
725
726 static struct bcm2835_pll_divider *
727 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
728 {
729 return container_of(hw, struct bcm2835_pll_divider, div.hw);
730 }
731
732 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
733 {
734 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
735 struct bcm2835_cprman *cprman = divider->cprman;
736 const struct bcm2835_pll_divider_data *data = divider->data;
737
738 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
739 }
740
741 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
742 unsigned long rate,
743 unsigned long *parent_rate)
744 {
745 return clk_divider_ops.round_rate(hw, rate, parent_rate);
746 }
747
748 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
749 unsigned long parent_rate)
750 {
751 return clk_divider_ops.recalc_rate(hw, parent_rate);
752 }
753
754 static void bcm2835_pll_divider_off(struct clk_hw *hw)
755 {
756 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
757 struct bcm2835_cprman *cprman = divider->cprman;
758 const struct bcm2835_pll_divider_data *data = divider->data;
759
760 spin_lock(&cprman->regs_lock);
761 cprman_write(cprman, data->cm_reg,
762 (cprman_read(cprman, data->cm_reg) &
763 ~data->load_mask) | data->hold_mask);
764 cprman_write(cprman, data->a2w_reg,
765 cprman_read(cprman, data->a2w_reg) |
766 A2W_PLL_CHANNEL_DISABLE);
767 spin_unlock(&cprman->regs_lock);
768 }
769
770 static int bcm2835_pll_divider_on(struct clk_hw *hw)
771 {
772 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
773 struct bcm2835_cprman *cprman = divider->cprman;
774 const struct bcm2835_pll_divider_data *data = divider->data;
775
776 spin_lock(&cprman->regs_lock);
777 cprman_write(cprman, data->a2w_reg,
778 cprman_read(cprman, data->a2w_reg) &
779 ~A2W_PLL_CHANNEL_DISABLE);
780
781 cprman_write(cprman, data->cm_reg,
782 cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
783 spin_unlock(&cprman->regs_lock);
784
785 return 0;
786 }
787
788 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
789 unsigned long rate,
790 unsigned long parent_rate)
791 {
792 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
793 struct bcm2835_cprman *cprman = divider->cprman;
794 const struct bcm2835_pll_divider_data *data = divider->data;
795 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
796
797 div = DIV_ROUND_UP_ULL(parent_rate, rate);
798
799 div = min(div, max_div);
800 if (div == max_div)
801 div = 0;
802
803 cprman_write(cprman, data->a2w_reg, div);
804 cm = cprman_read(cprman, data->cm_reg);
805 cprman_write(cprman, data->cm_reg, cm | data->load_mask);
806 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
807
808 return 0;
809 }
810
811 static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
812 struct dentry *dentry)
813 {
814 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
815 struct bcm2835_cprman *cprman = divider->cprman;
816 const struct bcm2835_pll_divider_data *data = divider->data;
817 struct debugfs_reg32 *regs;
818
819 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
820 if (!regs)
821 return -ENOMEM;
822
823 regs[0].name = "cm";
824 regs[0].offset = data->cm_reg;
825 regs[1].name = "a2w";
826 regs[1].offset = data->a2w_reg;
827
828 return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
829 }
830
831 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
832 .is_prepared = bcm2835_pll_divider_is_on,
833 .prepare = bcm2835_pll_divider_on,
834 .unprepare = bcm2835_pll_divider_off,
835 .recalc_rate = bcm2835_pll_divider_get_rate,
836 .set_rate = bcm2835_pll_divider_set_rate,
837 .round_rate = bcm2835_pll_divider_round_rate,
838 .debug_init = bcm2835_pll_divider_debug_init,
839 };
840
841 /*
842 * The CM dividers do fixed-point division, so we can't use the
843 * generic integer divider code like the PLL dividers do (and we can't
844 * fake it by having some fixed shifts preceding it in the clock tree,
845 * because we'd run out of bits in a 32-bit unsigned long).
846 */
847 struct bcm2835_clock {
848 struct clk_hw hw;
849 struct bcm2835_cprman *cprman;
850 const struct bcm2835_clock_data *data;
851 };
852
853 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
854 {
855 return container_of(hw, struct bcm2835_clock, hw);
856 }
857
858 static int bcm2835_clock_is_on(struct clk_hw *hw)
859 {
860 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
861 struct bcm2835_cprman *cprman = clock->cprman;
862 const struct bcm2835_clock_data *data = clock->data;
863
864 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
865 }
866
867 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
868 unsigned long rate,
869 unsigned long parent_rate,
870 bool round_up)
871 {
872 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
873 const struct bcm2835_clock_data *data = clock->data;
874 u32 unused_frac_mask =
875 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
876 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
877 u64 rem;
878 u32 div, mindiv, maxdiv;
879
880 rem = do_div(temp, rate);
881 div = temp;
882
883 /* Round up and mask off the unused bits */
884 if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
885 div += unused_frac_mask + 1;
886 div &= ~unused_frac_mask;
887
888 /* different clamping limits apply for a mash clock */
889 if (data->is_mash_clock) {
890 /* clamp to min divider of 2 */
891 mindiv = 2 << CM_DIV_FRAC_BITS;
892 /* clamp to the highest possible integer divider */
893 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
894 } else {
895 /* clamp to min divider of 1 */
896 mindiv = 1 << CM_DIV_FRAC_BITS;
897 /* clamp to the highest possible fractional divider */
898 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
899 CM_DIV_FRAC_BITS - data->frac_bits);
900 }
901
902 /* apply the clamping limits */
903 div = max_t(u32, div, mindiv);
904 div = min_t(u32, div, maxdiv);
905
906 return div;
907 }
908
909 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
910 unsigned long parent_rate,
911 u32 div)
912 {
913 const struct bcm2835_clock_data *data = clock->data;
914 u64 temp;
915
916 /*
917 * The divisor is a 12.12 fixed point field, but only some of
918 * the bits are populated in any given clock.
919 */
920 div >>= CM_DIV_FRAC_BITS - data->frac_bits;
921 div &= (1 << (data->int_bits + data->frac_bits)) - 1;
922
923 if (div == 0)
924 return 0;
925
926 temp = (u64)parent_rate << data->frac_bits;
927
928 do_div(temp, div);
929
930 return temp;
931 }
932
933 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
934 unsigned long parent_rate)
935 {
936 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
937 struct bcm2835_cprman *cprman = clock->cprman;
938 const struct bcm2835_clock_data *data = clock->data;
939 u32 div = cprman_read(cprman, data->div_reg);
940
941 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
942 }
943
944 static unsigned long bcm2835_clock_get_rate_vpu(struct clk_hw *hw,
945 unsigned long parent_rate)
946 {
947 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
948 struct bcm2835_cprman *cprman = clock->cprman;
949
950 if (cprman->fw) {
951 struct {
952 u32 id;
953 u32 val;
954 } packet;
955
956 packet.id = VCMSG_ID_CORE_CLOCK;
957 packet.val = 0;
958
959 if (!rpi_firmware_property(cprman->fw,
960 RPI_FIRMWARE_GET_MAX_CLOCK_RATE,
961 &packet, sizeof(packet)))
962 return packet.val;
963 }
964
965 return bcm2835_clock_get_rate(hw, parent_rate);
966 }
967
968 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
969 {
970 struct bcm2835_cprman *cprman = clock->cprman;
971 const struct bcm2835_clock_data *data = clock->data;
972 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
973
974 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
975 if (ktime_after(ktime_get(), timeout)) {
976 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
977 clk_hw_get_name(&clock->hw));
978 return;
979 }
980 cpu_relax();
981 }
982 }
983
984 static void bcm2835_clock_off(struct clk_hw *hw)
985 {
986 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
987 struct bcm2835_cprman *cprman = clock->cprman;
988 const struct bcm2835_clock_data *data = clock->data;
989
990 spin_lock(&cprman->regs_lock);
991 cprman_write(cprman, data->ctl_reg,
992 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
993 spin_unlock(&cprman->regs_lock);
994
995 /* BUSY will remain high until the divider completes its cycle. */
996 bcm2835_clock_wait_busy(clock);
997 }
998
999 static int bcm2835_clock_on(struct clk_hw *hw)
1000 {
1001 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1002 struct bcm2835_cprman *cprman = clock->cprman;
1003 const struct bcm2835_clock_data *data = clock->data;
1004
1005 spin_lock(&cprman->regs_lock);
1006 cprman_write(cprman, data->ctl_reg,
1007 cprman_read(cprman, data->ctl_reg) |
1008 CM_ENABLE |
1009 CM_GATE);
1010 spin_unlock(&cprman->regs_lock);
1011
1012 return 0;
1013 }
1014
1015 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1016 unsigned long rate, unsigned long parent_rate)
1017 {
1018 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1019 struct bcm2835_cprman *cprman = clock->cprman;
1020 const struct bcm2835_clock_data *data = clock->data;
1021 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1022 u32 ctl;
1023
1024 spin_lock(&cprman->regs_lock);
1025
1026 /*
1027 * Setting up frac support
1028 *
1029 * In principle it is recommended to stop/start the clock first,
1030 * but as we set CLK_SET_RATE_GATE during registration of the
1031 * clock this requirement should be take care of by the
1032 * clk-framework.
1033 */
1034 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1035 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1036 cprman_write(cprman, data->ctl_reg, ctl);
1037
1038 cprman_write(cprman, data->div_reg, div);
1039
1040 spin_unlock(&cprman->regs_lock);
1041
1042 return 0;
1043 }
1044
1045 static bool
1046 bcm2835_clk_is_pllc(struct clk_hw *hw)
1047 {
1048 if (!hw)
1049 return false;
1050
1051 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1052 }
1053
1054 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1055 int parent_idx,
1056 unsigned long rate,
1057 u32 *div,
1058 unsigned long *prate)
1059 {
1060 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1061 struct bcm2835_cprman *cprman = clock->cprman;
1062 const struct bcm2835_clock_data *data = clock->data;
1063 unsigned long best_rate = 0;
1064 u32 curdiv, mindiv, maxdiv;
1065 struct clk_hw *parent;
1066
1067 parent = clk_hw_get_parent_by_index(hw, parent_idx);
1068
1069 if (!(BIT(parent_idx) & data->set_rate_parent)) {
1070 *prate = clk_hw_get_rate(parent);
1071 *div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1072
1073 return bcm2835_clock_rate_from_divisor(clock, *prate,
1074 *div);
1075 }
1076
1077 if (data->frac_bits)
1078 dev_warn(cprman->dev,
1079 "frac bits are not used when propagating rate change");
1080
1081 /* clamp to min divider of 2 if we're dealing with a mash clock */
1082 mindiv = data->is_mash_clock ? 2 : 1;
1083 maxdiv = BIT(data->int_bits) - 1;
1084
1085 /* TODO: Be smart, and only test a subset of the available divisors. */
1086 for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1087 unsigned long tmp_rate;
1088
1089 tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1090 tmp_rate /= curdiv;
1091 if (curdiv == mindiv ||
1092 (tmp_rate > best_rate && tmp_rate <= rate))
1093 best_rate = tmp_rate;
1094
1095 if (best_rate == rate)
1096 break;
1097 }
1098
1099 *div = curdiv << CM_DIV_FRAC_BITS;
1100 *prate = curdiv * best_rate;
1101
1102 return best_rate;
1103 }
1104
1105 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1106 struct clk_rate_request *req)
1107 {
1108 struct clk_hw *parent, *best_parent = NULL;
1109 bool current_parent_is_pllc;
1110 unsigned long rate, best_rate = 0;
1111 unsigned long prate, best_prate = 0;
1112 size_t i;
1113 u32 div;
1114
1115 current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1116
1117 /*
1118 * Select parent clock that results in the closest but lower rate
1119 */
1120 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1121 parent = clk_hw_get_parent_by_index(hw, i);
1122 if (!parent)
1123 continue;
1124
1125 /*
1126 * Don't choose a PLLC-derived clock as our parent
1127 * unless it had been manually set that way. PLLC's
1128 * frequency gets adjusted by the firmware due to
1129 * over-temp or under-voltage conditions, without
1130 * prior notification to our clock consumer.
1131 */
1132 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1133 continue;
1134
1135 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1136 &div, &prate);
1137 if (rate > best_rate && rate <= req->rate) {
1138 best_parent = parent;
1139 best_prate = prate;
1140 best_rate = rate;
1141 }
1142 }
1143
1144 if (!best_parent)
1145 return -EINVAL;
1146
1147 req->best_parent_hw = best_parent;
1148 req->best_parent_rate = best_prate;
1149
1150 req->rate = best_rate;
1151
1152 return 0;
1153 }
1154
1155 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1156 {
1157 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1158 struct bcm2835_cprman *cprman = clock->cprman;
1159 const struct bcm2835_clock_data *data = clock->data;
1160 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1161
1162 cprman_write(cprman, data->ctl_reg, src);
1163 return 0;
1164 }
1165
1166 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1167 {
1168 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1169 struct bcm2835_cprman *cprman = clock->cprman;
1170 const struct bcm2835_clock_data *data = clock->data;
1171 u32 src = cprman_read(cprman, data->ctl_reg);
1172
1173 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1174 }
1175
1176 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1177 {
1178 .name = "ctl",
1179 .offset = 0,
1180 },
1181 {
1182 .name = "div",
1183 .offset = 4,
1184 },
1185 };
1186
1187 static int bcm2835_clock_debug_init(struct clk_hw *hw,
1188 struct dentry *dentry)
1189 {
1190 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1191 struct bcm2835_cprman *cprman = clock->cprman;
1192 const struct bcm2835_clock_data *data = clock->data;
1193
1194 return bcm2835_debugfs_regset(
1195 cprman, data->ctl_reg,
1196 bcm2835_debugfs_clock_reg32,
1197 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1198 dentry);
1199 }
1200
1201 static const struct clk_ops bcm2835_clock_clk_ops = {
1202 .is_prepared = bcm2835_clock_is_on,
1203 .prepare = bcm2835_clock_on,
1204 .unprepare = bcm2835_clock_off,
1205 .recalc_rate = bcm2835_clock_get_rate,
1206 .set_rate = bcm2835_clock_set_rate,
1207 .determine_rate = bcm2835_clock_determine_rate,
1208 .set_parent = bcm2835_clock_set_parent,
1209 .get_parent = bcm2835_clock_get_parent,
1210 .debug_init = bcm2835_clock_debug_init,
1211 };
1212
1213 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1214 {
1215 return true;
1216 }
1217
1218 /*
1219 * The VPU clock can never be disabled (it doesn't have an ENABLE
1220 * bit), so it gets its own set of clock ops.
1221 */
1222 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1223 .is_prepared = bcm2835_vpu_clock_is_on,
1224 .recalc_rate = bcm2835_clock_get_rate_vpu,
1225 .set_rate = bcm2835_clock_set_rate,
1226 .determine_rate = bcm2835_clock_determine_rate,
1227 .set_parent = bcm2835_clock_set_parent,
1228 .get_parent = bcm2835_clock_get_parent,
1229 .debug_init = bcm2835_clock_debug_init,
1230 };
1231
1232 static bool bcm2835_clk_is_claimed(const char *name);
1233
1234 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1235 const struct bcm2835_pll_data *data)
1236 {
1237 struct bcm2835_pll *pll;
1238 struct clk_init_data init;
1239 int ret;
1240
1241 memset(&init, 0, sizeof(init));
1242
1243 /* All of the PLLs derive from the external oscillator. */
1244 init.parent_names = &cprman->osc_name;
1245 init.num_parents = 1;
1246 init.name = data->name;
1247 init.ops = &bcm2835_pll_clk_ops;
1248 init.flags = CLK_IGNORE_UNUSED;
1249
1250 if (!bcm2835_clk_is_claimed(data->name))
1251 init.flags |= CLK_IS_CRITICAL;
1252
1253 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1254 if (!pll)
1255 return NULL;
1256
1257 pll->cprman = cprman;
1258 pll->data = data;
1259 pll->hw.init = &init;
1260
1261 ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1262 if (ret)
1263 return NULL;
1264 return &pll->hw;
1265 }
1266
1267 static struct clk_hw *
1268 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1269 const struct bcm2835_pll_divider_data *data)
1270 {
1271 struct bcm2835_pll_divider *divider;
1272 struct clk_init_data init;
1273 const char *divider_name;
1274 int ret;
1275
1276 if (data->fixed_divider != 1) {
1277 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1278 "%s_prediv", data->name);
1279 if (!divider_name)
1280 return NULL;
1281 } else {
1282 divider_name = data->name;
1283 }
1284
1285 memset(&init, 0, sizeof(init));
1286
1287 init.parent_names = &data->source_pll;
1288 init.num_parents = 1;
1289 init.name = divider_name;
1290 init.ops = &bcm2835_pll_divider_clk_ops;
1291 init.flags = data->flags | CLK_IGNORE_UNUSED;
1292
1293 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1294 if (!divider)
1295 return NULL;
1296
1297 divider->div.reg = cprman->regs + data->a2w_reg;
1298 divider->div.shift = A2W_PLL_DIV_SHIFT;
1299 divider->div.width = A2W_PLL_DIV_BITS;
1300 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1301 divider->div.lock = &cprman->regs_lock;
1302 divider->div.hw.init = &init;
1303 divider->div.table = NULL;
1304
1305 if (!(cprman_read(cprman, data->cm_reg) & data->hold_mask)) {
1306 if (!bcm2835_clk_is_claimed(data->source_pll))
1307 init.flags |= CLK_IS_CRITICAL;
1308 if (!bcm2835_clk_is_claimed(data->name))
1309 divider->div.flags |= CLK_IS_CRITICAL;
1310 }
1311
1312 divider->cprman = cprman;
1313 divider->data = data;
1314
1315 ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1316 if (ret)
1317 return ERR_PTR(ret);
1318
1319 /*
1320 * PLLH's channels have a fixed divide by 10 afterwards, which
1321 * is what our consumers are actually using.
1322 */
1323 if (data->fixed_divider != 1) {
1324 return clk_hw_register_fixed_factor(cprman->dev, data->name,
1325 divider_name,
1326 CLK_SET_RATE_PARENT,
1327 1,
1328 data->fixed_divider);
1329 }
1330
1331 return &divider->div.hw;
1332 }
1333
1334 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1335 const struct bcm2835_clock_data *data)
1336 {
1337 struct bcm2835_clock *clock;
1338 struct clk_init_data init;
1339 const char *parents[1 << CM_SRC_BITS];
1340 size_t i;
1341 int ret;
1342
1343 /*
1344 * Replace our "xosc" references with the oscillator's
1345 * actual name.
1346 */
1347 for (i = 0; i < data->num_mux_parents; i++) {
1348 if (strcmp(data->parents[i], "xosc") == 0)
1349 parents[i] = cprman->osc_name;
1350 else
1351 parents[i] = data->parents[i];
1352 }
1353
1354 memset(&init, 0, sizeof(init));
1355 init.parent_names = parents;
1356 init.num_parents = data->num_mux_parents;
1357 init.name = data->name;
1358 init.flags = data->flags | CLK_IGNORE_UNUSED;
1359
1360 /*
1361 * Some GPIO clocks for ethernet/wifi PLLs are marked as
1362 * critical (since some platforms use them), but if the
1363 * firmware didn't have them turned on then they clearly
1364 * aren't actually critical.
1365 */
1366 if ((cprman_read(cprman, data->ctl_reg) & CM_ENABLE) == 0)
1367 init.flags &= ~CLK_IS_CRITICAL;
1368
1369 /*
1370 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1371 * rate changes on at least of the parents.
1372 */
1373 if (data->set_rate_parent)
1374 init.flags |= CLK_SET_RATE_PARENT;
1375
1376 if (data->is_vpu_clock) {
1377 init.ops = &bcm2835_vpu_clock_clk_ops;
1378 } else {
1379 init.ops = &bcm2835_clock_clk_ops;
1380 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1381
1382 /* If the clock wasn't actually enabled at boot, it's not
1383 * critical.
1384 */
1385 if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1386 init.flags &= ~CLK_IS_CRITICAL;
1387 }
1388
1389 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1390 if (!clock)
1391 return NULL;
1392
1393 clock->cprman = cprman;
1394 clock->data = data;
1395 clock->hw.init = &init;
1396
1397 ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1398 if (ret)
1399 return ERR_PTR(ret);
1400 return &clock->hw;
1401 }
1402
1403 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1404 const struct bcm2835_gate_data *data)
1405 {
1406 return clk_register_gate(cprman->dev, data->name, data->parent,
1407 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1408 cprman->regs + data->ctl_reg,
1409 CM_GATE_BIT, 0, &cprman->regs_lock);
1410 }
1411
1412 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1413 const void *data);
1414 struct bcm2835_clk_desc {
1415 bcm2835_clk_register clk_register;
1416 const void *data;
1417 };
1418
1419 /* assignment helper macros for different clock types */
1420 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1421 .data = __VA_ARGS__ }
1422 #define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
1423 &(struct bcm2835_pll_data) \
1424 {__VA_ARGS__})
1425 #define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
1426 &(struct bcm2835_pll_divider_data) \
1427 {__VA_ARGS__})
1428 #define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
1429 &(struct bcm2835_clock_data) \
1430 {__VA_ARGS__})
1431 #define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
1432 &(struct bcm2835_gate_data) \
1433 {__VA_ARGS__})
1434
1435 /* parent mux arrays plus helper macros */
1436
1437 /* main oscillator parent mux */
1438 static const char *const bcm2835_clock_osc_parents[] = {
1439 "gnd",
1440 "xosc",
1441 "testdebug0",
1442 "testdebug1"
1443 };
1444
1445 #define REGISTER_OSC_CLK(...) REGISTER_CLK( \
1446 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1447 .parents = bcm2835_clock_osc_parents, \
1448 __VA_ARGS__)
1449
1450 /* main peripherial parent mux */
1451 static const char *const bcm2835_clock_per_parents[] = {
1452 "gnd",
1453 "xosc",
1454 "testdebug0",
1455 "testdebug1",
1456 "plla_per",
1457 "pllc_per",
1458 "plld_per",
1459 "pllh_aux",
1460 };
1461
1462 #define REGISTER_PER_CLK(...) REGISTER_CLK( \
1463 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1464 .parents = bcm2835_clock_per_parents, \
1465 __VA_ARGS__)
1466
1467 /* main vpu parent mux */
1468 static const char *const bcm2835_clock_vpu_parents[] = {
1469 "gnd",
1470 "xosc",
1471 "testdebug0",
1472 "testdebug1",
1473 "plla_core",
1474 "pllc_core0",
1475 "plld_core",
1476 "pllh_aux",
1477 "pllc_core1",
1478 "pllc_core2",
1479 };
1480
1481 #define REGISTER_VPU_CLK(...) REGISTER_CLK( \
1482 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1483 .parents = bcm2835_clock_vpu_parents, \
1484 __VA_ARGS__)
1485
1486 /*
1487 * the real definition of all the pll, pll_dividers and clocks
1488 * these make use of the above REGISTER_* macros
1489 */
1490 static const struct bcm2835_clk_desc clk_desc_array[] = {
1491 /* the PLL + PLL dividers */
1492
1493 /*
1494 * PLLA is the auxiliary PLL, used to drive the CCP2
1495 * (Compact Camera Port 2) transmitter clock.
1496 *
1497 * It is in the PX LDO power domain, which is on when the
1498 * AUDIO domain is on.
1499 */
1500 [BCM2835_PLLA] = REGISTER_PLL(
1501 .name = "plla",
1502 .cm_ctrl_reg = CM_PLLA,
1503 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1504 .frac_reg = A2W_PLLA_FRAC,
1505 .ana_reg_base = A2W_PLLA_ANA0,
1506 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1507 .lock_mask = CM_LOCK_FLOCKA,
1508
1509 .ana = &bcm2835_ana_default,
1510
1511 .min_rate = 600000000u,
1512 .max_rate = 2400000000u,
1513 .max_fb_rate = BCM2835_MAX_FB_RATE),
1514 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
1515 .name = "plla_core",
1516 .source_pll = "plla",
1517 .cm_reg = CM_PLLA,
1518 .a2w_reg = A2W_PLLA_CORE,
1519 .load_mask = CM_PLLA_LOADCORE,
1520 .hold_mask = CM_PLLA_HOLDCORE,
1521 .fixed_divider = 1,
1522 .flags = CLK_SET_RATE_PARENT),
1523 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
1524 .name = "plla_per",
1525 .source_pll = "plla",
1526 .cm_reg = CM_PLLA,
1527 .a2w_reg = A2W_PLLA_PER,
1528 .load_mask = CM_PLLA_LOADPER,
1529 .hold_mask = CM_PLLA_HOLDPER,
1530 .fixed_divider = 1,
1531 .flags = CLK_SET_RATE_PARENT),
1532 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
1533 .name = "plla_dsi0",
1534 .source_pll = "plla",
1535 .cm_reg = CM_PLLA,
1536 .a2w_reg = A2W_PLLA_DSI0,
1537 .load_mask = CM_PLLA_LOADDSI0,
1538 .hold_mask = CM_PLLA_HOLDDSI0,
1539 .fixed_divider = 1),
1540 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
1541 .name = "plla_ccp2",
1542 .source_pll = "plla",
1543 .cm_reg = CM_PLLA,
1544 .a2w_reg = A2W_PLLA_CCP2,
1545 .load_mask = CM_PLLA_LOADCCP2,
1546 .hold_mask = CM_PLLA_HOLDCCP2,
1547 .fixed_divider = 1,
1548 .flags = CLK_SET_RATE_PARENT),
1549
1550 /* PLLB is used for the ARM's clock. */
1551 [BCM2835_PLLB] = REGISTER_PLL(
1552 .name = "pllb",
1553 .cm_ctrl_reg = CM_PLLB,
1554 .a2w_ctrl_reg = A2W_PLLB_CTRL,
1555 .frac_reg = A2W_PLLB_FRAC,
1556 .ana_reg_base = A2W_PLLB_ANA0,
1557 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1558 .lock_mask = CM_LOCK_FLOCKB,
1559
1560 .ana = &bcm2835_ana_default,
1561
1562 .min_rate = 600000000u,
1563 .max_rate = 3000000000u,
1564 .max_fb_rate = BCM2835_MAX_FB_RATE),
1565 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
1566 .name = "pllb_arm",
1567 .source_pll = "pllb",
1568 .cm_reg = CM_PLLB,
1569 .a2w_reg = A2W_PLLB_ARM,
1570 .load_mask = CM_PLLB_LOADARM,
1571 .hold_mask = CM_PLLB_HOLDARM,
1572 .fixed_divider = 1,
1573 .flags = CLK_SET_RATE_PARENT),
1574
1575 /*
1576 * PLLC is the core PLL, used to drive the core VPU clock.
1577 *
1578 * It is in the PX LDO power domain, which is on when the
1579 * AUDIO domain is on.
1580 */
1581 [BCM2835_PLLC] = REGISTER_PLL(
1582 .name = "pllc",
1583 .cm_ctrl_reg = CM_PLLC,
1584 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1585 .frac_reg = A2W_PLLC_FRAC,
1586 .ana_reg_base = A2W_PLLC_ANA0,
1587 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1588 .lock_mask = CM_LOCK_FLOCKC,
1589
1590 .ana = &bcm2835_ana_default,
1591
1592 .min_rate = 600000000u,
1593 .max_rate = 3000000000u,
1594 .max_fb_rate = BCM2835_MAX_FB_RATE),
1595 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
1596 .name = "pllc_core0",
1597 .source_pll = "pllc",
1598 .cm_reg = CM_PLLC,
1599 .a2w_reg = A2W_PLLC_CORE0,
1600 .load_mask = CM_PLLC_LOADCORE0,
1601 .hold_mask = CM_PLLC_HOLDCORE0,
1602 .fixed_divider = 1,
1603 .flags = CLK_SET_RATE_PARENT),
1604 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
1605 .name = "pllc_core1",
1606 .source_pll = "pllc",
1607 .cm_reg = CM_PLLC,
1608 .a2w_reg = A2W_PLLC_CORE1,
1609 .load_mask = CM_PLLC_LOADCORE1,
1610 .hold_mask = CM_PLLC_HOLDCORE1,
1611 .fixed_divider = 1,
1612 .flags = CLK_SET_RATE_PARENT),
1613 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
1614 .name = "pllc_core2",
1615 .source_pll = "pllc",
1616 .cm_reg = CM_PLLC,
1617 .a2w_reg = A2W_PLLC_CORE2,
1618 .load_mask = CM_PLLC_LOADCORE2,
1619 .hold_mask = CM_PLLC_HOLDCORE2,
1620 .fixed_divider = 1,
1621 .flags = CLK_SET_RATE_PARENT),
1622 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
1623 .name = "pllc_per",
1624 .source_pll = "pllc",
1625 .cm_reg = CM_PLLC,
1626 .a2w_reg = A2W_PLLC_PER,
1627 .load_mask = CM_PLLC_LOADPER,
1628 .hold_mask = CM_PLLC_HOLDPER,
1629 .fixed_divider = 1,
1630 .flags = CLK_SET_RATE_PARENT),
1631
1632 /*
1633 * PLLD is the display PLL, used to drive DSI display panels.
1634 *
1635 * It is in the PX LDO power domain, which is on when the
1636 * AUDIO domain is on.
1637 */
1638 [BCM2835_PLLD] = REGISTER_PLL(
1639 .name = "plld",
1640 .cm_ctrl_reg = CM_PLLD,
1641 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1642 .frac_reg = A2W_PLLD_FRAC,
1643 .ana_reg_base = A2W_PLLD_ANA0,
1644 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1645 .lock_mask = CM_LOCK_FLOCKD,
1646
1647 .ana = &bcm2835_ana_default,
1648
1649 .min_rate = 600000000u,
1650 .max_rate = 2400000000u,
1651 .max_fb_rate = BCM2835_MAX_FB_RATE),
1652 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
1653 .name = "plld_core",
1654 .source_pll = "plld",
1655 .cm_reg = CM_PLLD,
1656 .a2w_reg = A2W_PLLD_CORE,
1657 .load_mask = CM_PLLD_LOADCORE,
1658 .hold_mask = CM_PLLD_HOLDCORE,
1659 .fixed_divider = 1,
1660 .flags = CLK_SET_RATE_PARENT),
1661 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
1662 .name = "plld_per",
1663 .source_pll = "plld",
1664 .cm_reg = CM_PLLD,
1665 .a2w_reg = A2W_PLLD_PER,
1666 .load_mask = CM_PLLD_LOADPER,
1667 .hold_mask = CM_PLLD_HOLDPER,
1668 .fixed_divider = 1,
1669 .flags = CLK_SET_RATE_PARENT),
1670 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
1671 .name = "plld_dsi0",
1672 .source_pll = "plld",
1673 .cm_reg = CM_PLLD,
1674 .a2w_reg = A2W_PLLD_DSI0,
1675 .load_mask = CM_PLLD_LOADDSI0,
1676 .hold_mask = CM_PLLD_HOLDDSI0,
1677 .fixed_divider = 1),
1678 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
1679 .name = "plld_dsi1",
1680 .source_pll = "plld",
1681 .cm_reg = CM_PLLD,
1682 .a2w_reg = A2W_PLLD_DSI1,
1683 .load_mask = CM_PLLD_LOADDSI1,
1684 .hold_mask = CM_PLLD_HOLDDSI1,
1685 .fixed_divider = 1),
1686
1687 /*
1688 * PLLH is used to supply the pixel clock or the AUX clock for the
1689 * TV encoder.
1690 *
1691 * It is in the HDMI power domain.
1692 */
1693 [BCM2835_PLLH] = REGISTER_PLL(
1694 "pllh",
1695 .cm_ctrl_reg = CM_PLLH,
1696 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1697 .frac_reg = A2W_PLLH_FRAC,
1698 .ana_reg_base = A2W_PLLH_ANA0,
1699 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1700 .lock_mask = CM_LOCK_FLOCKH,
1701
1702 .ana = &bcm2835_ana_pllh,
1703
1704 .min_rate = 600000000u,
1705 .max_rate = 3000000000u,
1706 .max_fb_rate = BCM2835_MAX_FB_RATE),
1707 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
1708 .name = "pllh_rcal",
1709 .source_pll = "pllh",
1710 .cm_reg = CM_PLLH,
1711 .a2w_reg = A2W_PLLH_RCAL,
1712 .load_mask = CM_PLLH_LOADRCAL,
1713 .hold_mask = 0,
1714 .fixed_divider = 10,
1715 .flags = CLK_SET_RATE_PARENT),
1716 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
1717 .name = "pllh_aux",
1718 .source_pll = "pllh",
1719 .cm_reg = CM_PLLH,
1720 .a2w_reg = A2W_PLLH_AUX,
1721 .load_mask = CM_PLLH_LOADAUX,
1722 .hold_mask = 0,
1723 .fixed_divider = 1,
1724 .flags = CLK_SET_RATE_PARENT),
1725 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
1726 .name = "pllh_pix",
1727 .source_pll = "pllh",
1728 .cm_reg = CM_PLLH,
1729 .a2w_reg = A2W_PLLH_PIX,
1730 .load_mask = CM_PLLH_LOADPIX,
1731 .hold_mask = 0,
1732 .fixed_divider = 10,
1733 .flags = CLK_SET_RATE_PARENT),
1734
1735 /* the clocks */
1736
1737 /* clocks with oscillator parent mux */
1738
1739 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1740 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
1741 .name = "otp",
1742 .ctl_reg = CM_OTPCTL,
1743 .div_reg = CM_OTPDIV,
1744 .int_bits = 4,
1745 .frac_bits = 0),
1746 /*
1747 * Used for a 1Mhz clock for the system clocksource, and also used
1748 * bythe watchdog timer and the camera pulse generator.
1749 */
1750 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
1751 .name = "timer",
1752 .ctl_reg = CM_TIMERCTL,
1753 .div_reg = CM_TIMERDIV,
1754 .int_bits = 6,
1755 .frac_bits = 12),
1756 /*
1757 * Clock for the temperature sensor.
1758 * Generally run at 2Mhz, max 5Mhz.
1759 */
1760 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
1761 .name = "tsens",
1762 .ctl_reg = CM_TSENSCTL,
1763 .div_reg = CM_TSENSDIV,
1764 .int_bits = 5,
1765 .frac_bits = 0),
1766 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
1767 .name = "tec",
1768 .ctl_reg = CM_TECCTL,
1769 .div_reg = CM_TECDIV,
1770 .int_bits = 6,
1771 .frac_bits = 0),
1772
1773 /* clocks with vpu parent mux */
1774 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
1775 .name = "h264",
1776 .ctl_reg = CM_H264CTL,
1777 .div_reg = CM_H264DIV,
1778 .int_bits = 4,
1779 .frac_bits = 8),
1780 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
1781 .name = "isp",
1782 .ctl_reg = CM_ISPCTL,
1783 .div_reg = CM_ISPDIV,
1784 .int_bits = 4,
1785 .frac_bits = 8),
1786
1787 /*
1788 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1789 * in the SDRAM controller can't be used.
1790 */
1791 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
1792 .name = "sdram",
1793 .ctl_reg = CM_SDCCTL,
1794 .div_reg = CM_SDCDIV,
1795 .int_bits = 6,
1796 .frac_bits = 0),
1797 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
1798 .name = "v3d",
1799 .ctl_reg = CM_V3DCTL,
1800 .div_reg = CM_V3DDIV,
1801 .int_bits = 4,
1802 .frac_bits = 8),
1803 /*
1804 * VPU clock. This doesn't have an enable bit, since it drives
1805 * the bus for everything else, and is special so it doesn't need
1806 * to be gated for rate changes. It is also known as "clk_audio"
1807 * in various hardware documentation.
1808 */
1809 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
1810 .name = "vpu",
1811 .ctl_reg = CM_VPUCTL,
1812 .div_reg = CM_VPUDIV,
1813 .int_bits = 12,
1814 .frac_bits = 8,
1815 .flags = CLK_IS_CRITICAL,
1816 .is_vpu_clock = true),
1817
1818 /* clocks with per parent mux */
1819 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
1820 .name = "aveo",
1821 .ctl_reg = CM_AVEOCTL,
1822 .div_reg = CM_AVEODIV,
1823 .int_bits = 4,
1824 .frac_bits = 0),
1825 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
1826 .name = "cam0",
1827 .ctl_reg = CM_CAM0CTL,
1828 .div_reg = CM_CAM0DIV,
1829 .int_bits = 4,
1830 .frac_bits = 8),
1831 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
1832 .name = "cam1",
1833 .ctl_reg = CM_CAM1CTL,
1834 .div_reg = CM_CAM1DIV,
1835 .int_bits = 4,
1836 .frac_bits = 8),
1837 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
1838 .name = "dft",
1839 .ctl_reg = CM_DFTCTL,
1840 .div_reg = CM_DFTDIV,
1841 .int_bits = 5,
1842 .frac_bits = 0),
1843 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
1844 .name = "dpi",
1845 .ctl_reg = CM_DPICTL,
1846 .div_reg = CM_DPIDIV,
1847 .int_bits = 4,
1848 .frac_bits = 8),
1849
1850 /* Arasan EMMC clock */
1851 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
1852 .name = "emmc",
1853 .ctl_reg = CM_EMMCCTL,
1854 .div_reg = CM_EMMCDIV,
1855 .int_bits = 4,
1856 .frac_bits = 8),
1857
1858 /* General purpose (GPIO) clocks */
1859 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
1860 .name = "gp0",
1861 .ctl_reg = CM_GP0CTL,
1862 .div_reg = CM_GP0DIV,
1863 .int_bits = 12,
1864 .frac_bits = 12,
1865 .is_mash_clock = true),
1866 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
1867 .name = "gp1",
1868 .ctl_reg = CM_GP1CTL,
1869 .div_reg = CM_GP1DIV,
1870 .int_bits = 12,
1871 .frac_bits = 12,
1872 .flags = CLK_IS_CRITICAL,
1873 .is_mash_clock = true),
1874 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
1875 .name = "gp2",
1876 .ctl_reg = CM_GP2CTL,
1877 .div_reg = CM_GP2DIV,
1878 .int_bits = 12,
1879 .frac_bits = 12,
1880 .flags = CLK_IS_CRITICAL),
1881
1882 /* HDMI state machine */
1883 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
1884 .name = "hsm",
1885 .ctl_reg = CM_HSMCTL,
1886 .div_reg = CM_HSMDIV,
1887 .int_bits = 4,
1888 .frac_bits = 8),
1889 [BCM2835_CLOCK_PCM] = REGISTER_PER_CLK(
1890 .name = "pcm",
1891 .ctl_reg = CM_PCMCTL,
1892 .div_reg = CM_PCMDIV,
1893 .int_bits = 12,
1894 .frac_bits = 12,
1895 .is_mash_clock = true),
1896 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
1897 .name = "pwm",
1898 .ctl_reg = CM_PWMCTL,
1899 .div_reg = CM_PWMDIV,
1900 .int_bits = 12,
1901 .frac_bits = 12,
1902 .is_mash_clock = true),
1903 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
1904 .name = "slim",
1905 .ctl_reg = CM_SLIMCTL,
1906 .div_reg = CM_SLIMDIV,
1907 .int_bits = 12,
1908 .frac_bits = 12,
1909 .is_mash_clock = true),
1910 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
1911 .name = "smi",
1912 .ctl_reg = CM_SMICTL,
1913 .div_reg = CM_SMIDIV,
1914 .int_bits = 4,
1915 .frac_bits = 8),
1916 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
1917 .name = "uart",
1918 .ctl_reg = CM_UARTCTL,
1919 .div_reg = CM_UARTDIV,
1920 .int_bits = 10,
1921 .frac_bits = 12),
1922
1923 /* TV encoder clock. Only operating frequency is 108Mhz. */
1924 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
1925 .name = "vec",
1926 .ctl_reg = CM_VECCTL,
1927 .div_reg = CM_VECDIV,
1928 .int_bits = 4,
1929 .frac_bits = 0,
1930 /*
1931 * Allow rate change propagation only on PLLH_AUX which is
1932 * assigned index 7 in the parent array.
1933 */
1934 .set_rate_parent = BIT(7)),
1935
1936 /* dsi clocks */
1937 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
1938 .name = "dsi0e",
1939 .ctl_reg = CM_DSI0ECTL,
1940 .div_reg = CM_DSI0EDIV,
1941 .int_bits = 4,
1942 .frac_bits = 8),
1943 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
1944 .name = "dsi1e",
1945 .ctl_reg = CM_DSI1ECTL,
1946 .div_reg = CM_DSI1EDIV,
1947 .int_bits = 4,
1948 .frac_bits = 8),
1949
1950 /* the gates */
1951
1952 /*
1953 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
1954 * you have the debug bit set in the power manager, which we
1955 * don't bother exposing) are individual gates off of the
1956 * non-stop vpu clock.
1957 */
1958 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
1959 .name = "peri_image",
1960 .parent = "vpu",
1961 .ctl_reg = CM_PERIICTL),
1962 };
1963
1964 static bool bcm2835_clk_claimed[ARRAY_SIZE(clk_desc_array)];
1965
1966 /*
1967 * Permanently take a reference on the parent of the SDRAM clock.
1968 *
1969 * While the SDRAM is being driven by its dedicated PLL most of the
1970 * time, there is a little loop running in the firmware that
1971 * periodically switches the SDRAM to using our CM clock to do PVT
1972 * recalibration, with the assumption that the previously configured
1973 * SDRAM parent is still enabled and running.
1974 */
1975 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
1976 {
1977 struct clk *parent = clk_get_parent(sdc);
1978
1979 if (IS_ERR(parent))
1980 return PTR_ERR(parent);
1981
1982 return clk_prepare_enable(parent);
1983 }
1984
1985 static bool bcm2835_clk_is_claimed(const char *name)
1986 {
1987 int i;
1988
1989 for (i = 0; i < ARRAY_SIZE(clk_desc_array); i++) {
1990 const char *clk_name = *(const char **)(clk_desc_array[i].data);
1991 if (!strcmp(name, clk_name))
1992 return bcm2835_clk_claimed[i];
1993 }
1994
1995 return false;
1996 }
1997
1998 static int bcm2835_clk_probe(struct platform_device *pdev)
1999 {
2000 struct device *dev = &pdev->dev;
2001 struct clk_hw **hws;
2002 struct bcm2835_cprman *cprman;
2003 struct resource *res;
2004 const struct bcm2835_clk_desc *desc;
2005 const size_t asize = ARRAY_SIZE(clk_desc_array);
2006 struct device_node *fw_node;
2007 size_t i;
2008 u32 clk_id;
2009 int ret;
2010
2011 cprman = devm_kzalloc(dev, sizeof(*cprman) +
2012 sizeof(*cprman->onecell.hws) * asize,
2013 GFP_KERNEL);
2014 if (!cprman)
2015 return -ENOMEM;
2016
2017 spin_lock_init(&cprman->regs_lock);
2018 cprman->dev = dev;
2019 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2020 cprman->regs = devm_ioremap_resource(dev, res);
2021 if (IS_ERR(cprman->regs))
2022 return PTR_ERR(cprman->regs);
2023
2024 fw_node = of_parse_phandle(dev->of_node, "firmware", 0);
2025 if (fw_node) {
2026 struct rpi_firmware *fw = rpi_firmware_get(NULL);
2027 if (!fw)
2028 return -EPROBE_DEFER;
2029 cprman->fw = fw;
2030 }
2031
2032 memset(bcm2835_clk_claimed, 0, sizeof(bcm2835_clk_claimed));
2033 for (i = 0;
2034 !of_property_read_u32_index(pdev->dev.of_node, "claim-clocks",
2035 i, &clk_id);
2036 i++)
2037 bcm2835_clk_claimed[clk_id]= true;
2038
2039 cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
2040 if (!cprman->osc_name)
2041 return -ENODEV;
2042
2043 platform_set_drvdata(pdev, cprman);
2044
2045 cprman->onecell.num = asize;
2046 hws = cprman->onecell.hws;
2047
2048 for (i = 0; i < asize; i++) {
2049 desc = &clk_desc_array[i];
2050 if (desc->clk_register && desc->data)
2051 hws[i] = desc->clk_register(cprman, desc->data);
2052 }
2053
2054 ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2055 if (ret)
2056 return ret;
2057
2058 ret = of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2059 &cprman->onecell);
2060 if (ret)
2061 return ret;
2062
2063 /* note that we have registered all the clocks */
2064 dev_dbg(dev, "registered %d clocks\n", asize);
2065
2066 return 0;
2067 }
2068
2069 static const struct of_device_id bcm2835_clk_of_match[] = {
2070 { .compatible = "brcm,bcm2835-cprman", },
2071 {}
2072 };
2073 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2074
2075 static struct platform_driver bcm2835_clk_driver = {
2076 .driver = {
2077 .name = "bcm2835-clk",
2078 .of_match_table = bcm2835_clk_of_match,
2079 },
2080 .probe = bcm2835_clk_probe,
2081 };
2082
2083 static int __init __bcm2835_clk_driver_init(void)
2084 {
2085 return platform_driver_register(&bcm2835_clk_driver);
2086 }
2087 core_initcall(__bcm2835_clk_driver_init);
2088
2089 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2090 MODULE_DESCRIPTION("BCM2835 clock driver");
2091 MODULE_LICENSE("GPL v2");