]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/cpufreq/intel_pstate.c
Merge branches 'pm-core-fixes' and 'pm-cpufreq-fixes'
[mirror_ubuntu-zesty-kernel.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41
42 #define ATOM_RATIOS 0x66a
43 #define ATOM_VIDS 0x66b
44 #define ATOM_TURBO_RATIOS 0x66c
45 #define ATOM_TURBO_VIDS 0x66d
46
47 #ifdef CONFIG_ACPI
48 #include <acpi/processor.h>
49 #include <acpi/cppc_acpi.h>
50 #endif
51
52 #define FRAC_BITS 8
53 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
54 #define fp_toint(X) ((X) >> FRAC_BITS)
55
56 #define EXT_BITS 6
57 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
58 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
59 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
60
61 static inline int32_t mul_fp(int32_t x, int32_t y)
62 {
63 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
64 }
65
66 static inline int32_t div_fp(s64 x, s64 y)
67 {
68 return div64_s64((int64_t)x << FRAC_BITS, y);
69 }
70
71 static inline int ceiling_fp(int32_t x)
72 {
73 int mask, ret;
74
75 ret = fp_toint(x);
76 mask = (1 << FRAC_BITS) - 1;
77 if (x & mask)
78 ret += 1;
79 return ret;
80 }
81
82 static inline u64 mul_ext_fp(u64 x, u64 y)
83 {
84 return (x * y) >> EXT_FRAC_BITS;
85 }
86
87 static inline u64 div_ext_fp(u64 x, u64 y)
88 {
89 return div64_u64(x << EXT_FRAC_BITS, y);
90 }
91
92 /**
93 * struct sample - Store performance sample
94 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
95 * performance during last sample period
96 * @busy_scaled: Scaled busy value which is used to calculate next
97 * P state. This can be different than core_avg_perf
98 * to account for cpu idle period
99 * @aperf: Difference of actual performance frequency clock count
100 * read from APERF MSR between last and current sample
101 * @mperf: Difference of maximum performance frequency clock count
102 * read from MPERF MSR between last and current sample
103 * @tsc: Difference of time stamp counter between last and
104 * current sample
105 * @time: Current time from scheduler
106 *
107 * This structure is used in the cpudata structure to store performance sample
108 * data for choosing next P State.
109 */
110 struct sample {
111 int32_t core_avg_perf;
112 int32_t busy_scaled;
113 u64 aperf;
114 u64 mperf;
115 u64 tsc;
116 u64 time;
117 };
118
119 /**
120 * struct pstate_data - Store P state data
121 * @current_pstate: Current requested P state
122 * @min_pstate: Min P state possible for this platform
123 * @max_pstate: Max P state possible for this platform
124 * @max_pstate_physical:This is physical Max P state for a processor
125 * This can be higher than the max_pstate which can
126 * be limited by platform thermal design power limits
127 * @scaling: Scaling factor to convert frequency to cpufreq
128 * frequency units
129 * @turbo_pstate: Max Turbo P state possible for this platform
130 * @max_freq: @max_pstate frequency in cpufreq units
131 * @turbo_freq: @turbo_pstate frequency in cpufreq units
132 *
133 * Stores the per cpu model P state limits and current P state.
134 */
135 struct pstate_data {
136 int current_pstate;
137 int min_pstate;
138 int max_pstate;
139 int max_pstate_physical;
140 int scaling;
141 int turbo_pstate;
142 unsigned int max_freq;
143 unsigned int turbo_freq;
144 };
145
146 /**
147 * struct vid_data - Stores voltage information data
148 * @min: VID data for this platform corresponding to
149 * the lowest P state
150 * @max: VID data corresponding to the highest P State.
151 * @turbo: VID data for turbo P state
152 * @ratio: Ratio of (vid max - vid min) /
153 * (max P state - Min P State)
154 *
155 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156 * This data is used in Atom platforms, where in addition to target P state,
157 * the voltage data needs to be specified to select next P State.
158 */
159 struct vid_data {
160 int min;
161 int max;
162 int turbo;
163 int32_t ratio;
164 };
165
166 /**
167 * struct _pid - Stores PID data
168 * @setpoint: Target set point for busyness or performance
169 * @integral: Storage for accumulated error values
170 * @p_gain: PID proportional gain
171 * @i_gain: PID integral gain
172 * @d_gain: PID derivative gain
173 * @deadband: PID deadband
174 * @last_err: Last error storage for integral part of PID calculation
175 *
176 * Stores PID coefficients and last error for PID controller.
177 */
178 struct _pid {
179 int setpoint;
180 int32_t integral;
181 int32_t p_gain;
182 int32_t i_gain;
183 int32_t d_gain;
184 int deadband;
185 int32_t last_err;
186 };
187
188 /**
189 * struct perf_limits - Store user and policy limits
190 * @no_turbo: User requested turbo state from intel_pstate sysfs
191 * @turbo_disabled: Platform turbo status either from msr
192 * MSR_IA32_MISC_ENABLE or when maximum available pstate
193 * matches the maximum turbo pstate
194 * @max_perf_pct: Effective maximum performance limit in percentage, this
195 * is minimum of either limits enforced by cpufreq policy
196 * or limits from user set limits via intel_pstate sysfs
197 * @min_perf_pct: Effective minimum performance limit in percentage, this
198 * is maximum of either limits enforced by cpufreq policy
199 * or limits from user set limits via intel_pstate sysfs
200 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
201 * This value is used to limit max pstate
202 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
203 * This value is used to limit min pstate
204 * @max_policy_pct: The maximum performance in percentage enforced by
205 * cpufreq setpolicy interface
206 * @max_sysfs_pct: The maximum performance in percentage enforced by
207 * intel pstate sysfs interface, unused when per cpu
208 * controls are enforced
209 * @min_policy_pct: The minimum performance in percentage enforced by
210 * cpufreq setpolicy interface
211 * @min_sysfs_pct: The minimum performance in percentage enforced by
212 * intel pstate sysfs interface, unused when per cpu
213 * controls are enforced
214 *
215 * Storage for user and policy defined limits.
216 */
217 struct perf_limits {
218 int no_turbo;
219 int turbo_disabled;
220 int max_perf_pct;
221 int min_perf_pct;
222 int32_t max_perf;
223 int32_t min_perf;
224 int max_policy_pct;
225 int max_sysfs_pct;
226 int min_policy_pct;
227 int min_sysfs_pct;
228 };
229
230 /**
231 * struct cpudata - Per CPU instance data storage
232 * @cpu: CPU number for this instance data
233 * @policy: CPUFreq policy value
234 * @update_util: CPUFreq utility callback information
235 * @update_util_set: CPUFreq utility callback is set
236 * @iowait_boost: iowait-related boost fraction
237 * @last_update: Time of the last update.
238 * @pstate: Stores P state limits for this CPU
239 * @vid: Stores VID limits for this CPU
240 * @pid: Stores PID parameters for this CPU
241 * @last_sample_time: Last Sample time
242 * @prev_aperf: Last APERF value read from APERF MSR
243 * @prev_mperf: Last MPERF value read from MPERF MSR
244 * @prev_tsc: Last timestamp counter (TSC) value
245 * @prev_cummulative_iowait: IO Wait time difference from last and
246 * current sample
247 * @sample: Storage for storing last Sample data
248 * @perf_limits: Pointer to perf_limit unique to this CPU
249 * Not all field in the structure are applicable
250 * when per cpu controls are enforced
251 * @acpi_perf_data: Stores ACPI perf information read from _PSS
252 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
253 * @epp_powersave: Last saved HWP energy performance preference
254 * (EPP) or energy performance bias (EPB),
255 * when policy switched to performance
256 * @epp_policy: Last saved policy used to set EPP/EPB
257 * @epp_default: Power on default HWP energy performance
258 * preference/bias
259 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
260 * operation
261 *
262 * This structure stores per CPU instance data for all CPUs.
263 */
264 struct cpudata {
265 int cpu;
266
267 unsigned int policy;
268 struct update_util_data update_util;
269 bool update_util_set;
270
271 struct pstate_data pstate;
272 struct vid_data vid;
273 struct _pid pid;
274
275 u64 last_update;
276 u64 last_sample_time;
277 u64 prev_aperf;
278 u64 prev_mperf;
279 u64 prev_tsc;
280 u64 prev_cummulative_iowait;
281 struct sample sample;
282 struct perf_limits *perf_limits;
283 #ifdef CONFIG_ACPI
284 struct acpi_processor_performance acpi_perf_data;
285 bool valid_pss_table;
286 #endif
287 unsigned int iowait_boost;
288 s16 epp_powersave;
289 s16 epp_policy;
290 s16 epp_default;
291 s16 epp_saved;
292 };
293
294 static struct cpudata **all_cpu_data;
295
296 /**
297 * struct pstate_adjust_policy - Stores static PID configuration data
298 * @sample_rate_ms: PID calculation sample rate in ms
299 * @sample_rate_ns: Sample rate calculation in ns
300 * @deadband: PID deadband
301 * @setpoint: PID Setpoint
302 * @p_gain_pct: PID proportional gain
303 * @i_gain_pct: PID integral gain
304 * @d_gain_pct: PID derivative gain
305 *
306 * Stores per CPU model static PID configuration data.
307 */
308 struct pstate_adjust_policy {
309 int sample_rate_ms;
310 s64 sample_rate_ns;
311 int deadband;
312 int setpoint;
313 int p_gain_pct;
314 int d_gain_pct;
315 int i_gain_pct;
316 };
317
318 /**
319 * struct pstate_funcs - Per CPU model specific callbacks
320 * @get_max: Callback to get maximum non turbo effective P state
321 * @get_max_physical: Callback to get maximum non turbo physical P state
322 * @get_min: Callback to get minimum P state
323 * @get_turbo: Callback to get turbo P state
324 * @get_scaling: Callback to get frequency scaling factor
325 * @get_val: Callback to convert P state to actual MSR write value
326 * @get_vid: Callback to get VID data for Atom platforms
327 * @get_target_pstate: Callback to a function to calculate next P state to use
328 *
329 * Core and Atom CPU models have different way to get P State limits. This
330 * structure is used to store those callbacks.
331 */
332 struct pstate_funcs {
333 int (*get_max)(void);
334 int (*get_max_physical)(void);
335 int (*get_min)(void);
336 int (*get_turbo)(void);
337 int (*get_scaling)(void);
338 u64 (*get_val)(struct cpudata*, int pstate);
339 void (*get_vid)(struct cpudata *);
340 int32_t (*get_target_pstate)(struct cpudata *);
341 };
342
343 /**
344 * struct cpu_defaults- Per CPU model default config data
345 * @pid_policy: PID config data
346 * @funcs: Callback function data
347 */
348 struct cpu_defaults {
349 struct pstate_adjust_policy pid_policy;
350 struct pstate_funcs funcs;
351 };
352
353 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
354 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
355
356 static struct pstate_adjust_policy pid_params __read_mostly;
357 static struct pstate_funcs pstate_funcs __read_mostly;
358 static int hwp_active __read_mostly;
359 static bool per_cpu_limits __read_mostly;
360
361 #ifdef CONFIG_ACPI
362 static bool acpi_ppc;
363 #endif
364
365 static struct perf_limits performance_limits = {
366 .no_turbo = 0,
367 .turbo_disabled = 0,
368 .max_perf_pct = 100,
369 .max_perf = int_ext_tofp(1),
370 .min_perf_pct = 100,
371 .min_perf = int_ext_tofp(1),
372 .max_policy_pct = 100,
373 .max_sysfs_pct = 100,
374 .min_policy_pct = 0,
375 .min_sysfs_pct = 0,
376 };
377
378 static struct perf_limits powersave_limits = {
379 .no_turbo = 0,
380 .turbo_disabled = 0,
381 .max_perf_pct = 100,
382 .max_perf = int_ext_tofp(1),
383 .min_perf_pct = 0,
384 .min_perf = 0,
385 .max_policy_pct = 100,
386 .max_sysfs_pct = 100,
387 .min_policy_pct = 0,
388 .min_sysfs_pct = 0,
389 };
390
391 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
392 static struct perf_limits *limits = &performance_limits;
393 #else
394 static struct perf_limits *limits = &powersave_limits;
395 #endif
396
397 static DEFINE_MUTEX(intel_pstate_limits_lock);
398
399 #ifdef CONFIG_ACPI
400
401 static bool intel_pstate_get_ppc_enable_status(void)
402 {
403 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
404 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
405 return true;
406
407 return acpi_ppc;
408 }
409
410 #ifdef CONFIG_ACPI_CPPC_LIB
411
412 /* The work item is needed to avoid CPU hotplug locking issues */
413 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
414 {
415 sched_set_itmt_support();
416 }
417
418 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
419
420 static void intel_pstate_set_itmt_prio(int cpu)
421 {
422 struct cppc_perf_caps cppc_perf;
423 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
424 int ret;
425
426 ret = cppc_get_perf_caps(cpu, &cppc_perf);
427 if (ret)
428 return;
429
430 /*
431 * The priorities can be set regardless of whether or not
432 * sched_set_itmt_support(true) has been called and it is valid to
433 * update them at any time after it has been called.
434 */
435 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
436
437 if (max_highest_perf <= min_highest_perf) {
438 if (cppc_perf.highest_perf > max_highest_perf)
439 max_highest_perf = cppc_perf.highest_perf;
440
441 if (cppc_perf.highest_perf < min_highest_perf)
442 min_highest_perf = cppc_perf.highest_perf;
443
444 if (max_highest_perf > min_highest_perf) {
445 /*
446 * This code can be run during CPU online under the
447 * CPU hotplug locks, so sched_set_itmt_support()
448 * cannot be called from here. Queue up a work item
449 * to invoke it.
450 */
451 schedule_work(&sched_itmt_work);
452 }
453 }
454 }
455 #else
456 static void intel_pstate_set_itmt_prio(int cpu)
457 {
458 }
459 #endif
460
461 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
462 {
463 struct cpudata *cpu;
464 int ret;
465 int i;
466
467 if (hwp_active) {
468 intel_pstate_set_itmt_prio(policy->cpu);
469 return;
470 }
471
472 if (!intel_pstate_get_ppc_enable_status())
473 return;
474
475 cpu = all_cpu_data[policy->cpu];
476
477 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
478 policy->cpu);
479 if (ret)
480 return;
481
482 /*
483 * Check if the control value in _PSS is for PERF_CTL MSR, which should
484 * guarantee that the states returned by it map to the states in our
485 * list directly.
486 */
487 if (cpu->acpi_perf_data.control_register.space_id !=
488 ACPI_ADR_SPACE_FIXED_HARDWARE)
489 goto err;
490
491 /*
492 * If there is only one entry _PSS, simply ignore _PSS and continue as
493 * usual without taking _PSS into account
494 */
495 if (cpu->acpi_perf_data.state_count < 2)
496 goto err;
497
498 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
499 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
500 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
501 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
502 (u32) cpu->acpi_perf_data.states[i].core_frequency,
503 (u32) cpu->acpi_perf_data.states[i].power,
504 (u32) cpu->acpi_perf_data.states[i].control);
505 }
506
507 /*
508 * The _PSS table doesn't contain whole turbo frequency range.
509 * This just contains +1 MHZ above the max non turbo frequency,
510 * with control value corresponding to max turbo ratio. But
511 * when cpufreq set policy is called, it will call with this
512 * max frequency, which will cause a reduced performance as
513 * this driver uses real max turbo frequency as the max
514 * frequency. So correct this frequency in _PSS table to
515 * correct max turbo frequency based on the turbo state.
516 * Also need to convert to MHz as _PSS freq is in MHz.
517 */
518 if (!limits->turbo_disabled)
519 cpu->acpi_perf_data.states[0].core_frequency =
520 policy->cpuinfo.max_freq / 1000;
521 cpu->valid_pss_table = true;
522 pr_debug("_PPC limits will be enforced\n");
523
524 return;
525
526 err:
527 cpu->valid_pss_table = false;
528 acpi_processor_unregister_performance(policy->cpu);
529 }
530
531 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
532 {
533 struct cpudata *cpu;
534
535 cpu = all_cpu_data[policy->cpu];
536 if (!cpu->valid_pss_table)
537 return;
538
539 acpi_processor_unregister_performance(policy->cpu);
540 }
541
542 #else
543 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
544 {
545 }
546
547 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
548 {
549 }
550 #endif
551
552 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
553 int deadband, int integral) {
554 pid->setpoint = int_tofp(setpoint);
555 pid->deadband = int_tofp(deadband);
556 pid->integral = int_tofp(integral);
557 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
558 }
559
560 static inline void pid_p_gain_set(struct _pid *pid, int percent)
561 {
562 pid->p_gain = div_fp(percent, 100);
563 }
564
565 static inline void pid_i_gain_set(struct _pid *pid, int percent)
566 {
567 pid->i_gain = div_fp(percent, 100);
568 }
569
570 static inline void pid_d_gain_set(struct _pid *pid, int percent)
571 {
572 pid->d_gain = div_fp(percent, 100);
573 }
574
575 static signed int pid_calc(struct _pid *pid, int32_t busy)
576 {
577 signed int result;
578 int32_t pterm, dterm, fp_error;
579 int32_t integral_limit;
580
581 fp_error = pid->setpoint - busy;
582
583 if (abs(fp_error) <= pid->deadband)
584 return 0;
585
586 pterm = mul_fp(pid->p_gain, fp_error);
587
588 pid->integral += fp_error;
589
590 /*
591 * We limit the integral here so that it will never
592 * get higher than 30. This prevents it from becoming
593 * too large an input over long periods of time and allows
594 * it to get factored out sooner.
595 *
596 * The value of 30 was chosen through experimentation.
597 */
598 integral_limit = int_tofp(30);
599 if (pid->integral > integral_limit)
600 pid->integral = integral_limit;
601 if (pid->integral < -integral_limit)
602 pid->integral = -integral_limit;
603
604 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
605 pid->last_err = fp_error;
606
607 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
608 result = result + (1 << (FRAC_BITS-1));
609 return (signed int)fp_toint(result);
610 }
611
612 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
613 {
614 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
615 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
616 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
617
618 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
619 }
620
621 static inline void intel_pstate_reset_all_pid(void)
622 {
623 unsigned int cpu;
624
625 for_each_online_cpu(cpu) {
626 if (all_cpu_data[cpu])
627 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
628 }
629 }
630
631 static inline void update_turbo_state(void)
632 {
633 u64 misc_en;
634 struct cpudata *cpu;
635
636 cpu = all_cpu_data[0];
637 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
638 limits->turbo_disabled =
639 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
640 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
641 }
642
643 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
644 {
645 u64 epb;
646 int ret;
647
648 if (!static_cpu_has(X86_FEATURE_EPB))
649 return -ENXIO;
650
651 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
652 if (ret)
653 return (s16)ret;
654
655 return (s16)(epb & 0x0f);
656 }
657
658 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
659 {
660 s16 epp;
661
662 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
663 /*
664 * When hwp_req_data is 0, means that caller didn't read
665 * MSR_HWP_REQUEST, so need to read and get EPP.
666 */
667 if (!hwp_req_data) {
668 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
669 &hwp_req_data);
670 if (epp)
671 return epp;
672 }
673 epp = (hwp_req_data >> 24) & 0xff;
674 } else {
675 /* When there is no EPP present, HWP uses EPB settings */
676 epp = intel_pstate_get_epb(cpu_data);
677 }
678
679 return epp;
680 }
681
682 static int intel_pstate_set_epb(int cpu, s16 pref)
683 {
684 u64 epb;
685 int ret;
686
687 if (!static_cpu_has(X86_FEATURE_EPB))
688 return -ENXIO;
689
690 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
691 if (ret)
692 return ret;
693
694 epb = (epb & ~0x0f) | pref;
695 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
696
697 return 0;
698 }
699
700 /*
701 * EPP/EPB display strings corresponding to EPP index in the
702 * energy_perf_strings[]
703 * index String
704 *-------------------------------------
705 * 0 default
706 * 1 performance
707 * 2 balance_performance
708 * 3 balance_power
709 * 4 power
710 */
711 static const char * const energy_perf_strings[] = {
712 "default",
713 "performance",
714 "balance_performance",
715 "balance_power",
716 "power",
717 NULL
718 };
719
720 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
721 {
722 s16 epp;
723 int index = -EINVAL;
724
725 epp = intel_pstate_get_epp(cpu_data, 0);
726 if (epp < 0)
727 return epp;
728
729 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
730 /*
731 * Range:
732 * 0x00-0x3F : Performance
733 * 0x40-0x7F : Balance performance
734 * 0x80-0xBF : Balance power
735 * 0xC0-0xFF : Power
736 * The EPP is a 8 bit value, but our ranges restrict the
737 * value which can be set. Here only using top two bits
738 * effectively.
739 */
740 index = (epp >> 6) + 1;
741 } else if (static_cpu_has(X86_FEATURE_EPB)) {
742 /*
743 * Range:
744 * 0x00-0x03 : Performance
745 * 0x04-0x07 : Balance performance
746 * 0x08-0x0B : Balance power
747 * 0x0C-0x0F : Power
748 * The EPB is a 4 bit value, but our ranges restrict the
749 * value which can be set. Here only using top two bits
750 * effectively.
751 */
752 index = (epp >> 2) + 1;
753 }
754
755 return index;
756 }
757
758 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
759 int pref_index)
760 {
761 int epp = -EINVAL;
762 int ret;
763
764 if (!pref_index)
765 epp = cpu_data->epp_default;
766
767 mutex_lock(&intel_pstate_limits_lock);
768
769 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
770 u64 value;
771
772 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
773 if (ret)
774 goto return_pref;
775
776 value &= ~GENMASK_ULL(31, 24);
777
778 /*
779 * If epp is not default, convert from index into
780 * energy_perf_strings to epp value, by shifting 6
781 * bits left to use only top two bits in epp.
782 * The resultant epp need to shifted by 24 bits to
783 * epp position in MSR_HWP_REQUEST.
784 */
785 if (epp == -EINVAL)
786 epp = (pref_index - 1) << 6;
787
788 value |= (u64)epp << 24;
789 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
790 } else {
791 if (epp == -EINVAL)
792 epp = (pref_index - 1) << 2;
793 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
794 }
795 return_pref:
796 mutex_unlock(&intel_pstate_limits_lock);
797
798 return ret;
799 }
800
801 static ssize_t show_energy_performance_available_preferences(
802 struct cpufreq_policy *policy, char *buf)
803 {
804 int i = 0;
805 int ret = 0;
806
807 while (energy_perf_strings[i] != NULL)
808 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
809
810 ret += sprintf(&buf[ret], "\n");
811
812 return ret;
813 }
814
815 cpufreq_freq_attr_ro(energy_performance_available_preferences);
816
817 static ssize_t store_energy_performance_preference(
818 struct cpufreq_policy *policy, const char *buf, size_t count)
819 {
820 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
821 char str_preference[21];
822 int ret, i = 0;
823
824 ret = sscanf(buf, "%20s", str_preference);
825 if (ret != 1)
826 return -EINVAL;
827
828 while (energy_perf_strings[i] != NULL) {
829 if (!strcmp(str_preference, energy_perf_strings[i])) {
830 intel_pstate_set_energy_pref_index(cpu_data, i);
831 return count;
832 }
833 ++i;
834 }
835
836 return -EINVAL;
837 }
838
839 static ssize_t show_energy_performance_preference(
840 struct cpufreq_policy *policy, char *buf)
841 {
842 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
843 int preference;
844
845 preference = intel_pstate_get_energy_pref_index(cpu_data);
846 if (preference < 0)
847 return preference;
848
849 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
850 }
851
852 cpufreq_freq_attr_rw(energy_performance_preference);
853
854 static struct freq_attr *hwp_cpufreq_attrs[] = {
855 &energy_performance_preference,
856 &energy_performance_available_preferences,
857 NULL,
858 };
859
860 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
861 {
862 int min, hw_min, max, hw_max, cpu, range, adj_range;
863 struct perf_limits *perf_limits = limits;
864 u64 value, cap;
865
866 for_each_cpu(cpu, policy->cpus) {
867 int max_perf_pct, min_perf_pct;
868 struct cpudata *cpu_data = all_cpu_data[cpu];
869 s16 epp;
870
871 if (per_cpu_limits)
872 perf_limits = all_cpu_data[cpu]->perf_limits;
873
874 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
875 hw_min = HWP_LOWEST_PERF(cap);
876 hw_max = HWP_HIGHEST_PERF(cap);
877 range = hw_max - hw_min;
878
879 max_perf_pct = perf_limits->max_perf_pct;
880 min_perf_pct = perf_limits->min_perf_pct;
881
882 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
883 adj_range = min_perf_pct * range / 100;
884 min = hw_min + adj_range;
885 value &= ~HWP_MIN_PERF(~0L);
886 value |= HWP_MIN_PERF(min);
887
888 adj_range = max_perf_pct * range / 100;
889 max = hw_min + adj_range;
890 if (limits->no_turbo) {
891 hw_max = HWP_GUARANTEED_PERF(cap);
892 if (hw_max < max)
893 max = hw_max;
894 }
895
896 value &= ~HWP_MAX_PERF(~0L);
897 value |= HWP_MAX_PERF(max);
898
899 if (cpu_data->epp_policy == cpu_data->policy)
900 goto skip_epp;
901
902 cpu_data->epp_policy = cpu_data->policy;
903
904 if (cpu_data->epp_saved >= 0) {
905 epp = cpu_data->epp_saved;
906 cpu_data->epp_saved = -EINVAL;
907 goto update_epp;
908 }
909
910 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
911 epp = intel_pstate_get_epp(cpu_data, value);
912 cpu_data->epp_powersave = epp;
913 /* If EPP read was failed, then don't try to write */
914 if (epp < 0)
915 goto skip_epp;
916
917
918 epp = 0;
919 } else {
920 /* skip setting EPP, when saved value is invalid */
921 if (cpu_data->epp_powersave < 0)
922 goto skip_epp;
923
924 /*
925 * No need to restore EPP when it is not zero. This
926 * means:
927 * - Policy is not changed
928 * - user has manually changed
929 * - Error reading EPB
930 */
931 epp = intel_pstate_get_epp(cpu_data, value);
932 if (epp)
933 goto skip_epp;
934
935 epp = cpu_data->epp_powersave;
936 }
937 update_epp:
938 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
939 value &= ~GENMASK_ULL(31, 24);
940 value |= (u64)epp << 24;
941 } else {
942 intel_pstate_set_epb(cpu, epp);
943 }
944 skip_epp:
945 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
946 }
947 }
948
949 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
950 {
951 if (hwp_active)
952 intel_pstate_hwp_set(policy);
953
954 return 0;
955 }
956
957 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
958 {
959 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
960
961 if (!hwp_active)
962 return 0;
963
964 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
965
966 return 0;
967 }
968
969 static int intel_pstate_resume(struct cpufreq_policy *policy)
970 {
971 int ret;
972
973 if (!hwp_active)
974 return 0;
975
976 mutex_lock(&intel_pstate_limits_lock);
977
978 all_cpu_data[policy->cpu]->epp_policy = 0;
979
980 ret = intel_pstate_hwp_set_policy(policy);
981
982 mutex_unlock(&intel_pstate_limits_lock);
983
984 return ret;
985 }
986
987 static void intel_pstate_update_policies(void)
988 {
989 int cpu;
990
991 for_each_possible_cpu(cpu)
992 cpufreq_update_policy(cpu);
993 }
994
995 /************************** debugfs begin ************************/
996 static int pid_param_set(void *data, u64 val)
997 {
998 *(u32 *)data = val;
999 intel_pstate_reset_all_pid();
1000 return 0;
1001 }
1002
1003 static int pid_param_get(void *data, u64 *val)
1004 {
1005 *val = *(u32 *)data;
1006 return 0;
1007 }
1008 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
1009
1010 struct pid_param {
1011 char *name;
1012 void *value;
1013 };
1014
1015 static struct pid_param pid_files[] = {
1016 {"sample_rate_ms", &pid_params.sample_rate_ms},
1017 {"d_gain_pct", &pid_params.d_gain_pct},
1018 {"i_gain_pct", &pid_params.i_gain_pct},
1019 {"deadband", &pid_params.deadband},
1020 {"setpoint", &pid_params.setpoint},
1021 {"p_gain_pct", &pid_params.p_gain_pct},
1022 {NULL, NULL}
1023 };
1024
1025 static void __init intel_pstate_debug_expose_params(void)
1026 {
1027 struct dentry *debugfs_parent;
1028 int i = 0;
1029
1030 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
1031 if (IS_ERR_OR_NULL(debugfs_parent))
1032 return;
1033 while (pid_files[i].name) {
1034 debugfs_create_file(pid_files[i].name, 0660,
1035 debugfs_parent, pid_files[i].value,
1036 &fops_pid_param);
1037 i++;
1038 }
1039 }
1040
1041 /************************** debugfs end ************************/
1042
1043 /************************** sysfs begin ************************/
1044 #define show_one(file_name, object) \
1045 static ssize_t show_##file_name \
1046 (struct kobject *kobj, struct attribute *attr, char *buf) \
1047 { \
1048 return sprintf(buf, "%u\n", limits->object); \
1049 }
1050
1051 static ssize_t show_turbo_pct(struct kobject *kobj,
1052 struct attribute *attr, char *buf)
1053 {
1054 struct cpudata *cpu;
1055 int total, no_turbo, turbo_pct;
1056 uint32_t turbo_fp;
1057
1058 cpu = all_cpu_data[0];
1059
1060 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1061 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1062 turbo_fp = div_fp(no_turbo, total);
1063 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1064 return sprintf(buf, "%u\n", turbo_pct);
1065 }
1066
1067 static ssize_t show_num_pstates(struct kobject *kobj,
1068 struct attribute *attr, char *buf)
1069 {
1070 struct cpudata *cpu;
1071 int total;
1072
1073 cpu = all_cpu_data[0];
1074 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1075 return sprintf(buf, "%u\n", total);
1076 }
1077
1078 static ssize_t show_no_turbo(struct kobject *kobj,
1079 struct attribute *attr, char *buf)
1080 {
1081 ssize_t ret;
1082
1083 update_turbo_state();
1084 if (limits->turbo_disabled)
1085 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1086 else
1087 ret = sprintf(buf, "%u\n", limits->no_turbo);
1088
1089 return ret;
1090 }
1091
1092 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1093 const char *buf, size_t count)
1094 {
1095 unsigned int input;
1096 int ret;
1097
1098 ret = sscanf(buf, "%u", &input);
1099 if (ret != 1)
1100 return -EINVAL;
1101
1102 mutex_lock(&intel_pstate_limits_lock);
1103
1104 update_turbo_state();
1105 if (limits->turbo_disabled) {
1106 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1107 mutex_unlock(&intel_pstate_limits_lock);
1108 return -EPERM;
1109 }
1110
1111 limits->no_turbo = clamp_t(int, input, 0, 1);
1112
1113 mutex_unlock(&intel_pstate_limits_lock);
1114
1115 intel_pstate_update_policies();
1116
1117 return count;
1118 }
1119
1120 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1121 const char *buf, size_t count)
1122 {
1123 unsigned int input;
1124 int ret;
1125
1126 ret = sscanf(buf, "%u", &input);
1127 if (ret != 1)
1128 return -EINVAL;
1129
1130 mutex_lock(&intel_pstate_limits_lock);
1131
1132 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
1133 limits->max_perf_pct = min(limits->max_policy_pct,
1134 limits->max_sysfs_pct);
1135 limits->max_perf_pct = max(limits->min_policy_pct,
1136 limits->max_perf_pct);
1137 limits->max_perf_pct = max(limits->min_perf_pct,
1138 limits->max_perf_pct);
1139 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1140
1141 mutex_unlock(&intel_pstate_limits_lock);
1142
1143 intel_pstate_update_policies();
1144
1145 return count;
1146 }
1147
1148 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1149 const char *buf, size_t count)
1150 {
1151 unsigned int input;
1152 int ret;
1153
1154 ret = sscanf(buf, "%u", &input);
1155 if (ret != 1)
1156 return -EINVAL;
1157
1158 mutex_lock(&intel_pstate_limits_lock);
1159
1160 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
1161 limits->min_perf_pct = max(limits->min_policy_pct,
1162 limits->min_sysfs_pct);
1163 limits->min_perf_pct = min(limits->max_policy_pct,
1164 limits->min_perf_pct);
1165 limits->min_perf_pct = min(limits->max_perf_pct,
1166 limits->min_perf_pct);
1167 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1168
1169 mutex_unlock(&intel_pstate_limits_lock);
1170
1171 intel_pstate_update_policies();
1172
1173 return count;
1174 }
1175
1176 show_one(max_perf_pct, max_perf_pct);
1177 show_one(min_perf_pct, min_perf_pct);
1178
1179 define_one_global_rw(no_turbo);
1180 define_one_global_rw(max_perf_pct);
1181 define_one_global_rw(min_perf_pct);
1182 define_one_global_ro(turbo_pct);
1183 define_one_global_ro(num_pstates);
1184
1185 static struct attribute *intel_pstate_attributes[] = {
1186 &no_turbo.attr,
1187 &turbo_pct.attr,
1188 &num_pstates.attr,
1189 NULL
1190 };
1191
1192 static struct attribute_group intel_pstate_attr_group = {
1193 .attrs = intel_pstate_attributes,
1194 };
1195
1196 static void __init intel_pstate_sysfs_expose_params(void)
1197 {
1198 struct kobject *intel_pstate_kobject;
1199 int rc;
1200
1201 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1202 &cpu_subsys.dev_root->kobj);
1203 if (WARN_ON(!intel_pstate_kobject))
1204 return;
1205
1206 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1207 if (WARN_ON(rc))
1208 return;
1209
1210 /*
1211 * If per cpu limits are enforced there are no global limits, so
1212 * return without creating max/min_perf_pct attributes
1213 */
1214 if (per_cpu_limits)
1215 return;
1216
1217 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1218 WARN_ON(rc);
1219
1220 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1221 WARN_ON(rc);
1222
1223 }
1224 /************************** sysfs end ************************/
1225
1226 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1227 {
1228 /* First disable HWP notification interrupt as we don't process them */
1229 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1230 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1231
1232 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1233 cpudata->epp_policy = 0;
1234 if (cpudata->epp_default == -EINVAL)
1235 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1236 }
1237
1238 #define MSR_IA32_POWER_CTL_BIT_EE 19
1239
1240 /* Disable energy efficiency optimization */
1241 static void intel_pstate_disable_ee(int cpu)
1242 {
1243 u64 power_ctl;
1244 int ret;
1245
1246 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1247 if (ret)
1248 return;
1249
1250 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1251 pr_info("Disabling energy efficiency optimization\n");
1252 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1253 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1254 }
1255 }
1256
1257 static int atom_get_min_pstate(void)
1258 {
1259 u64 value;
1260
1261 rdmsrl(ATOM_RATIOS, value);
1262 return (value >> 8) & 0x7F;
1263 }
1264
1265 static int atom_get_max_pstate(void)
1266 {
1267 u64 value;
1268
1269 rdmsrl(ATOM_RATIOS, value);
1270 return (value >> 16) & 0x7F;
1271 }
1272
1273 static int atom_get_turbo_pstate(void)
1274 {
1275 u64 value;
1276
1277 rdmsrl(ATOM_TURBO_RATIOS, value);
1278 return value & 0x7F;
1279 }
1280
1281 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1282 {
1283 u64 val;
1284 int32_t vid_fp;
1285 u32 vid;
1286
1287 val = (u64)pstate << 8;
1288 if (limits->no_turbo && !limits->turbo_disabled)
1289 val |= (u64)1 << 32;
1290
1291 vid_fp = cpudata->vid.min + mul_fp(
1292 int_tofp(pstate - cpudata->pstate.min_pstate),
1293 cpudata->vid.ratio);
1294
1295 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1296 vid = ceiling_fp(vid_fp);
1297
1298 if (pstate > cpudata->pstate.max_pstate)
1299 vid = cpudata->vid.turbo;
1300
1301 return val | vid;
1302 }
1303
1304 static int silvermont_get_scaling(void)
1305 {
1306 u64 value;
1307 int i;
1308 /* Defined in Table 35-6 from SDM (Sept 2015) */
1309 static int silvermont_freq_table[] = {
1310 83300, 100000, 133300, 116700, 80000};
1311
1312 rdmsrl(MSR_FSB_FREQ, value);
1313 i = value & 0x7;
1314 WARN_ON(i > 4);
1315
1316 return silvermont_freq_table[i];
1317 }
1318
1319 static int airmont_get_scaling(void)
1320 {
1321 u64 value;
1322 int i;
1323 /* Defined in Table 35-10 from SDM (Sept 2015) */
1324 static int airmont_freq_table[] = {
1325 83300, 100000, 133300, 116700, 80000,
1326 93300, 90000, 88900, 87500};
1327
1328 rdmsrl(MSR_FSB_FREQ, value);
1329 i = value & 0xF;
1330 WARN_ON(i > 8);
1331
1332 return airmont_freq_table[i];
1333 }
1334
1335 static void atom_get_vid(struct cpudata *cpudata)
1336 {
1337 u64 value;
1338
1339 rdmsrl(ATOM_VIDS, value);
1340 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1341 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1342 cpudata->vid.ratio = div_fp(
1343 cpudata->vid.max - cpudata->vid.min,
1344 int_tofp(cpudata->pstate.max_pstate -
1345 cpudata->pstate.min_pstate));
1346
1347 rdmsrl(ATOM_TURBO_VIDS, value);
1348 cpudata->vid.turbo = value & 0x7f;
1349 }
1350
1351 static int core_get_min_pstate(void)
1352 {
1353 u64 value;
1354
1355 rdmsrl(MSR_PLATFORM_INFO, value);
1356 return (value >> 40) & 0xFF;
1357 }
1358
1359 static int core_get_max_pstate_physical(void)
1360 {
1361 u64 value;
1362
1363 rdmsrl(MSR_PLATFORM_INFO, value);
1364 return (value >> 8) & 0xFF;
1365 }
1366
1367 static int core_get_max_pstate(void)
1368 {
1369 u64 tar;
1370 u64 plat_info;
1371 int max_pstate;
1372 int err;
1373
1374 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1375 max_pstate = (plat_info >> 8) & 0xFF;
1376
1377 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1378 if (!err) {
1379 /* Do some sanity checking for safety */
1380 if (plat_info & 0x600000000) {
1381 u64 tdp_ctrl;
1382 u64 tdp_ratio;
1383 int tdp_msr;
1384
1385 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1386 if (err)
1387 goto skip_tar;
1388
1389 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
1390 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1391 if (err)
1392 goto skip_tar;
1393
1394 /* For level 1 and 2, bits[23:16] contain the ratio */
1395 if (tdp_ctrl)
1396 tdp_ratio >>= 16;
1397
1398 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1399 if (tdp_ratio - 1 == tar) {
1400 max_pstate = tar;
1401 pr_debug("max_pstate=TAC %x\n", max_pstate);
1402 } else {
1403 goto skip_tar;
1404 }
1405 }
1406 }
1407
1408 skip_tar:
1409 return max_pstate;
1410 }
1411
1412 static int core_get_turbo_pstate(void)
1413 {
1414 u64 value;
1415 int nont, ret;
1416
1417 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1418 nont = core_get_max_pstate();
1419 ret = (value) & 255;
1420 if (ret <= nont)
1421 ret = nont;
1422 return ret;
1423 }
1424
1425 static inline int core_get_scaling(void)
1426 {
1427 return 100000;
1428 }
1429
1430 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1431 {
1432 u64 val;
1433
1434 val = (u64)pstate << 8;
1435 if (limits->no_turbo && !limits->turbo_disabled)
1436 val |= (u64)1 << 32;
1437
1438 return val;
1439 }
1440
1441 static int knl_get_turbo_pstate(void)
1442 {
1443 u64 value;
1444 int nont, ret;
1445
1446 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1447 nont = core_get_max_pstate();
1448 ret = (((value) >> 8) & 0xFF);
1449 if (ret <= nont)
1450 ret = nont;
1451 return ret;
1452 }
1453
1454 static struct cpu_defaults core_params = {
1455 .pid_policy = {
1456 .sample_rate_ms = 10,
1457 .deadband = 0,
1458 .setpoint = 97,
1459 .p_gain_pct = 20,
1460 .d_gain_pct = 0,
1461 .i_gain_pct = 0,
1462 },
1463 .funcs = {
1464 .get_max = core_get_max_pstate,
1465 .get_max_physical = core_get_max_pstate_physical,
1466 .get_min = core_get_min_pstate,
1467 .get_turbo = core_get_turbo_pstate,
1468 .get_scaling = core_get_scaling,
1469 .get_val = core_get_val,
1470 .get_target_pstate = get_target_pstate_use_performance,
1471 },
1472 };
1473
1474 static const struct cpu_defaults silvermont_params = {
1475 .pid_policy = {
1476 .sample_rate_ms = 10,
1477 .deadband = 0,
1478 .setpoint = 60,
1479 .p_gain_pct = 14,
1480 .d_gain_pct = 0,
1481 .i_gain_pct = 4,
1482 },
1483 .funcs = {
1484 .get_max = atom_get_max_pstate,
1485 .get_max_physical = atom_get_max_pstate,
1486 .get_min = atom_get_min_pstate,
1487 .get_turbo = atom_get_turbo_pstate,
1488 .get_val = atom_get_val,
1489 .get_scaling = silvermont_get_scaling,
1490 .get_vid = atom_get_vid,
1491 .get_target_pstate = get_target_pstate_use_cpu_load,
1492 },
1493 };
1494
1495 static const struct cpu_defaults airmont_params = {
1496 .pid_policy = {
1497 .sample_rate_ms = 10,
1498 .deadband = 0,
1499 .setpoint = 60,
1500 .p_gain_pct = 14,
1501 .d_gain_pct = 0,
1502 .i_gain_pct = 4,
1503 },
1504 .funcs = {
1505 .get_max = atom_get_max_pstate,
1506 .get_max_physical = atom_get_max_pstate,
1507 .get_min = atom_get_min_pstate,
1508 .get_turbo = atom_get_turbo_pstate,
1509 .get_val = atom_get_val,
1510 .get_scaling = airmont_get_scaling,
1511 .get_vid = atom_get_vid,
1512 .get_target_pstate = get_target_pstate_use_cpu_load,
1513 },
1514 };
1515
1516 static const struct cpu_defaults knl_params = {
1517 .pid_policy = {
1518 .sample_rate_ms = 10,
1519 .deadband = 0,
1520 .setpoint = 97,
1521 .p_gain_pct = 20,
1522 .d_gain_pct = 0,
1523 .i_gain_pct = 0,
1524 },
1525 .funcs = {
1526 .get_max = core_get_max_pstate,
1527 .get_max_physical = core_get_max_pstate_physical,
1528 .get_min = core_get_min_pstate,
1529 .get_turbo = knl_get_turbo_pstate,
1530 .get_scaling = core_get_scaling,
1531 .get_val = core_get_val,
1532 .get_target_pstate = get_target_pstate_use_performance,
1533 },
1534 };
1535
1536 static const struct cpu_defaults bxt_params = {
1537 .pid_policy = {
1538 .sample_rate_ms = 10,
1539 .deadband = 0,
1540 .setpoint = 60,
1541 .p_gain_pct = 14,
1542 .d_gain_pct = 0,
1543 .i_gain_pct = 4,
1544 },
1545 .funcs = {
1546 .get_max = core_get_max_pstate,
1547 .get_max_physical = core_get_max_pstate_physical,
1548 .get_min = core_get_min_pstate,
1549 .get_turbo = core_get_turbo_pstate,
1550 .get_scaling = core_get_scaling,
1551 .get_val = core_get_val,
1552 .get_target_pstate = get_target_pstate_use_cpu_load,
1553 },
1554 };
1555
1556 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1557 {
1558 int max_perf = cpu->pstate.turbo_pstate;
1559 int max_perf_adj;
1560 int min_perf;
1561 struct perf_limits *perf_limits = limits;
1562
1563 if (limits->no_turbo || limits->turbo_disabled)
1564 max_perf = cpu->pstate.max_pstate;
1565
1566 if (per_cpu_limits)
1567 perf_limits = cpu->perf_limits;
1568
1569 /*
1570 * performance can be limited by user through sysfs, by cpufreq
1571 * policy, or by cpu specific default values determined through
1572 * experimentation.
1573 */
1574 max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1575 *max = clamp_t(int, max_perf_adj,
1576 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1577
1578 min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1579 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1580 }
1581
1582 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1583 {
1584 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1585 cpu->pstate.current_pstate = pstate;
1586 /*
1587 * Generally, there is no guarantee that this code will always run on
1588 * the CPU being updated, so force the register update to run on the
1589 * right CPU.
1590 */
1591 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1592 pstate_funcs.get_val(cpu, pstate));
1593 }
1594
1595 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1596 {
1597 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1598 }
1599
1600 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1601 {
1602 int min_pstate, max_pstate;
1603
1604 update_turbo_state();
1605 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1606 intel_pstate_set_pstate(cpu, max_pstate);
1607 }
1608
1609 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1610 {
1611 cpu->pstate.min_pstate = pstate_funcs.get_min();
1612 cpu->pstate.max_pstate = pstate_funcs.get_max();
1613 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1614 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1615 cpu->pstate.scaling = pstate_funcs.get_scaling();
1616 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1617 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1618
1619 if (pstate_funcs.get_vid)
1620 pstate_funcs.get_vid(cpu);
1621
1622 intel_pstate_set_min_pstate(cpu);
1623 }
1624
1625 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1626 {
1627 struct sample *sample = &cpu->sample;
1628
1629 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1630 }
1631
1632 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1633 {
1634 u64 aperf, mperf;
1635 unsigned long flags;
1636 u64 tsc;
1637
1638 local_irq_save(flags);
1639 rdmsrl(MSR_IA32_APERF, aperf);
1640 rdmsrl(MSR_IA32_MPERF, mperf);
1641 tsc = rdtsc();
1642 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1643 local_irq_restore(flags);
1644 return false;
1645 }
1646 local_irq_restore(flags);
1647
1648 cpu->last_sample_time = cpu->sample.time;
1649 cpu->sample.time = time;
1650 cpu->sample.aperf = aperf;
1651 cpu->sample.mperf = mperf;
1652 cpu->sample.tsc = tsc;
1653 cpu->sample.aperf -= cpu->prev_aperf;
1654 cpu->sample.mperf -= cpu->prev_mperf;
1655 cpu->sample.tsc -= cpu->prev_tsc;
1656
1657 cpu->prev_aperf = aperf;
1658 cpu->prev_mperf = mperf;
1659 cpu->prev_tsc = tsc;
1660 /*
1661 * First time this function is invoked in a given cycle, all of the
1662 * previous sample data fields are equal to zero or stale and they must
1663 * be populated with meaningful numbers for things to work, so assume
1664 * that sample.time will always be reset before setting the utilization
1665 * update hook and make the caller skip the sample then.
1666 */
1667 return !!cpu->last_sample_time;
1668 }
1669
1670 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1671 {
1672 return mul_ext_fp(cpu->sample.core_avg_perf,
1673 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1674 }
1675
1676 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1677 {
1678 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1679 cpu->sample.core_avg_perf);
1680 }
1681
1682 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1683 {
1684 struct sample *sample = &cpu->sample;
1685 int32_t busy_frac, boost;
1686 int target, avg_pstate;
1687
1688 busy_frac = div_fp(sample->mperf, sample->tsc);
1689
1690 boost = cpu->iowait_boost;
1691 cpu->iowait_boost >>= 1;
1692
1693 if (busy_frac < boost)
1694 busy_frac = boost;
1695
1696 sample->busy_scaled = busy_frac * 100;
1697
1698 target = limits->no_turbo || limits->turbo_disabled ?
1699 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1700 target += target >> 2;
1701 target = mul_fp(target, busy_frac);
1702 if (target < cpu->pstate.min_pstate)
1703 target = cpu->pstate.min_pstate;
1704
1705 /*
1706 * If the average P-state during the previous cycle was higher than the
1707 * current target, add 50% of the difference to the target to reduce
1708 * possible performance oscillations and offset possible performance
1709 * loss related to moving the workload from one CPU to another within
1710 * a package/module.
1711 */
1712 avg_pstate = get_avg_pstate(cpu);
1713 if (avg_pstate > target)
1714 target += (avg_pstate - target) >> 1;
1715
1716 return target;
1717 }
1718
1719 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1720 {
1721 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1722 u64 duration_ns;
1723
1724 /*
1725 * perf_scaled is the ratio of the average P-state during the last
1726 * sampling period to the P-state requested last time (in percent).
1727 *
1728 * That measures the system's response to the previous P-state
1729 * selection.
1730 */
1731 max_pstate = cpu->pstate.max_pstate_physical;
1732 current_pstate = cpu->pstate.current_pstate;
1733 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1734 div_fp(100 * max_pstate, current_pstate));
1735
1736 /*
1737 * Since our utilization update callback will not run unless we are
1738 * in C0, check if the actual elapsed time is significantly greater (3x)
1739 * than our sample interval. If it is, then we were idle for a long
1740 * enough period of time to adjust our performance metric.
1741 */
1742 duration_ns = cpu->sample.time - cpu->last_sample_time;
1743 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1744 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1745 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1746 } else {
1747 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1748 if (sample_ratio < int_tofp(1))
1749 perf_scaled = 0;
1750 }
1751
1752 cpu->sample.busy_scaled = perf_scaled;
1753 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1754 }
1755
1756 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1757 {
1758 int max_perf, min_perf;
1759
1760 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1761 pstate = clamp_t(int, pstate, min_perf, max_perf);
1762 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1763 return pstate;
1764 }
1765
1766 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1767 {
1768 pstate = intel_pstate_prepare_request(cpu, pstate);
1769 if (pstate == cpu->pstate.current_pstate)
1770 return;
1771
1772 cpu->pstate.current_pstate = pstate;
1773 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1774 }
1775
1776 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1777 {
1778 int from, target_pstate;
1779 struct sample *sample;
1780
1781 from = cpu->pstate.current_pstate;
1782
1783 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1784 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1785
1786 update_turbo_state();
1787
1788 intel_pstate_update_pstate(cpu, target_pstate);
1789
1790 sample = &cpu->sample;
1791 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1792 fp_toint(sample->busy_scaled),
1793 from,
1794 cpu->pstate.current_pstate,
1795 sample->mperf,
1796 sample->aperf,
1797 sample->tsc,
1798 get_avg_frequency(cpu),
1799 fp_toint(cpu->iowait_boost * 100));
1800 }
1801
1802 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1803 unsigned int flags)
1804 {
1805 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1806 u64 delta_ns;
1807
1808 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1809 if (flags & SCHED_CPUFREQ_IOWAIT) {
1810 cpu->iowait_boost = int_tofp(1);
1811 } else if (cpu->iowait_boost) {
1812 /* Clear iowait_boost if the CPU may have been idle. */
1813 delta_ns = time - cpu->last_update;
1814 if (delta_ns > TICK_NSEC)
1815 cpu->iowait_boost = 0;
1816 }
1817 cpu->last_update = time;
1818 }
1819
1820 delta_ns = time - cpu->sample.time;
1821 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1822 bool sample_taken = intel_pstate_sample(cpu, time);
1823
1824 if (sample_taken) {
1825 intel_pstate_calc_avg_perf(cpu);
1826 if (!hwp_active)
1827 intel_pstate_adjust_busy_pstate(cpu);
1828 }
1829 }
1830 }
1831
1832 #define ICPU(model, policy) \
1833 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1834 (unsigned long)&policy }
1835
1836 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1837 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1838 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1839 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1840 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1841 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1842 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1843 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1844 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1845 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1846 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1847 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1848 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1849 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1850 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1851 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1852 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1853 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
1854 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_params),
1855 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
1856 {}
1857 };
1858 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1859
1860 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1861 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1862 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1863 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1864 {}
1865 };
1866
1867 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1868 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1869 {}
1870 };
1871
1872 static int intel_pstate_init_cpu(unsigned int cpunum)
1873 {
1874 struct cpudata *cpu;
1875
1876 cpu = all_cpu_data[cpunum];
1877
1878 if (!cpu) {
1879 unsigned int size = sizeof(struct cpudata);
1880
1881 if (per_cpu_limits)
1882 size += sizeof(struct perf_limits);
1883
1884 cpu = kzalloc(size, GFP_KERNEL);
1885 if (!cpu)
1886 return -ENOMEM;
1887
1888 all_cpu_data[cpunum] = cpu;
1889 if (per_cpu_limits)
1890 cpu->perf_limits = (struct perf_limits *)(cpu + 1);
1891
1892 cpu->epp_default = -EINVAL;
1893 cpu->epp_powersave = -EINVAL;
1894 cpu->epp_saved = -EINVAL;
1895 }
1896
1897 cpu = all_cpu_data[cpunum];
1898
1899 cpu->cpu = cpunum;
1900
1901 if (hwp_active) {
1902 const struct x86_cpu_id *id;
1903
1904 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1905 if (id)
1906 intel_pstate_disable_ee(cpunum);
1907
1908 intel_pstate_hwp_enable(cpu);
1909 pid_params.sample_rate_ms = 50;
1910 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1911 }
1912
1913 intel_pstate_get_cpu_pstates(cpu);
1914
1915 intel_pstate_busy_pid_reset(cpu);
1916
1917 pr_debug("controlling: cpu %d\n", cpunum);
1918
1919 return 0;
1920 }
1921
1922 static unsigned int intel_pstate_get(unsigned int cpu_num)
1923 {
1924 struct cpudata *cpu = all_cpu_data[cpu_num];
1925
1926 return cpu ? get_avg_frequency(cpu) : 0;
1927 }
1928
1929 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1930 {
1931 struct cpudata *cpu = all_cpu_data[cpu_num];
1932
1933 if (cpu->update_util_set)
1934 return;
1935
1936 /* Prevent intel_pstate_update_util() from using stale data. */
1937 cpu->sample.time = 0;
1938 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1939 intel_pstate_update_util);
1940 cpu->update_util_set = true;
1941 }
1942
1943 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1944 {
1945 struct cpudata *cpu_data = all_cpu_data[cpu];
1946
1947 if (!cpu_data->update_util_set)
1948 return;
1949
1950 cpufreq_remove_update_util_hook(cpu);
1951 cpu_data->update_util_set = false;
1952 synchronize_sched();
1953 }
1954
1955 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1956 {
1957 limits->no_turbo = 0;
1958 limits->turbo_disabled = 0;
1959 limits->max_perf_pct = 100;
1960 limits->max_perf = int_ext_tofp(1);
1961 limits->min_perf_pct = 100;
1962 limits->min_perf = int_ext_tofp(1);
1963 limits->max_policy_pct = 100;
1964 limits->max_sysfs_pct = 100;
1965 limits->min_policy_pct = 0;
1966 limits->min_sysfs_pct = 0;
1967 }
1968
1969 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1970 struct perf_limits *limits)
1971 {
1972
1973 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1974 policy->cpuinfo.max_freq);
1975 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
1976 if (policy->max == policy->min) {
1977 limits->min_policy_pct = limits->max_policy_pct;
1978 } else {
1979 limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
1980 policy->cpuinfo.max_freq);
1981 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
1982 0, 100);
1983 }
1984
1985 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1986 limits->min_perf_pct = max(limits->min_policy_pct,
1987 limits->min_sysfs_pct);
1988 limits->min_perf_pct = min(limits->max_policy_pct,
1989 limits->min_perf_pct);
1990 limits->max_perf_pct = min(limits->max_policy_pct,
1991 limits->max_sysfs_pct);
1992 limits->max_perf_pct = max(limits->min_policy_pct,
1993 limits->max_perf_pct);
1994
1995 /* Make sure min_perf_pct <= max_perf_pct */
1996 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1997
1998 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1999 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
2000 limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
2001 limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2002
2003 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2004 limits->max_perf_pct, limits->min_perf_pct);
2005 }
2006
2007 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2008 {
2009 struct cpudata *cpu;
2010 struct perf_limits *perf_limits = NULL;
2011
2012 if (!policy->cpuinfo.max_freq)
2013 return -ENODEV;
2014
2015 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2016 policy->cpuinfo.max_freq, policy->max);
2017
2018 cpu = all_cpu_data[policy->cpu];
2019 cpu->policy = policy->policy;
2020
2021 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2022 policy->max < policy->cpuinfo.max_freq &&
2023 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
2024 pr_debug("policy->max > max non turbo frequency\n");
2025 policy->max = policy->cpuinfo.max_freq;
2026 }
2027
2028 if (per_cpu_limits)
2029 perf_limits = cpu->perf_limits;
2030
2031 mutex_lock(&intel_pstate_limits_lock);
2032
2033 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
2034 if (!perf_limits) {
2035 limits = &performance_limits;
2036 perf_limits = limits;
2037 }
2038 if (policy->max >= policy->cpuinfo.max_freq &&
2039 !limits->no_turbo) {
2040 pr_debug("set performance\n");
2041 intel_pstate_set_performance_limits(perf_limits);
2042 goto out;
2043 }
2044 } else {
2045 pr_debug("set powersave\n");
2046 if (!perf_limits) {
2047 limits = &powersave_limits;
2048 perf_limits = limits;
2049 }
2050
2051 }
2052
2053 intel_pstate_update_perf_limits(policy, perf_limits);
2054 out:
2055 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2056 /*
2057 * NOHZ_FULL CPUs need this as the governor callback may not
2058 * be invoked on them.
2059 */
2060 intel_pstate_clear_update_util_hook(policy->cpu);
2061 intel_pstate_max_within_limits(cpu);
2062 }
2063
2064 intel_pstate_set_update_util_hook(policy->cpu);
2065
2066 intel_pstate_hwp_set_policy(policy);
2067
2068 mutex_unlock(&intel_pstate_limits_lock);
2069
2070 return 0;
2071 }
2072
2073 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2074 {
2075 cpufreq_verify_within_cpu_limits(policy);
2076
2077 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2078 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2079 return -EINVAL;
2080
2081 /* When per-CPU limits are used, sysfs limits are not used */
2082 if (!per_cpu_limits) {
2083 unsigned int max_freq, min_freq;
2084
2085 max_freq = policy->cpuinfo.max_freq *
2086 limits->max_sysfs_pct / 100;
2087 min_freq = policy->cpuinfo.max_freq *
2088 limits->min_sysfs_pct / 100;
2089 cpufreq_verify_within_limits(policy, min_freq, max_freq);
2090 }
2091
2092 return 0;
2093 }
2094
2095 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2096 {
2097 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2098 }
2099
2100 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2101 {
2102 pr_debug("CPU %d exiting\n", policy->cpu);
2103
2104 intel_pstate_clear_update_util_hook(policy->cpu);
2105 if (hwp_active)
2106 intel_pstate_hwp_save_state(policy);
2107 else
2108 intel_cpufreq_stop_cpu(policy);
2109 }
2110
2111 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2112 {
2113 intel_pstate_exit_perf_limits(policy);
2114
2115 policy->fast_switch_possible = false;
2116
2117 return 0;
2118 }
2119
2120 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2121 {
2122 struct cpudata *cpu;
2123 int rc;
2124
2125 rc = intel_pstate_init_cpu(policy->cpu);
2126 if (rc)
2127 return rc;
2128
2129 cpu = all_cpu_data[policy->cpu];
2130
2131 /*
2132 * We need sane value in the cpu->perf_limits, so inherit from global
2133 * perf_limits limits, which are seeded with values based on the
2134 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
2135 */
2136 if (per_cpu_limits)
2137 memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
2138
2139 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2140 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2141
2142 /* cpuinfo and default policy values */
2143 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2144 update_turbo_state();
2145 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2146 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2147 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2148
2149 intel_pstate_init_acpi_perf_limits(policy);
2150 cpumask_set_cpu(policy->cpu, policy->cpus);
2151
2152 policy->fast_switch_possible = true;
2153
2154 return 0;
2155 }
2156
2157 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2158 {
2159 int ret = __intel_pstate_cpu_init(policy);
2160
2161 if (ret)
2162 return ret;
2163
2164 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2165 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
2166 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2167 else
2168 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2169
2170 return 0;
2171 }
2172
2173 static struct cpufreq_driver intel_pstate = {
2174 .flags = CPUFREQ_CONST_LOOPS,
2175 .verify = intel_pstate_verify_policy,
2176 .setpolicy = intel_pstate_set_policy,
2177 .suspend = intel_pstate_hwp_save_state,
2178 .resume = intel_pstate_resume,
2179 .get = intel_pstate_get,
2180 .init = intel_pstate_cpu_init,
2181 .exit = intel_pstate_cpu_exit,
2182 .stop_cpu = intel_pstate_stop_cpu,
2183 .name = "intel_pstate",
2184 };
2185
2186 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2187 {
2188 struct cpudata *cpu = all_cpu_data[policy->cpu];
2189 struct perf_limits *perf_limits = limits;
2190
2191 update_turbo_state();
2192 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2193 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2194
2195 cpufreq_verify_within_cpu_limits(policy);
2196
2197 if (per_cpu_limits)
2198 perf_limits = cpu->perf_limits;
2199
2200 mutex_lock(&intel_pstate_limits_lock);
2201
2202 intel_pstate_update_perf_limits(policy, perf_limits);
2203
2204 mutex_unlock(&intel_pstate_limits_lock);
2205
2206 return 0;
2207 }
2208
2209 static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
2210 struct cpufreq_policy *policy,
2211 unsigned int target_freq)
2212 {
2213 unsigned int max_freq;
2214
2215 update_turbo_state();
2216
2217 max_freq = limits->no_turbo || limits->turbo_disabled ?
2218 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2219 policy->cpuinfo.max_freq = max_freq;
2220 if (policy->max > max_freq)
2221 policy->max = max_freq;
2222
2223 if (target_freq > max_freq)
2224 target_freq = max_freq;
2225
2226 return target_freq;
2227 }
2228
2229 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2230 unsigned int target_freq,
2231 unsigned int relation)
2232 {
2233 struct cpudata *cpu = all_cpu_data[policy->cpu];
2234 struct cpufreq_freqs freqs;
2235 int target_pstate;
2236
2237 freqs.old = policy->cur;
2238 freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2239
2240 cpufreq_freq_transition_begin(policy, &freqs);
2241 switch (relation) {
2242 case CPUFREQ_RELATION_L:
2243 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2244 break;
2245 case CPUFREQ_RELATION_H:
2246 target_pstate = freqs.new / cpu->pstate.scaling;
2247 break;
2248 default:
2249 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2250 break;
2251 }
2252 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2253 if (target_pstate != cpu->pstate.current_pstate) {
2254 cpu->pstate.current_pstate = target_pstate;
2255 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2256 pstate_funcs.get_val(cpu, target_pstate));
2257 }
2258 cpufreq_freq_transition_end(policy, &freqs, false);
2259
2260 return 0;
2261 }
2262
2263 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2264 unsigned int target_freq)
2265 {
2266 struct cpudata *cpu = all_cpu_data[policy->cpu];
2267 int target_pstate;
2268
2269 target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2270 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2271 intel_pstate_update_pstate(cpu, target_pstate);
2272 return target_freq;
2273 }
2274
2275 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2276 {
2277 int ret = __intel_pstate_cpu_init(policy);
2278
2279 if (ret)
2280 return ret;
2281
2282 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2283 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2284 policy->cur = policy->cpuinfo.min_freq;
2285
2286 return 0;
2287 }
2288
2289 static struct cpufreq_driver intel_cpufreq = {
2290 .flags = CPUFREQ_CONST_LOOPS,
2291 .verify = intel_cpufreq_verify_policy,
2292 .target = intel_cpufreq_target,
2293 .fast_switch = intel_cpufreq_fast_switch,
2294 .init = intel_cpufreq_cpu_init,
2295 .exit = intel_pstate_cpu_exit,
2296 .stop_cpu = intel_cpufreq_stop_cpu,
2297 .name = "intel_cpufreq",
2298 };
2299
2300 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2301
2302 static int no_load __initdata;
2303 static int no_hwp __initdata;
2304 static int hwp_only __initdata;
2305 static unsigned int force_load __initdata;
2306
2307 static int __init intel_pstate_msrs_not_valid(void)
2308 {
2309 if (!pstate_funcs.get_max() ||
2310 !pstate_funcs.get_min() ||
2311 !pstate_funcs.get_turbo())
2312 return -ENODEV;
2313
2314 return 0;
2315 }
2316
2317 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2318 {
2319 pid_params.sample_rate_ms = policy->sample_rate_ms;
2320 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2321 pid_params.p_gain_pct = policy->p_gain_pct;
2322 pid_params.i_gain_pct = policy->i_gain_pct;
2323 pid_params.d_gain_pct = policy->d_gain_pct;
2324 pid_params.deadband = policy->deadband;
2325 pid_params.setpoint = policy->setpoint;
2326 }
2327
2328 #ifdef CONFIG_ACPI
2329 static void intel_pstate_use_acpi_profile(void)
2330 {
2331 if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2332 pstate_funcs.get_target_pstate =
2333 get_target_pstate_use_cpu_load;
2334 }
2335 #else
2336 static void intel_pstate_use_acpi_profile(void)
2337 {
2338 }
2339 #endif
2340
2341 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2342 {
2343 pstate_funcs.get_max = funcs->get_max;
2344 pstate_funcs.get_max_physical = funcs->get_max_physical;
2345 pstate_funcs.get_min = funcs->get_min;
2346 pstate_funcs.get_turbo = funcs->get_turbo;
2347 pstate_funcs.get_scaling = funcs->get_scaling;
2348 pstate_funcs.get_val = funcs->get_val;
2349 pstate_funcs.get_vid = funcs->get_vid;
2350 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2351
2352 intel_pstate_use_acpi_profile();
2353 }
2354
2355 #ifdef CONFIG_ACPI
2356
2357 static bool __init intel_pstate_no_acpi_pss(void)
2358 {
2359 int i;
2360
2361 for_each_possible_cpu(i) {
2362 acpi_status status;
2363 union acpi_object *pss;
2364 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2365 struct acpi_processor *pr = per_cpu(processors, i);
2366
2367 if (!pr)
2368 continue;
2369
2370 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2371 if (ACPI_FAILURE(status))
2372 continue;
2373
2374 pss = buffer.pointer;
2375 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2376 kfree(pss);
2377 return false;
2378 }
2379
2380 kfree(pss);
2381 }
2382
2383 return true;
2384 }
2385
2386 static bool __init intel_pstate_has_acpi_ppc(void)
2387 {
2388 int i;
2389
2390 for_each_possible_cpu(i) {
2391 struct acpi_processor *pr = per_cpu(processors, i);
2392
2393 if (!pr)
2394 continue;
2395 if (acpi_has_method(pr->handle, "_PPC"))
2396 return true;
2397 }
2398 return false;
2399 }
2400
2401 enum {
2402 PSS,
2403 PPC,
2404 };
2405
2406 struct hw_vendor_info {
2407 u16 valid;
2408 char oem_id[ACPI_OEM_ID_SIZE];
2409 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2410 int oem_pwr_table;
2411 };
2412
2413 /* Hardware vendor-specific info that has its own power management modes */
2414 static struct hw_vendor_info vendor_info[] __initdata = {
2415 {1, "HP ", "ProLiant", PSS},
2416 {1, "ORACLE", "X4-2 ", PPC},
2417 {1, "ORACLE", "X4-2L ", PPC},
2418 {1, "ORACLE", "X4-2B ", PPC},
2419 {1, "ORACLE", "X3-2 ", PPC},
2420 {1, "ORACLE", "X3-2L ", PPC},
2421 {1, "ORACLE", "X3-2B ", PPC},
2422 {1, "ORACLE", "X4470M2 ", PPC},
2423 {1, "ORACLE", "X4270M3 ", PPC},
2424 {1, "ORACLE", "X4270M2 ", PPC},
2425 {1, "ORACLE", "X4170M2 ", PPC},
2426 {1, "ORACLE", "X4170 M3", PPC},
2427 {1, "ORACLE", "X4275 M3", PPC},
2428 {1, "ORACLE", "X6-2 ", PPC},
2429 {1, "ORACLE", "Sudbury ", PPC},
2430 {0, "", ""},
2431 };
2432
2433 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2434 {
2435 struct acpi_table_header hdr;
2436 struct hw_vendor_info *v_info;
2437 const struct x86_cpu_id *id;
2438 u64 misc_pwr;
2439
2440 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2441 if (id) {
2442 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2443 if ( misc_pwr & (1 << 8))
2444 return true;
2445 }
2446
2447 if (acpi_disabled ||
2448 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2449 return false;
2450
2451 for (v_info = vendor_info; v_info->valid; v_info++) {
2452 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2453 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2454 ACPI_OEM_TABLE_ID_SIZE))
2455 switch (v_info->oem_pwr_table) {
2456 case PSS:
2457 return intel_pstate_no_acpi_pss();
2458 case PPC:
2459 return intel_pstate_has_acpi_ppc() &&
2460 (!force_load);
2461 }
2462 }
2463
2464 return false;
2465 }
2466
2467 static void intel_pstate_request_control_from_smm(void)
2468 {
2469 /*
2470 * It may be unsafe to request P-states control from SMM if _PPC support
2471 * has not been enabled.
2472 */
2473 if (acpi_ppc)
2474 acpi_processor_pstate_control();
2475 }
2476 #else /* CONFIG_ACPI not enabled */
2477 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2478 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2479 static inline void intel_pstate_request_control_from_smm(void) {}
2480 #endif /* CONFIG_ACPI */
2481
2482 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2483 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2484 {}
2485 };
2486
2487 static int __init intel_pstate_init(void)
2488 {
2489 int cpu, rc = 0;
2490 const struct x86_cpu_id *id;
2491 struct cpu_defaults *cpu_def;
2492
2493 if (no_load)
2494 return -ENODEV;
2495
2496 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2497 copy_cpu_funcs(&core_params.funcs);
2498 hwp_active++;
2499 intel_pstate.attr = hwp_cpufreq_attrs;
2500 goto hwp_cpu_matched;
2501 }
2502
2503 id = x86_match_cpu(intel_pstate_cpu_ids);
2504 if (!id)
2505 return -ENODEV;
2506
2507 cpu_def = (struct cpu_defaults *)id->driver_data;
2508
2509 copy_pid_params(&cpu_def->pid_policy);
2510 copy_cpu_funcs(&cpu_def->funcs);
2511
2512 if (intel_pstate_msrs_not_valid())
2513 return -ENODEV;
2514
2515 hwp_cpu_matched:
2516 /*
2517 * The Intel pstate driver will be ignored if the platform
2518 * firmware has its own power management modes.
2519 */
2520 if (intel_pstate_platform_pwr_mgmt_exists())
2521 return -ENODEV;
2522
2523 pr_info("Intel P-state driver initializing\n");
2524
2525 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2526 if (!all_cpu_data)
2527 return -ENOMEM;
2528
2529 if (!hwp_active && hwp_only)
2530 goto out;
2531
2532 intel_pstate_request_control_from_smm();
2533
2534 rc = cpufreq_register_driver(intel_pstate_driver);
2535 if (rc)
2536 goto out;
2537
2538 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2539 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2540 intel_pstate_debug_expose_params();
2541
2542 intel_pstate_sysfs_expose_params();
2543
2544 if (hwp_active)
2545 pr_info("HWP enabled\n");
2546
2547 return rc;
2548 out:
2549 get_online_cpus();
2550 for_each_online_cpu(cpu) {
2551 if (all_cpu_data[cpu]) {
2552 if (intel_pstate_driver == &intel_pstate)
2553 intel_pstate_clear_update_util_hook(cpu);
2554
2555 kfree(all_cpu_data[cpu]);
2556 }
2557 }
2558
2559 put_online_cpus();
2560 vfree(all_cpu_data);
2561 return -ENODEV;
2562 }
2563 device_initcall(intel_pstate_init);
2564
2565 static int __init intel_pstate_setup(char *str)
2566 {
2567 if (!str)
2568 return -EINVAL;
2569
2570 if (!strcmp(str, "disable")) {
2571 no_load = 1;
2572 } else if (!strcmp(str, "passive")) {
2573 pr_info("Passive mode enabled\n");
2574 intel_pstate_driver = &intel_cpufreq;
2575 no_hwp = 1;
2576 }
2577 if (!strcmp(str, "no_hwp")) {
2578 pr_info("HWP disabled\n");
2579 no_hwp = 1;
2580 }
2581 if (!strcmp(str, "force"))
2582 force_load = 1;
2583 if (!strcmp(str, "hwp_only"))
2584 hwp_only = 1;
2585 if (!strcmp(str, "per_cpu_perf_limits"))
2586 per_cpu_limits = true;
2587
2588 #ifdef CONFIG_ACPI
2589 if (!strcmp(str, "support_acpi_ppc"))
2590 acpi_ppc = true;
2591 #endif
2592
2593 return 0;
2594 }
2595 early_param("intel_pstate", intel_pstate_setup);
2596
2597 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2598 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2599 MODULE_LICENSE("GPL");