]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/intel/igb/igb_main.c
1515abaa5ac9cab53ef4aab0ee05104c5bd2a61f
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/etherdevice.h>
54 #ifdef CONFIG_IGB_DCA
55 #include <linux/dca.h>
56 #endif
57 #include <linux/i2c.h>
58 #include "igb.h"
59
60 #define MAJ 5
61 #define MIN 4
62 #define BUILD 0
63 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
64 __stringify(BUILD) "-k"
65 char igb_driver_name[] = "igb";
66 char igb_driver_version[] = DRV_VERSION;
67 static const char igb_driver_string[] =
68 "Intel(R) Gigabit Ethernet Network Driver";
69 static const char igb_copyright[] =
70 "Copyright (c) 2007-2014 Intel Corporation.";
71
72 static const struct e1000_info *igb_info_tbl[] = {
73 [board_82575] = &e1000_82575_info,
74 };
75
76 static const struct pci_device_id igb_pci_tbl[] = {
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
112 /* required last entry */
113 {0, }
114 };
115
116 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117
118 static int igb_setup_all_tx_resources(struct igb_adapter *);
119 static int igb_setup_all_rx_resources(struct igb_adapter *);
120 static void igb_free_all_tx_resources(struct igb_adapter *);
121 static void igb_free_all_rx_resources(struct igb_adapter *);
122 static void igb_setup_mrqc(struct igb_adapter *);
123 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124 static void igb_remove(struct pci_dev *pdev);
125 static int igb_sw_init(struct igb_adapter *);
126 int igb_open(struct net_device *);
127 int igb_close(struct net_device *);
128 static void igb_configure(struct igb_adapter *);
129 static void igb_configure_tx(struct igb_adapter *);
130 static void igb_configure_rx(struct igb_adapter *);
131 static void igb_clean_all_tx_rings(struct igb_adapter *);
132 static void igb_clean_all_rx_rings(struct igb_adapter *);
133 static void igb_clean_tx_ring(struct igb_ring *);
134 static void igb_clean_rx_ring(struct igb_ring *);
135 static void igb_set_rx_mode(struct net_device *);
136 static void igb_update_phy_info(unsigned long);
137 static void igb_watchdog(unsigned long);
138 static void igb_watchdog_task(struct work_struct *);
139 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
141 struct rtnl_link_stats64 *stats);
142 static int igb_change_mtu(struct net_device *, int);
143 static int igb_set_mac(struct net_device *, void *);
144 static void igb_set_uta(struct igb_adapter *adapter, bool set);
145 static irqreturn_t igb_intr(int irq, void *);
146 static irqreturn_t igb_intr_msi(int irq, void *);
147 static irqreturn_t igb_msix_other(int irq, void *);
148 static irqreturn_t igb_msix_ring(int irq, void *);
149 #ifdef CONFIG_IGB_DCA
150 static void igb_update_dca(struct igb_q_vector *);
151 static void igb_setup_dca(struct igb_adapter *);
152 #endif /* CONFIG_IGB_DCA */
153 static int igb_poll(struct napi_struct *, int);
154 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
155 static int igb_clean_rx_irq(struct igb_q_vector *, int);
156 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157 static void igb_tx_timeout(struct net_device *);
158 static void igb_reset_task(struct work_struct *);
159 static void igb_vlan_mode(struct net_device *netdev,
160 netdev_features_t features);
161 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
162 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
163 static void igb_restore_vlan(struct igb_adapter *);
164 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
165 static void igb_ping_all_vfs(struct igb_adapter *);
166 static void igb_msg_task(struct igb_adapter *);
167 static void igb_vmm_control(struct igb_adapter *);
168 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
169 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
170 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
171 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
172 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
173 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
174 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
175 bool setting);
176 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
177 struct ifla_vf_info *ivi);
178 static void igb_check_vf_rate_limit(struct igb_adapter *);
179 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
180 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
181
182 #ifdef CONFIG_PCI_IOV
183 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
184 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
185 static int igb_disable_sriov(struct pci_dev *dev);
186 static int igb_pci_disable_sriov(struct pci_dev *dev);
187 #endif
188
189 #ifdef CONFIG_PM
190 #ifdef CONFIG_PM_SLEEP
191 static int igb_suspend(struct device *);
192 #endif
193 static int igb_resume(struct device *);
194 static int igb_runtime_suspend(struct device *dev);
195 static int igb_runtime_resume(struct device *dev);
196 static int igb_runtime_idle(struct device *dev);
197 static const struct dev_pm_ops igb_pm_ops = {
198 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200 igb_runtime_idle)
201 };
202 #endif
203 static void igb_shutdown(struct pci_dev *);
204 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205 #ifdef CONFIG_IGB_DCA
206 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207 static struct notifier_block dca_notifier = {
208 .notifier_call = igb_notify_dca,
209 .next = NULL,
210 .priority = 0
211 };
212 #endif
213 #ifdef CONFIG_NET_POLL_CONTROLLER
214 /* for netdump / net console */
215 static void igb_netpoll(struct net_device *);
216 #endif
217 #ifdef CONFIG_PCI_IOV
218 static unsigned int max_vfs;
219 module_param(max_vfs, uint, 0);
220 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
221 #endif /* CONFIG_PCI_IOV */
222
223 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
224 pci_channel_state_t);
225 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
226 static void igb_io_resume(struct pci_dev *);
227
228 static const struct pci_error_handlers igb_err_handler = {
229 .error_detected = igb_io_error_detected,
230 .slot_reset = igb_io_slot_reset,
231 .resume = igb_io_resume,
232 };
233
234 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
235
236 static struct pci_driver igb_driver = {
237 .name = igb_driver_name,
238 .id_table = igb_pci_tbl,
239 .probe = igb_probe,
240 .remove = igb_remove,
241 #ifdef CONFIG_PM
242 .driver.pm = &igb_pm_ops,
243 #endif
244 .shutdown = igb_shutdown,
245 .sriov_configure = igb_pci_sriov_configure,
246 .err_handler = &igb_err_handler
247 };
248
249 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
250 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
251 MODULE_LICENSE("GPL");
252 MODULE_VERSION(DRV_VERSION);
253
254 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
255 static int debug = -1;
256 module_param(debug, int, 0);
257 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
258
259 struct igb_reg_info {
260 u32 ofs;
261 char *name;
262 };
263
264 static const struct igb_reg_info igb_reg_info_tbl[] = {
265
266 /* General Registers */
267 {E1000_CTRL, "CTRL"},
268 {E1000_STATUS, "STATUS"},
269 {E1000_CTRL_EXT, "CTRL_EXT"},
270
271 /* Interrupt Registers */
272 {E1000_ICR, "ICR"},
273
274 /* RX Registers */
275 {E1000_RCTL, "RCTL"},
276 {E1000_RDLEN(0), "RDLEN"},
277 {E1000_RDH(0), "RDH"},
278 {E1000_RDT(0), "RDT"},
279 {E1000_RXDCTL(0), "RXDCTL"},
280 {E1000_RDBAL(0), "RDBAL"},
281 {E1000_RDBAH(0), "RDBAH"},
282
283 /* TX Registers */
284 {E1000_TCTL, "TCTL"},
285 {E1000_TDBAL(0), "TDBAL"},
286 {E1000_TDBAH(0), "TDBAH"},
287 {E1000_TDLEN(0), "TDLEN"},
288 {E1000_TDH(0), "TDH"},
289 {E1000_TDT(0), "TDT"},
290 {E1000_TXDCTL(0), "TXDCTL"},
291 {E1000_TDFH, "TDFH"},
292 {E1000_TDFT, "TDFT"},
293 {E1000_TDFHS, "TDFHS"},
294 {E1000_TDFPC, "TDFPC"},
295
296 /* List Terminator */
297 {}
298 };
299
300 /* igb_regdump - register printout routine */
301 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
302 {
303 int n = 0;
304 char rname[16];
305 u32 regs[8];
306
307 switch (reginfo->ofs) {
308 case E1000_RDLEN(0):
309 for (n = 0; n < 4; n++)
310 regs[n] = rd32(E1000_RDLEN(n));
311 break;
312 case E1000_RDH(0):
313 for (n = 0; n < 4; n++)
314 regs[n] = rd32(E1000_RDH(n));
315 break;
316 case E1000_RDT(0):
317 for (n = 0; n < 4; n++)
318 regs[n] = rd32(E1000_RDT(n));
319 break;
320 case E1000_RXDCTL(0):
321 for (n = 0; n < 4; n++)
322 regs[n] = rd32(E1000_RXDCTL(n));
323 break;
324 case E1000_RDBAL(0):
325 for (n = 0; n < 4; n++)
326 regs[n] = rd32(E1000_RDBAL(n));
327 break;
328 case E1000_RDBAH(0):
329 for (n = 0; n < 4; n++)
330 regs[n] = rd32(E1000_RDBAH(n));
331 break;
332 case E1000_TDBAL(0):
333 for (n = 0; n < 4; n++)
334 regs[n] = rd32(E1000_RDBAL(n));
335 break;
336 case E1000_TDBAH(0):
337 for (n = 0; n < 4; n++)
338 regs[n] = rd32(E1000_TDBAH(n));
339 break;
340 case E1000_TDLEN(0):
341 for (n = 0; n < 4; n++)
342 regs[n] = rd32(E1000_TDLEN(n));
343 break;
344 case E1000_TDH(0):
345 for (n = 0; n < 4; n++)
346 regs[n] = rd32(E1000_TDH(n));
347 break;
348 case E1000_TDT(0):
349 for (n = 0; n < 4; n++)
350 regs[n] = rd32(E1000_TDT(n));
351 break;
352 case E1000_TXDCTL(0):
353 for (n = 0; n < 4; n++)
354 regs[n] = rd32(E1000_TXDCTL(n));
355 break;
356 default:
357 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
358 return;
359 }
360
361 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
362 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
363 regs[2], regs[3]);
364 }
365
366 /* igb_dump - Print registers, Tx-rings and Rx-rings */
367 static void igb_dump(struct igb_adapter *adapter)
368 {
369 struct net_device *netdev = adapter->netdev;
370 struct e1000_hw *hw = &adapter->hw;
371 struct igb_reg_info *reginfo;
372 struct igb_ring *tx_ring;
373 union e1000_adv_tx_desc *tx_desc;
374 struct my_u0 { u64 a; u64 b; } *u0;
375 struct igb_ring *rx_ring;
376 union e1000_adv_rx_desc *rx_desc;
377 u32 staterr;
378 u16 i, n;
379
380 if (!netif_msg_hw(adapter))
381 return;
382
383 /* Print netdevice Info */
384 if (netdev) {
385 dev_info(&adapter->pdev->dev, "Net device Info\n");
386 pr_info("Device Name state trans_start last_rx\n");
387 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388 netdev->state, dev_trans_start(netdev), netdev->last_rx);
389 }
390
391 /* Print Registers */
392 dev_info(&adapter->pdev->dev, "Register Dump\n");
393 pr_info(" Register Name Value\n");
394 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395 reginfo->name; reginfo++) {
396 igb_regdump(hw, reginfo);
397 }
398
399 /* Print TX Ring Summary */
400 if (!netdev || !netif_running(netdev))
401 goto exit;
402
403 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
405 for (n = 0; n < adapter->num_tx_queues; n++) {
406 struct igb_tx_buffer *buffer_info;
407 tx_ring = adapter->tx_ring[n];
408 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410 n, tx_ring->next_to_use, tx_ring->next_to_clean,
411 (u64)dma_unmap_addr(buffer_info, dma),
412 dma_unmap_len(buffer_info, len),
413 buffer_info->next_to_watch,
414 (u64)buffer_info->time_stamp);
415 }
416
417 /* Print TX Rings */
418 if (!netif_msg_tx_done(adapter))
419 goto rx_ring_summary;
420
421 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423 /* Transmit Descriptor Formats
424 *
425 * Advanced Transmit Descriptor
426 * +--------------------------------------------------------------+
427 * 0 | Buffer Address [63:0] |
428 * +--------------------------------------------------------------+
429 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
430 * +--------------------------------------------------------------+
431 * 63 46 45 40 39 38 36 35 32 31 24 15 0
432 */
433
434 for (n = 0; n < adapter->num_tx_queues; n++) {
435 tx_ring = adapter->tx_ring[n];
436 pr_info("------------------------------------\n");
437 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438 pr_info("------------------------------------\n");
439 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
440
441 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
442 const char *next_desc;
443 struct igb_tx_buffer *buffer_info;
444 tx_desc = IGB_TX_DESC(tx_ring, i);
445 buffer_info = &tx_ring->tx_buffer_info[i];
446 u0 = (struct my_u0 *)tx_desc;
447 if (i == tx_ring->next_to_use &&
448 i == tx_ring->next_to_clean)
449 next_desc = " NTC/U";
450 else if (i == tx_ring->next_to_use)
451 next_desc = " NTU";
452 else if (i == tx_ring->next_to_clean)
453 next_desc = " NTC";
454 else
455 next_desc = "";
456
457 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
458 i, le64_to_cpu(u0->a),
459 le64_to_cpu(u0->b),
460 (u64)dma_unmap_addr(buffer_info, dma),
461 dma_unmap_len(buffer_info, len),
462 buffer_info->next_to_watch,
463 (u64)buffer_info->time_stamp,
464 buffer_info->skb, next_desc);
465
466 if (netif_msg_pktdata(adapter) && buffer_info->skb)
467 print_hex_dump(KERN_INFO, "",
468 DUMP_PREFIX_ADDRESS,
469 16, 1, buffer_info->skb->data,
470 dma_unmap_len(buffer_info, len),
471 true);
472 }
473 }
474
475 /* Print RX Rings Summary */
476 rx_ring_summary:
477 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
478 pr_info("Queue [NTU] [NTC]\n");
479 for (n = 0; n < adapter->num_rx_queues; n++) {
480 rx_ring = adapter->rx_ring[n];
481 pr_info(" %5d %5X %5X\n",
482 n, rx_ring->next_to_use, rx_ring->next_to_clean);
483 }
484
485 /* Print RX Rings */
486 if (!netif_msg_rx_status(adapter))
487 goto exit;
488
489 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
490
491 /* Advanced Receive Descriptor (Read) Format
492 * 63 1 0
493 * +-----------------------------------------------------+
494 * 0 | Packet Buffer Address [63:1] |A0/NSE|
495 * +----------------------------------------------+------+
496 * 8 | Header Buffer Address [63:1] | DD |
497 * +-----------------------------------------------------+
498 *
499 *
500 * Advanced Receive Descriptor (Write-Back) Format
501 *
502 * 63 48 47 32 31 30 21 20 17 16 4 3 0
503 * +------------------------------------------------------+
504 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
505 * | Checksum Ident | | | | Type | Type |
506 * +------------------------------------------------------+
507 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
508 * +------------------------------------------------------+
509 * 63 48 47 32 31 20 19 0
510 */
511
512 for (n = 0; n < adapter->num_rx_queues; n++) {
513 rx_ring = adapter->rx_ring[n];
514 pr_info("------------------------------------\n");
515 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
516 pr_info("------------------------------------\n");
517 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
518 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
519
520 for (i = 0; i < rx_ring->count; i++) {
521 const char *next_desc;
522 struct igb_rx_buffer *buffer_info;
523 buffer_info = &rx_ring->rx_buffer_info[i];
524 rx_desc = IGB_RX_DESC(rx_ring, i);
525 u0 = (struct my_u0 *)rx_desc;
526 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
527
528 if (i == rx_ring->next_to_use)
529 next_desc = " NTU";
530 else if (i == rx_ring->next_to_clean)
531 next_desc = " NTC";
532 else
533 next_desc = "";
534
535 if (staterr & E1000_RXD_STAT_DD) {
536 /* Descriptor Done */
537 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
538 "RWB", i,
539 le64_to_cpu(u0->a),
540 le64_to_cpu(u0->b),
541 next_desc);
542 } else {
543 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
544 "R ", i,
545 le64_to_cpu(u0->a),
546 le64_to_cpu(u0->b),
547 (u64)buffer_info->dma,
548 next_desc);
549
550 if (netif_msg_pktdata(adapter) &&
551 buffer_info->dma && buffer_info->page) {
552 print_hex_dump(KERN_INFO, "",
553 DUMP_PREFIX_ADDRESS,
554 16, 1,
555 page_address(buffer_info->page) +
556 buffer_info->page_offset,
557 IGB_RX_BUFSZ, true);
558 }
559 }
560 }
561 }
562
563 exit:
564 return;
565 }
566
567 /**
568 * igb_get_i2c_data - Reads the I2C SDA data bit
569 * @hw: pointer to hardware structure
570 * @i2cctl: Current value of I2CCTL register
571 *
572 * Returns the I2C data bit value
573 **/
574 static int igb_get_i2c_data(void *data)
575 {
576 struct igb_adapter *adapter = (struct igb_adapter *)data;
577 struct e1000_hw *hw = &adapter->hw;
578 s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580 return !!(i2cctl & E1000_I2C_DATA_IN);
581 }
582
583 /**
584 * igb_set_i2c_data - Sets the I2C data bit
585 * @data: pointer to hardware structure
586 * @state: I2C data value (0 or 1) to set
587 *
588 * Sets the I2C data bit
589 **/
590 static void igb_set_i2c_data(void *data, int state)
591 {
592 struct igb_adapter *adapter = (struct igb_adapter *)data;
593 struct e1000_hw *hw = &adapter->hw;
594 s32 i2cctl = rd32(E1000_I2CPARAMS);
595
596 if (state)
597 i2cctl |= E1000_I2C_DATA_OUT;
598 else
599 i2cctl &= ~E1000_I2C_DATA_OUT;
600
601 i2cctl &= ~E1000_I2C_DATA_OE_N;
602 i2cctl |= E1000_I2C_CLK_OE_N;
603 wr32(E1000_I2CPARAMS, i2cctl);
604 wrfl();
605
606 }
607
608 /**
609 * igb_set_i2c_clk - Sets the I2C SCL clock
610 * @data: pointer to hardware structure
611 * @state: state to set clock
612 *
613 * Sets the I2C clock line to state
614 **/
615 static void igb_set_i2c_clk(void *data, int state)
616 {
617 struct igb_adapter *adapter = (struct igb_adapter *)data;
618 struct e1000_hw *hw = &adapter->hw;
619 s32 i2cctl = rd32(E1000_I2CPARAMS);
620
621 if (state) {
622 i2cctl |= E1000_I2C_CLK_OUT;
623 i2cctl &= ~E1000_I2C_CLK_OE_N;
624 } else {
625 i2cctl &= ~E1000_I2C_CLK_OUT;
626 i2cctl &= ~E1000_I2C_CLK_OE_N;
627 }
628 wr32(E1000_I2CPARAMS, i2cctl);
629 wrfl();
630 }
631
632 /**
633 * igb_get_i2c_clk - Gets the I2C SCL clock state
634 * @data: pointer to hardware structure
635 *
636 * Gets the I2C clock state
637 **/
638 static int igb_get_i2c_clk(void *data)
639 {
640 struct igb_adapter *adapter = (struct igb_adapter *)data;
641 struct e1000_hw *hw = &adapter->hw;
642 s32 i2cctl = rd32(E1000_I2CPARAMS);
643
644 return !!(i2cctl & E1000_I2C_CLK_IN);
645 }
646
647 static const struct i2c_algo_bit_data igb_i2c_algo = {
648 .setsda = igb_set_i2c_data,
649 .setscl = igb_set_i2c_clk,
650 .getsda = igb_get_i2c_data,
651 .getscl = igb_get_i2c_clk,
652 .udelay = 5,
653 .timeout = 20,
654 };
655
656 /**
657 * igb_get_hw_dev - return device
658 * @hw: pointer to hardware structure
659 *
660 * used by hardware layer to print debugging information
661 **/
662 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
663 {
664 struct igb_adapter *adapter = hw->back;
665 return adapter->netdev;
666 }
667
668 /**
669 * igb_init_module - Driver Registration Routine
670 *
671 * igb_init_module is the first routine called when the driver is
672 * loaded. All it does is register with the PCI subsystem.
673 **/
674 static int __init igb_init_module(void)
675 {
676 int ret;
677
678 pr_info("%s - version %s\n",
679 igb_driver_string, igb_driver_version);
680 pr_info("%s\n", igb_copyright);
681
682 #ifdef CONFIG_IGB_DCA
683 dca_register_notify(&dca_notifier);
684 #endif
685 ret = pci_register_driver(&igb_driver);
686 return ret;
687 }
688
689 module_init(igb_init_module);
690
691 /**
692 * igb_exit_module - Driver Exit Cleanup Routine
693 *
694 * igb_exit_module is called just before the driver is removed
695 * from memory.
696 **/
697 static void __exit igb_exit_module(void)
698 {
699 #ifdef CONFIG_IGB_DCA
700 dca_unregister_notify(&dca_notifier);
701 #endif
702 pci_unregister_driver(&igb_driver);
703 }
704
705 module_exit(igb_exit_module);
706
707 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
708 /**
709 * igb_cache_ring_register - Descriptor ring to register mapping
710 * @adapter: board private structure to initialize
711 *
712 * Once we know the feature-set enabled for the device, we'll cache
713 * the register offset the descriptor ring is assigned to.
714 **/
715 static void igb_cache_ring_register(struct igb_adapter *adapter)
716 {
717 int i = 0, j = 0;
718 u32 rbase_offset = adapter->vfs_allocated_count;
719
720 switch (adapter->hw.mac.type) {
721 case e1000_82576:
722 /* The queues are allocated for virtualization such that VF 0
723 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
724 * In order to avoid collision we start at the first free queue
725 * and continue consuming queues in the same sequence
726 */
727 if (adapter->vfs_allocated_count) {
728 for (; i < adapter->rss_queues; i++)
729 adapter->rx_ring[i]->reg_idx = rbase_offset +
730 Q_IDX_82576(i);
731 }
732 /* Fall through */
733 case e1000_82575:
734 case e1000_82580:
735 case e1000_i350:
736 case e1000_i354:
737 case e1000_i210:
738 case e1000_i211:
739 /* Fall through */
740 default:
741 for (; i < adapter->num_rx_queues; i++)
742 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
743 for (; j < adapter->num_tx_queues; j++)
744 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
745 break;
746 }
747 }
748
749 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
750 {
751 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
752 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
753 u32 value = 0;
754
755 if (E1000_REMOVED(hw_addr))
756 return ~value;
757
758 value = readl(&hw_addr[reg]);
759
760 /* reads should not return all F's */
761 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
762 struct net_device *netdev = igb->netdev;
763 hw->hw_addr = NULL;
764 netif_device_detach(netdev);
765 netdev_err(netdev, "PCIe link lost, device now detached\n");
766 }
767
768 return value;
769 }
770
771 /**
772 * igb_write_ivar - configure ivar for given MSI-X vector
773 * @hw: pointer to the HW structure
774 * @msix_vector: vector number we are allocating to a given ring
775 * @index: row index of IVAR register to write within IVAR table
776 * @offset: column offset of in IVAR, should be multiple of 8
777 *
778 * This function is intended to handle the writing of the IVAR register
779 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
780 * each containing an cause allocation for an Rx and Tx ring, and a
781 * variable number of rows depending on the number of queues supported.
782 **/
783 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
784 int index, int offset)
785 {
786 u32 ivar = array_rd32(E1000_IVAR0, index);
787
788 /* clear any bits that are currently set */
789 ivar &= ~((u32)0xFF << offset);
790
791 /* write vector and valid bit */
792 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
793
794 array_wr32(E1000_IVAR0, index, ivar);
795 }
796
797 #define IGB_N0_QUEUE -1
798 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
799 {
800 struct igb_adapter *adapter = q_vector->adapter;
801 struct e1000_hw *hw = &adapter->hw;
802 int rx_queue = IGB_N0_QUEUE;
803 int tx_queue = IGB_N0_QUEUE;
804 u32 msixbm = 0;
805
806 if (q_vector->rx.ring)
807 rx_queue = q_vector->rx.ring->reg_idx;
808 if (q_vector->tx.ring)
809 tx_queue = q_vector->tx.ring->reg_idx;
810
811 switch (hw->mac.type) {
812 case e1000_82575:
813 /* The 82575 assigns vectors using a bitmask, which matches the
814 * bitmask for the EICR/EIMS/EIMC registers. To assign one
815 * or more queues to a vector, we write the appropriate bits
816 * into the MSIXBM register for that vector.
817 */
818 if (rx_queue > IGB_N0_QUEUE)
819 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
820 if (tx_queue > IGB_N0_QUEUE)
821 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
822 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
823 msixbm |= E1000_EIMS_OTHER;
824 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
825 q_vector->eims_value = msixbm;
826 break;
827 case e1000_82576:
828 /* 82576 uses a table that essentially consists of 2 columns
829 * with 8 rows. The ordering is column-major so we use the
830 * lower 3 bits as the row index, and the 4th bit as the
831 * column offset.
832 */
833 if (rx_queue > IGB_N0_QUEUE)
834 igb_write_ivar(hw, msix_vector,
835 rx_queue & 0x7,
836 (rx_queue & 0x8) << 1);
837 if (tx_queue > IGB_N0_QUEUE)
838 igb_write_ivar(hw, msix_vector,
839 tx_queue & 0x7,
840 ((tx_queue & 0x8) << 1) + 8);
841 q_vector->eims_value = BIT(msix_vector);
842 break;
843 case e1000_82580:
844 case e1000_i350:
845 case e1000_i354:
846 case e1000_i210:
847 case e1000_i211:
848 /* On 82580 and newer adapters the scheme is similar to 82576
849 * however instead of ordering column-major we have things
850 * ordered row-major. So we traverse the table by using
851 * bit 0 as the column offset, and the remaining bits as the
852 * row index.
853 */
854 if (rx_queue > IGB_N0_QUEUE)
855 igb_write_ivar(hw, msix_vector,
856 rx_queue >> 1,
857 (rx_queue & 0x1) << 4);
858 if (tx_queue > IGB_N0_QUEUE)
859 igb_write_ivar(hw, msix_vector,
860 tx_queue >> 1,
861 ((tx_queue & 0x1) << 4) + 8);
862 q_vector->eims_value = BIT(msix_vector);
863 break;
864 default:
865 BUG();
866 break;
867 }
868
869 /* add q_vector eims value to global eims_enable_mask */
870 adapter->eims_enable_mask |= q_vector->eims_value;
871
872 /* configure q_vector to set itr on first interrupt */
873 q_vector->set_itr = 1;
874 }
875
876 /**
877 * igb_configure_msix - Configure MSI-X hardware
878 * @adapter: board private structure to initialize
879 *
880 * igb_configure_msix sets up the hardware to properly
881 * generate MSI-X interrupts.
882 **/
883 static void igb_configure_msix(struct igb_adapter *adapter)
884 {
885 u32 tmp;
886 int i, vector = 0;
887 struct e1000_hw *hw = &adapter->hw;
888
889 adapter->eims_enable_mask = 0;
890
891 /* set vector for other causes, i.e. link changes */
892 switch (hw->mac.type) {
893 case e1000_82575:
894 tmp = rd32(E1000_CTRL_EXT);
895 /* enable MSI-X PBA support*/
896 tmp |= E1000_CTRL_EXT_PBA_CLR;
897
898 /* Auto-Mask interrupts upon ICR read. */
899 tmp |= E1000_CTRL_EXT_EIAME;
900 tmp |= E1000_CTRL_EXT_IRCA;
901
902 wr32(E1000_CTRL_EXT, tmp);
903
904 /* enable msix_other interrupt */
905 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
906 adapter->eims_other = E1000_EIMS_OTHER;
907
908 break;
909
910 case e1000_82576:
911 case e1000_82580:
912 case e1000_i350:
913 case e1000_i354:
914 case e1000_i210:
915 case e1000_i211:
916 /* Turn on MSI-X capability first, or our settings
917 * won't stick. And it will take days to debug.
918 */
919 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
920 E1000_GPIE_PBA | E1000_GPIE_EIAME |
921 E1000_GPIE_NSICR);
922
923 /* enable msix_other interrupt */
924 adapter->eims_other = BIT(vector);
925 tmp = (vector++ | E1000_IVAR_VALID) << 8;
926
927 wr32(E1000_IVAR_MISC, tmp);
928 break;
929 default:
930 /* do nothing, since nothing else supports MSI-X */
931 break;
932 } /* switch (hw->mac.type) */
933
934 adapter->eims_enable_mask |= adapter->eims_other;
935
936 for (i = 0; i < adapter->num_q_vectors; i++)
937 igb_assign_vector(adapter->q_vector[i], vector++);
938
939 wrfl();
940 }
941
942 /**
943 * igb_request_msix - Initialize MSI-X interrupts
944 * @adapter: board private structure to initialize
945 *
946 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
947 * kernel.
948 **/
949 static int igb_request_msix(struct igb_adapter *adapter)
950 {
951 struct net_device *netdev = adapter->netdev;
952 int i, err = 0, vector = 0, free_vector = 0;
953
954 err = request_irq(adapter->msix_entries[vector].vector,
955 igb_msix_other, 0, netdev->name, adapter);
956 if (err)
957 goto err_out;
958
959 for (i = 0; i < adapter->num_q_vectors; i++) {
960 struct igb_q_vector *q_vector = adapter->q_vector[i];
961
962 vector++;
963
964 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
965
966 if (q_vector->rx.ring && q_vector->tx.ring)
967 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
968 q_vector->rx.ring->queue_index);
969 else if (q_vector->tx.ring)
970 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
971 q_vector->tx.ring->queue_index);
972 else if (q_vector->rx.ring)
973 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
974 q_vector->rx.ring->queue_index);
975 else
976 sprintf(q_vector->name, "%s-unused", netdev->name);
977
978 err = request_irq(adapter->msix_entries[vector].vector,
979 igb_msix_ring, 0, q_vector->name,
980 q_vector);
981 if (err)
982 goto err_free;
983 }
984
985 igb_configure_msix(adapter);
986 return 0;
987
988 err_free:
989 /* free already assigned IRQs */
990 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
991
992 vector--;
993 for (i = 0; i < vector; i++) {
994 free_irq(adapter->msix_entries[free_vector++].vector,
995 adapter->q_vector[i]);
996 }
997 err_out:
998 return err;
999 }
1000
1001 /**
1002 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1003 * @adapter: board private structure to initialize
1004 * @v_idx: Index of vector to be freed
1005 *
1006 * This function frees the memory allocated to the q_vector.
1007 **/
1008 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1009 {
1010 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1011
1012 adapter->q_vector[v_idx] = NULL;
1013
1014 /* igb_get_stats64() might access the rings on this vector,
1015 * we must wait a grace period before freeing it.
1016 */
1017 if (q_vector)
1018 kfree_rcu(q_vector, rcu);
1019 }
1020
1021 /**
1022 * igb_reset_q_vector - Reset config for interrupt vector
1023 * @adapter: board private structure to initialize
1024 * @v_idx: Index of vector to be reset
1025 *
1026 * If NAPI is enabled it will delete any references to the
1027 * NAPI struct. This is preparation for igb_free_q_vector.
1028 **/
1029 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1030 {
1031 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1032
1033 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1034 * allocated. So, q_vector is NULL so we should stop here.
1035 */
1036 if (!q_vector)
1037 return;
1038
1039 if (q_vector->tx.ring)
1040 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1041
1042 if (q_vector->rx.ring)
1043 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1044
1045 netif_napi_del(&q_vector->napi);
1046
1047 }
1048
1049 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1050 {
1051 int v_idx = adapter->num_q_vectors;
1052
1053 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1054 pci_disable_msix(adapter->pdev);
1055 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1056 pci_disable_msi(adapter->pdev);
1057
1058 while (v_idx--)
1059 igb_reset_q_vector(adapter, v_idx);
1060 }
1061
1062 /**
1063 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1064 * @adapter: board private structure to initialize
1065 *
1066 * This function frees the memory allocated to the q_vectors. In addition if
1067 * NAPI is enabled it will delete any references to the NAPI struct prior
1068 * to freeing the q_vector.
1069 **/
1070 static void igb_free_q_vectors(struct igb_adapter *adapter)
1071 {
1072 int v_idx = adapter->num_q_vectors;
1073
1074 adapter->num_tx_queues = 0;
1075 adapter->num_rx_queues = 0;
1076 adapter->num_q_vectors = 0;
1077
1078 while (v_idx--) {
1079 igb_reset_q_vector(adapter, v_idx);
1080 igb_free_q_vector(adapter, v_idx);
1081 }
1082 }
1083
1084 /**
1085 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1086 * @adapter: board private structure to initialize
1087 *
1088 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1089 * MSI-X interrupts allocated.
1090 */
1091 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1092 {
1093 igb_free_q_vectors(adapter);
1094 igb_reset_interrupt_capability(adapter);
1095 }
1096
1097 /**
1098 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1099 * @adapter: board private structure to initialize
1100 * @msix: boolean value of MSIX capability
1101 *
1102 * Attempt to configure interrupts using the best available
1103 * capabilities of the hardware and kernel.
1104 **/
1105 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1106 {
1107 int err;
1108 int numvecs, i;
1109
1110 if (!msix)
1111 goto msi_only;
1112 adapter->flags |= IGB_FLAG_HAS_MSIX;
1113
1114 /* Number of supported queues. */
1115 adapter->num_rx_queues = adapter->rss_queues;
1116 if (adapter->vfs_allocated_count)
1117 adapter->num_tx_queues = 1;
1118 else
1119 adapter->num_tx_queues = adapter->rss_queues;
1120
1121 /* start with one vector for every Rx queue */
1122 numvecs = adapter->num_rx_queues;
1123
1124 /* if Tx handler is separate add 1 for every Tx queue */
1125 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1126 numvecs += adapter->num_tx_queues;
1127
1128 /* store the number of vectors reserved for queues */
1129 adapter->num_q_vectors = numvecs;
1130
1131 /* add 1 vector for link status interrupts */
1132 numvecs++;
1133 for (i = 0; i < numvecs; i++)
1134 adapter->msix_entries[i].entry = i;
1135
1136 err = pci_enable_msix_range(adapter->pdev,
1137 adapter->msix_entries,
1138 numvecs,
1139 numvecs);
1140 if (err > 0)
1141 return;
1142
1143 igb_reset_interrupt_capability(adapter);
1144
1145 /* If we can't do MSI-X, try MSI */
1146 msi_only:
1147 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1148 #ifdef CONFIG_PCI_IOV
1149 /* disable SR-IOV for non MSI-X configurations */
1150 if (adapter->vf_data) {
1151 struct e1000_hw *hw = &adapter->hw;
1152 /* disable iov and allow time for transactions to clear */
1153 pci_disable_sriov(adapter->pdev);
1154 msleep(500);
1155
1156 kfree(adapter->vf_data);
1157 adapter->vf_data = NULL;
1158 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1159 wrfl();
1160 msleep(100);
1161 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1162 }
1163 #endif
1164 adapter->vfs_allocated_count = 0;
1165 adapter->rss_queues = 1;
1166 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1167 adapter->num_rx_queues = 1;
1168 adapter->num_tx_queues = 1;
1169 adapter->num_q_vectors = 1;
1170 if (!pci_enable_msi(adapter->pdev))
1171 adapter->flags |= IGB_FLAG_HAS_MSI;
1172 }
1173
1174 static void igb_add_ring(struct igb_ring *ring,
1175 struct igb_ring_container *head)
1176 {
1177 head->ring = ring;
1178 head->count++;
1179 }
1180
1181 /**
1182 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1183 * @adapter: board private structure to initialize
1184 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1185 * @v_idx: index of vector in adapter struct
1186 * @txr_count: total number of Tx rings to allocate
1187 * @txr_idx: index of first Tx ring to allocate
1188 * @rxr_count: total number of Rx rings to allocate
1189 * @rxr_idx: index of first Rx ring to allocate
1190 *
1191 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1192 **/
1193 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1194 int v_count, int v_idx,
1195 int txr_count, int txr_idx,
1196 int rxr_count, int rxr_idx)
1197 {
1198 struct igb_q_vector *q_vector;
1199 struct igb_ring *ring;
1200 int ring_count, size;
1201
1202 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1203 if (txr_count > 1 || rxr_count > 1)
1204 return -ENOMEM;
1205
1206 ring_count = txr_count + rxr_count;
1207 size = sizeof(struct igb_q_vector) +
1208 (sizeof(struct igb_ring) * ring_count);
1209
1210 /* allocate q_vector and rings */
1211 q_vector = adapter->q_vector[v_idx];
1212 if (!q_vector) {
1213 q_vector = kzalloc(size, GFP_KERNEL);
1214 } else if (size > ksize(q_vector)) {
1215 kfree_rcu(q_vector, rcu);
1216 q_vector = kzalloc(size, GFP_KERNEL);
1217 } else {
1218 memset(q_vector, 0, size);
1219 }
1220 if (!q_vector)
1221 return -ENOMEM;
1222
1223 /* initialize NAPI */
1224 netif_napi_add(adapter->netdev, &q_vector->napi,
1225 igb_poll, 64);
1226
1227 /* tie q_vector and adapter together */
1228 adapter->q_vector[v_idx] = q_vector;
1229 q_vector->adapter = adapter;
1230
1231 /* initialize work limits */
1232 q_vector->tx.work_limit = adapter->tx_work_limit;
1233
1234 /* initialize ITR configuration */
1235 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1236 q_vector->itr_val = IGB_START_ITR;
1237
1238 /* initialize pointer to rings */
1239 ring = q_vector->ring;
1240
1241 /* intialize ITR */
1242 if (rxr_count) {
1243 /* rx or rx/tx vector */
1244 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1245 q_vector->itr_val = adapter->rx_itr_setting;
1246 } else {
1247 /* tx only vector */
1248 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1249 q_vector->itr_val = adapter->tx_itr_setting;
1250 }
1251
1252 if (txr_count) {
1253 /* assign generic ring traits */
1254 ring->dev = &adapter->pdev->dev;
1255 ring->netdev = adapter->netdev;
1256
1257 /* configure backlink on ring */
1258 ring->q_vector = q_vector;
1259
1260 /* update q_vector Tx values */
1261 igb_add_ring(ring, &q_vector->tx);
1262
1263 /* For 82575, context index must be unique per ring. */
1264 if (adapter->hw.mac.type == e1000_82575)
1265 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1266
1267 /* apply Tx specific ring traits */
1268 ring->count = adapter->tx_ring_count;
1269 ring->queue_index = txr_idx;
1270
1271 u64_stats_init(&ring->tx_syncp);
1272 u64_stats_init(&ring->tx_syncp2);
1273
1274 /* assign ring to adapter */
1275 adapter->tx_ring[txr_idx] = ring;
1276
1277 /* push pointer to next ring */
1278 ring++;
1279 }
1280
1281 if (rxr_count) {
1282 /* assign generic ring traits */
1283 ring->dev = &adapter->pdev->dev;
1284 ring->netdev = adapter->netdev;
1285
1286 /* configure backlink on ring */
1287 ring->q_vector = q_vector;
1288
1289 /* update q_vector Rx values */
1290 igb_add_ring(ring, &q_vector->rx);
1291
1292 /* set flag indicating ring supports SCTP checksum offload */
1293 if (adapter->hw.mac.type >= e1000_82576)
1294 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1295
1296 /* On i350, i354, i210, and i211, loopback VLAN packets
1297 * have the tag byte-swapped.
1298 */
1299 if (adapter->hw.mac.type >= e1000_i350)
1300 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1301
1302 /* apply Rx specific ring traits */
1303 ring->count = adapter->rx_ring_count;
1304 ring->queue_index = rxr_idx;
1305
1306 u64_stats_init(&ring->rx_syncp);
1307
1308 /* assign ring to adapter */
1309 adapter->rx_ring[rxr_idx] = ring;
1310 }
1311
1312 return 0;
1313 }
1314
1315
1316 /**
1317 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1318 * @adapter: board private structure to initialize
1319 *
1320 * We allocate one q_vector per queue interrupt. If allocation fails we
1321 * return -ENOMEM.
1322 **/
1323 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1324 {
1325 int q_vectors = adapter->num_q_vectors;
1326 int rxr_remaining = adapter->num_rx_queues;
1327 int txr_remaining = adapter->num_tx_queues;
1328 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1329 int err;
1330
1331 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1332 for (; rxr_remaining; v_idx++) {
1333 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1334 0, 0, 1, rxr_idx);
1335
1336 if (err)
1337 goto err_out;
1338
1339 /* update counts and index */
1340 rxr_remaining--;
1341 rxr_idx++;
1342 }
1343 }
1344
1345 for (; v_idx < q_vectors; v_idx++) {
1346 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1347 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1348
1349 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1350 tqpv, txr_idx, rqpv, rxr_idx);
1351
1352 if (err)
1353 goto err_out;
1354
1355 /* update counts and index */
1356 rxr_remaining -= rqpv;
1357 txr_remaining -= tqpv;
1358 rxr_idx++;
1359 txr_idx++;
1360 }
1361
1362 return 0;
1363
1364 err_out:
1365 adapter->num_tx_queues = 0;
1366 adapter->num_rx_queues = 0;
1367 adapter->num_q_vectors = 0;
1368
1369 while (v_idx--)
1370 igb_free_q_vector(adapter, v_idx);
1371
1372 return -ENOMEM;
1373 }
1374
1375 /**
1376 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1377 * @adapter: board private structure to initialize
1378 * @msix: boolean value of MSIX capability
1379 *
1380 * This function initializes the interrupts and allocates all of the queues.
1381 **/
1382 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1383 {
1384 struct pci_dev *pdev = adapter->pdev;
1385 int err;
1386
1387 igb_set_interrupt_capability(adapter, msix);
1388
1389 err = igb_alloc_q_vectors(adapter);
1390 if (err) {
1391 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1392 goto err_alloc_q_vectors;
1393 }
1394
1395 igb_cache_ring_register(adapter);
1396
1397 return 0;
1398
1399 err_alloc_q_vectors:
1400 igb_reset_interrupt_capability(adapter);
1401 return err;
1402 }
1403
1404 /**
1405 * igb_request_irq - initialize interrupts
1406 * @adapter: board private structure to initialize
1407 *
1408 * Attempts to configure interrupts using the best available
1409 * capabilities of the hardware and kernel.
1410 **/
1411 static int igb_request_irq(struct igb_adapter *adapter)
1412 {
1413 struct net_device *netdev = adapter->netdev;
1414 struct pci_dev *pdev = adapter->pdev;
1415 int err = 0;
1416
1417 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1418 err = igb_request_msix(adapter);
1419 if (!err)
1420 goto request_done;
1421 /* fall back to MSI */
1422 igb_free_all_tx_resources(adapter);
1423 igb_free_all_rx_resources(adapter);
1424
1425 igb_clear_interrupt_scheme(adapter);
1426 err = igb_init_interrupt_scheme(adapter, false);
1427 if (err)
1428 goto request_done;
1429
1430 igb_setup_all_tx_resources(adapter);
1431 igb_setup_all_rx_resources(adapter);
1432 igb_configure(adapter);
1433 }
1434
1435 igb_assign_vector(adapter->q_vector[0], 0);
1436
1437 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1438 err = request_irq(pdev->irq, igb_intr_msi, 0,
1439 netdev->name, adapter);
1440 if (!err)
1441 goto request_done;
1442
1443 /* fall back to legacy interrupts */
1444 igb_reset_interrupt_capability(adapter);
1445 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1446 }
1447
1448 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1449 netdev->name, adapter);
1450
1451 if (err)
1452 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1453 err);
1454
1455 request_done:
1456 return err;
1457 }
1458
1459 static void igb_free_irq(struct igb_adapter *adapter)
1460 {
1461 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1462 int vector = 0, i;
1463
1464 free_irq(adapter->msix_entries[vector++].vector, adapter);
1465
1466 for (i = 0; i < adapter->num_q_vectors; i++)
1467 free_irq(adapter->msix_entries[vector++].vector,
1468 adapter->q_vector[i]);
1469 } else {
1470 free_irq(adapter->pdev->irq, adapter);
1471 }
1472 }
1473
1474 /**
1475 * igb_irq_disable - Mask off interrupt generation on the NIC
1476 * @adapter: board private structure
1477 **/
1478 static void igb_irq_disable(struct igb_adapter *adapter)
1479 {
1480 struct e1000_hw *hw = &adapter->hw;
1481
1482 /* we need to be careful when disabling interrupts. The VFs are also
1483 * mapped into these registers and so clearing the bits can cause
1484 * issues on the VF drivers so we only need to clear what we set
1485 */
1486 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1487 u32 regval = rd32(E1000_EIAM);
1488
1489 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1490 wr32(E1000_EIMC, adapter->eims_enable_mask);
1491 regval = rd32(E1000_EIAC);
1492 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1493 }
1494
1495 wr32(E1000_IAM, 0);
1496 wr32(E1000_IMC, ~0);
1497 wrfl();
1498 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1499 int i;
1500
1501 for (i = 0; i < adapter->num_q_vectors; i++)
1502 synchronize_irq(adapter->msix_entries[i].vector);
1503 } else {
1504 synchronize_irq(adapter->pdev->irq);
1505 }
1506 }
1507
1508 /**
1509 * igb_irq_enable - Enable default interrupt generation settings
1510 * @adapter: board private structure
1511 **/
1512 static void igb_irq_enable(struct igb_adapter *adapter)
1513 {
1514 struct e1000_hw *hw = &adapter->hw;
1515
1516 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1517 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1518 u32 regval = rd32(E1000_EIAC);
1519
1520 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1521 regval = rd32(E1000_EIAM);
1522 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1523 wr32(E1000_EIMS, adapter->eims_enable_mask);
1524 if (adapter->vfs_allocated_count) {
1525 wr32(E1000_MBVFIMR, 0xFF);
1526 ims |= E1000_IMS_VMMB;
1527 }
1528 wr32(E1000_IMS, ims);
1529 } else {
1530 wr32(E1000_IMS, IMS_ENABLE_MASK |
1531 E1000_IMS_DRSTA);
1532 wr32(E1000_IAM, IMS_ENABLE_MASK |
1533 E1000_IMS_DRSTA);
1534 }
1535 }
1536
1537 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1538 {
1539 struct e1000_hw *hw = &adapter->hw;
1540 u16 pf_id = adapter->vfs_allocated_count;
1541 u16 vid = adapter->hw.mng_cookie.vlan_id;
1542 u16 old_vid = adapter->mng_vlan_id;
1543
1544 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1545 /* add VID to filter table */
1546 igb_vfta_set(hw, vid, pf_id, true, true);
1547 adapter->mng_vlan_id = vid;
1548 } else {
1549 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1550 }
1551
1552 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1553 (vid != old_vid) &&
1554 !test_bit(old_vid, adapter->active_vlans)) {
1555 /* remove VID from filter table */
1556 igb_vfta_set(hw, vid, pf_id, false, true);
1557 }
1558 }
1559
1560 /**
1561 * igb_release_hw_control - release control of the h/w to f/w
1562 * @adapter: address of board private structure
1563 *
1564 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1565 * For ASF and Pass Through versions of f/w this means that the
1566 * driver is no longer loaded.
1567 **/
1568 static void igb_release_hw_control(struct igb_adapter *adapter)
1569 {
1570 struct e1000_hw *hw = &adapter->hw;
1571 u32 ctrl_ext;
1572
1573 /* Let firmware take over control of h/w */
1574 ctrl_ext = rd32(E1000_CTRL_EXT);
1575 wr32(E1000_CTRL_EXT,
1576 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1577 }
1578
1579 /**
1580 * igb_get_hw_control - get control of the h/w from f/w
1581 * @adapter: address of board private structure
1582 *
1583 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1584 * For ASF and Pass Through versions of f/w this means that
1585 * the driver is loaded.
1586 **/
1587 static void igb_get_hw_control(struct igb_adapter *adapter)
1588 {
1589 struct e1000_hw *hw = &adapter->hw;
1590 u32 ctrl_ext;
1591
1592 /* Let firmware know the driver has taken over */
1593 ctrl_ext = rd32(E1000_CTRL_EXT);
1594 wr32(E1000_CTRL_EXT,
1595 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1596 }
1597
1598 /**
1599 * igb_configure - configure the hardware for RX and TX
1600 * @adapter: private board structure
1601 **/
1602 static void igb_configure(struct igb_adapter *adapter)
1603 {
1604 struct net_device *netdev = adapter->netdev;
1605 int i;
1606
1607 igb_get_hw_control(adapter);
1608 igb_set_rx_mode(netdev);
1609
1610 igb_restore_vlan(adapter);
1611
1612 igb_setup_tctl(adapter);
1613 igb_setup_mrqc(adapter);
1614 igb_setup_rctl(adapter);
1615
1616 igb_nfc_filter_restore(adapter);
1617 igb_configure_tx(adapter);
1618 igb_configure_rx(adapter);
1619
1620 igb_rx_fifo_flush_82575(&adapter->hw);
1621
1622 /* call igb_desc_unused which always leaves
1623 * at least 1 descriptor unused to make sure
1624 * next_to_use != next_to_clean
1625 */
1626 for (i = 0; i < adapter->num_rx_queues; i++) {
1627 struct igb_ring *ring = adapter->rx_ring[i];
1628 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1629 }
1630 }
1631
1632 /**
1633 * igb_power_up_link - Power up the phy/serdes link
1634 * @adapter: address of board private structure
1635 **/
1636 void igb_power_up_link(struct igb_adapter *adapter)
1637 {
1638 igb_reset_phy(&adapter->hw);
1639
1640 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1641 igb_power_up_phy_copper(&adapter->hw);
1642 else
1643 igb_power_up_serdes_link_82575(&adapter->hw);
1644
1645 igb_setup_link(&adapter->hw);
1646 }
1647
1648 /**
1649 * igb_power_down_link - Power down the phy/serdes link
1650 * @adapter: address of board private structure
1651 */
1652 static void igb_power_down_link(struct igb_adapter *adapter)
1653 {
1654 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1655 igb_power_down_phy_copper_82575(&adapter->hw);
1656 else
1657 igb_shutdown_serdes_link_82575(&adapter->hw);
1658 }
1659
1660 /**
1661 * Detect and switch function for Media Auto Sense
1662 * @adapter: address of the board private structure
1663 **/
1664 static void igb_check_swap_media(struct igb_adapter *adapter)
1665 {
1666 struct e1000_hw *hw = &adapter->hw;
1667 u32 ctrl_ext, connsw;
1668 bool swap_now = false;
1669
1670 ctrl_ext = rd32(E1000_CTRL_EXT);
1671 connsw = rd32(E1000_CONNSW);
1672
1673 /* need to live swap if current media is copper and we have fiber/serdes
1674 * to go to.
1675 */
1676
1677 if ((hw->phy.media_type == e1000_media_type_copper) &&
1678 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1679 swap_now = true;
1680 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1681 /* copper signal takes time to appear */
1682 if (adapter->copper_tries < 4) {
1683 adapter->copper_tries++;
1684 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1685 wr32(E1000_CONNSW, connsw);
1686 return;
1687 } else {
1688 adapter->copper_tries = 0;
1689 if ((connsw & E1000_CONNSW_PHYSD) &&
1690 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1691 swap_now = true;
1692 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1693 wr32(E1000_CONNSW, connsw);
1694 }
1695 }
1696 }
1697
1698 if (!swap_now)
1699 return;
1700
1701 switch (hw->phy.media_type) {
1702 case e1000_media_type_copper:
1703 netdev_info(adapter->netdev,
1704 "MAS: changing media to fiber/serdes\n");
1705 ctrl_ext |=
1706 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1707 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1708 adapter->copper_tries = 0;
1709 break;
1710 case e1000_media_type_internal_serdes:
1711 case e1000_media_type_fiber:
1712 netdev_info(adapter->netdev,
1713 "MAS: changing media to copper\n");
1714 ctrl_ext &=
1715 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1716 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1717 break;
1718 default:
1719 /* shouldn't get here during regular operation */
1720 netdev_err(adapter->netdev,
1721 "AMS: Invalid media type found, returning\n");
1722 break;
1723 }
1724 wr32(E1000_CTRL_EXT, ctrl_ext);
1725 }
1726
1727 /**
1728 * igb_up - Open the interface and prepare it to handle traffic
1729 * @adapter: board private structure
1730 **/
1731 int igb_up(struct igb_adapter *adapter)
1732 {
1733 struct e1000_hw *hw = &adapter->hw;
1734 int i;
1735
1736 /* hardware has been reset, we need to reload some things */
1737 igb_configure(adapter);
1738
1739 clear_bit(__IGB_DOWN, &adapter->state);
1740
1741 for (i = 0; i < adapter->num_q_vectors; i++)
1742 napi_enable(&(adapter->q_vector[i]->napi));
1743
1744 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1745 igb_configure_msix(adapter);
1746 else
1747 igb_assign_vector(adapter->q_vector[0], 0);
1748
1749 /* Clear any pending interrupts. */
1750 rd32(E1000_ICR);
1751 igb_irq_enable(adapter);
1752
1753 /* notify VFs that reset has been completed */
1754 if (adapter->vfs_allocated_count) {
1755 u32 reg_data = rd32(E1000_CTRL_EXT);
1756
1757 reg_data |= E1000_CTRL_EXT_PFRSTD;
1758 wr32(E1000_CTRL_EXT, reg_data);
1759 }
1760
1761 netif_tx_start_all_queues(adapter->netdev);
1762
1763 /* start the watchdog. */
1764 hw->mac.get_link_status = 1;
1765 schedule_work(&adapter->watchdog_task);
1766
1767 if ((adapter->flags & IGB_FLAG_EEE) &&
1768 (!hw->dev_spec._82575.eee_disable))
1769 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1770
1771 return 0;
1772 }
1773
1774 void igb_down(struct igb_adapter *adapter)
1775 {
1776 struct net_device *netdev = adapter->netdev;
1777 struct e1000_hw *hw = &adapter->hw;
1778 u32 tctl, rctl;
1779 int i;
1780
1781 /* signal that we're down so the interrupt handler does not
1782 * reschedule our watchdog timer
1783 */
1784 set_bit(__IGB_DOWN, &adapter->state);
1785
1786 /* disable receives in the hardware */
1787 rctl = rd32(E1000_RCTL);
1788 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1789 /* flush and sleep below */
1790
1791 netif_carrier_off(netdev);
1792 netif_tx_stop_all_queues(netdev);
1793
1794 /* disable transmits in the hardware */
1795 tctl = rd32(E1000_TCTL);
1796 tctl &= ~E1000_TCTL_EN;
1797 wr32(E1000_TCTL, tctl);
1798 /* flush both disables and wait for them to finish */
1799 wrfl();
1800 usleep_range(10000, 11000);
1801
1802 igb_irq_disable(adapter);
1803
1804 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1805
1806 for (i = 0; i < adapter->num_q_vectors; i++) {
1807 if (adapter->q_vector[i]) {
1808 napi_synchronize(&adapter->q_vector[i]->napi);
1809 napi_disable(&adapter->q_vector[i]->napi);
1810 }
1811 }
1812
1813 del_timer_sync(&adapter->watchdog_timer);
1814 del_timer_sync(&adapter->phy_info_timer);
1815
1816 /* record the stats before reset*/
1817 spin_lock(&adapter->stats64_lock);
1818 igb_update_stats(adapter, &adapter->stats64);
1819 spin_unlock(&adapter->stats64_lock);
1820
1821 adapter->link_speed = 0;
1822 adapter->link_duplex = 0;
1823
1824 if (!pci_channel_offline(adapter->pdev))
1825 igb_reset(adapter);
1826
1827 /* clear VLAN promisc flag so VFTA will be updated if necessary */
1828 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1829
1830 igb_clean_all_tx_rings(adapter);
1831 igb_clean_all_rx_rings(adapter);
1832 #ifdef CONFIG_IGB_DCA
1833
1834 /* since we reset the hardware DCA settings were cleared */
1835 igb_setup_dca(adapter);
1836 #endif
1837 }
1838
1839 void igb_reinit_locked(struct igb_adapter *adapter)
1840 {
1841 WARN_ON(in_interrupt());
1842 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1843 usleep_range(1000, 2000);
1844 igb_down(adapter);
1845 igb_up(adapter);
1846 clear_bit(__IGB_RESETTING, &adapter->state);
1847 }
1848
1849 /** igb_enable_mas - Media Autosense re-enable after swap
1850 *
1851 * @adapter: adapter struct
1852 **/
1853 static void igb_enable_mas(struct igb_adapter *adapter)
1854 {
1855 struct e1000_hw *hw = &adapter->hw;
1856 u32 connsw = rd32(E1000_CONNSW);
1857
1858 /* configure for SerDes media detect */
1859 if ((hw->phy.media_type == e1000_media_type_copper) &&
1860 (!(connsw & E1000_CONNSW_SERDESD))) {
1861 connsw |= E1000_CONNSW_ENRGSRC;
1862 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1863 wr32(E1000_CONNSW, connsw);
1864 wrfl();
1865 }
1866 }
1867
1868 void igb_reset(struct igb_adapter *adapter)
1869 {
1870 struct pci_dev *pdev = adapter->pdev;
1871 struct e1000_hw *hw = &adapter->hw;
1872 struct e1000_mac_info *mac = &hw->mac;
1873 struct e1000_fc_info *fc = &hw->fc;
1874 u32 pba, hwm;
1875
1876 /* Repartition Pba for greater than 9k mtu
1877 * To take effect CTRL.RST is required.
1878 */
1879 switch (mac->type) {
1880 case e1000_i350:
1881 case e1000_i354:
1882 case e1000_82580:
1883 pba = rd32(E1000_RXPBS);
1884 pba = igb_rxpbs_adjust_82580(pba);
1885 break;
1886 case e1000_82576:
1887 pba = rd32(E1000_RXPBS);
1888 pba &= E1000_RXPBS_SIZE_MASK_82576;
1889 break;
1890 case e1000_82575:
1891 case e1000_i210:
1892 case e1000_i211:
1893 default:
1894 pba = E1000_PBA_34K;
1895 break;
1896 }
1897
1898 if (mac->type == e1000_82575) {
1899 u32 min_rx_space, min_tx_space, needed_tx_space;
1900
1901 /* write Rx PBA so that hardware can report correct Tx PBA */
1902 wr32(E1000_PBA, pba);
1903
1904 /* To maintain wire speed transmits, the Tx FIFO should be
1905 * large enough to accommodate two full transmit packets,
1906 * rounded up to the next 1KB and expressed in KB. Likewise,
1907 * the Rx FIFO should be large enough to accommodate at least
1908 * one full receive packet and is similarly rounded up and
1909 * expressed in KB.
1910 */
1911 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1912
1913 /* The Tx FIFO also stores 16 bytes of information about the Tx
1914 * but don't include Ethernet FCS because hardware appends it.
1915 * We only need to round down to the nearest 512 byte block
1916 * count since the value we care about is 2 frames, not 1.
1917 */
1918 min_tx_space = adapter->max_frame_size;
1919 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1920 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1921
1922 /* upper 16 bits has Tx packet buffer allocation size in KB */
1923 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1924
1925 /* If current Tx allocation is less than the min Tx FIFO size,
1926 * and the min Tx FIFO size is less than the current Rx FIFO
1927 * allocation, take space away from current Rx allocation.
1928 */
1929 if (needed_tx_space < pba) {
1930 pba -= needed_tx_space;
1931
1932 /* if short on Rx space, Rx wins and must trump Tx
1933 * adjustment
1934 */
1935 if (pba < min_rx_space)
1936 pba = min_rx_space;
1937 }
1938
1939 /* adjust PBA for jumbo frames */
1940 wr32(E1000_PBA, pba);
1941 }
1942
1943 /* flow control settings
1944 * The high water mark must be low enough to fit one full frame
1945 * after transmitting the pause frame. As such we must have enough
1946 * space to allow for us to complete our current transmit and then
1947 * receive the frame that is in progress from the link partner.
1948 * Set it to:
1949 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1950 */
1951 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1952
1953 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1954 fc->low_water = fc->high_water - 16;
1955 fc->pause_time = 0xFFFF;
1956 fc->send_xon = 1;
1957 fc->current_mode = fc->requested_mode;
1958
1959 /* disable receive for all VFs and wait one second */
1960 if (adapter->vfs_allocated_count) {
1961 int i;
1962
1963 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1964 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1965
1966 /* ping all the active vfs to let them know we are going down */
1967 igb_ping_all_vfs(adapter);
1968
1969 /* disable transmits and receives */
1970 wr32(E1000_VFRE, 0);
1971 wr32(E1000_VFTE, 0);
1972 }
1973
1974 /* Allow time for pending master requests to run */
1975 hw->mac.ops.reset_hw(hw);
1976 wr32(E1000_WUC, 0);
1977
1978 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1979 /* need to resetup here after media swap */
1980 adapter->ei.get_invariants(hw);
1981 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1982 }
1983 if ((mac->type == e1000_82575) &&
1984 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1985 igb_enable_mas(adapter);
1986 }
1987 if (hw->mac.ops.init_hw(hw))
1988 dev_err(&pdev->dev, "Hardware Error\n");
1989
1990 /* Flow control settings reset on hardware reset, so guarantee flow
1991 * control is off when forcing speed.
1992 */
1993 if (!hw->mac.autoneg)
1994 igb_force_mac_fc(hw);
1995
1996 igb_init_dmac(adapter, pba);
1997 #ifdef CONFIG_IGB_HWMON
1998 /* Re-initialize the thermal sensor on i350 devices. */
1999 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2000 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2001 /* If present, re-initialize the external thermal sensor
2002 * interface.
2003 */
2004 if (adapter->ets)
2005 mac->ops.init_thermal_sensor_thresh(hw);
2006 }
2007 }
2008 #endif
2009 /* Re-establish EEE setting */
2010 if (hw->phy.media_type == e1000_media_type_copper) {
2011 switch (mac->type) {
2012 case e1000_i350:
2013 case e1000_i210:
2014 case e1000_i211:
2015 igb_set_eee_i350(hw, true, true);
2016 break;
2017 case e1000_i354:
2018 igb_set_eee_i354(hw, true, true);
2019 break;
2020 default:
2021 break;
2022 }
2023 }
2024 if (!netif_running(adapter->netdev))
2025 igb_power_down_link(adapter);
2026
2027 igb_update_mng_vlan(adapter);
2028
2029 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2030 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2031
2032 /* Re-enable PTP, where applicable. */
2033 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2034 igb_ptp_reset(adapter);
2035
2036 igb_get_phy_info(hw);
2037 }
2038
2039 static netdev_features_t igb_fix_features(struct net_device *netdev,
2040 netdev_features_t features)
2041 {
2042 /* Since there is no support for separate Rx/Tx vlan accel
2043 * enable/disable make sure Tx flag is always in same state as Rx.
2044 */
2045 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2046 features |= NETIF_F_HW_VLAN_CTAG_TX;
2047 else
2048 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2049
2050 return features;
2051 }
2052
2053 static int igb_set_features(struct net_device *netdev,
2054 netdev_features_t features)
2055 {
2056 netdev_features_t changed = netdev->features ^ features;
2057 struct igb_adapter *adapter = netdev_priv(netdev);
2058
2059 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2060 igb_vlan_mode(netdev, features);
2061
2062 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2063 return 0;
2064
2065 if (!(features & NETIF_F_NTUPLE)) {
2066 struct hlist_node *node2;
2067 struct igb_nfc_filter *rule;
2068
2069 spin_lock(&adapter->nfc_lock);
2070 hlist_for_each_entry_safe(rule, node2,
2071 &adapter->nfc_filter_list, nfc_node) {
2072 igb_erase_filter(adapter, rule);
2073 hlist_del(&rule->nfc_node);
2074 kfree(rule);
2075 }
2076 spin_unlock(&adapter->nfc_lock);
2077 adapter->nfc_filter_count = 0;
2078 }
2079
2080 netdev->features = features;
2081
2082 if (netif_running(netdev))
2083 igb_reinit_locked(adapter);
2084 else
2085 igb_reset(adapter);
2086
2087 return 0;
2088 }
2089
2090 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2091 struct net_device *dev,
2092 const unsigned char *addr, u16 vid,
2093 u16 flags)
2094 {
2095 /* guarantee we can provide a unique filter for the unicast address */
2096 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2097 struct igb_adapter *adapter = netdev_priv(dev);
2098 struct e1000_hw *hw = &adapter->hw;
2099 int vfn = adapter->vfs_allocated_count;
2100 int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2101
2102 if (netdev_uc_count(dev) >= rar_entries)
2103 return -ENOMEM;
2104 }
2105
2106 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2107 }
2108
2109 #define IGB_MAX_MAC_HDR_LEN 127
2110 #define IGB_MAX_NETWORK_HDR_LEN 511
2111
2112 static netdev_features_t
2113 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2114 netdev_features_t features)
2115 {
2116 unsigned int network_hdr_len, mac_hdr_len;
2117
2118 /* Make certain the headers can be described by a context descriptor */
2119 mac_hdr_len = skb_network_header(skb) - skb->data;
2120 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2121 return features & ~(NETIF_F_HW_CSUM |
2122 NETIF_F_SCTP_CRC |
2123 NETIF_F_HW_VLAN_CTAG_TX |
2124 NETIF_F_TSO |
2125 NETIF_F_TSO6);
2126
2127 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2128 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2129 return features & ~(NETIF_F_HW_CSUM |
2130 NETIF_F_SCTP_CRC |
2131 NETIF_F_TSO |
2132 NETIF_F_TSO6);
2133
2134 /* We can only support IPV4 TSO in tunnels if we can mangle the
2135 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2136 */
2137 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2138 features &= ~NETIF_F_TSO;
2139
2140 return features;
2141 }
2142
2143 static const struct net_device_ops igb_netdev_ops = {
2144 .ndo_open = igb_open,
2145 .ndo_stop = igb_close,
2146 .ndo_start_xmit = igb_xmit_frame,
2147 .ndo_get_stats64 = igb_get_stats64,
2148 .ndo_set_rx_mode = igb_set_rx_mode,
2149 .ndo_set_mac_address = igb_set_mac,
2150 .ndo_change_mtu = igb_change_mtu,
2151 .ndo_do_ioctl = igb_ioctl,
2152 .ndo_tx_timeout = igb_tx_timeout,
2153 .ndo_validate_addr = eth_validate_addr,
2154 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2155 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2156 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2157 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2158 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2159 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2160 .ndo_get_vf_config = igb_ndo_get_vf_config,
2161 #ifdef CONFIG_NET_POLL_CONTROLLER
2162 .ndo_poll_controller = igb_netpoll,
2163 #endif
2164 .ndo_fix_features = igb_fix_features,
2165 .ndo_set_features = igb_set_features,
2166 .ndo_fdb_add = igb_ndo_fdb_add,
2167 .ndo_features_check = igb_features_check,
2168 };
2169
2170 /**
2171 * igb_set_fw_version - Configure version string for ethtool
2172 * @adapter: adapter struct
2173 **/
2174 void igb_set_fw_version(struct igb_adapter *adapter)
2175 {
2176 struct e1000_hw *hw = &adapter->hw;
2177 struct e1000_fw_version fw;
2178
2179 igb_get_fw_version(hw, &fw);
2180
2181 switch (hw->mac.type) {
2182 case e1000_i210:
2183 case e1000_i211:
2184 if (!(igb_get_flash_presence_i210(hw))) {
2185 snprintf(adapter->fw_version,
2186 sizeof(adapter->fw_version),
2187 "%2d.%2d-%d",
2188 fw.invm_major, fw.invm_minor,
2189 fw.invm_img_type);
2190 break;
2191 }
2192 /* fall through */
2193 default:
2194 /* if option is rom valid, display its version too */
2195 if (fw.or_valid) {
2196 snprintf(adapter->fw_version,
2197 sizeof(adapter->fw_version),
2198 "%d.%d, 0x%08x, %d.%d.%d",
2199 fw.eep_major, fw.eep_minor, fw.etrack_id,
2200 fw.or_major, fw.or_build, fw.or_patch);
2201 /* no option rom */
2202 } else if (fw.etrack_id != 0X0000) {
2203 snprintf(adapter->fw_version,
2204 sizeof(adapter->fw_version),
2205 "%d.%d, 0x%08x",
2206 fw.eep_major, fw.eep_minor, fw.etrack_id);
2207 } else {
2208 snprintf(adapter->fw_version,
2209 sizeof(adapter->fw_version),
2210 "%d.%d.%d",
2211 fw.eep_major, fw.eep_minor, fw.eep_build);
2212 }
2213 break;
2214 }
2215 }
2216
2217 /**
2218 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2219 *
2220 * @adapter: adapter struct
2221 **/
2222 static void igb_init_mas(struct igb_adapter *adapter)
2223 {
2224 struct e1000_hw *hw = &adapter->hw;
2225 u16 eeprom_data;
2226
2227 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2228 switch (hw->bus.func) {
2229 case E1000_FUNC_0:
2230 if (eeprom_data & IGB_MAS_ENABLE_0) {
2231 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2232 netdev_info(adapter->netdev,
2233 "MAS: Enabling Media Autosense for port %d\n",
2234 hw->bus.func);
2235 }
2236 break;
2237 case E1000_FUNC_1:
2238 if (eeprom_data & IGB_MAS_ENABLE_1) {
2239 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2240 netdev_info(adapter->netdev,
2241 "MAS: Enabling Media Autosense for port %d\n",
2242 hw->bus.func);
2243 }
2244 break;
2245 case E1000_FUNC_2:
2246 if (eeprom_data & IGB_MAS_ENABLE_2) {
2247 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2248 netdev_info(adapter->netdev,
2249 "MAS: Enabling Media Autosense for port %d\n",
2250 hw->bus.func);
2251 }
2252 break;
2253 case E1000_FUNC_3:
2254 if (eeprom_data & IGB_MAS_ENABLE_3) {
2255 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2256 netdev_info(adapter->netdev,
2257 "MAS: Enabling Media Autosense for port %d\n",
2258 hw->bus.func);
2259 }
2260 break;
2261 default:
2262 /* Shouldn't get here */
2263 netdev_err(adapter->netdev,
2264 "MAS: Invalid port configuration, returning\n");
2265 break;
2266 }
2267 }
2268
2269 /**
2270 * igb_init_i2c - Init I2C interface
2271 * @adapter: pointer to adapter structure
2272 **/
2273 static s32 igb_init_i2c(struct igb_adapter *adapter)
2274 {
2275 s32 status = 0;
2276
2277 /* I2C interface supported on i350 devices */
2278 if (adapter->hw.mac.type != e1000_i350)
2279 return 0;
2280
2281 /* Initialize the i2c bus which is controlled by the registers.
2282 * This bus will use the i2c_algo_bit structue that implements
2283 * the protocol through toggling of the 4 bits in the register.
2284 */
2285 adapter->i2c_adap.owner = THIS_MODULE;
2286 adapter->i2c_algo = igb_i2c_algo;
2287 adapter->i2c_algo.data = adapter;
2288 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2289 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2290 strlcpy(adapter->i2c_adap.name, "igb BB",
2291 sizeof(adapter->i2c_adap.name));
2292 status = i2c_bit_add_bus(&adapter->i2c_adap);
2293 return status;
2294 }
2295
2296 /**
2297 * igb_probe - Device Initialization Routine
2298 * @pdev: PCI device information struct
2299 * @ent: entry in igb_pci_tbl
2300 *
2301 * Returns 0 on success, negative on failure
2302 *
2303 * igb_probe initializes an adapter identified by a pci_dev structure.
2304 * The OS initialization, configuring of the adapter private structure,
2305 * and a hardware reset occur.
2306 **/
2307 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2308 {
2309 struct net_device *netdev;
2310 struct igb_adapter *adapter;
2311 struct e1000_hw *hw;
2312 u16 eeprom_data = 0;
2313 s32 ret_val;
2314 static int global_quad_port_a; /* global quad port a indication */
2315 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2316 int err, pci_using_dac;
2317 u8 part_str[E1000_PBANUM_LENGTH];
2318
2319 /* Catch broken hardware that put the wrong VF device ID in
2320 * the PCIe SR-IOV capability.
2321 */
2322 if (pdev->is_virtfn) {
2323 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2324 pci_name(pdev), pdev->vendor, pdev->device);
2325 return -EINVAL;
2326 }
2327
2328 err = pci_enable_device_mem(pdev);
2329 if (err)
2330 return err;
2331
2332 pci_using_dac = 0;
2333 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2334 if (!err) {
2335 pci_using_dac = 1;
2336 } else {
2337 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2338 if (err) {
2339 dev_err(&pdev->dev,
2340 "No usable DMA configuration, aborting\n");
2341 goto err_dma;
2342 }
2343 }
2344
2345 err = pci_request_mem_regions(pdev, igb_driver_name);
2346 if (err)
2347 goto err_pci_reg;
2348
2349 pci_enable_pcie_error_reporting(pdev);
2350
2351 pci_set_master(pdev);
2352 pci_save_state(pdev);
2353
2354 err = -ENOMEM;
2355 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2356 IGB_MAX_TX_QUEUES);
2357 if (!netdev)
2358 goto err_alloc_etherdev;
2359
2360 SET_NETDEV_DEV(netdev, &pdev->dev);
2361
2362 pci_set_drvdata(pdev, netdev);
2363 adapter = netdev_priv(netdev);
2364 adapter->netdev = netdev;
2365 adapter->pdev = pdev;
2366 hw = &adapter->hw;
2367 hw->back = adapter;
2368 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2369
2370 err = -EIO;
2371 adapter->io_addr = pci_iomap(pdev, 0, 0);
2372 if (!adapter->io_addr)
2373 goto err_ioremap;
2374 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2375 hw->hw_addr = adapter->io_addr;
2376
2377 netdev->netdev_ops = &igb_netdev_ops;
2378 igb_set_ethtool_ops(netdev);
2379 netdev->watchdog_timeo = 5 * HZ;
2380
2381 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2382
2383 netdev->mem_start = pci_resource_start(pdev, 0);
2384 netdev->mem_end = pci_resource_end(pdev, 0);
2385
2386 /* PCI config space info */
2387 hw->vendor_id = pdev->vendor;
2388 hw->device_id = pdev->device;
2389 hw->revision_id = pdev->revision;
2390 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2391 hw->subsystem_device_id = pdev->subsystem_device;
2392
2393 /* Copy the default MAC, PHY and NVM function pointers */
2394 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2395 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2396 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2397 /* Initialize skew-specific constants */
2398 err = ei->get_invariants(hw);
2399 if (err)
2400 goto err_sw_init;
2401
2402 /* setup the private structure */
2403 err = igb_sw_init(adapter);
2404 if (err)
2405 goto err_sw_init;
2406
2407 igb_get_bus_info_pcie(hw);
2408
2409 hw->phy.autoneg_wait_to_complete = false;
2410
2411 /* Copper options */
2412 if (hw->phy.media_type == e1000_media_type_copper) {
2413 hw->phy.mdix = AUTO_ALL_MODES;
2414 hw->phy.disable_polarity_correction = false;
2415 hw->phy.ms_type = e1000_ms_hw_default;
2416 }
2417
2418 if (igb_check_reset_block(hw))
2419 dev_info(&pdev->dev,
2420 "PHY reset is blocked due to SOL/IDER session.\n");
2421
2422 /* features is initialized to 0 in allocation, it might have bits
2423 * set by igb_sw_init so we should use an or instead of an
2424 * assignment.
2425 */
2426 netdev->features |= NETIF_F_SG |
2427 NETIF_F_TSO |
2428 NETIF_F_TSO6 |
2429 NETIF_F_RXHASH |
2430 NETIF_F_RXCSUM |
2431 NETIF_F_HW_CSUM;
2432
2433 if (hw->mac.type >= e1000_82576)
2434 netdev->features |= NETIF_F_SCTP_CRC;
2435
2436 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2437 NETIF_F_GSO_GRE_CSUM | \
2438 NETIF_F_GSO_IPXIP4 | \
2439 NETIF_F_GSO_IPXIP6 | \
2440 NETIF_F_GSO_UDP_TUNNEL | \
2441 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2442
2443 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2444 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2445
2446 /* copy netdev features into list of user selectable features */
2447 netdev->hw_features |= netdev->features |
2448 NETIF_F_HW_VLAN_CTAG_RX |
2449 NETIF_F_HW_VLAN_CTAG_TX |
2450 NETIF_F_RXALL;
2451
2452 if (hw->mac.type >= e1000_i350)
2453 netdev->hw_features |= NETIF_F_NTUPLE;
2454
2455 if (pci_using_dac)
2456 netdev->features |= NETIF_F_HIGHDMA;
2457
2458 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2459 netdev->mpls_features |= NETIF_F_HW_CSUM;
2460 netdev->hw_enc_features |= netdev->vlan_features;
2461
2462 /* set this bit last since it cannot be part of vlan_features */
2463 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2464 NETIF_F_HW_VLAN_CTAG_RX |
2465 NETIF_F_HW_VLAN_CTAG_TX;
2466
2467 netdev->priv_flags |= IFF_SUPP_NOFCS;
2468
2469 netdev->priv_flags |= IFF_UNICAST_FLT;
2470
2471 /* MTU range: 68 - 9216 */
2472 netdev->min_mtu = ETH_MIN_MTU;
2473 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2474
2475 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2476
2477 /* before reading the NVM, reset the controller to put the device in a
2478 * known good starting state
2479 */
2480 hw->mac.ops.reset_hw(hw);
2481
2482 /* make sure the NVM is good , i211/i210 parts can have special NVM
2483 * that doesn't contain a checksum
2484 */
2485 switch (hw->mac.type) {
2486 case e1000_i210:
2487 case e1000_i211:
2488 if (igb_get_flash_presence_i210(hw)) {
2489 if (hw->nvm.ops.validate(hw) < 0) {
2490 dev_err(&pdev->dev,
2491 "The NVM Checksum Is Not Valid\n");
2492 err = -EIO;
2493 goto err_eeprom;
2494 }
2495 }
2496 break;
2497 default:
2498 if (hw->nvm.ops.validate(hw) < 0) {
2499 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2500 err = -EIO;
2501 goto err_eeprom;
2502 }
2503 break;
2504 }
2505
2506 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2507 /* copy the MAC address out of the NVM */
2508 if (hw->mac.ops.read_mac_addr(hw))
2509 dev_err(&pdev->dev, "NVM Read Error\n");
2510 }
2511
2512 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2513
2514 if (!is_valid_ether_addr(netdev->dev_addr)) {
2515 dev_err(&pdev->dev, "Invalid MAC Address\n");
2516 err = -EIO;
2517 goto err_eeprom;
2518 }
2519
2520 /* get firmware version for ethtool -i */
2521 igb_set_fw_version(adapter);
2522
2523 /* configure RXPBSIZE and TXPBSIZE */
2524 if (hw->mac.type == e1000_i210) {
2525 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2526 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2527 }
2528
2529 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2530 (unsigned long) adapter);
2531 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2532 (unsigned long) adapter);
2533
2534 INIT_WORK(&adapter->reset_task, igb_reset_task);
2535 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2536
2537 /* Initialize link properties that are user-changeable */
2538 adapter->fc_autoneg = true;
2539 hw->mac.autoneg = true;
2540 hw->phy.autoneg_advertised = 0x2f;
2541
2542 hw->fc.requested_mode = e1000_fc_default;
2543 hw->fc.current_mode = e1000_fc_default;
2544
2545 igb_validate_mdi_setting(hw);
2546
2547 /* By default, support wake on port A */
2548 if (hw->bus.func == 0)
2549 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2550
2551 /* Check the NVM for wake support on non-port A ports */
2552 if (hw->mac.type >= e1000_82580)
2553 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2554 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2555 &eeprom_data);
2556 else if (hw->bus.func == 1)
2557 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2558
2559 if (eeprom_data & IGB_EEPROM_APME)
2560 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2561
2562 /* now that we have the eeprom settings, apply the special cases where
2563 * the eeprom may be wrong or the board simply won't support wake on
2564 * lan on a particular port
2565 */
2566 switch (pdev->device) {
2567 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2568 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2569 break;
2570 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2571 case E1000_DEV_ID_82576_FIBER:
2572 case E1000_DEV_ID_82576_SERDES:
2573 /* Wake events only supported on port A for dual fiber
2574 * regardless of eeprom setting
2575 */
2576 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2577 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2578 break;
2579 case E1000_DEV_ID_82576_QUAD_COPPER:
2580 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2581 /* if quad port adapter, disable WoL on all but port A */
2582 if (global_quad_port_a != 0)
2583 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2584 else
2585 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2586 /* Reset for multiple quad port adapters */
2587 if (++global_quad_port_a == 4)
2588 global_quad_port_a = 0;
2589 break;
2590 default:
2591 /* If the device can't wake, don't set software support */
2592 if (!device_can_wakeup(&adapter->pdev->dev))
2593 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2594 }
2595
2596 /* initialize the wol settings based on the eeprom settings */
2597 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2598 adapter->wol |= E1000_WUFC_MAG;
2599
2600 /* Some vendors want WoL disabled by default, but still supported */
2601 if ((hw->mac.type == e1000_i350) &&
2602 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2603 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2604 adapter->wol = 0;
2605 }
2606
2607 /* Some vendors want the ability to Use the EEPROM setting as
2608 * enable/disable only, and not for capability
2609 */
2610 if (((hw->mac.type == e1000_i350) ||
2611 (hw->mac.type == e1000_i354)) &&
2612 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2613 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2614 adapter->wol = 0;
2615 }
2616 if (hw->mac.type == e1000_i350) {
2617 if (((pdev->subsystem_device == 0x5001) ||
2618 (pdev->subsystem_device == 0x5002)) &&
2619 (hw->bus.func == 0)) {
2620 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2621 adapter->wol = 0;
2622 }
2623 if (pdev->subsystem_device == 0x1F52)
2624 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2625 }
2626
2627 device_set_wakeup_enable(&adapter->pdev->dev,
2628 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2629
2630 /* reset the hardware with the new settings */
2631 igb_reset(adapter);
2632
2633 /* Init the I2C interface */
2634 err = igb_init_i2c(adapter);
2635 if (err) {
2636 dev_err(&pdev->dev, "failed to init i2c interface\n");
2637 goto err_eeprom;
2638 }
2639
2640 /* let the f/w know that the h/w is now under the control of the
2641 * driver.
2642 */
2643 igb_get_hw_control(adapter);
2644
2645 strcpy(netdev->name, "eth%d");
2646 err = register_netdev(netdev);
2647 if (err)
2648 goto err_register;
2649
2650 /* carrier off reporting is important to ethtool even BEFORE open */
2651 netif_carrier_off(netdev);
2652
2653 #ifdef CONFIG_IGB_DCA
2654 if (dca_add_requester(&pdev->dev) == 0) {
2655 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2656 dev_info(&pdev->dev, "DCA enabled\n");
2657 igb_setup_dca(adapter);
2658 }
2659
2660 #endif
2661 #ifdef CONFIG_IGB_HWMON
2662 /* Initialize the thermal sensor on i350 devices. */
2663 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2664 u16 ets_word;
2665
2666 /* Read the NVM to determine if this i350 device supports an
2667 * external thermal sensor.
2668 */
2669 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2670 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2671 adapter->ets = true;
2672 else
2673 adapter->ets = false;
2674 if (igb_sysfs_init(adapter))
2675 dev_err(&pdev->dev,
2676 "failed to allocate sysfs resources\n");
2677 } else {
2678 adapter->ets = false;
2679 }
2680 #endif
2681 /* Check if Media Autosense is enabled */
2682 adapter->ei = *ei;
2683 if (hw->dev_spec._82575.mas_capable)
2684 igb_init_mas(adapter);
2685
2686 /* do hw tstamp init after resetting */
2687 igb_ptp_init(adapter);
2688
2689 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2690 /* print bus type/speed/width info, not applicable to i354 */
2691 if (hw->mac.type != e1000_i354) {
2692 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2693 netdev->name,
2694 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2695 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2696 "unknown"),
2697 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2698 "Width x4" :
2699 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2700 "Width x2" :
2701 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2702 "Width x1" : "unknown"), netdev->dev_addr);
2703 }
2704
2705 if ((hw->mac.type >= e1000_i210 ||
2706 igb_get_flash_presence_i210(hw))) {
2707 ret_val = igb_read_part_string(hw, part_str,
2708 E1000_PBANUM_LENGTH);
2709 } else {
2710 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2711 }
2712
2713 if (ret_val)
2714 strcpy(part_str, "Unknown");
2715 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2716 dev_info(&pdev->dev,
2717 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2718 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2719 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2720 adapter->num_rx_queues, adapter->num_tx_queues);
2721 if (hw->phy.media_type == e1000_media_type_copper) {
2722 switch (hw->mac.type) {
2723 case e1000_i350:
2724 case e1000_i210:
2725 case e1000_i211:
2726 /* Enable EEE for internal copper PHY devices */
2727 err = igb_set_eee_i350(hw, true, true);
2728 if ((!err) &&
2729 (!hw->dev_spec._82575.eee_disable)) {
2730 adapter->eee_advert =
2731 MDIO_EEE_100TX | MDIO_EEE_1000T;
2732 adapter->flags |= IGB_FLAG_EEE;
2733 }
2734 break;
2735 case e1000_i354:
2736 if ((rd32(E1000_CTRL_EXT) &
2737 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2738 err = igb_set_eee_i354(hw, true, true);
2739 if ((!err) &&
2740 (!hw->dev_spec._82575.eee_disable)) {
2741 adapter->eee_advert =
2742 MDIO_EEE_100TX | MDIO_EEE_1000T;
2743 adapter->flags |= IGB_FLAG_EEE;
2744 }
2745 }
2746 break;
2747 default:
2748 break;
2749 }
2750 }
2751 pm_runtime_put_noidle(&pdev->dev);
2752 return 0;
2753
2754 err_register:
2755 igb_release_hw_control(adapter);
2756 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2757 err_eeprom:
2758 if (!igb_check_reset_block(hw))
2759 igb_reset_phy(hw);
2760
2761 if (hw->flash_address)
2762 iounmap(hw->flash_address);
2763 err_sw_init:
2764 kfree(adapter->shadow_vfta);
2765 igb_clear_interrupt_scheme(adapter);
2766 #ifdef CONFIG_PCI_IOV
2767 igb_disable_sriov(pdev);
2768 #endif
2769 pci_iounmap(pdev, adapter->io_addr);
2770 err_ioremap:
2771 free_netdev(netdev);
2772 err_alloc_etherdev:
2773 pci_release_mem_regions(pdev);
2774 err_pci_reg:
2775 err_dma:
2776 pci_disable_device(pdev);
2777 return err;
2778 }
2779
2780 #ifdef CONFIG_PCI_IOV
2781 static int igb_disable_sriov(struct pci_dev *pdev)
2782 {
2783 struct net_device *netdev = pci_get_drvdata(pdev);
2784 struct igb_adapter *adapter = netdev_priv(netdev);
2785 struct e1000_hw *hw = &adapter->hw;
2786
2787 /* reclaim resources allocated to VFs */
2788 if (adapter->vf_data) {
2789 /* disable iov and allow time for transactions to clear */
2790 if (pci_vfs_assigned(pdev)) {
2791 dev_warn(&pdev->dev,
2792 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2793 return -EPERM;
2794 } else {
2795 pci_disable_sriov(pdev);
2796 msleep(500);
2797 }
2798
2799 kfree(adapter->vf_data);
2800 adapter->vf_data = NULL;
2801 adapter->vfs_allocated_count = 0;
2802 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2803 wrfl();
2804 msleep(100);
2805 dev_info(&pdev->dev, "IOV Disabled\n");
2806
2807 /* Re-enable DMA Coalescing flag since IOV is turned off */
2808 adapter->flags |= IGB_FLAG_DMAC;
2809 }
2810
2811 return 0;
2812 }
2813
2814 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2815 {
2816 struct net_device *netdev = pci_get_drvdata(pdev);
2817 struct igb_adapter *adapter = netdev_priv(netdev);
2818 int old_vfs = pci_num_vf(pdev);
2819 int err = 0;
2820 int i;
2821
2822 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2823 err = -EPERM;
2824 goto out;
2825 }
2826 if (!num_vfs)
2827 goto out;
2828
2829 if (old_vfs) {
2830 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2831 old_vfs, max_vfs);
2832 adapter->vfs_allocated_count = old_vfs;
2833 } else
2834 adapter->vfs_allocated_count = num_vfs;
2835
2836 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2837 sizeof(struct vf_data_storage), GFP_KERNEL);
2838
2839 /* if allocation failed then we do not support SR-IOV */
2840 if (!adapter->vf_data) {
2841 adapter->vfs_allocated_count = 0;
2842 dev_err(&pdev->dev,
2843 "Unable to allocate memory for VF Data Storage\n");
2844 err = -ENOMEM;
2845 goto out;
2846 }
2847
2848 /* only call pci_enable_sriov() if no VFs are allocated already */
2849 if (!old_vfs) {
2850 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2851 if (err)
2852 goto err_out;
2853 }
2854 dev_info(&pdev->dev, "%d VFs allocated\n",
2855 adapter->vfs_allocated_count);
2856 for (i = 0; i < adapter->vfs_allocated_count; i++)
2857 igb_vf_configure(adapter, i);
2858
2859 /* DMA Coalescing is not supported in IOV mode. */
2860 adapter->flags &= ~IGB_FLAG_DMAC;
2861 goto out;
2862
2863 err_out:
2864 kfree(adapter->vf_data);
2865 adapter->vf_data = NULL;
2866 adapter->vfs_allocated_count = 0;
2867 out:
2868 return err;
2869 }
2870
2871 #endif
2872 /**
2873 * igb_remove_i2c - Cleanup I2C interface
2874 * @adapter: pointer to adapter structure
2875 **/
2876 static void igb_remove_i2c(struct igb_adapter *adapter)
2877 {
2878 /* free the adapter bus structure */
2879 i2c_del_adapter(&adapter->i2c_adap);
2880 }
2881
2882 /**
2883 * igb_remove - Device Removal Routine
2884 * @pdev: PCI device information struct
2885 *
2886 * igb_remove is called by the PCI subsystem to alert the driver
2887 * that it should release a PCI device. The could be caused by a
2888 * Hot-Plug event, or because the driver is going to be removed from
2889 * memory.
2890 **/
2891 static void igb_remove(struct pci_dev *pdev)
2892 {
2893 struct net_device *netdev = pci_get_drvdata(pdev);
2894 struct igb_adapter *adapter = netdev_priv(netdev);
2895 struct e1000_hw *hw = &adapter->hw;
2896
2897 pm_runtime_get_noresume(&pdev->dev);
2898 #ifdef CONFIG_IGB_HWMON
2899 igb_sysfs_exit(adapter);
2900 #endif
2901 igb_remove_i2c(adapter);
2902 igb_ptp_stop(adapter);
2903 /* The watchdog timer may be rescheduled, so explicitly
2904 * disable watchdog from being rescheduled.
2905 */
2906 set_bit(__IGB_DOWN, &adapter->state);
2907 del_timer_sync(&adapter->watchdog_timer);
2908 del_timer_sync(&adapter->phy_info_timer);
2909
2910 cancel_work_sync(&adapter->reset_task);
2911 cancel_work_sync(&adapter->watchdog_task);
2912
2913 #ifdef CONFIG_IGB_DCA
2914 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2915 dev_info(&pdev->dev, "DCA disabled\n");
2916 dca_remove_requester(&pdev->dev);
2917 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2918 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2919 }
2920 #endif
2921
2922 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2923 * would have already happened in close and is redundant.
2924 */
2925 igb_release_hw_control(adapter);
2926
2927 #ifdef CONFIG_PCI_IOV
2928 igb_disable_sriov(pdev);
2929 #endif
2930
2931 unregister_netdev(netdev);
2932
2933 igb_clear_interrupt_scheme(adapter);
2934
2935 pci_iounmap(pdev, adapter->io_addr);
2936 if (hw->flash_address)
2937 iounmap(hw->flash_address);
2938 pci_release_mem_regions(pdev);
2939
2940 kfree(adapter->shadow_vfta);
2941 free_netdev(netdev);
2942
2943 pci_disable_pcie_error_reporting(pdev);
2944
2945 pci_disable_device(pdev);
2946 }
2947
2948 /**
2949 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2950 * @adapter: board private structure to initialize
2951 *
2952 * This function initializes the vf specific data storage and then attempts to
2953 * allocate the VFs. The reason for ordering it this way is because it is much
2954 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2955 * the memory for the VFs.
2956 **/
2957 static void igb_probe_vfs(struct igb_adapter *adapter)
2958 {
2959 #ifdef CONFIG_PCI_IOV
2960 struct pci_dev *pdev = adapter->pdev;
2961 struct e1000_hw *hw = &adapter->hw;
2962
2963 /* Virtualization features not supported on i210 family. */
2964 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2965 return;
2966
2967 /* Of the below we really only want the effect of getting
2968 * IGB_FLAG_HAS_MSIX set (if available), without which
2969 * igb_enable_sriov() has no effect.
2970 */
2971 igb_set_interrupt_capability(adapter, true);
2972 igb_reset_interrupt_capability(adapter);
2973
2974 pci_sriov_set_totalvfs(pdev, 7);
2975 igb_enable_sriov(pdev, max_vfs);
2976
2977 #endif /* CONFIG_PCI_IOV */
2978 }
2979
2980 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2981 {
2982 struct e1000_hw *hw = &adapter->hw;
2983 u32 max_rss_queues;
2984
2985 /* Determine the maximum number of RSS queues supported. */
2986 switch (hw->mac.type) {
2987 case e1000_i211:
2988 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2989 break;
2990 case e1000_82575:
2991 case e1000_i210:
2992 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2993 break;
2994 case e1000_i350:
2995 /* I350 cannot do RSS and SR-IOV at the same time */
2996 if (!!adapter->vfs_allocated_count) {
2997 max_rss_queues = 1;
2998 break;
2999 }
3000 /* fall through */
3001 case e1000_82576:
3002 if (!!adapter->vfs_allocated_count) {
3003 max_rss_queues = 2;
3004 break;
3005 }
3006 /* fall through */
3007 case e1000_82580:
3008 case e1000_i354:
3009 default:
3010 max_rss_queues = IGB_MAX_RX_QUEUES;
3011 break;
3012 }
3013
3014 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3015
3016 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3017 }
3018
3019 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3020 const u32 max_rss_queues)
3021 {
3022 struct e1000_hw *hw = &adapter->hw;
3023
3024 /* Determine if we need to pair queues. */
3025 switch (hw->mac.type) {
3026 case e1000_82575:
3027 case e1000_i211:
3028 /* Device supports enough interrupts without queue pairing. */
3029 break;
3030 case e1000_82576:
3031 case e1000_82580:
3032 case e1000_i350:
3033 case e1000_i354:
3034 case e1000_i210:
3035 default:
3036 /* If rss_queues > half of max_rss_queues, pair the queues in
3037 * order to conserve interrupts due to limited supply.
3038 */
3039 if (adapter->rss_queues > (max_rss_queues / 2))
3040 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3041 else
3042 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3043 break;
3044 }
3045 }
3046
3047 /**
3048 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3049 * @adapter: board private structure to initialize
3050 *
3051 * igb_sw_init initializes the Adapter private data structure.
3052 * Fields are initialized based on PCI device information and
3053 * OS network device settings (MTU size).
3054 **/
3055 static int igb_sw_init(struct igb_adapter *adapter)
3056 {
3057 struct e1000_hw *hw = &adapter->hw;
3058 struct net_device *netdev = adapter->netdev;
3059 struct pci_dev *pdev = adapter->pdev;
3060
3061 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3062
3063 /* set default ring sizes */
3064 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3065 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3066
3067 /* set default ITR values */
3068 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3069 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3070
3071 /* set default work limits */
3072 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3073
3074 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3075 VLAN_HLEN;
3076 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3077
3078 spin_lock_init(&adapter->nfc_lock);
3079 spin_lock_init(&adapter->stats64_lock);
3080 #ifdef CONFIG_PCI_IOV
3081 switch (hw->mac.type) {
3082 case e1000_82576:
3083 case e1000_i350:
3084 if (max_vfs > 7) {
3085 dev_warn(&pdev->dev,
3086 "Maximum of 7 VFs per PF, using max\n");
3087 max_vfs = adapter->vfs_allocated_count = 7;
3088 } else
3089 adapter->vfs_allocated_count = max_vfs;
3090 if (adapter->vfs_allocated_count)
3091 dev_warn(&pdev->dev,
3092 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3093 break;
3094 default:
3095 break;
3096 }
3097 #endif /* CONFIG_PCI_IOV */
3098
3099 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3100 adapter->flags |= IGB_FLAG_HAS_MSIX;
3101
3102 igb_probe_vfs(adapter);
3103
3104 igb_init_queue_configuration(adapter);
3105
3106 /* Setup and initialize a copy of the hw vlan table array */
3107 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3108 GFP_ATOMIC);
3109
3110 /* This call may decrease the number of queues */
3111 if (igb_init_interrupt_scheme(adapter, true)) {
3112 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3113 return -ENOMEM;
3114 }
3115
3116 /* Explicitly disable IRQ since the NIC can be in any state. */
3117 igb_irq_disable(adapter);
3118
3119 if (hw->mac.type >= e1000_i350)
3120 adapter->flags &= ~IGB_FLAG_DMAC;
3121
3122 set_bit(__IGB_DOWN, &adapter->state);
3123 return 0;
3124 }
3125
3126 /**
3127 * igb_open - Called when a network interface is made active
3128 * @netdev: network interface device structure
3129 *
3130 * Returns 0 on success, negative value on failure
3131 *
3132 * The open entry point is called when a network interface is made
3133 * active by the system (IFF_UP). At this point all resources needed
3134 * for transmit and receive operations are allocated, the interrupt
3135 * handler is registered with the OS, the watchdog timer is started,
3136 * and the stack is notified that the interface is ready.
3137 **/
3138 static int __igb_open(struct net_device *netdev, bool resuming)
3139 {
3140 struct igb_adapter *adapter = netdev_priv(netdev);
3141 struct e1000_hw *hw = &adapter->hw;
3142 struct pci_dev *pdev = adapter->pdev;
3143 int err;
3144 int i;
3145
3146 /* disallow open during test */
3147 if (test_bit(__IGB_TESTING, &adapter->state)) {
3148 WARN_ON(resuming);
3149 return -EBUSY;
3150 }
3151
3152 if (!resuming)
3153 pm_runtime_get_sync(&pdev->dev);
3154
3155 netif_carrier_off(netdev);
3156
3157 /* allocate transmit descriptors */
3158 err = igb_setup_all_tx_resources(adapter);
3159 if (err)
3160 goto err_setup_tx;
3161
3162 /* allocate receive descriptors */
3163 err = igb_setup_all_rx_resources(adapter);
3164 if (err)
3165 goto err_setup_rx;
3166
3167 igb_power_up_link(adapter);
3168
3169 /* before we allocate an interrupt, we must be ready to handle it.
3170 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3171 * as soon as we call pci_request_irq, so we have to setup our
3172 * clean_rx handler before we do so.
3173 */
3174 igb_configure(adapter);
3175
3176 err = igb_request_irq(adapter);
3177 if (err)
3178 goto err_req_irq;
3179
3180 /* Notify the stack of the actual queue counts. */
3181 err = netif_set_real_num_tx_queues(adapter->netdev,
3182 adapter->num_tx_queues);
3183 if (err)
3184 goto err_set_queues;
3185
3186 err = netif_set_real_num_rx_queues(adapter->netdev,
3187 adapter->num_rx_queues);
3188 if (err)
3189 goto err_set_queues;
3190
3191 /* From here on the code is the same as igb_up() */
3192 clear_bit(__IGB_DOWN, &adapter->state);
3193
3194 for (i = 0; i < adapter->num_q_vectors; i++)
3195 napi_enable(&(adapter->q_vector[i]->napi));
3196
3197 /* Clear any pending interrupts. */
3198 rd32(E1000_ICR);
3199
3200 igb_irq_enable(adapter);
3201
3202 /* notify VFs that reset has been completed */
3203 if (adapter->vfs_allocated_count) {
3204 u32 reg_data = rd32(E1000_CTRL_EXT);
3205
3206 reg_data |= E1000_CTRL_EXT_PFRSTD;
3207 wr32(E1000_CTRL_EXT, reg_data);
3208 }
3209
3210 netif_tx_start_all_queues(netdev);
3211
3212 if (!resuming)
3213 pm_runtime_put(&pdev->dev);
3214
3215 /* start the watchdog. */
3216 hw->mac.get_link_status = 1;
3217 schedule_work(&adapter->watchdog_task);
3218
3219 return 0;
3220
3221 err_set_queues:
3222 igb_free_irq(adapter);
3223 err_req_irq:
3224 igb_release_hw_control(adapter);
3225 igb_power_down_link(adapter);
3226 igb_free_all_rx_resources(adapter);
3227 err_setup_rx:
3228 igb_free_all_tx_resources(adapter);
3229 err_setup_tx:
3230 igb_reset(adapter);
3231 if (!resuming)
3232 pm_runtime_put(&pdev->dev);
3233
3234 return err;
3235 }
3236
3237 int igb_open(struct net_device *netdev)
3238 {
3239 return __igb_open(netdev, false);
3240 }
3241
3242 /**
3243 * igb_close - Disables a network interface
3244 * @netdev: network interface device structure
3245 *
3246 * Returns 0, this is not allowed to fail
3247 *
3248 * The close entry point is called when an interface is de-activated
3249 * by the OS. The hardware is still under the driver's control, but
3250 * needs to be disabled. A global MAC reset is issued to stop the
3251 * hardware, and all transmit and receive resources are freed.
3252 **/
3253 static int __igb_close(struct net_device *netdev, bool suspending)
3254 {
3255 struct igb_adapter *adapter = netdev_priv(netdev);
3256 struct pci_dev *pdev = adapter->pdev;
3257
3258 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3259
3260 if (!suspending)
3261 pm_runtime_get_sync(&pdev->dev);
3262
3263 igb_down(adapter);
3264 igb_free_irq(adapter);
3265
3266 igb_nfc_filter_exit(adapter);
3267
3268 igb_free_all_tx_resources(adapter);
3269 igb_free_all_rx_resources(adapter);
3270
3271 if (!suspending)
3272 pm_runtime_put_sync(&pdev->dev);
3273 return 0;
3274 }
3275
3276 int igb_close(struct net_device *netdev)
3277 {
3278 return __igb_close(netdev, false);
3279 }
3280
3281 /**
3282 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3283 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3284 *
3285 * Return 0 on success, negative on failure
3286 **/
3287 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3288 {
3289 struct device *dev = tx_ring->dev;
3290 int size;
3291
3292 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3293
3294 tx_ring->tx_buffer_info = vzalloc(size);
3295 if (!tx_ring->tx_buffer_info)
3296 goto err;
3297
3298 /* round up to nearest 4K */
3299 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3300 tx_ring->size = ALIGN(tx_ring->size, 4096);
3301
3302 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3303 &tx_ring->dma, GFP_KERNEL);
3304 if (!tx_ring->desc)
3305 goto err;
3306
3307 tx_ring->next_to_use = 0;
3308 tx_ring->next_to_clean = 0;
3309
3310 return 0;
3311
3312 err:
3313 vfree(tx_ring->tx_buffer_info);
3314 tx_ring->tx_buffer_info = NULL;
3315 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3316 return -ENOMEM;
3317 }
3318
3319 /**
3320 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3321 * (Descriptors) for all queues
3322 * @adapter: board private structure
3323 *
3324 * Return 0 on success, negative on failure
3325 **/
3326 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3327 {
3328 struct pci_dev *pdev = adapter->pdev;
3329 int i, err = 0;
3330
3331 for (i = 0; i < adapter->num_tx_queues; i++) {
3332 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3333 if (err) {
3334 dev_err(&pdev->dev,
3335 "Allocation for Tx Queue %u failed\n", i);
3336 for (i--; i >= 0; i--)
3337 igb_free_tx_resources(adapter->tx_ring[i]);
3338 break;
3339 }
3340 }
3341
3342 return err;
3343 }
3344
3345 /**
3346 * igb_setup_tctl - configure the transmit control registers
3347 * @adapter: Board private structure
3348 **/
3349 void igb_setup_tctl(struct igb_adapter *adapter)
3350 {
3351 struct e1000_hw *hw = &adapter->hw;
3352 u32 tctl;
3353
3354 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3355 wr32(E1000_TXDCTL(0), 0);
3356
3357 /* Program the Transmit Control Register */
3358 tctl = rd32(E1000_TCTL);
3359 tctl &= ~E1000_TCTL_CT;
3360 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3361 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3362
3363 igb_config_collision_dist(hw);
3364
3365 /* Enable transmits */
3366 tctl |= E1000_TCTL_EN;
3367
3368 wr32(E1000_TCTL, tctl);
3369 }
3370
3371 /**
3372 * igb_configure_tx_ring - Configure transmit ring after Reset
3373 * @adapter: board private structure
3374 * @ring: tx ring to configure
3375 *
3376 * Configure a transmit ring after a reset.
3377 **/
3378 void igb_configure_tx_ring(struct igb_adapter *adapter,
3379 struct igb_ring *ring)
3380 {
3381 struct e1000_hw *hw = &adapter->hw;
3382 u32 txdctl = 0;
3383 u64 tdba = ring->dma;
3384 int reg_idx = ring->reg_idx;
3385
3386 /* disable the queue */
3387 wr32(E1000_TXDCTL(reg_idx), 0);
3388 wrfl();
3389 mdelay(10);
3390
3391 wr32(E1000_TDLEN(reg_idx),
3392 ring->count * sizeof(union e1000_adv_tx_desc));
3393 wr32(E1000_TDBAL(reg_idx),
3394 tdba & 0x00000000ffffffffULL);
3395 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3396
3397 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3398 wr32(E1000_TDH(reg_idx), 0);
3399 writel(0, ring->tail);
3400
3401 txdctl |= IGB_TX_PTHRESH;
3402 txdctl |= IGB_TX_HTHRESH << 8;
3403 txdctl |= IGB_TX_WTHRESH << 16;
3404
3405 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3406 wr32(E1000_TXDCTL(reg_idx), txdctl);
3407 }
3408
3409 /**
3410 * igb_configure_tx - Configure transmit Unit after Reset
3411 * @adapter: board private structure
3412 *
3413 * Configure the Tx unit of the MAC after a reset.
3414 **/
3415 static void igb_configure_tx(struct igb_adapter *adapter)
3416 {
3417 int i;
3418
3419 for (i = 0; i < adapter->num_tx_queues; i++)
3420 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3421 }
3422
3423 /**
3424 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3425 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3426 *
3427 * Returns 0 on success, negative on failure
3428 **/
3429 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3430 {
3431 struct device *dev = rx_ring->dev;
3432 int size;
3433
3434 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3435
3436 rx_ring->rx_buffer_info = vzalloc(size);
3437 if (!rx_ring->rx_buffer_info)
3438 goto err;
3439
3440 /* Round up to nearest 4K */
3441 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3442 rx_ring->size = ALIGN(rx_ring->size, 4096);
3443
3444 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3445 &rx_ring->dma, GFP_KERNEL);
3446 if (!rx_ring->desc)
3447 goto err;
3448
3449 rx_ring->next_to_alloc = 0;
3450 rx_ring->next_to_clean = 0;
3451 rx_ring->next_to_use = 0;
3452
3453 return 0;
3454
3455 err:
3456 vfree(rx_ring->rx_buffer_info);
3457 rx_ring->rx_buffer_info = NULL;
3458 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3459 return -ENOMEM;
3460 }
3461
3462 /**
3463 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3464 * (Descriptors) for all queues
3465 * @adapter: board private structure
3466 *
3467 * Return 0 on success, negative on failure
3468 **/
3469 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3470 {
3471 struct pci_dev *pdev = adapter->pdev;
3472 int i, err = 0;
3473
3474 for (i = 0; i < adapter->num_rx_queues; i++) {
3475 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3476 if (err) {
3477 dev_err(&pdev->dev,
3478 "Allocation for Rx Queue %u failed\n", i);
3479 for (i--; i >= 0; i--)
3480 igb_free_rx_resources(adapter->rx_ring[i]);
3481 break;
3482 }
3483 }
3484
3485 return err;
3486 }
3487
3488 /**
3489 * igb_setup_mrqc - configure the multiple receive queue control registers
3490 * @adapter: Board private structure
3491 **/
3492 static void igb_setup_mrqc(struct igb_adapter *adapter)
3493 {
3494 struct e1000_hw *hw = &adapter->hw;
3495 u32 mrqc, rxcsum;
3496 u32 j, num_rx_queues;
3497 u32 rss_key[10];
3498
3499 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3500 for (j = 0; j < 10; j++)
3501 wr32(E1000_RSSRK(j), rss_key[j]);
3502
3503 num_rx_queues = adapter->rss_queues;
3504
3505 switch (hw->mac.type) {
3506 case e1000_82576:
3507 /* 82576 supports 2 RSS queues for SR-IOV */
3508 if (adapter->vfs_allocated_count)
3509 num_rx_queues = 2;
3510 break;
3511 default:
3512 break;
3513 }
3514
3515 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3516 for (j = 0; j < IGB_RETA_SIZE; j++)
3517 adapter->rss_indir_tbl[j] =
3518 (j * num_rx_queues) / IGB_RETA_SIZE;
3519 adapter->rss_indir_tbl_init = num_rx_queues;
3520 }
3521 igb_write_rss_indir_tbl(adapter);
3522
3523 /* Disable raw packet checksumming so that RSS hash is placed in
3524 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3525 * offloads as they are enabled by default
3526 */
3527 rxcsum = rd32(E1000_RXCSUM);
3528 rxcsum |= E1000_RXCSUM_PCSD;
3529
3530 if (adapter->hw.mac.type >= e1000_82576)
3531 /* Enable Receive Checksum Offload for SCTP */
3532 rxcsum |= E1000_RXCSUM_CRCOFL;
3533
3534 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3535 wr32(E1000_RXCSUM, rxcsum);
3536
3537 /* Generate RSS hash based on packet types, TCP/UDP
3538 * port numbers and/or IPv4/v6 src and dst addresses
3539 */
3540 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3541 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3542 E1000_MRQC_RSS_FIELD_IPV6 |
3543 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3544 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3545
3546 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3547 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3548 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3549 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3550
3551 /* If VMDq is enabled then we set the appropriate mode for that, else
3552 * we default to RSS so that an RSS hash is calculated per packet even
3553 * if we are only using one queue
3554 */
3555 if (adapter->vfs_allocated_count) {
3556 if (hw->mac.type > e1000_82575) {
3557 /* Set the default pool for the PF's first queue */
3558 u32 vtctl = rd32(E1000_VT_CTL);
3559
3560 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3561 E1000_VT_CTL_DISABLE_DEF_POOL);
3562 vtctl |= adapter->vfs_allocated_count <<
3563 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3564 wr32(E1000_VT_CTL, vtctl);
3565 }
3566 if (adapter->rss_queues > 1)
3567 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3568 else
3569 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3570 } else {
3571 if (hw->mac.type != e1000_i211)
3572 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3573 }
3574 igb_vmm_control(adapter);
3575
3576 wr32(E1000_MRQC, mrqc);
3577 }
3578
3579 /**
3580 * igb_setup_rctl - configure the receive control registers
3581 * @adapter: Board private structure
3582 **/
3583 void igb_setup_rctl(struct igb_adapter *adapter)
3584 {
3585 struct e1000_hw *hw = &adapter->hw;
3586 u32 rctl;
3587
3588 rctl = rd32(E1000_RCTL);
3589
3590 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3591 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3592
3593 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3594 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3595
3596 /* enable stripping of CRC. It's unlikely this will break BMC
3597 * redirection as it did with e1000. Newer features require
3598 * that the HW strips the CRC.
3599 */
3600 rctl |= E1000_RCTL_SECRC;
3601
3602 /* disable store bad packets and clear size bits. */
3603 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3604
3605 /* enable LPE to allow for reception of jumbo frames */
3606 rctl |= E1000_RCTL_LPE;
3607
3608 /* disable queue 0 to prevent tail write w/o re-config */
3609 wr32(E1000_RXDCTL(0), 0);
3610
3611 /* Attention!!! For SR-IOV PF driver operations you must enable
3612 * queue drop for all VF and PF queues to prevent head of line blocking
3613 * if an un-trusted VF does not provide descriptors to hardware.
3614 */
3615 if (adapter->vfs_allocated_count) {
3616 /* set all queue drop enable bits */
3617 wr32(E1000_QDE, ALL_QUEUES);
3618 }
3619
3620 /* This is useful for sniffing bad packets. */
3621 if (adapter->netdev->features & NETIF_F_RXALL) {
3622 /* UPE and MPE will be handled by normal PROMISC logic
3623 * in e1000e_set_rx_mode
3624 */
3625 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3626 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3627 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3628
3629 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3630 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3631 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3632 * and that breaks VLANs.
3633 */
3634 }
3635
3636 wr32(E1000_RCTL, rctl);
3637 }
3638
3639 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3640 int vfn)
3641 {
3642 struct e1000_hw *hw = &adapter->hw;
3643 u32 vmolr;
3644
3645 if (size > MAX_JUMBO_FRAME_SIZE)
3646 size = MAX_JUMBO_FRAME_SIZE;
3647
3648 vmolr = rd32(E1000_VMOLR(vfn));
3649 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3650 vmolr |= size | E1000_VMOLR_LPE;
3651 wr32(E1000_VMOLR(vfn), vmolr);
3652
3653 return 0;
3654 }
3655
3656 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3657 int vfn, bool enable)
3658 {
3659 struct e1000_hw *hw = &adapter->hw;
3660 u32 val, reg;
3661
3662 if (hw->mac.type < e1000_82576)
3663 return;
3664
3665 if (hw->mac.type == e1000_i350)
3666 reg = E1000_DVMOLR(vfn);
3667 else
3668 reg = E1000_VMOLR(vfn);
3669
3670 val = rd32(reg);
3671 if (enable)
3672 val |= E1000_VMOLR_STRVLAN;
3673 else
3674 val &= ~(E1000_VMOLR_STRVLAN);
3675 wr32(reg, val);
3676 }
3677
3678 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3679 int vfn, bool aupe)
3680 {
3681 struct e1000_hw *hw = &adapter->hw;
3682 u32 vmolr;
3683
3684 /* This register exists only on 82576 and newer so if we are older then
3685 * we should exit and do nothing
3686 */
3687 if (hw->mac.type < e1000_82576)
3688 return;
3689
3690 vmolr = rd32(E1000_VMOLR(vfn));
3691 if (aupe)
3692 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3693 else
3694 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3695
3696 /* clear all bits that might not be set */
3697 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3698
3699 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3700 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3701 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3702 * multicast packets
3703 */
3704 if (vfn <= adapter->vfs_allocated_count)
3705 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3706
3707 wr32(E1000_VMOLR(vfn), vmolr);
3708 }
3709
3710 /**
3711 * igb_configure_rx_ring - Configure a receive ring after Reset
3712 * @adapter: board private structure
3713 * @ring: receive ring to be configured
3714 *
3715 * Configure the Rx unit of the MAC after a reset.
3716 **/
3717 void igb_configure_rx_ring(struct igb_adapter *adapter,
3718 struct igb_ring *ring)
3719 {
3720 struct e1000_hw *hw = &adapter->hw;
3721 u64 rdba = ring->dma;
3722 int reg_idx = ring->reg_idx;
3723 u32 srrctl = 0, rxdctl = 0;
3724
3725 /* disable the queue */
3726 wr32(E1000_RXDCTL(reg_idx), 0);
3727
3728 /* Set DMA base address registers */
3729 wr32(E1000_RDBAL(reg_idx),
3730 rdba & 0x00000000ffffffffULL);
3731 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3732 wr32(E1000_RDLEN(reg_idx),
3733 ring->count * sizeof(union e1000_adv_rx_desc));
3734
3735 /* initialize head and tail */
3736 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3737 wr32(E1000_RDH(reg_idx), 0);
3738 writel(0, ring->tail);
3739
3740 /* set descriptor configuration */
3741 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3742 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3743 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3744 if (hw->mac.type >= e1000_82580)
3745 srrctl |= E1000_SRRCTL_TIMESTAMP;
3746 /* Only set Drop Enable if we are supporting multiple queues */
3747 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3748 srrctl |= E1000_SRRCTL_DROP_EN;
3749
3750 wr32(E1000_SRRCTL(reg_idx), srrctl);
3751
3752 /* set filtering for VMDQ pools */
3753 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3754
3755 rxdctl |= IGB_RX_PTHRESH;
3756 rxdctl |= IGB_RX_HTHRESH << 8;
3757 rxdctl |= IGB_RX_WTHRESH << 16;
3758
3759 /* enable receive descriptor fetching */
3760 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3761 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3762 }
3763
3764 /**
3765 * igb_configure_rx - Configure receive Unit after Reset
3766 * @adapter: board private structure
3767 *
3768 * Configure the Rx unit of the MAC after a reset.
3769 **/
3770 static void igb_configure_rx(struct igb_adapter *adapter)
3771 {
3772 int i;
3773
3774 /* set the correct pool for the PF default MAC address in entry 0 */
3775 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3776 adapter->vfs_allocated_count);
3777
3778 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3779 * the Base and Length of the Rx Descriptor Ring
3780 */
3781 for (i = 0; i < adapter->num_rx_queues; i++)
3782 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3783 }
3784
3785 /**
3786 * igb_free_tx_resources - Free Tx Resources per Queue
3787 * @tx_ring: Tx descriptor ring for a specific queue
3788 *
3789 * Free all transmit software resources
3790 **/
3791 void igb_free_tx_resources(struct igb_ring *tx_ring)
3792 {
3793 igb_clean_tx_ring(tx_ring);
3794
3795 vfree(tx_ring->tx_buffer_info);
3796 tx_ring->tx_buffer_info = NULL;
3797
3798 /* if not set, then don't free */
3799 if (!tx_ring->desc)
3800 return;
3801
3802 dma_free_coherent(tx_ring->dev, tx_ring->size,
3803 tx_ring->desc, tx_ring->dma);
3804
3805 tx_ring->desc = NULL;
3806 }
3807
3808 /**
3809 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3810 * @adapter: board private structure
3811 *
3812 * Free all transmit software resources
3813 **/
3814 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3815 {
3816 int i;
3817
3818 for (i = 0; i < adapter->num_tx_queues; i++)
3819 if (adapter->tx_ring[i])
3820 igb_free_tx_resources(adapter->tx_ring[i]);
3821 }
3822
3823 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3824 struct igb_tx_buffer *tx_buffer)
3825 {
3826 if (tx_buffer->skb) {
3827 dev_kfree_skb_any(tx_buffer->skb);
3828 if (dma_unmap_len(tx_buffer, len))
3829 dma_unmap_single(ring->dev,
3830 dma_unmap_addr(tx_buffer, dma),
3831 dma_unmap_len(tx_buffer, len),
3832 DMA_TO_DEVICE);
3833 } else if (dma_unmap_len(tx_buffer, len)) {
3834 dma_unmap_page(ring->dev,
3835 dma_unmap_addr(tx_buffer, dma),
3836 dma_unmap_len(tx_buffer, len),
3837 DMA_TO_DEVICE);
3838 }
3839 tx_buffer->next_to_watch = NULL;
3840 tx_buffer->skb = NULL;
3841 dma_unmap_len_set(tx_buffer, len, 0);
3842 /* buffer_info must be completely set up in the transmit path */
3843 }
3844
3845 /**
3846 * igb_clean_tx_ring - Free Tx Buffers
3847 * @tx_ring: ring to be cleaned
3848 **/
3849 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3850 {
3851 struct igb_tx_buffer *buffer_info;
3852 unsigned long size;
3853 u16 i;
3854
3855 if (!tx_ring->tx_buffer_info)
3856 return;
3857 /* Free all the Tx ring sk_buffs */
3858
3859 for (i = 0; i < tx_ring->count; i++) {
3860 buffer_info = &tx_ring->tx_buffer_info[i];
3861 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3862 }
3863
3864 netdev_tx_reset_queue(txring_txq(tx_ring));
3865
3866 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3867 memset(tx_ring->tx_buffer_info, 0, size);
3868
3869 /* Zero out the descriptor ring */
3870 memset(tx_ring->desc, 0, tx_ring->size);
3871
3872 tx_ring->next_to_use = 0;
3873 tx_ring->next_to_clean = 0;
3874 }
3875
3876 /**
3877 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3878 * @adapter: board private structure
3879 **/
3880 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3881 {
3882 int i;
3883
3884 for (i = 0; i < adapter->num_tx_queues; i++)
3885 if (adapter->tx_ring[i])
3886 igb_clean_tx_ring(adapter->tx_ring[i]);
3887 }
3888
3889 /**
3890 * igb_free_rx_resources - Free Rx Resources
3891 * @rx_ring: ring to clean the resources from
3892 *
3893 * Free all receive software resources
3894 **/
3895 void igb_free_rx_resources(struct igb_ring *rx_ring)
3896 {
3897 igb_clean_rx_ring(rx_ring);
3898
3899 vfree(rx_ring->rx_buffer_info);
3900 rx_ring->rx_buffer_info = NULL;
3901
3902 /* if not set, then don't free */
3903 if (!rx_ring->desc)
3904 return;
3905
3906 dma_free_coherent(rx_ring->dev, rx_ring->size,
3907 rx_ring->desc, rx_ring->dma);
3908
3909 rx_ring->desc = NULL;
3910 }
3911
3912 /**
3913 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3914 * @adapter: board private structure
3915 *
3916 * Free all receive software resources
3917 **/
3918 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3919 {
3920 int i;
3921
3922 for (i = 0; i < adapter->num_rx_queues; i++)
3923 if (adapter->rx_ring[i])
3924 igb_free_rx_resources(adapter->rx_ring[i]);
3925 }
3926
3927 /**
3928 * igb_clean_rx_ring - Free Rx Buffers per Queue
3929 * @rx_ring: ring to free buffers from
3930 **/
3931 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3932 {
3933 unsigned long size;
3934 u16 i;
3935
3936 if (rx_ring->skb)
3937 dev_kfree_skb(rx_ring->skb);
3938 rx_ring->skb = NULL;
3939
3940 if (!rx_ring->rx_buffer_info)
3941 return;
3942
3943 /* Free all the Rx ring sk_buffs */
3944 for (i = 0; i < rx_ring->count; i++) {
3945 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3946
3947 if (!buffer_info->page)
3948 continue;
3949
3950 /* Invalidate cache lines that may have been written to by
3951 * device so that we avoid corrupting memory.
3952 */
3953 dma_sync_single_range_for_cpu(rx_ring->dev,
3954 buffer_info->dma,
3955 buffer_info->page_offset,
3956 IGB_RX_BUFSZ,
3957 DMA_FROM_DEVICE);
3958
3959 /* free resources associated with mapping */
3960 dma_unmap_page_attrs(rx_ring->dev,
3961 buffer_info->dma,
3962 PAGE_SIZE,
3963 DMA_FROM_DEVICE,
3964 DMA_ATTR_SKIP_CPU_SYNC);
3965 __page_frag_cache_drain(buffer_info->page,
3966 buffer_info->pagecnt_bias);
3967
3968 buffer_info->page = NULL;
3969 }
3970
3971 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3972 memset(rx_ring->rx_buffer_info, 0, size);
3973
3974 /* Zero out the descriptor ring */
3975 memset(rx_ring->desc, 0, rx_ring->size);
3976
3977 rx_ring->next_to_alloc = 0;
3978 rx_ring->next_to_clean = 0;
3979 rx_ring->next_to_use = 0;
3980 }
3981
3982 /**
3983 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3984 * @adapter: board private structure
3985 **/
3986 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3987 {
3988 int i;
3989
3990 for (i = 0; i < adapter->num_rx_queues; i++)
3991 if (adapter->rx_ring[i])
3992 igb_clean_rx_ring(adapter->rx_ring[i]);
3993 }
3994
3995 /**
3996 * igb_set_mac - Change the Ethernet Address of the NIC
3997 * @netdev: network interface device structure
3998 * @p: pointer to an address structure
3999 *
4000 * Returns 0 on success, negative on failure
4001 **/
4002 static int igb_set_mac(struct net_device *netdev, void *p)
4003 {
4004 struct igb_adapter *adapter = netdev_priv(netdev);
4005 struct e1000_hw *hw = &adapter->hw;
4006 struct sockaddr *addr = p;
4007
4008 if (!is_valid_ether_addr(addr->sa_data))
4009 return -EADDRNOTAVAIL;
4010
4011 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4012 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4013
4014 /* set the correct pool for the new PF MAC address in entry 0 */
4015 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
4016 adapter->vfs_allocated_count);
4017
4018 return 0;
4019 }
4020
4021 /**
4022 * igb_write_mc_addr_list - write multicast addresses to MTA
4023 * @netdev: network interface device structure
4024 *
4025 * Writes multicast address list to the MTA hash table.
4026 * Returns: -ENOMEM on failure
4027 * 0 on no addresses written
4028 * X on writing X addresses to MTA
4029 **/
4030 static int igb_write_mc_addr_list(struct net_device *netdev)
4031 {
4032 struct igb_adapter *adapter = netdev_priv(netdev);
4033 struct e1000_hw *hw = &adapter->hw;
4034 struct netdev_hw_addr *ha;
4035 u8 *mta_list;
4036 int i;
4037
4038 if (netdev_mc_empty(netdev)) {
4039 /* nothing to program, so clear mc list */
4040 igb_update_mc_addr_list(hw, NULL, 0);
4041 igb_restore_vf_multicasts(adapter);
4042 return 0;
4043 }
4044
4045 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4046 if (!mta_list)
4047 return -ENOMEM;
4048
4049 /* The shared function expects a packed array of only addresses. */
4050 i = 0;
4051 netdev_for_each_mc_addr(ha, netdev)
4052 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4053
4054 igb_update_mc_addr_list(hw, mta_list, i);
4055 kfree(mta_list);
4056
4057 return netdev_mc_count(netdev);
4058 }
4059
4060 /**
4061 * igb_write_uc_addr_list - write unicast addresses to RAR table
4062 * @netdev: network interface device structure
4063 *
4064 * Writes unicast address list to the RAR table.
4065 * Returns: -ENOMEM on failure/insufficient address space
4066 * 0 on no addresses written
4067 * X on writing X addresses to the RAR table
4068 **/
4069 static int igb_write_uc_addr_list(struct net_device *netdev)
4070 {
4071 struct igb_adapter *adapter = netdev_priv(netdev);
4072 struct e1000_hw *hw = &adapter->hw;
4073 unsigned int vfn = adapter->vfs_allocated_count;
4074 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
4075 int count = 0;
4076
4077 /* return ENOMEM indicating insufficient memory for addresses */
4078 if (netdev_uc_count(netdev) > rar_entries)
4079 return -ENOMEM;
4080
4081 if (!netdev_uc_empty(netdev) && rar_entries) {
4082 struct netdev_hw_addr *ha;
4083
4084 netdev_for_each_uc_addr(ha, netdev) {
4085 if (!rar_entries)
4086 break;
4087 igb_rar_set_qsel(adapter, ha->addr,
4088 rar_entries--,
4089 vfn);
4090 count++;
4091 }
4092 }
4093 /* write the addresses in reverse order to avoid write combining */
4094 for (; rar_entries > 0 ; rar_entries--) {
4095 wr32(E1000_RAH(rar_entries), 0);
4096 wr32(E1000_RAL(rar_entries), 0);
4097 }
4098 wrfl();
4099
4100 return count;
4101 }
4102
4103 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4104 {
4105 struct e1000_hw *hw = &adapter->hw;
4106 u32 i, pf_id;
4107
4108 switch (hw->mac.type) {
4109 case e1000_i210:
4110 case e1000_i211:
4111 case e1000_i350:
4112 /* VLAN filtering needed for VLAN prio filter */
4113 if (adapter->netdev->features & NETIF_F_NTUPLE)
4114 break;
4115 /* fall through */
4116 case e1000_82576:
4117 case e1000_82580:
4118 case e1000_i354:
4119 /* VLAN filtering needed for pool filtering */
4120 if (adapter->vfs_allocated_count)
4121 break;
4122 /* fall through */
4123 default:
4124 return 1;
4125 }
4126
4127 /* We are already in VLAN promisc, nothing to do */
4128 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4129 return 0;
4130
4131 if (!adapter->vfs_allocated_count)
4132 goto set_vfta;
4133
4134 /* Add PF to all active pools */
4135 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4136
4137 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4138 u32 vlvf = rd32(E1000_VLVF(i));
4139
4140 vlvf |= BIT(pf_id);
4141 wr32(E1000_VLVF(i), vlvf);
4142 }
4143
4144 set_vfta:
4145 /* Set all bits in the VLAN filter table array */
4146 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4147 hw->mac.ops.write_vfta(hw, i, ~0U);
4148
4149 /* Set flag so we don't redo unnecessary work */
4150 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4151
4152 return 0;
4153 }
4154
4155 #define VFTA_BLOCK_SIZE 8
4156 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4157 {
4158 struct e1000_hw *hw = &adapter->hw;
4159 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4160 u32 vid_start = vfta_offset * 32;
4161 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4162 u32 i, vid, word, bits, pf_id;
4163
4164 /* guarantee that we don't scrub out management VLAN */
4165 vid = adapter->mng_vlan_id;
4166 if (vid >= vid_start && vid < vid_end)
4167 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4168
4169 if (!adapter->vfs_allocated_count)
4170 goto set_vfta;
4171
4172 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4173
4174 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4175 u32 vlvf = rd32(E1000_VLVF(i));
4176
4177 /* pull VLAN ID from VLVF */
4178 vid = vlvf & VLAN_VID_MASK;
4179
4180 /* only concern ourselves with a certain range */
4181 if (vid < vid_start || vid >= vid_end)
4182 continue;
4183
4184 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4185 /* record VLAN ID in VFTA */
4186 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4187
4188 /* if PF is part of this then continue */
4189 if (test_bit(vid, adapter->active_vlans))
4190 continue;
4191 }
4192
4193 /* remove PF from the pool */
4194 bits = ~BIT(pf_id);
4195 bits &= rd32(E1000_VLVF(i));
4196 wr32(E1000_VLVF(i), bits);
4197 }
4198
4199 set_vfta:
4200 /* extract values from active_vlans and write back to VFTA */
4201 for (i = VFTA_BLOCK_SIZE; i--;) {
4202 vid = (vfta_offset + i) * 32;
4203 word = vid / BITS_PER_LONG;
4204 bits = vid % BITS_PER_LONG;
4205
4206 vfta[i] |= adapter->active_vlans[word] >> bits;
4207
4208 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4209 }
4210 }
4211
4212 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4213 {
4214 u32 i;
4215
4216 /* We are not in VLAN promisc, nothing to do */
4217 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4218 return;
4219
4220 /* Set flag so we don't redo unnecessary work */
4221 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4222
4223 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4224 igb_scrub_vfta(adapter, i);
4225 }
4226
4227 /**
4228 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4229 * @netdev: network interface device structure
4230 *
4231 * The set_rx_mode entry point is called whenever the unicast or multicast
4232 * address lists or the network interface flags are updated. This routine is
4233 * responsible for configuring the hardware for proper unicast, multicast,
4234 * promiscuous mode, and all-multi behavior.
4235 **/
4236 static void igb_set_rx_mode(struct net_device *netdev)
4237 {
4238 struct igb_adapter *adapter = netdev_priv(netdev);
4239 struct e1000_hw *hw = &adapter->hw;
4240 unsigned int vfn = adapter->vfs_allocated_count;
4241 u32 rctl = 0, vmolr = 0;
4242 int count;
4243
4244 /* Check for Promiscuous and All Multicast modes */
4245 if (netdev->flags & IFF_PROMISC) {
4246 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4247 vmolr |= E1000_VMOLR_MPME;
4248
4249 /* enable use of UTA filter to force packets to default pool */
4250 if (hw->mac.type == e1000_82576)
4251 vmolr |= E1000_VMOLR_ROPE;
4252 } else {
4253 if (netdev->flags & IFF_ALLMULTI) {
4254 rctl |= E1000_RCTL_MPE;
4255 vmolr |= E1000_VMOLR_MPME;
4256 } else {
4257 /* Write addresses to the MTA, if the attempt fails
4258 * then we should just turn on promiscuous mode so
4259 * that we can at least receive multicast traffic
4260 */
4261 count = igb_write_mc_addr_list(netdev);
4262 if (count < 0) {
4263 rctl |= E1000_RCTL_MPE;
4264 vmolr |= E1000_VMOLR_MPME;
4265 } else if (count) {
4266 vmolr |= E1000_VMOLR_ROMPE;
4267 }
4268 }
4269 }
4270
4271 /* Write addresses to available RAR registers, if there is not
4272 * sufficient space to store all the addresses then enable
4273 * unicast promiscuous mode
4274 */
4275 count = igb_write_uc_addr_list(netdev);
4276 if (count < 0) {
4277 rctl |= E1000_RCTL_UPE;
4278 vmolr |= E1000_VMOLR_ROPE;
4279 }
4280
4281 /* enable VLAN filtering by default */
4282 rctl |= E1000_RCTL_VFE;
4283
4284 /* disable VLAN filtering for modes that require it */
4285 if ((netdev->flags & IFF_PROMISC) ||
4286 (netdev->features & NETIF_F_RXALL)) {
4287 /* if we fail to set all rules then just clear VFE */
4288 if (igb_vlan_promisc_enable(adapter))
4289 rctl &= ~E1000_RCTL_VFE;
4290 } else {
4291 igb_vlan_promisc_disable(adapter);
4292 }
4293
4294 /* update state of unicast, multicast, and VLAN filtering modes */
4295 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4296 E1000_RCTL_VFE);
4297 wr32(E1000_RCTL, rctl);
4298
4299 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4300 * the VMOLR to enable the appropriate modes. Without this workaround
4301 * we will have issues with VLAN tag stripping not being done for frames
4302 * that are only arriving because we are the default pool
4303 */
4304 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4305 return;
4306
4307 /* set UTA to appropriate mode */
4308 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4309
4310 vmolr |= rd32(E1000_VMOLR(vfn)) &
4311 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4312
4313 /* enable Rx jumbo frames, no need for restriction */
4314 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4315 vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4316
4317 wr32(E1000_VMOLR(vfn), vmolr);
4318 wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4319
4320 igb_restore_vf_multicasts(adapter);
4321 }
4322
4323 static void igb_check_wvbr(struct igb_adapter *adapter)
4324 {
4325 struct e1000_hw *hw = &adapter->hw;
4326 u32 wvbr = 0;
4327
4328 switch (hw->mac.type) {
4329 case e1000_82576:
4330 case e1000_i350:
4331 wvbr = rd32(E1000_WVBR);
4332 if (!wvbr)
4333 return;
4334 break;
4335 default:
4336 break;
4337 }
4338
4339 adapter->wvbr |= wvbr;
4340 }
4341
4342 #define IGB_STAGGERED_QUEUE_OFFSET 8
4343
4344 static void igb_spoof_check(struct igb_adapter *adapter)
4345 {
4346 int j;
4347
4348 if (!adapter->wvbr)
4349 return;
4350
4351 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4352 if (adapter->wvbr & BIT(j) ||
4353 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4354 dev_warn(&adapter->pdev->dev,
4355 "Spoof event(s) detected on VF %d\n", j);
4356 adapter->wvbr &=
4357 ~(BIT(j) |
4358 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4359 }
4360 }
4361 }
4362
4363 /* Need to wait a few seconds after link up to get diagnostic information from
4364 * the phy
4365 */
4366 static void igb_update_phy_info(unsigned long data)
4367 {
4368 struct igb_adapter *adapter = (struct igb_adapter *) data;
4369 igb_get_phy_info(&adapter->hw);
4370 }
4371
4372 /**
4373 * igb_has_link - check shared code for link and determine up/down
4374 * @adapter: pointer to driver private info
4375 **/
4376 bool igb_has_link(struct igb_adapter *adapter)
4377 {
4378 struct e1000_hw *hw = &adapter->hw;
4379 bool link_active = false;
4380
4381 /* get_link_status is set on LSC (link status) interrupt or
4382 * rx sequence error interrupt. get_link_status will stay
4383 * false until the e1000_check_for_link establishes link
4384 * for copper adapters ONLY
4385 */
4386 switch (hw->phy.media_type) {
4387 case e1000_media_type_copper:
4388 if (!hw->mac.get_link_status)
4389 return true;
4390 case e1000_media_type_internal_serdes:
4391 hw->mac.ops.check_for_link(hw);
4392 link_active = !hw->mac.get_link_status;
4393 break;
4394 default:
4395 case e1000_media_type_unknown:
4396 break;
4397 }
4398
4399 if (((hw->mac.type == e1000_i210) ||
4400 (hw->mac.type == e1000_i211)) &&
4401 (hw->phy.id == I210_I_PHY_ID)) {
4402 if (!netif_carrier_ok(adapter->netdev)) {
4403 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4404 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4405 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4406 adapter->link_check_timeout = jiffies;
4407 }
4408 }
4409
4410 return link_active;
4411 }
4412
4413 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4414 {
4415 bool ret = false;
4416 u32 ctrl_ext, thstat;
4417
4418 /* check for thermal sensor event on i350 copper only */
4419 if (hw->mac.type == e1000_i350) {
4420 thstat = rd32(E1000_THSTAT);
4421 ctrl_ext = rd32(E1000_CTRL_EXT);
4422
4423 if ((hw->phy.media_type == e1000_media_type_copper) &&
4424 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4425 ret = !!(thstat & event);
4426 }
4427
4428 return ret;
4429 }
4430
4431 /**
4432 * igb_check_lvmmc - check for malformed packets received
4433 * and indicated in LVMMC register
4434 * @adapter: pointer to adapter
4435 **/
4436 static void igb_check_lvmmc(struct igb_adapter *adapter)
4437 {
4438 struct e1000_hw *hw = &adapter->hw;
4439 u32 lvmmc;
4440
4441 lvmmc = rd32(E1000_LVMMC);
4442 if (lvmmc) {
4443 if (unlikely(net_ratelimit())) {
4444 netdev_warn(adapter->netdev,
4445 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4446 lvmmc);
4447 }
4448 }
4449 }
4450
4451 /**
4452 * igb_watchdog - Timer Call-back
4453 * @data: pointer to adapter cast into an unsigned long
4454 **/
4455 static void igb_watchdog(unsigned long data)
4456 {
4457 struct igb_adapter *adapter = (struct igb_adapter *)data;
4458 /* Do the rest outside of interrupt context */
4459 schedule_work(&adapter->watchdog_task);
4460 }
4461
4462 static void igb_watchdog_task(struct work_struct *work)
4463 {
4464 struct igb_adapter *adapter = container_of(work,
4465 struct igb_adapter,
4466 watchdog_task);
4467 struct e1000_hw *hw = &adapter->hw;
4468 struct e1000_phy_info *phy = &hw->phy;
4469 struct net_device *netdev = adapter->netdev;
4470 u32 link;
4471 int i;
4472 u32 connsw;
4473 u16 phy_data, retry_count = 20;
4474
4475 link = igb_has_link(adapter);
4476
4477 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4478 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4479 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4480 else
4481 link = false;
4482 }
4483
4484 /* Force link down if we have fiber to swap to */
4485 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4486 if (hw->phy.media_type == e1000_media_type_copper) {
4487 connsw = rd32(E1000_CONNSW);
4488 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4489 link = 0;
4490 }
4491 }
4492 if (link) {
4493 /* Perform a reset if the media type changed. */
4494 if (hw->dev_spec._82575.media_changed) {
4495 hw->dev_spec._82575.media_changed = false;
4496 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4497 igb_reset(adapter);
4498 }
4499 /* Cancel scheduled suspend requests. */
4500 pm_runtime_resume(netdev->dev.parent);
4501
4502 if (!netif_carrier_ok(netdev)) {
4503 u32 ctrl;
4504
4505 hw->mac.ops.get_speed_and_duplex(hw,
4506 &adapter->link_speed,
4507 &adapter->link_duplex);
4508
4509 ctrl = rd32(E1000_CTRL);
4510 /* Links status message must follow this format */
4511 netdev_info(netdev,
4512 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4513 netdev->name,
4514 adapter->link_speed,
4515 adapter->link_duplex == FULL_DUPLEX ?
4516 "Full" : "Half",
4517 (ctrl & E1000_CTRL_TFCE) &&
4518 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4519 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4520 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4521
4522 /* disable EEE if enabled */
4523 if ((adapter->flags & IGB_FLAG_EEE) &&
4524 (adapter->link_duplex == HALF_DUPLEX)) {
4525 dev_info(&adapter->pdev->dev,
4526 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4527 adapter->hw.dev_spec._82575.eee_disable = true;
4528 adapter->flags &= ~IGB_FLAG_EEE;
4529 }
4530
4531 /* check if SmartSpeed worked */
4532 igb_check_downshift(hw);
4533 if (phy->speed_downgraded)
4534 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4535
4536 /* check for thermal sensor event */
4537 if (igb_thermal_sensor_event(hw,
4538 E1000_THSTAT_LINK_THROTTLE))
4539 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4540
4541 /* adjust timeout factor according to speed/duplex */
4542 adapter->tx_timeout_factor = 1;
4543 switch (adapter->link_speed) {
4544 case SPEED_10:
4545 adapter->tx_timeout_factor = 14;
4546 break;
4547 case SPEED_100:
4548 /* maybe add some timeout factor ? */
4549 break;
4550 }
4551
4552 if (adapter->link_speed != SPEED_1000)
4553 goto no_wait;
4554
4555 /* wait for Remote receiver status OK */
4556 retry_read_status:
4557 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4558 &phy_data)) {
4559 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4560 retry_count) {
4561 msleep(100);
4562 retry_count--;
4563 goto retry_read_status;
4564 } else if (!retry_count) {
4565 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4566 }
4567 } else {
4568 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4569 }
4570 no_wait:
4571 netif_carrier_on(netdev);
4572
4573 igb_ping_all_vfs(adapter);
4574 igb_check_vf_rate_limit(adapter);
4575
4576 /* link state has changed, schedule phy info update */
4577 if (!test_bit(__IGB_DOWN, &adapter->state))
4578 mod_timer(&adapter->phy_info_timer,
4579 round_jiffies(jiffies + 2 * HZ));
4580 }
4581 } else {
4582 if (netif_carrier_ok(netdev)) {
4583 adapter->link_speed = 0;
4584 adapter->link_duplex = 0;
4585
4586 /* check for thermal sensor event */
4587 if (igb_thermal_sensor_event(hw,
4588 E1000_THSTAT_PWR_DOWN)) {
4589 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4590 }
4591
4592 /* Links status message must follow this format */
4593 netdev_info(netdev, "igb: %s NIC Link is Down\n",
4594 netdev->name);
4595 netif_carrier_off(netdev);
4596
4597 igb_ping_all_vfs(adapter);
4598
4599 /* link state has changed, schedule phy info update */
4600 if (!test_bit(__IGB_DOWN, &adapter->state))
4601 mod_timer(&adapter->phy_info_timer,
4602 round_jiffies(jiffies + 2 * HZ));
4603
4604 /* link is down, time to check for alternate media */
4605 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4606 igb_check_swap_media(adapter);
4607 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4608 schedule_work(&adapter->reset_task);
4609 /* return immediately */
4610 return;
4611 }
4612 }
4613 pm_schedule_suspend(netdev->dev.parent,
4614 MSEC_PER_SEC * 5);
4615
4616 /* also check for alternate media here */
4617 } else if (!netif_carrier_ok(netdev) &&
4618 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4619 igb_check_swap_media(adapter);
4620 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4621 schedule_work(&adapter->reset_task);
4622 /* return immediately */
4623 return;
4624 }
4625 }
4626 }
4627
4628 spin_lock(&adapter->stats64_lock);
4629 igb_update_stats(adapter, &adapter->stats64);
4630 spin_unlock(&adapter->stats64_lock);
4631
4632 for (i = 0; i < adapter->num_tx_queues; i++) {
4633 struct igb_ring *tx_ring = adapter->tx_ring[i];
4634 if (!netif_carrier_ok(netdev)) {
4635 /* We've lost link, so the controller stops DMA,
4636 * but we've got queued Tx work that's never going
4637 * to get done, so reset controller to flush Tx.
4638 * (Do the reset outside of interrupt context).
4639 */
4640 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4641 adapter->tx_timeout_count++;
4642 schedule_work(&adapter->reset_task);
4643 /* return immediately since reset is imminent */
4644 return;
4645 }
4646 }
4647
4648 /* Force detection of hung controller every watchdog period */
4649 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4650 }
4651
4652 /* Cause software interrupt to ensure Rx ring is cleaned */
4653 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4654 u32 eics = 0;
4655
4656 for (i = 0; i < adapter->num_q_vectors; i++)
4657 eics |= adapter->q_vector[i]->eims_value;
4658 wr32(E1000_EICS, eics);
4659 } else {
4660 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4661 }
4662
4663 igb_spoof_check(adapter);
4664 igb_ptp_rx_hang(adapter);
4665
4666 /* Check LVMMC register on i350/i354 only */
4667 if ((adapter->hw.mac.type == e1000_i350) ||
4668 (adapter->hw.mac.type == e1000_i354))
4669 igb_check_lvmmc(adapter);
4670
4671 /* Reset the timer */
4672 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4673 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4674 mod_timer(&adapter->watchdog_timer,
4675 round_jiffies(jiffies + HZ));
4676 else
4677 mod_timer(&adapter->watchdog_timer,
4678 round_jiffies(jiffies + 2 * HZ));
4679 }
4680 }
4681
4682 enum latency_range {
4683 lowest_latency = 0,
4684 low_latency = 1,
4685 bulk_latency = 2,
4686 latency_invalid = 255
4687 };
4688
4689 /**
4690 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4691 * @q_vector: pointer to q_vector
4692 *
4693 * Stores a new ITR value based on strictly on packet size. This
4694 * algorithm is less sophisticated than that used in igb_update_itr,
4695 * due to the difficulty of synchronizing statistics across multiple
4696 * receive rings. The divisors and thresholds used by this function
4697 * were determined based on theoretical maximum wire speed and testing
4698 * data, in order to minimize response time while increasing bulk
4699 * throughput.
4700 * This functionality is controlled by ethtool's coalescing settings.
4701 * NOTE: This function is called only when operating in a multiqueue
4702 * receive environment.
4703 **/
4704 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4705 {
4706 int new_val = q_vector->itr_val;
4707 int avg_wire_size = 0;
4708 struct igb_adapter *adapter = q_vector->adapter;
4709 unsigned int packets;
4710
4711 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4712 * ints/sec - ITR timer value of 120 ticks.
4713 */
4714 if (adapter->link_speed != SPEED_1000) {
4715 new_val = IGB_4K_ITR;
4716 goto set_itr_val;
4717 }
4718
4719 packets = q_vector->rx.total_packets;
4720 if (packets)
4721 avg_wire_size = q_vector->rx.total_bytes / packets;
4722
4723 packets = q_vector->tx.total_packets;
4724 if (packets)
4725 avg_wire_size = max_t(u32, avg_wire_size,
4726 q_vector->tx.total_bytes / packets);
4727
4728 /* if avg_wire_size isn't set no work was done */
4729 if (!avg_wire_size)
4730 goto clear_counts;
4731
4732 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4733 avg_wire_size += 24;
4734
4735 /* Don't starve jumbo frames */
4736 avg_wire_size = min(avg_wire_size, 3000);
4737
4738 /* Give a little boost to mid-size frames */
4739 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4740 new_val = avg_wire_size / 3;
4741 else
4742 new_val = avg_wire_size / 2;
4743
4744 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4745 if (new_val < IGB_20K_ITR &&
4746 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4747 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4748 new_val = IGB_20K_ITR;
4749
4750 set_itr_val:
4751 if (new_val != q_vector->itr_val) {
4752 q_vector->itr_val = new_val;
4753 q_vector->set_itr = 1;
4754 }
4755 clear_counts:
4756 q_vector->rx.total_bytes = 0;
4757 q_vector->rx.total_packets = 0;
4758 q_vector->tx.total_bytes = 0;
4759 q_vector->tx.total_packets = 0;
4760 }
4761
4762 /**
4763 * igb_update_itr - update the dynamic ITR value based on statistics
4764 * @q_vector: pointer to q_vector
4765 * @ring_container: ring info to update the itr for
4766 *
4767 * Stores a new ITR value based on packets and byte
4768 * counts during the last interrupt. The advantage of per interrupt
4769 * computation is faster updates and more accurate ITR for the current
4770 * traffic pattern. Constants in this function were computed
4771 * based on theoretical maximum wire speed and thresholds were set based
4772 * on testing data as well as attempting to minimize response time
4773 * while increasing bulk throughput.
4774 * This functionality is controlled by ethtool's coalescing settings.
4775 * NOTE: These calculations are only valid when operating in a single-
4776 * queue environment.
4777 **/
4778 static void igb_update_itr(struct igb_q_vector *q_vector,
4779 struct igb_ring_container *ring_container)
4780 {
4781 unsigned int packets = ring_container->total_packets;
4782 unsigned int bytes = ring_container->total_bytes;
4783 u8 itrval = ring_container->itr;
4784
4785 /* no packets, exit with status unchanged */
4786 if (packets == 0)
4787 return;
4788
4789 switch (itrval) {
4790 case lowest_latency:
4791 /* handle TSO and jumbo frames */
4792 if (bytes/packets > 8000)
4793 itrval = bulk_latency;
4794 else if ((packets < 5) && (bytes > 512))
4795 itrval = low_latency;
4796 break;
4797 case low_latency: /* 50 usec aka 20000 ints/s */
4798 if (bytes > 10000) {
4799 /* this if handles the TSO accounting */
4800 if (bytes/packets > 8000)
4801 itrval = bulk_latency;
4802 else if ((packets < 10) || ((bytes/packets) > 1200))
4803 itrval = bulk_latency;
4804 else if ((packets > 35))
4805 itrval = lowest_latency;
4806 } else if (bytes/packets > 2000) {
4807 itrval = bulk_latency;
4808 } else if (packets <= 2 && bytes < 512) {
4809 itrval = lowest_latency;
4810 }
4811 break;
4812 case bulk_latency: /* 250 usec aka 4000 ints/s */
4813 if (bytes > 25000) {
4814 if (packets > 35)
4815 itrval = low_latency;
4816 } else if (bytes < 1500) {
4817 itrval = low_latency;
4818 }
4819 break;
4820 }
4821
4822 /* clear work counters since we have the values we need */
4823 ring_container->total_bytes = 0;
4824 ring_container->total_packets = 0;
4825
4826 /* write updated itr to ring container */
4827 ring_container->itr = itrval;
4828 }
4829
4830 static void igb_set_itr(struct igb_q_vector *q_vector)
4831 {
4832 struct igb_adapter *adapter = q_vector->adapter;
4833 u32 new_itr = q_vector->itr_val;
4834 u8 current_itr = 0;
4835
4836 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4837 if (adapter->link_speed != SPEED_1000) {
4838 current_itr = 0;
4839 new_itr = IGB_4K_ITR;
4840 goto set_itr_now;
4841 }
4842
4843 igb_update_itr(q_vector, &q_vector->tx);
4844 igb_update_itr(q_vector, &q_vector->rx);
4845
4846 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4847
4848 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4849 if (current_itr == lowest_latency &&
4850 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4851 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4852 current_itr = low_latency;
4853
4854 switch (current_itr) {
4855 /* counts and packets in update_itr are dependent on these numbers */
4856 case lowest_latency:
4857 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4858 break;
4859 case low_latency:
4860 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4861 break;
4862 case bulk_latency:
4863 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4864 break;
4865 default:
4866 break;
4867 }
4868
4869 set_itr_now:
4870 if (new_itr != q_vector->itr_val) {
4871 /* this attempts to bias the interrupt rate towards Bulk
4872 * by adding intermediate steps when interrupt rate is
4873 * increasing
4874 */
4875 new_itr = new_itr > q_vector->itr_val ?
4876 max((new_itr * q_vector->itr_val) /
4877 (new_itr + (q_vector->itr_val >> 2)),
4878 new_itr) : new_itr;
4879 /* Don't write the value here; it resets the adapter's
4880 * internal timer, and causes us to delay far longer than
4881 * we should between interrupts. Instead, we write the ITR
4882 * value at the beginning of the next interrupt so the timing
4883 * ends up being correct.
4884 */
4885 q_vector->itr_val = new_itr;
4886 q_vector->set_itr = 1;
4887 }
4888 }
4889
4890 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4891 u32 type_tucmd, u32 mss_l4len_idx)
4892 {
4893 struct e1000_adv_tx_context_desc *context_desc;
4894 u16 i = tx_ring->next_to_use;
4895
4896 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4897
4898 i++;
4899 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4900
4901 /* set bits to identify this as an advanced context descriptor */
4902 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4903
4904 /* For 82575, context index must be unique per ring. */
4905 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4906 mss_l4len_idx |= tx_ring->reg_idx << 4;
4907
4908 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4909 context_desc->seqnum_seed = 0;
4910 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4911 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4912 }
4913
4914 static int igb_tso(struct igb_ring *tx_ring,
4915 struct igb_tx_buffer *first,
4916 u8 *hdr_len)
4917 {
4918 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
4919 struct sk_buff *skb = first->skb;
4920 union {
4921 struct iphdr *v4;
4922 struct ipv6hdr *v6;
4923 unsigned char *hdr;
4924 } ip;
4925 union {
4926 struct tcphdr *tcp;
4927 unsigned char *hdr;
4928 } l4;
4929 u32 paylen, l4_offset;
4930 int err;
4931
4932 if (skb->ip_summed != CHECKSUM_PARTIAL)
4933 return 0;
4934
4935 if (!skb_is_gso(skb))
4936 return 0;
4937
4938 err = skb_cow_head(skb, 0);
4939 if (err < 0)
4940 return err;
4941
4942 ip.hdr = skb_network_header(skb);
4943 l4.hdr = skb_checksum_start(skb);
4944
4945 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4946 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4947
4948 /* initialize outer IP header fields */
4949 if (ip.v4->version == 4) {
4950 unsigned char *csum_start = skb_checksum_start(skb);
4951 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
4952
4953 /* IP header will have to cancel out any data that
4954 * is not a part of the outer IP header
4955 */
4956 ip.v4->check = csum_fold(csum_partial(trans_start,
4957 csum_start - trans_start,
4958 0));
4959 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4960
4961 ip.v4->tot_len = 0;
4962 first->tx_flags |= IGB_TX_FLAGS_TSO |
4963 IGB_TX_FLAGS_CSUM |
4964 IGB_TX_FLAGS_IPV4;
4965 } else {
4966 ip.v6->payload_len = 0;
4967 first->tx_flags |= IGB_TX_FLAGS_TSO |
4968 IGB_TX_FLAGS_CSUM;
4969 }
4970
4971 /* determine offset of inner transport header */
4972 l4_offset = l4.hdr - skb->data;
4973
4974 /* compute length of segmentation header */
4975 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
4976
4977 /* remove payload length from inner checksum */
4978 paylen = skb->len - l4_offset;
4979 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
4980
4981 /* update gso size and bytecount with header size */
4982 first->gso_segs = skb_shinfo(skb)->gso_segs;
4983 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4984
4985 /* MSS L4LEN IDX */
4986 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
4987 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4988
4989 /* VLAN MACLEN IPLEN */
4990 vlan_macip_lens = l4.hdr - ip.hdr;
4991 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
4992 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4993
4994 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4995
4996 return 1;
4997 }
4998
4999 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5000 {
5001 unsigned int offset = 0;
5002
5003 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5004
5005 return offset == skb_checksum_start_offset(skb);
5006 }
5007
5008 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5009 {
5010 struct sk_buff *skb = first->skb;
5011 u32 vlan_macip_lens = 0;
5012 u32 type_tucmd = 0;
5013
5014 if (skb->ip_summed != CHECKSUM_PARTIAL) {
5015 csum_failed:
5016 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
5017 return;
5018 goto no_csum;
5019 }
5020
5021 switch (skb->csum_offset) {
5022 case offsetof(struct tcphdr, check):
5023 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5024 /* fall through */
5025 case offsetof(struct udphdr, check):
5026 break;
5027 case offsetof(struct sctphdr, checksum):
5028 /* validate that this is actually an SCTP request */
5029 if (((first->protocol == htons(ETH_P_IP)) &&
5030 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5031 ((first->protocol == htons(ETH_P_IPV6)) &&
5032 igb_ipv6_csum_is_sctp(skb))) {
5033 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5034 break;
5035 }
5036 default:
5037 skb_checksum_help(skb);
5038 goto csum_failed;
5039 }
5040
5041 /* update TX checksum flag */
5042 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5043 vlan_macip_lens = skb_checksum_start_offset(skb) -
5044 skb_network_offset(skb);
5045 no_csum:
5046 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5047 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5048
5049 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5050 }
5051
5052 #define IGB_SET_FLAG(_input, _flag, _result) \
5053 ((_flag <= _result) ? \
5054 ((u32)(_input & _flag) * (_result / _flag)) : \
5055 ((u32)(_input & _flag) / (_flag / _result)))
5056
5057 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5058 {
5059 /* set type for advanced descriptor with frame checksum insertion */
5060 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5061 E1000_ADVTXD_DCMD_DEXT |
5062 E1000_ADVTXD_DCMD_IFCS;
5063
5064 /* set HW vlan bit if vlan is present */
5065 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5066 (E1000_ADVTXD_DCMD_VLE));
5067
5068 /* set segmentation bits for TSO */
5069 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5070 (E1000_ADVTXD_DCMD_TSE));
5071
5072 /* set timestamp bit if present */
5073 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5074 (E1000_ADVTXD_MAC_TSTAMP));
5075
5076 /* insert frame checksum */
5077 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5078
5079 return cmd_type;
5080 }
5081
5082 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5083 union e1000_adv_tx_desc *tx_desc,
5084 u32 tx_flags, unsigned int paylen)
5085 {
5086 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5087
5088 /* 82575 requires a unique index per ring */
5089 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5090 olinfo_status |= tx_ring->reg_idx << 4;
5091
5092 /* insert L4 checksum */
5093 olinfo_status |= IGB_SET_FLAG(tx_flags,
5094 IGB_TX_FLAGS_CSUM,
5095 (E1000_TXD_POPTS_TXSM << 8));
5096
5097 /* insert IPv4 checksum */
5098 olinfo_status |= IGB_SET_FLAG(tx_flags,
5099 IGB_TX_FLAGS_IPV4,
5100 (E1000_TXD_POPTS_IXSM << 8));
5101
5102 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5103 }
5104
5105 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5106 {
5107 struct net_device *netdev = tx_ring->netdev;
5108
5109 netif_stop_subqueue(netdev, tx_ring->queue_index);
5110
5111 /* Herbert's original patch had:
5112 * smp_mb__after_netif_stop_queue();
5113 * but since that doesn't exist yet, just open code it.
5114 */
5115 smp_mb();
5116
5117 /* We need to check again in a case another CPU has just
5118 * made room available.
5119 */
5120 if (igb_desc_unused(tx_ring) < size)
5121 return -EBUSY;
5122
5123 /* A reprieve! */
5124 netif_wake_subqueue(netdev, tx_ring->queue_index);
5125
5126 u64_stats_update_begin(&tx_ring->tx_syncp2);
5127 tx_ring->tx_stats.restart_queue2++;
5128 u64_stats_update_end(&tx_ring->tx_syncp2);
5129
5130 return 0;
5131 }
5132
5133 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5134 {
5135 if (igb_desc_unused(tx_ring) >= size)
5136 return 0;
5137 return __igb_maybe_stop_tx(tx_ring, size);
5138 }
5139
5140 static void igb_tx_map(struct igb_ring *tx_ring,
5141 struct igb_tx_buffer *first,
5142 const u8 hdr_len)
5143 {
5144 struct sk_buff *skb = first->skb;
5145 struct igb_tx_buffer *tx_buffer;
5146 union e1000_adv_tx_desc *tx_desc;
5147 struct skb_frag_struct *frag;
5148 dma_addr_t dma;
5149 unsigned int data_len, size;
5150 u32 tx_flags = first->tx_flags;
5151 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5152 u16 i = tx_ring->next_to_use;
5153
5154 tx_desc = IGB_TX_DESC(tx_ring, i);
5155
5156 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5157
5158 size = skb_headlen(skb);
5159 data_len = skb->data_len;
5160
5161 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5162
5163 tx_buffer = first;
5164
5165 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5166 if (dma_mapping_error(tx_ring->dev, dma))
5167 goto dma_error;
5168
5169 /* record length, and DMA address */
5170 dma_unmap_len_set(tx_buffer, len, size);
5171 dma_unmap_addr_set(tx_buffer, dma, dma);
5172
5173 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5174
5175 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5176 tx_desc->read.cmd_type_len =
5177 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5178
5179 i++;
5180 tx_desc++;
5181 if (i == tx_ring->count) {
5182 tx_desc = IGB_TX_DESC(tx_ring, 0);
5183 i = 0;
5184 }
5185 tx_desc->read.olinfo_status = 0;
5186
5187 dma += IGB_MAX_DATA_PER_TXD;
5188 size -= IGB_MAX_DATA_PER_TXD;
5189
5190 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5191 }
5192
5193 if (likely(!data_len))
5194 break;
5195
5196 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5197
5198 i++;
5199 tx_desc++;
5200 if (i == tx_ring->count) {
5201 tx_desc = IGB_TX_DESC(tx_ring, 0);
5202 i = 0;
5203 }
5204 tx_desc->read.olinfo_status = 0;
5205
5206 size = skb_frag_size(frag);
5207 data_len -= size;
5208
5209 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5210 size, DMA_TO_DEVICE);
5211
5212 tx_buffer = &tx_ring->tx_buffer_info[i];
5213 }
5214
5215 /* write last descriptor with RS and EOP bits */
5216 cmd_type |= size | IGB_TXD_DCMD;
5217 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5218
5219 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5220
5221 /* set the timestamp */
5222 first->time_stamp = jiffies;
5223
5224 /* Force memory writes to complete before letting h/w know there
5225 * are new descriptors to fetch. (Only applicable for weak-ordered
5226 * memory model archs, such as IA-64).
5227 *
5228 * We also need this memory barrier to make certain all of the
5229 * status bits have been updated before next_to_watch is written.
5230 */
5231 wmb();
5232
5233 /* set next_to_watch value indicating a packet is present */
5234 first->next_to_watch = tx_desc;
5235
5236 i++;
5237 if (i == tx_ring->count)
5238 i = 0;
5239
5240 tx_ring->next_to_use = i;
5241
5242 /* Make sure there is space in the ring for the next send. */
5243 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5244
5245 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5246 writel(i, tx_ring->tail);
5247
5248 /* we need this if more than one processor can write to our tail
5249 * at a time, it synchronizes IO on IA64/Altix systems
5250 */
5251 mmiowb();
5252 }
5253 return;
5254
5255 dma_error:
5256 dev_err(tx_ring->dev, "TX DMA map failed\n");
5257
5258 /* clear dma mappings for failed tx_buffer_info map */
5259 for (;;) {
5260 tx_buffer = &tx_ring->tx_buffer_info[i];
5261 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5262 if (tx_buffer == first)
5263 break;
5264 if (i == 0)
5265 i = tx_ring->count;
5266 i--;
5267 }
5268
5269 tx_ring->next_to_use = i;
5270 }
5271
5272 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5273 struct igb_ring *tx_ring)
5274 {
5275 struct igb_tx_buffer *first;
5276 int tso;
5277 u32 tx_flags = 0;
5278 unsigned short f;
5279 u16 count = TXD_USE_COUNT(skb_headlen(skb));
5280 __be16 protocol = vlan_get_protocol(skb);
5281 u8 hdr_len = 0;
5282
5283 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5284 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5285 * + 2 desc gap to keep tail from touching head,
5286 * + 1 desc for context descriptor,
5287 * otherwise try next time
5288 */
5289 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5290 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5291
5292 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5293 /* this is a hard error */
5294 return NETDEV_TX_BUSY;
5295 }
5296
5297 /* record the location of the first descriptor for this packet */
5298 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5299 first->skb = skb;
5300 first->bytecount = skb->len;
5301 first->gso_segs = 1;
5302
5303 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5304 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5305
5306 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5307 &adapter->state)) {
5308 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5309 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5310
5311 adapter->ptp_tx_skb = skb_get(skb);
5312 adapter->ptp_tx_start = jiffies;
5313 if (adapter->hw.mac.type == e1000_82576)
5314 schedule_work(&adapter->ptp_tx_work);
5315 }
5316 }
5317
5318 skb_tx_timestamp(skb);
5319
5320 if (skb_vlan_tag_present(skb)) {
5321 tx_flags |= IGB_TX_FLAGS_VLAN;
5322 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5323 }
5324
5325 /* record initial flags and protocol */
5326 first->tx_flags = tx_flags;
5327 first->protocol = protocol;
5328
5329 tso = igb_tso(tx_ring, first, &hdr_len);
5330 if (tso < 0)
5331 goto out_drop;
5332 else if (!tso)
5333 igb_tx_csum(tx_ring, first);
5334
5335 igb_tx_map(tx_ring, first, hdr_len);
5336
5337 return NETDEV_TX_OK;
5338
5339 out_drop:
5340 igb_unmap_and_free_tx_resource(tx_ring, first);
5341
5342 return NETDEV_TX_OK;
5343 }
5344
5345 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5346 struct sk_buff *skb)
5347 {
5348 unsigned int r_idx = skb->queue_mapping;
5349
5350 if (r_idx >= adapter->num_tx_queues)
5351 r_idx = r_idx % adapter->num_tx_queues;
5352
5353 return adapter->tx_ring[r_idx];
5354 }
5355
5356 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5357 struct net_device *netdev)
5358 {
5359 struct igb_adapter *adapter = netdev_priv(netdev);
5360
5361 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5362 * in order to meet this minimum size requirement.
5363 */
5364 if (skb_put_padto(skb, 17))
5365 return NETDEV_TX_OK;
5366
5367 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5368 }
5369
5370 /**
5371 * igb_tx_timeout - Respond to a Tx Hang
5372 * @netdev: network interface device structure
5373 **/
5374 static void igb_tx_timeout(struct net_device *netdev)
5375 {
5376 struct igb_adapter *adapter = netdev_priv(netdev);
5377 struct e1000_hw *hw = &adapter->hw;
5378
5379 /* Do the reset outside of interrupt context */
5380 adapter->tx_timeout_count++;
5381
5382 if (hw->mac.type >= e1000_82580)
5383 hw->dev_spec._82575.global_device_reset = true;
5384
5385 schedule_work(&adapter->reset_task);
5386 wr32(E1000_EICS,
5387 (adapter->eims_enable_mask & ~adapter->eims_other));
5388 }
5389
5390 static void igb_reset_task(struct work_struct *work)
5391 {
5392 struct igb_adapter *adapter;
5393 adapter = container_of(work, struct igb_adapter, reset_task);
5394
5395 igb_dump(adapter);
5396 netdev_err(adapter->netdev, "Reset adapter\n");
5397 igb_reinit_locked(adapter);
5398 }
5399
5400 /**
5401 * igb_get_stats64 - Get System Network Statistics
5402 * @netdev: network interface device structure
5403 * @stats: rtnl_link_stats64 pointer
5404 **/
5405 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5406 struct rtnl_link_stats64 *stats)
5407 {
5408 struct igb_adapter *adapter = netdev_priv(netdev);
5409
5410 spin_lock(&adapter->stats64_lock);
5411 igb_update_stats(adapter, &adapter->stats64);
5412 memcpy(stats, &adapter->stats64, sizeof(*stats));
5413 spin_unlock(&adapter->stats64_lock);
5414
5415 return stats;
5416 }
5417
5418 /**
5419 * igb_change_mtu - Change the Maximum Transfer Unit
5420 * @netdev: network interface device structure
5421 * @new_mtu: new value for maximum frame size
5422 *
5423 * Returns 0 on success, negative on failure
5424 **/
5425 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5426 {
5427 struct igb_adapter *adapter = netdev_priv(netdev);
5428 struct pci_dev *pdev = adapter->pdev;
5429 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5430
5431 /* adjust max frame to be at least the size of a standard frame */
5432 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5433 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5434
5435 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5436 usleep_range(1000, 2000);
5437
5438 /* igb_down has a dependency on max_frame_size */
5439 adapter->max_frame_size = max_frame;
5440
5441 if (netif_running(netdev))
5442 igb_down(adapter);
5443
5444 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5445 netdev->mtu, new_mtu);
5446 netdev->mtu = new_mtu;
5447
5448 if (netif_running(netdev))
5449 igb_up(adapter);
5450 else
5451 igb_reset(adapter);
5452
5453 clear_bit(__IGB_RESETTING, &adapter->state);
5454
5455 return 0;
5456 }
5457
5458 /**
5459 * igb_update_stats - Update the board statistics counters
5460 * @adapter: board private structure
5461 **/
5462 void igb_update_stats(struct igb_adapter *adapter,
5463 struct rtnl_link_stats64 *net_stats)
5464 {
5465 struct e1000_hw *hw = &adapter->hw;
5466 struct pci_dev *pdev = adapter->pdev;
5467 u32 reg, mpc;
5468 int i;
5469 u64 bytes, packets;
5470 unsigned int start;
5471 u64 _bytes, _packets;
5472
5473 /* Prevent stats update while adapter is being reset, or if the pci
5474 * connection is down.
5475 */
5476 if (adapter->link_speed == 0)
5477 return;
5478 if (pci_channel_offline(pdev))
5479 return;
5480
5481 bytes = 0;
5482 packets = 0;
5483
5484 rcu_read_lock();
5485 for (i = 0; i < adapter->num_rx_queues; i++) {
5486 struct igb_ring *ring = adapter->rx_ring[i];
5487 u32 rqdpc = rd32(E1000_RQDPC(i));
5488 if (hw->mac.type >= e1000_i210)
5489 wr32(E1000_RQDPC(i), 0);
5490
5491 if (rqdpc) {
5492 ring->rx_stats.drops += rqdpc;
5493 net_stats->rx_fifo_errors += rqdpc;
5494 }
5495
5496 do {
5497 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5498 _bytes = ring->rx_stats.bytes;
5499 _packets = ring->rx_stats.packets;
5500 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5501 bytes += _bytes;
5502 packets += _packets;
5503 }
5504
5505 net_stats->rx_bytes = bytes;
5506 net_stats->rx_packets = packets;
5507
5508 bytes = 0;
5509 packets = 0;
5510 for (i = 0; i < adapter->num_tx_queues; i++) {
5511 struct igb_ring *ring = adapter->tx_ring[i];
5512 do {
5513 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5514 _bytes = ring->tx_stats.bytes;
5515 _packets = ring->tx_stats.packets;
5516 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5517 bytes += _bytes;
5518 packets += _packets;
5519 }
5520 net_stats->tx_bytes = bytes;
5521 net_stats->tx_packets = packets;
5522 rcu_read_unlock();
5523
5524 /* read stats registers */
5525 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5526 adapter->stats.gprc += rd32(E1000_GPRC);
5527 adapter->stats.gorc += rd32(E1000_GORCL);
5528 rd32(E1000_GORCH); /* clear GORCL */
5529 adapter->stats.bprc += rd32(E1000_BPRC);
5530 adapter->stats.mprc += rd32(E1000_MPRC);
5531 adapter->stats.roc += rd32(E1000_ROC);
5532
5533 adapter->stats.prc64 += rd32(E1000_PRC64);
5534 adapter->stats.prc127 += rd32(E1000_PRC127);
5535 adapter->stats.prc255 += rd32(E1000_PRC255);
5536 adapter->stats.prc511 += rd32(E1000_PRC511);
5537 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5538 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5539 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5540 adapter->stats.sec += rd32(E1000_SEC);
5541
5542 mpc = rd32(E1000_MPC);
5543 adapter->stats.mpc += mpc;
5544 net_stats->rx_fifo_errors += mpc;
5545 adapter->stats.scc += rd32(E1000_SCC);
5546 adapter->stats.ecol += rd32(E1000_ECOL);
5547 adapter->stats.mcc += rd32(E1000_MCC);
5548 adapter->stats.latecol += rd32(E1000_LATECOL);
5549 adapter->stats.dc += rd32(E1000_DC);
5550 adapter->stats.rlec += rd32(E1000_RLEC);
5551 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5552 adapter->stats.xontxc += rd32(E1000_XONTXC);
5553 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5554 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5555 adapter->stats.fcruc += rd32(E1000_FCRUC);
5556 adapter->stats.gptc += rd32(E1000_GPTC);
5557 adapter->stats.gotc += rd32(E1000_GOTCL);
5558 rd32(E1000_GOTCH); /* clear GOTCL */
5559 adapter->stats.rnbc += rd32(E1000_RNBC);
5560 adapter->stats.ruc += rd32(E1000_RUC);
5561 adapter->stats.rfc += rd32(E1000_RFC);
5562 adapter->stats.rjc += rd32(E1000_RJC);
5563 adapter->stats.tor += rd32(E1000_TORH);
5564 adapter->stats.tot += rd32(E1000_TOTH);
5565 adapter->stats.tpr += rd32(E1000_TPR);
5566
5567 adapter->stats.ptc64 += rd32(E1000_PTC64);
5568 adapter->stats.ptc127 += rd32(E1000_PTC127);
5569 adapter->stats.ptc255 += rd32(E1000_PTC255);
5570 adapter->stats.ptc511 += rd32(E1000_PTC511);
5571 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5572 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5573
5574 adapter->stats.mptc += rd32(E1000_MPTC);
5575 adapter->stats.bptc += rd32(E1000_BPTC);
5576
5577 adapter->stats.tpt += rd32(E1000_TPT);
5578 adapter->stats.colc += rd32(E1000_COLC);
5579
5580 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5581 /* read internal phy specific stats */
5582 reg = rd32(E1000_CTRL_EXT);
5583 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5584 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5585
5586 /* this stat has invalid values on i210/i211 */
5587 if ((hw->mac.type != e1000_i210) &&
5588 (hw->mac.type != e1000_i211))
5589 adapter->stats.tncrs += rd32(E1000_TNCRS);
5590 }
5591
5592 adapter->stats.tsctc += rd32(E1000_TSCTC);
5593 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5594
5595 adapter->stats.iac += rd32(E1000_IAC);
5596 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5597 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5598 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5599 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5600 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5601 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5602 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5603 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5604
5605 /* Fill out the OS statistics structure */
5606 net_stats->multicast = adapter->stats.mprc;
5607 net_stats->collisions = adapter->stats.colc;
5608
5609 /* Rx Errors */
5610
5611 /* RLEC on some newer hardware can be incorrect so build
5612 * our own version based on RUC and ROC
5613 */
5614 net_stats->rx_errors = adapter->stats.rxerrc +
5615 adapter->stats.crcerrs + adapter->stats.algnerrc +
5616 adapter->stats.ruc + adapter->stats.roc +
5617 adapter->stats.cexterr;
5618 net_stats->rx_length_errors = adapter->stats.ruc +
5619 adapter->stats.roc;
5620 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5621 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5622 net_stats->rx_missed_errors = adapter->stats.mpc;
5623
5624 /* Tx Errors */
5625 net_stats->tx_errors = adapter->stats.ecol +
5626 adapter->stats.latecol;
5627 net_stats->tx_aborted_errors = adapter->stats.ecol;
5628 net_stats->tx_window_errors = adapter->stats.latecol;
5629 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5630
5631 /* Tx Dropped needs to be maintained elsewhere */
5632
5633 /* Management Stats */
5634 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5635 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5636 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5637
5638 /* OS2BMC Stats */
5639 reg = rd32(E1000_MANC);
5640 if (reg & E1000_MANC_EN_BMC2OS) {
5641 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5642 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5643 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5644 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5645 }
5646 }
5647
5648 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5649 {
5650 struct e1000_hw *hw = &adapter->hw;
5651 struct ptp_clock_event event;
5652 struct timespec64 ts;
5653 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5654
5655 if (tsicr & TSINTR_SYS_WRAP) {
5656 event.type = PTP_CLOCK_PPS;
5657 if (adapter->ptp_caps.pps)
5658 ptp_clock_event(adapter->ptp_clock, &event);
5659 else
5660 dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5661 ack |= TSINTR_SYS_WRAP;
5662 }
5663
5664 if (tsicr & E1000_TSICR_TXTS) {
5665 /* retrieve hardware timestamp */
5666 schedule_work(&adapter->ptp_tx_work);
5667 ack |= E1000_TSICR_TXTS;
5668 }
5669
5670 if (tsicr & TSINTR_TT0) {
5671 spin_lock(&adapter->tmreg_lock);
5672 ts = timespec64_add(adapter->perout[0].start,
5673 adapter->perout[0].period);
5674 /* u32 conversion of tv_sec is safe until y2106 */
5675 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5676 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5677 tsauxc = rd32(E1000_TSAUXC);
5678 tsauxc |= TSAUXC_EN_TT0;
5679 wr32(E1000_TSAUXC, tsauxc);
5680 adapter->perout[0].start = ts;
5681 spin_unlock(&adapter->tmreg_lock);
5682 ack |= TSINTR_TT0;
5683 }
5684
5685 if (tsicr & TSINTR_TT1) {
5686 spin_lock(&adapter->tmreg_lock);
5687 ts = timespec64_add(adapter->perout[1].start,
5688 adapter->perout[1].period);
5689 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5690 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5691 tsauxc = rd32(E1000_TSAUXC);
5692 tsauxc |= TSAUXC_EN_TT1;
5693 wr32(E1000_TSAUXC, tsauxc);
5694 adapter->perout[1].start = ts;
5695 spin_unlock(&adapter->tmreg_lock);
5696 ack |= TSINTR_TT1;
5697 }
5698
5699 if (tsicr & TSINTR_AUTT0) {
5700 nsec = rd32(E1000_AUXSTMPL0);
5701 sec = rd32(E1000_AUXSTMPH0);
5702 event.type = PTP_CLOCK_EXTTS;
5703 event.index = 0;
5704 event.timestamp = sec * 1000000000ULL + nsec;
5705 ptp_clock_event(adapter->ptp_clock, &event);
5706 ack |= TSINTR_AUTT0;
5707 }
5708
5709 if (tsicr & TSINTR_AUTT1) {
5710 nsec = rd32(E1000_AUXSTMPL1);
5711 sec = rd32(E1000_AUXSTMPH1);
5712 event.type = PTP_CLOCK_EXTTS;
5713 event.index = 1;
5714 event.timestamp = sec * 1000000000ULL + nsec;
5715 ptp_clock_event(adapter->ptp_clock, &event);
5716 ack |= TSINTR_AUTT1;
5717 }
5718
5719 /* acknowledge the interrupts */
5720 wr32(E1000_TSICR, ack);
5721 }
5722
5723 static irqreturn_t igb_msix_other(int irq, void *data)
5724 {
5725 struct igb_adapter *adapter = data;
5726 struct e1000_hw *hw = &adapter->hw;
5727 u32 icr = rd32(E1000_ICR);
5728 /* reading ICR causes bit 31 of EICR to be cleared */
5729
5730 if (icr & E1000_ICR_DRSTA)
5731 schedule_work(&adapter->reset_task);
5732
5733 if (icr & E1000_ICR_DOUTSYNC) {
5734 /* HW is reporting DMA is out of sync */
5735 adapter->stats.doosync++;
5736 /* The DMA Out of Sync is also indication of a spoof event
5737 * in IOV mode. Check the Wrong VM Behavior register to
5738 * see if it is really a spoof event.
5739 */
5740 igb_check_wvbr(adapter);
5741 }
5742
5743 /* Check for a mailbox event */
5744 if (icr & E1000_ICR_VMMB)
5745 igb_msg_task(adapter);
5746
5747 if (icr & E1000_ICR_LSC) {
5748 hw->mac.get_link_status = 1;
5749 /* guard against interrupt when we're going down */
5750 if (!test_bit(__IGB_DOWN, &adapter->state))
5751 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5752 }
5753
5754 if (icr & E1000_ICR_TS)
5755 igb_tsync_interrupt(adapter);
5756
5757 wr32(E1000_EIMS, adapter->eims_other);
5758
5759 return IRQ_HANDLED;
5760 }
5761
5762 static void igb_write_itr(struct igb_q_vector *q_vector)
5763 {
5764 struct igb_adapter *adapter = q_vector->adapter;
5765 u32 itr_val = q_vector->itr_val & 0x7FFC;
5766
5767 if (!q_vector->set_itr)
5768 return;
5769
5770 if (!itr_val)
5771 itr_val = 0x4;
5772
5773 if (adapter->hw.mac.type == e1000_82575)
5774 itr_val |= itr_val << 16;
5775 else
5776 itr_val |= E1000_EITR_CNT_IGNR;
5777
5778 writel(itr_val, q_vector->itr_register);
5779 q_vector->set_itr = 0;
5780 }
5781
5782 static irqreturn_t igb_msix_ring(int irq, void *data)
5783 {
5784 struct igb_q_vector *q_vector = data;
5785
5786 /* Write the ITR value calculated from the previous interrupt. */
5787 igb_write_itr(q_vector);
5788
5789 napi_schedule(&q_vector->napi);
5790
5791 return IRQ_HANDLED;
5792 }
5793
5794 #ifdef CONFIG_IGB_DCA
5795 static void igb_update_tx_dca(struct igb_adapter *adapter,
5796 struct igb_ring *tx_ring,
5797 int cpu)
5798 {
5799 struct e1000_hw *hw = &adapter->hw;
5800 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5801
5802 if (hw->mac.type != e1000_82575)
5803 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5804
5805 /* We can enable relaxed ordering for reads, but not writes when
5806 * DCA is enabled. This is due to a known issue in some chipsets
5807 * which will cause the DCA tag to be cleared.
5808 */
5809 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5810 E1000_DCA_TXCTRL_DATA_RRO_EN |
5811 E1000_DCA_TXCTRL_DESC_DCA_EN;
5812
5813 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5814 }
5815
5816 static void igb_update_rx_dca(struct igb_adapter *adapter,
5817 struct igb_ring *rx_ring,
5818 int cpu)
5819 {
5820 struct e1000_hw *hw = &adapter->hw;
5821 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5822
5823 if (hw->mac.type != e1000_82575)
5824 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5825
5826 /* We can enable relaxed ordering for reads, but not writes when
5827 * DCA is enabled. This is due to a known issue in some chipsets
5828 * which will cause the DCA tag to be cleared.
5829 */
5830 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5831 E1000_DCA_RXCTRL_DESC_DCA_EN;
5832
5833 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5834 }
5835
5836 static void igb_update_dca(struct igb_q_vector *q_vector)
5837 {
5838 struct igb_adapter *adapter = q_vector->adapter;
5839 int cpu = get_cpu();
5840
5841 if (q_vector->cpu == cpu)
5842 goto out_no_update;
5843
5844 if (q_vector->tx.ring)
5845 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5846
5847 if (q_vector->rx.ring)
5848 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5849
5850 q_vector->cpu = cpu;
5851 out_no_update:
5852 put_cpu();
5853 }
5854
5855 static void igb_setup_dca(struct igb_adapter *adapter)
5856 {
5857 struct e1000_hw *hw = &adapter->hw;
5858 int i;
5859
5860 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5861 return;
5862
5863 /* Always use CB2 mode, difference is masked in the CB driver. */
5864 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5865
5866 for (i = 0; i < adapter->num_q_vectors; i++) {
5867 adapter->q_vector[i]->cpu = -1;
5868 igb_update_dca(adapter->q_vector[i]);
5869 }
5870 }
5871
5872 static int __igb_notify_dca(struct device *dev, void *data)
5873 {
5874 struct net_device *netdev = dev_get_drvdata(dev);
5875 struct igb_adapter *adapter = netdev_priv(netdev);
5876 struct pci_dev *pdev = adapter->pdev;
5877 struct e1000_hw *hw = &adapter->hw;
5878 unsigned long event = *(unsigned long *)data;
5879
5880 switch (event) {
5881 case DCA_PROVIDER_ADD:
5882 /* if already enabled, don't do it again */
5883 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5884 break;
5885 if (dca_add_requester(dev) == 0) {
5886 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5887 dev_info(&pdev->dev, "DCA enabled\n");
5888 igb_setup_dca(adapter);
5889 break;
5890 }
5891 /* Fall Through since DCA is disabled. */
5892 case DCA_PROVIDER_REMOVE:
5893 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5894 /* without this a class_device is left
5895 * hanging around in the sysfs model
5896 */
5897 dca_remove_requester(dev);
5898 dev_info(&pdev->dev, "DCA disabled\n");
5899 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5900 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5901 }
5902 break;
5903 }
5904
5905 return 0;
5906 }
5907
5908 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5909 void *p)
5910 {
5911 int ret_val;
5912
5913 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5914 __igb_notify_dca);
5915
5916 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5917 }
5918 #endif /* CONFIG_IGB_DCA */
5919
5920 #ifdef CONFIG_PCI_IOV
5921 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5922 {
5923 unsigned char mac_addr[ETH_ALEN];
5924
5925 eth_zero_addr(mac_addr);
5926 igb_set_vf_mac(adapter, vf, mac_addr);
5927
5928 /* By default spoof check is enabled for all VFs */
5929 adapter->vf_data[vf].spoofchk_enabled = true;
5930
5931 return 0;
5932 }
5933
5934 #endif
5935 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5936 {
5937 struct e1000_hw *hw = &adapter->hw;
5938 u32 ping;
5939 int i;
5940
5941 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5942 ping = E1000_PF_CONTROL_MSG;
5943 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5944 ping |= E1000_VT_MSGTYPE_CTS;
5945 igb_write_mbx(hw, &ping, 1, i);
5946 }
5947 }
5948
5949 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5950 {
5951 struct e1000_hw *hw = &adapter->hw;
5952 u32 vmolr = rd32(E1000_VMOLR(vf));
5953 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5954
5955 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5956 IGB_VF_FLAG_MULTI_PROMISC);
5957 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5958
5959 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5960 vmolr |= E1000_VMOLR_MPME;
5961 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5962 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5963 } else {
5964 /* if we have hashes and we are clearing a multicast promisc
5965 * flag we need to write the hashes to the MTA as this step
5966 * was previously skipped
5967 */
5968 if (vf_data->num_vf_mc_hashes > 30) {
5969 vmolr |= E1000_VMOLR_MPME;
5970 } else if (vf_data->num_vf_mc_hashes) {
5971 int j;
5972
5973 vmolr |= E1000_VMOLR_ROMPE;
5974 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5975 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5976 }
5977 }
5978
5979 wr32(E1000_VMOLR(vf), vmolr);
5980
5981 /* there are flags left unprocessed, likely not supported */
5982 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5983 return -EINVAL;
5984
5985 return 0;
5986 }
5987
5988 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5989 u32 *msgbuf, u32 vf)
5990 {
5991 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5992 u16 *hash_list = (u16 *)&msgbuf[1];
5993 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5994 int i;
5995
5996 /* salt away the number of multicast addresses assigned
5997 * to this VF for later use to restore when the PF multi cast
5998 * list changes
5999 */
6000 vf_data->num_vf_mc_hashes = n;
6001
6002 /* only up to 30 hash values supported */
6003 if (n > 30)
6004 n = 30;
6005
6006 /* store the hashes for later use */
6007 for (i = 0; i < n; i++)
6008 vf_data->vf_mc_hashes[i] = hash_list[i];
6009
6010 /* Flush and reset the mta with the new values */
6011 igb_set_rx_mode(adapter->netdev);
6012
6013 return 0;
6014 }
6015
6016 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6017 {
6018 struct e1000_hw *hw = &adapter->hw;
6019 struct vf_data_storage *vf_data;
6020 int i, j;
6021
6022 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6023 u32 vmolr = rd32(E1000_VMOLR(i));
6024
6025 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6026
6027 vf_data = &adapter->vf_data[i];
6028
6029 if ((vf_data->num_vf_mc_hashes > 30) ||
6030 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6031 vmolr |= E1000_VMOLR_MPME;
6032 } else if (vf_data->num_vf_mc_hashes) {
6033 vmolr |= E1000_VMOLR_ROMPE;
6034 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6035 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6036 }
6037 wr32(E1000_VMOLR(i), vmolr);
6038 }
6039 }
6040
6041 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6042 {
6043 struct e1000_hw *hw = &adapter->hw;
6044 u32 pool_mask, vlvf_mask, i;
6045
6046 /* create mask for VF and other pools */
6047 pool_mask = E1000_VLVF_POOLSEL_MASK;
6048 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6049
6050 /* drop PF from pool bits */
6051 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6052 adapter->vfs_allocated_count);
6053
6054 /* Find the vlan filter for this id */
6055 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6056 u32 vlvf = rd32(E1000_VLVF(i));
6057 u32 vfta_mask, vid, vfta;
6058
6059 /* remove the vf from the pool */
6060 if (!(vlvf & vlvf_mask))
6061 continue;
6062
6063 /* clear out bit from VLVF */
6064 vlvf ^= vlvf_mask;
6065
6066 /* if other pools are present, just remove ourselves */
6067 if (vlvf & pool_mask)
6068 goto update_vlvfb;
6069
6070 /* if PF is present, leave VFTA */
6071 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6072 goto update_vlvf;
6073
6074 vid = vlvf & E1000_VLVF_VLANID_MASK;
6075 vfta_mask = BIT(vid % 32);
6076
6077 /* clear bit from VFTA */
6078 vfta = adapter->shadow_vfta[vid / 32];
6079 if (vfta & vfta_mask)
6080 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6081 update_vlvf:
6082 /* clear pool selection enable */
6083 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6084 vlvf &= E1000_VLVF_POOLSEL_MASK;
6085 else
6086 vlvf = 0;
6087 update_vlvfb:
6088 /* clear pool bits */
6089 wr32(E1000_VLVF(i), vlvf);
6090 }
6091 }
6092
6093 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6094 {
6095 u32 vlvf;
6096 int idx;
6097
6098 /* short cut the special case */
6099 if (vlan == 0)
6100 return 0;
6101
6102 /* Search for the VLAN id in the VLVF entries */
6103 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6104 vlvf = rd32(E1000_VLVF(idx));
6105 if ((vlvf & VLAN_VID_MASK) == vlan)
6106 break;
6107 }
6108
6109 return idx;
6110 }
6111
6112 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6113 {
6114 struct e1000_hw *hw = &adapter->hw;
6115 u32 bits, pf_id;
6116 int idx;
6117
6118 idx = igb_find_vlvf_entry(hw, vid);
6119 if (!idx)
6120 return;
6121
6122 /* See if any other pools are set for this VLAN filter
6123 * entry other than the PF.
6124 */
6125 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6126 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6127 bits &= rd32(E1000_VLVF(idx));
6128
6129 /* Disable the filter so this falls into the default pool. */
6130 if (!bits) {
6131 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6132 wr32(E1000_VLVF(idx), BIT(pf_id));
6133 else
6134 wr32(E1000_VLVF(idx), 0);
6135 }
6136 }
6137
6138 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6139 bool add, u32 vf)
6140 {
6141 int pf_id = adapter->vfs_allocated_count;
6142 struct e1000_hw *hw = &adapter->hw;
6143 int err;
6144
6145 /* If VLAN overlaps with one the PF is currently monitoring make
6146 * sure that we are able to allocate a VLVF entry. This may be
6147 * redundant but it guarantees PF will maintain visibility to
6148 * the VLAN.
6149 */
6150 if (add && test_bit(vid, adapter->active_vlans)) {
6151 err = igb_vfta_set(hw, vid, pf_id, true, false);
6152 if (err)
6153 return err;
6154 }
6155
6156 err = igb_vfta_set(hw, vid, vf, add, false);
6157
6158 if (add && !err)
6159 return err;
6160
6161 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6162 * we may need to drop the PF pool bit in order to allow us to free
6163 * up the VLVF resources.
6164 */
6165 if (test_bit(vid, adapter->active_vlans) ||
6166 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6167 igb_update_pf_vlvf(adapter, vid);
6168
6169 return err;
6170 }
6171
6172 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6173 {
6174 struct e1000_hw *hw = &adapter->hw;
6175
6176 if (vid)
6177 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6178 else
6179 wr32(E1000_VMVIR(vf), 0);
6180 }
6181
6182 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6183 u16 vlan, u8 qos)
6184 {
6185 int err;
6186
6187 err = igb_set_vf_vlan(adapter, vlan, true, vf);
6188 if (err)
6189 return err;
6190
6191 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6192 igb_set_vmolr(adapter, vf, !vlan);
6193
6194 /* revoke access to previous VLAN */
6195 if (vlan != adapter->vf_data[vf].pf_vlan)
6196 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6197 false, vf);
6198
6199 adapter->vf_data[vf].pf_vlan = vlan;
6200 adapter->vf_data[vf].pf_qos = qos;
6201 igb_set_vf_vlan_strip(adapter, vf, true);
6202 dev_info(&adapter->pdev->dev,
6203 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6204 if (test_bit(__IGB_DOWN, &adapter->state)) {
6205 dev_warn(&adapter->pdev->dev,
6206 "The VF VLAN has been set, but the PF device is not up.\n");
6207 dev_warn(&adapter->pdev->dev,
6208 "Bring the PF device up before attempting to use the VF device.\n");
6209 }
6210
6211 return err;
6212 }
6213
6214 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6215 {
6216 /* Restore tagless access via VLAN 0 */
6217 igb_set_vf_vlan(adapter, 0, true, vf);
6218
6219 igb_set_vmvir(adapter, 0, vf);
6220 igb_set_vmolr(adapter, vf, true);
6221
6222 /* Remove any PF assigned VLAN */
6223 if (adapter->vf_data[vf].pf_vlan)
6224 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6225 false, vf);
6226
6227 adapter->vf_data[vf].pf_vlan = 0;
6228 adapter->vf_data[vf].pf_qos = 0;
6229 igb_set_vf_vlan_strip(adapter, vf, false);
6230
6231 return 0;
6232 }
6233
6234 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
6235 u16 vlan, u8 qos, __be16 vlan_proto)
6236 {
6237 struct igb_adapter *adapter = netdev_priv(netdev);
6238
6239 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6240 return -EINVAL;
6241
6242 if (vlan_proto != htons(ETH_P_8021Q))
6243 return -EPROTONOSUPPORT;
6244
6245 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6246 igb_disable_port_vlan(adapter, vf);
6247 }
6248
6249 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6250 {
6251 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6252 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6253 int ret;
6254
6255 if (adapter->vf_data[vf].pf_vlan)
6256 return -1;
6257
6258 /* VLAN 0 is a special case, don't allow it to be removed */
6259 if (!vid && !add)
6260 return 0;
6261
6262 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6263 if (!ret)
6264 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6265 return ret;
6266 }
6267
6268 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6269 {
6270 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6271
6272 /* clear flags - except flag that indicates PF has set the MAC */
6273 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6274 vf_data->last_nack = jiffies;
6275
6276 /* reset vlans for device */
6277 igb_clear_vf_vfta(adapter, vf);
6278 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6279 igb_set_vmvir(adapter, vf_data->pf_vlan |
6280 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6281 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6282 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6283
6284 /* reset multicast table array for vf */
6285 adapter->vf_data[vf].num_vf_mc_hashes = 0;
6286
6287 /* Flush and reset the mta with the new values */
6288 igb_set_rx_mode(adapter->netdev);
6289 }
6290
6291 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6292 {
6293 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6294
6295 /* clear mac address as we were hotplug removed/added */
6296 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6297 eth_zero_addr(vf_mac);
6298
6299 /* process remaining reset events */
6300 igb_vf_reset(adapter, vf);
6301 }
6302
6303 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6304 {
6305 struct e1000_hw *hw = &adapter->hw;
6306 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6307 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6308 u32 reg, msgbuf[3];
6309 u8 *addr = (u8 *)(&msgbuf[1]);
6310
6311 /* process all the same items cleared in a function level reset */
6312 igb_vf_reset(adapter, vf);
6313
6314 /* set vf mac address */
6315 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6316
6317 /* enable transmit and receive for vf */
6318 reg = rd32(E1000_VFTE);
6319 wr32(E1000_VFTE, reg | BIT(vf));
6320 reg = rd32(E1000_VFRE);
6321 wr32(E1000_VFRE, reg | BIT(vf));
6322
6323 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6324
6325 /* reply to reset with ack and vf mac address */
6326 if (!is_zero_ether_addr(vf_mac)) {
6327 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6328 memcpy(addr, vf_mac, ETH_ALEN);
6329 } else {
6330 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6331 }
6332 igb_write_mbx(hw, msgbuf, 3, vf);
6333 }
6334
6335 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6336 {
6337 /* The VF MAC Address is stored in a packed array of bytes
6338 * starting at the second 32 bit word of the msg array
6339 */
6340 unsigned char *addr = (char *)&msg[1];
6341 int err = -1;
6342
6343 if (is_valid_ether_addr(addr))
6344 err = igb_set_vf_mac(adapter, vf, addr);
6345
6346 return err;
6347 }
6348
6349 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6350 {
6351 struct e1000_hw *hw = &adapter->hw;
6352 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6353 u32 msg = E1000_VT_MSGTYPE_NACK;
6354
6355 /* if device isn't clear to send it shouldn't be reading either */
6356 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6357 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6358 igb_write_mbx(hw, &msg, 1, vf);
6359 vf_data->last_nack = jiffies;
6360 }
6361 }
6362
6363 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6364 {
6365 struct pci_dev *pdev = adapter->pdev;
6366 u32 msgbuf[E1000_VFMAILBOX_SIZE];
6367 struct e1000_hw *hw = &adapter->hw;
6368 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6369 s32 retval;
6370
6371 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6372
6373 if (retval) {
6374 /* if receive failed revoke VF CTS stats and restart init */
6375 dev_err(&pdev->dev, "Error receiving message from VF\n");
6376 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6377 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6378 return;
6379 goto out;
6380 }
6381
6382 /* this is a message we already processed, do nothing */
6383 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6384 return;
6385
6386 /* until the vf completes a reset it should not be
6387 * allowed to start any configuration.
6388 */
6389 if (msgbuf[0] == E1000_VF_RESET) {
6390 igb_vf_reset_msg(adapter, vf);
6391 return;
6392 }
6393
6394 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6395 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6396 return;
6397 retval = -1;
6398 goto out;
6399 }
6400
6401 switch ((msgbuf[0] & 0xFFFF)) {
6402 case E1000_VF_SET_MAC_ADDR:
6403 retval = -EINVAL;
6404 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6405 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6406 else
6407 dev_warn(&pdev->dev,
6408 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6409 vf);
6410 break;
6411 case E1000_VF_SET_PROMISC:
6412 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6413 break;
6414 case E1000_VF_SET_MULTICAST:
6415 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6416 break;
6417 case E1000_VF_SET_LPE:
6418 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6419 break;
6420 case E1000_VF_SET_VLAN:
6421 retval = -1;
6422 if (vf_data->pf_vlan)
6423 dev_warn(&pdev->dev,
6424 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6425 vf);
6426 else
6427 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6428 break;
6429 default:
6430 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6431 retval = -1;
6432 break;
6433 }
6434
6435 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6436 out:
6437 /* notify the VF of the results of what it sent us */
6438 if (retval)
6439 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6440 else
6441 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6442
6443 igb_write_mbx(hw, msgbuf, 1, vf);
6444 }
6445
6446 static void igb_msg_task(struct igb_adapter *adapter)
6447 {
6448 struct e1000_hw *hw = &adapter->hw;
6449 u32 vf;
6450
6451 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6452 /* process any reset requests */
6453 if (!igb_check_for_rst(hw, vf))
6454 igb_vf_reset_event(adapter, vf);
6455
6456 /* process any messages pending */
6457 if (!igb_check_for_msg(hw, vf))
6458 igb_rcv_msg_from_vf(adapter, vf);
6459
6460 /* process any acks */
6461 if (!igb_check_for_ack(hw, vf))
6462 igb_rcv_ack_from_vf(adapter, vf);
6463 }
6464 }
6465
6466 /**
6467 * igb_set_uta - Set unicast filter table address
6468 * @adapter: board private structure
6469 * @set: boolean indicating if we are setting or clearing bits
6470 *
6471 * The unicast table address is a register array of 32-bit registers.
6472 * The table is meant to be used in a way similar to how the MTA is used
6473 * however due to certain limitations in the hardware it is necessary to
6474 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6475 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6476 **/
6477 static void igb_set_uta(struct igb_adapter *adapter, bool set)
6478 {
6479 struct e1000_hw *hw = &adapter->hw;
6480 u32 uta = set ? ~0 : 0;
6481 int i;
6482
6483 /* we only need to do this if VMDq is enabled */
6484 if (!adapter->vfs_allocated_count)
6485 return;
6486
6487 for (i = hw->mac.uta_reg_count; i--;)
6488 array_wr32(E1000_UTA, i, uta);
6489 }
6490
6491 /**
6492 * igb_intr_msi - Interrupt Handler
6493 * @irq: interrupt number
6494 * @data: pointer to a network interface device structure
6495 **/
6496 static irqreturn_t igb_intr_msi(int irq, void *data)
6497 {
6498 struct igb_adapter *adapter = data;
6499 struct igb_q_vector *q_vector = adapter->q_vector[0];
6500 struct e1000_hw *hw = &adapter->hw;
6501 /* read ICR disables interrupts using IAM */
6502 u32 icr = rd32(E1000_ICR);
6503
6504 igb_write_itr(q_vector);
6505
6506 if (icr & E1000_ICR_DRSTA)
6507 schedule_work(&adapter->reset_task);
6508
6509 if (icr & E1000_ICR_DOUTSYNC) {
6510 /* HW is reporting DMA is out of sync */
6511 adapter->stats.doosync++;
6512 }
6513
6514 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6515 hw->mac.get_link_status = 1;
6516 if (!test_bit(__IGB_DOWN, &adapter->state))
6517 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6518 }
6519
6520 if (icr & E1000_ICR_TS)
6521 igb_tsync_interrupt(adapter);
6522
6523 napi_schedule(&q_vector->napi);
6524
6525 return IRQ_HANDLED;
6526 }
6527
6528 /**
6529 * igb_intr - Legacy Interrupt Handler
6530 * @irq: interrupt number
6531 * @data: pointer to a network interface device structure
6532 **/
6533 static irqreturn_t igb_intr(int irq, void *data)
6534 {
6535 struct igb_adapter *adapter = data;
6536 struct igb_q_vector *q_vector = adapter->q_vector[0];
6537 struct e1000_hw *hw = &adapter->hw;
6538 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6539 * need for the IMC write
6540 */
6541 u32 icr = rd32(E1000_ICR);
6542
6543 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6544 * not set, then the adapter didn't send an interrupt
6545 */
6546 if (!(icr & E1000_ICR_INT_ASSERTED))
6547 return IRQ_NONE;
6548
6549 igb_write_itr(q_vector);
6550
6551 if (icr & E1000_ICR_DRSTA)
6552 schedule_work(&adapter->reset_task);
6553
6554 if (icr & E1000_ICR_DOUTSYNC) {
6555 /* HW is reporting DMA is out of sync */
6556 adapter->stats.doosync++;
6557 }
6558
6559 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6560 hw->mac.get_link_status = 1;
6561 /* guard against interrupt when we're going down */
6562 if (!test_bit(__IGB_DOWN, &adapter->state))
6563 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6564 }
6565
6566 if (icr & E1000_ICR_TS)
6567 igb_tsync_interrupt(adapter);
6568
6569 napi_schedule(&q_vector->napi);
6570
6571 return IRQ_HANDLED;
6572 }
6573
6574 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6575 {
6576 struct igb_adapter *adapter = q_vector->adapter;
6577 struct e1000_hw *hw = &adapter->hw;
6578
6579 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6580 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6581 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6582 igb_set_itr(q_vector);
6583 else
6584 igb_update_ring_itr(q_vector);
6585 }
6586
6587 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6588 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6589 wr32(E1000_EIMS, q_vector->eims_value);
6590 else
6591 igb_irq_enable(adapter);
6592 }
6593 }
6594
6595 /**
6596 * igb_poll - NAPI Rx polling callback
6597 * @napi: napi polling structure
6598 * @budget: count of how many packets we should handle
6599 **/
6600 static int igb_poll(struct napi_struct *napi, int budget)
6601 {
6602 struct igb_q_vector *q_vector = container_of(napi,
6603 struct igb_q_vector,
6604 napi);
6605 bool clean_complete = true;
6606 int work_done = 0;
6607
6608 #ifdef CONFIG_IGB_DCA
6609 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6610 igb_update_dca(q_vector);
6611 #endif
6612 if (q_vector->tx.ring)
6613 clean_complete = igb_clean_tx_irq(q_vector, budget);
6614
6615 if (q_vector->rx.ring) {
6616 int cleaned = igb_clean_rx_irq(q_vector, budget);
6617
6618 work_done += cleaned;
6619 if (cleaned >= budget)
6620 clean_complete = false;
6621 }
6622
6623 /* If all work not completed, return budget and keep polling */
6624 if (!clean_complete)
6625 return budget;
6626
6627 /* If not enough Rx work done, exit the polling mode */
6628 napi_complete_done(napi, work_done);
6629 igb_ring_irq_enable(q_vector);
6630
6631 return 0;
6632 }
6633
6634 /**
6635 * igb_clean_tx_irq - Reclaim resources after transmit completes
6636 * @q_vector: pointer to q_vector containing needed info
6637 * @napi_budget: Used to determine if we are in netpoll
6638 *
6639 * returns true if ring is completely cleaned
6640 **/
6641 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
6642 {
6643 struct igb_adapter *adapter = q_vector->adapter;
6644 struct igb_ring *tx_ring = q_vector->tx.ring;
6645 struct igb_tx_buffer *tx_buffer;
6646 union e1000_adv_tx_desc *tx_desc;
6647 unsigned int total_bytes = 0, total_packets = 0;
6648 unsigned int budget = q_vector->tx.work_limit;
6649 unsigned int i = tx_ring->next_to_clean;
6650
6651 if (test_bit(__IGB_DOWN, &adapter->state))
6652 return true;
6653
6654 tx_buffer = &tx_ring->tx_buffer_info[i];
6655 tx_desc = IGB_TX_DESC(tx_ring, i);
6656 i -= tx_ring->count;
6657
6658 do {
6659 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6660
6661 /* if next_to_watch is not set then there is no work pending */
6662 if (!eop_desc)
6663 break;
6664
6665 /* prevent any other reads prior to eop_desc */
6666 read_barrier_depends();
6667
6668 /* if DD is not set pending work has not been completed */
6669 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6670 break;
6671
6672 /* clear next_to_watch to prevent false hangs */
6673 tx_buffer->next_to_watch = NULL;
6674
6675 /* update the statistics for this packet */
6676 total_bytes += tx_buffer->bytecount;
6677 total_packets += tx_buffer->gso_segs;
6678
6679 /* free the skb */
6680 napi_consume_skb(tx_buffer->skb, napi_budget);
6681
6682 /* unmap skb header data */
6683 dma_unmap_single(tx_ring->dev,
6684 dma_unmap_addr(tx_buffer, dma),
6685 dma_unmap_len(tx_buffer, len),
6686 DMA_TO_DEVICE);
6687
6688 /* clear tx_buffer data */
6689 tx_buffer->skb = NULL;
6690 dma_unmap_len_set(tx_buffer, len, 0);
6691
6692 /* clear last DMA location and unmap remaining buffers */
6693 while (tx_desc != eop_desc) {
6694 tx_buffer++;
6695 tx_desc++;
6696 i++;
6697 if (unlikely(!i)) {
6698 i -= tx_ring->count;
6699 tx_buffer = tx_ring->tx_buffer_info;
6700 tx_desc = IGB_TX_DESC(tx_ring, 0);
6701 }
6702
6703 /* unmap any remaining paged data */
6704 if (dma_unmap_len(tx_buffer, len)) {
6705 dma_unmap_page(tx_ring->dev,
6706 dma_unmap_addr(tx_buffer, dma),
6707 dma_unmap_len(tx_buffer, len),
6708 DMA_TO_DEVICE);
6709 dma_unmap_len_set(tx_buffer, len, 0);
6710 }
6711 }
6712
6713 /* move us one more past the eop_desc for start of next pkt */
6714 tx_buffer++;
6715 tx_desc++;
6716 i++;
6717 if (unlikely(!i)) {
6718 i -= tx_ring->count;
6719 tx_buffer = tx_ring->tx_buffer_info;
6720 tx_desc = IGB_TX_DESC(tx_ring, 0);
6721 }
6722
6723 /* issue prefetch for next Tx descriptor */
6724 prefetch(tx_desc);
6725
6726 /* update budget accounting */
6727 budget--;
6728 } while (likely(budget));
6729
6730 netdev_tx_completed_queue(txring_txq(tx_ring),
6731 total_packets, total_bytes);
6732 i += tx_ring->count;
6733 tx_ring->next_to_clean = i;
6734 u64_stats_update_begin(&tx_ring->tx_syncp);
6735 tx_ring->tx_stats.bytes += total_bytes;
6736 tx_ring->tx_stats.packets += total_packets;
6737 u64_stats_update_end(&tx_ring->tx_syncp);
6738 q_vector->tx.total_bytes += total_bytes;
6739 q_vector->tx.total_packets += total_packets;
6740
6741 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6742 struct e1000_hw *hw = &adapter->hw;
6743
6744 /* Detect a transmit hang in hardware, this serializes the
6745 * check with the clearing of time_stamp and movement of i
6746 */
6747 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6748 if (tx_buffer->next_to_watch &&
6749 time_after(jiffies, tx_buffer->time_stamp +
6750 (adapter->tx_timeout_factor * HZ)) &&
6751 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6752
6753 /* detected Tx unit hang */
6754 dev_err(tx_ring->dev,
6755 "Detected Tx Unit Hang\n"
6756 " Tx Queue <%d>\n"
6757 " TDH <%x>\n"
6758 " TDT <%x>\n"
6759 " next_to_use <%x>\n"
6760 " next_to_clean <%x>\n"
6761 "buffer_info[next_to_clean]\n"
6762 " time_stamp <%lx>\n"
6763 " next_to_watch <%p>\n"
6764 " jiffies <%lx>\n"
6765 " desc.status <%x>\n",
6766 tx_ring->queue_index,
6767 rd32(E1000_TDH(tx_ring->reg_idx)),
6768 readl(tx_ring->tail),
6769 tx_ring->next_to_use,
6770 tx_ring->next_to_clean,
6771 tx_buffer->time_stamp,
6772 tx_buffer->next_to_watch,
6773 jiffies,
6774 tx_buffer->next_to_watch->wb.status);
6775 netif_stop_subqueue(tx_ring->netdev,
6776 tx_ring->queue_index);
6777
6778 /* we are about to reset, no point in enabling stuff */
6779 return true;
6780 }
6781 }
6782
6783 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6784 if (unlikely(total_packets &&
6785 netif_carrier_ok(tx_ring->netdev) &&
6786 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6787 /* Make sure that anybody stopping the queue after this
6788 * sees the new next_to_clean.
6789 */
6790 smp_mb();
6791 if (__netif_subqueue_stopped(tx_ring->netdev,
6792 tx_ring->queue_index) &&
6793 !(test_bit(__IGB_DOWN, &adapter->state))) {
6794 netif_wake_subqueue(tx_ring->netdev,
6795 tx_ring->queue_index);
6796
6797 u64_stats_update_begin(&tx_ring->tx_syncp);
6798 tx_ring->tx_stats.restart_queue++;
6799 u64_stats_update_end(&tx_ring->tx_syncp);
6800 }
6801 }
6802
6803 return !!budget;
6804 }
6805
6806 /**
6807 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6808 * @rx_ring: rx descriptor ring to store buffers on
6809 * @old_buff: donor buffer to have page reused
6810 *
6811 * Synchronizes page for reuse by the adapter
6812 **/
6813 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6814 struct igb_rx_buffer *old_buff)
6815 {
6816 struct igb_rx_buffer *new_buff;
6817 u16 nta = rx_ring->next_to_alloc;
6818
6819 new_buff = &rx_ring->rx_buffer_info[nta];
6820
6821 /* update, and store next to alloc */
6822 nta++;
6823 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6824
6825 /* transfer page from old buffer to new buffer */
6826 *new_buff = *old_buff;
6827 }
6828
6829 static inline bool igb_page_is_reserved(struct page *page)
6830 {
6831 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6832 }
6833
6834 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6835 struct page *page,
6836 unsigned int truesize)
6837 {
6838 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias--;
6839
6840 /* avoid re-using remote pages */
6841 if (unlikely(igb_page_is_reserved(page)))
6842 return false;
6843
6844 #if (PAGE_SIZE < 8192)
6845 /* if we are only owner of page we can reuse it */
6846 if (unlikely(page_ref_count(page) != pagecnt_bias))
6847 return false;
6848
6849 /* flip page offset to other buffer */
6850 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6851 #else
6852 /* move offset up to the next cache line */
6853 rx_buffer->page_offset += truesize;
6854
6855 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6856 return false;
6857 #endif
6858
6859 /* If we have drained the page fragment pool we need to update
6860 * the pagecnt_bias and page count so that we fully restock the
6861 * number of references the driver holds.
6862 */
6863 if (unlikely(pagecnt_bias == 1)) {
6864 page_ref_add(page, USHRT_MAX);
6865 rx_buffer->pagecnt_bias = USHRT_MAX;
6866 }
6867
6868 return true;
6869 }
6870
6871 /**
6872 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6873 * @rx_ring: rx descriptor ring to transact packets on
6874 * @rx_buffer: buffer containing page to add
6875 * @rx_desc: descriptor containing length of buffer written by hardware
6876 * @skb: sk_buff to place the data into
6877 *
6878 * This function will add the data contained in rx_buffer->page to the skb.
6879 * This is done either through a direct copy if the data in the buffer is
6880 * less than the skb header size, otherwise it will just attach the page as
6881 * a frag to the skb.
6882 *
6883 * The function will then update the page offset if necessary and return
6884 * true if the buffer can be reused by the adapter.
6885 **/
6886 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6887 struct igb_rx_buffer *rx_buffer,
6888 unsigned int size,
6889 union e1000_adv_rx_desc *rx_desc,
6890 struct sk_buff *skb)
6891 {
6892 struct page *page = rx_buffer->page;
6893 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6894 #if (PAGE_SIZE < 8192)
6895 unsigned int truesize = IGB_RX_BUFSZ;
6896 #else
6897 unsigned int truesize = SKB_DATA_ALIGN(size);
6898 #endif
6899 unsigned int pull_len;
6900
6901 if (unlikely(skb_is_nonlinear(skb)))
6902 goto add_tail_frag;
6903
6904 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6905 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6906 va += IGB_TS_HDR_LEN;
6907 size -= IGB_TS_HDR_LEN;
6908 }
6909
6910 if (likely(size <= IGB_RX_HDR_LEN)) {
6911 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6912
6913 /* page is not reserved, we can reuse buffer as-is */
6914 if (likely(!igb_page_is_reserved(page)))
6915 return true;
6916
6917 /* this page cannot be reused so discard it */
6918 return false;
6919 }
6920
6921 /* we need the header to contain the greater of either ETH_HLEN or
6922 * 60 bytes if the skb->len is less than 60 for skb_pad.
6923 */
6924 pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6925
6926 /* align pull length to size of long to optimize memcpy performance */
6927 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6928
6929 /* update all of the pointers */
6930 va += pull_len;
6931 size -= pull_len;
6932
6933 add_tail_frag:
6934 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6935 (unsigned long)va & ~PAGE_MASK, size, truesize);
6936
6937 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6938 }
6939
6940 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6941 union e1000_adv_rx_desc *rx_desc,
6942 struct sk_buff *skb)
6943 {
6944 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6945 struct igb_rx_buffer *rx_buffer;
6946 struct page *page;
6947
6948 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6949 page = rx_buffer->page;
6950 prefetchw(page);
6951
6952 /* we are reusing so sync this buffer for CPU use */
6953 dma_sync_single_range_for_cpu(rx_ring->dev,
6954 rx_buffer->dma,
6955 rx_buffer->page_offset,
6956 size,
6957 DMA_FROM_DEVICE);
6958
6959 if (likely(!skb)) {
6960 void *page_addr = page_address(page) +
6961 rx_buffer->page_offset;
6962
6963 /* prefetch first cache line of first page */
6964 prefetch(page_addr);
6965 #if L1_CACHE_BYTES < 128
6966 prefetch(page_addr + L1_CACHE_BYTES);
6967 #endif
6968
6969 /* allocate a skb to store the frags */
6970 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6971 if (unlikely(!skb)) {
6972 rx_ring->rx_stats.alloc_failed++;
6973 return NULL;
6974 }
6975
6976 /* we will be copying header into skb->data in
6977 * pskb_may_pull so it is in our interest to prefetch
6978 * it now to avoid a possible cache miss
6979 */
6980 prefetchw(skb->data);
6981 }
6982
6983 /* pull page into skb */
6984 if (igb_add_rx_frag(rx_ring, rx_buffer, size, rx_desc, skb)) {
6985 /* hand second half of page back to the ring */
6986 igb_reuse_rx_page(rx_ring, rx_buffer);
6987 } else {
6988 /* We are not reusing the buffer so unmap it and free
6989 * any references we are holding to it
6990 */
6991 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
6992 PAGE_SIZE, DMA_FROM_DEVICE,
6993 DMA_ATTR_SKIP_CPU_SYNC);
6994 __page_frag_cache_drain(page, rx_buffer->pagecnt_bias);
6995 }
6996
6997 /* clear contents of rx_buffer */
6998 rx_buffer->page = NULL;
6999
7000 return skb;
7001 }
7002
7003 static inline void igb_rx_checksum(struct igb_ring *ring,
7004 union e1000_adv_rx_desc *rx_desc,
7005 struct sk_buff *skb)
7006 {
7007 skb_checksum_none_assert(skb);
7008
7009 /* Ignore Checksum bit is set */
7010 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
7011 return;
7012
7013 /* Rx checksum disabled via ethtool */
7014 if (!(ring->netdev->features & NETIF_F_RXCSUM))
7015 return;
7016
7017 /* TCP/UDP checksum error bit is set */
7018 if (igb_test_staterr(rx_desc,
7019 E1000_RXDEXT_STATERR_TCPE |
7020 E1000_RXDEXT_STATERR_IPE)) {
7021 /* work around errata with sctp packets where the TCPE aka
7022 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
7023 * packets, (aka let the stack check the crc32c)
7024 */
7025 if (!((skb->len == 60) &&
7026 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
7027 u64_stats_update_begin(&ring->rx_syncp);
7028 ring->rx_stats.csum_err++;
7029 u64_stats_update_end(&ring->rx_syncp);
7030 }
7031 /* let the stack verify checksum errors */
7032 return;
7033 }
7034 /* It must be a TCP or UDP packet with a valid checksum */
7035 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7036 E1000_RXD_STAT_UDPCS))
7037 skb->ip_summed = CHECKSUM_UNNECESSARY;
7038
7039 dev_dbg(ring->dev, "cksum success: bits %08X\n",
7040 le32_to_cpu(rx_desc->wb.upper.status_error));
7041 }
7042
7043 static inline void igb_rx_hash(struct igb_ring *ring,
7044 union e1000_adv_rx_desc *rx_desc,
7045 struct sk_buff *skb)
7046 {
7047 if (ring->netdev->features & NETIF_F_RXHASH)
7048 skb_set_hash(skb,
7049 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7050 PKT_HASH_TYPE_L3);
7051 }
7052
7053 /**
7054 * igb_is_non_eop - process handling of non-EOP buffers
7055 * @rx_ring: Rx ring being processed
7056 * @rx_desc: Rx descriptor for current buffer
7057 * @skb: current socket buffer containing buffer in progress
7058 *
7059 * This function updates next to clean. If the buffer is an EOP buffer
7060 * this function exits returning false, otherwise it will place the
7061 * sk_buff in the next buffer to be chained and return true indicating
7062 * that this is in fact a non-EOP buffer.
7063 **/
7064 static bool igb_is_non_eop(struct igb_ring *rx_ring,
7065 union e1000_adv_rx_desc *rx_desc)
7066 {
7067 u32 ntc = rx_ring->next_to_clean + 1;
7068
7069 /* fetch, update, and store next to clean */
7070 ntc = (ntc < rx_ring->count) ? ntc : 0;
7071 rx_ring->next_to_clean = ntc;
7072
7073 prefetch(IGB_RX_DESC(rx_ring, ntc));
7074
7075 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7076 return false;
7077
7078 return true;
7079 }
7080
7081 /**
7082 * igb_cleanup_headers - Correct corrupted or empty headers
7083 * @rx_ring: rx descriptor ring packet is being transacted on
7084 * @rx_desc: pointer to the EOP Rx descriptor
7085 * @skb: pointer to current skb being fixed
7086 *
7087 * Address the case where we are pulling data in on pages only
7088 * and as such no data is present in the skb header.
7089 *
7090 * In addition if skb is not at least 60 bytes we need to pad it so that
7091 * it is large enough to qualify as a valid Ethernet frame.
7092 *
7093 * Returns true if an error was encountered and skb was freed.
7094 **/
7095 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7096 union e1000_adv_rx_desc *rx_desc,
7097 struct sk_buff *skb)
7098 {
7099 if (unlikely((igb_test_staterr(rx_desc,
7100 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7101 struct net_device *netdev = rx_ring->netdev;
7102 if (!(netdev->features & NETIF_F_RXALL)) {
7103 dev_kfree_skb_any(skb);
7104 return true;
7105 }
7106 }
7107
7108 /* if eth_skb_pad returns an error the skb was freed */
7109 if (eth_skb_pad(skb))
7110 return true;
7111
7112 return false;
7113 }
7114
7115 /**
7116 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
7117 * @rx_ring: rx descriptor ring packet is being transacted on
7118 * @rx_desc: pointer to the EOP Rx descriptor
7119 * @skb: pointer to current skb being populated
7120 *
7121 * This function checks the ring, descriptor, and packet information in
7122 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
7123 * other fields within the skb.
7124 **/
7125 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7126 union e1000_adv_rx_desc *rx_desc,
7127 struct sk_buff *skb)
7128 {
7129 struct net_device *dev = rx_ring->netdev;
7130
7131 igb_rx_hash(rx_ring, rx_desc, skb);
7132
7133 igb_rx_checksum(rx_ring, rx_desc, skb);
7134
7135 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7136 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7137 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7138
7139 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7140 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7141 u16 vid;
7142
7143 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7144 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7145 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7146 else
7147 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7148
7149 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7150 }
7151
7152 skb_record_rx_queue(skb, rx_ring->queue_index);
7153
7154 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7155 }
7156
7157 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7158 {
7159 struct igb_ring *rx_ring = q_vector->rx.ring;
7160 struct sk_buff *skb = rx_ring->skb;
7161 unsigned int total_bytes = 0, total_packets = 0;
7162 u16 cleaned_count = igb_desc_unused(rx_ring);
7163
7164 while (likely(total_packets < budget)) {
7165 union e1000_adv_rx_desc *rx_desc;
7166
7167 /* return some buffers to hardware, one at a time is too slow */
7168 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7169 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7170 cleaned_count = 0;
7171 }
7172
7173 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7174
7175 if (!rx_desc->wb.upper.status_error)
7176 break;
7177
7178 /* This memory barrier is needed to keep us from reading
7179 * any other fields out of the rx_desc until we know the
7180 * descriptor has been written back
7181 */
7182 dma_rmb();
7183
7184 /* retrieve a buffer from the ring */
7185 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7186
7187 /* exit if we failed to retrieve a buffer */
7188 if (!skb)
7189 break;
7190
7191 cleaned_count++;
7192
7193 /* fetch next buffer in frame if non-eop */
7194 if (igb_is_non_eop(rx_ring, rx_desc))
7195 continue;
7196
7197 /* verify the packet layout is correct */
7198 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7199 skb = NULL;
7200 continue;
7201 }
7202
7203 /* probably a little skewed due to removing CRC */
7204 total_bytes += skb->len;
7205
7206 /* populate checksum, timestamp, VLAN, and protocol */
7207 igb_process_skb_fields(rx_ring, rx_desc, skb);
7208
7209 napi_gro_receive(&q_vector->napi, skb);
7210
7211 /* reset skb pointer */
7212 skb = NULL;
7213
7214 /* update budget accounting */
7215 total_packets++;
7216 }
7217
7218 /* place incomplete frames back on ring for completion */
7219 rx_ring->skb = skb;
7220
7221 u64_stats_update_begin(&rx_ring->rx_syncp);
7222 rx_ring->rx_stats.packets += total_packets;
7223 rx_ring->rx_stats.bytes += total_bytes;
7224 u64_stats_update_end(&rx_ring->rx_syncp);
7225 q_vector->rx.total_packets += total_packets;
7226 q_vector->rx.total_bytes += total_bytes;
7227
7228 if (cleaned_count)
7229 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7230
7231 return total_packets;
7232 }
7233
7234 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7235 struct igb_rx_buffer *bi)
7236 {
7237 struct page *page = bi->page;
7238 dma_addr_t dma;
7239
7240 /* since we are recycling buffers we should seldom need to alloc */
7241 if (likely(page))
7242 return true;
7243
7244 /* alloc new page for storage */
7245 page = dev_alloc_page();
7246 if (unlikely(!page)) {
7247 rx_ring->rx_stats.alloc_failed++;
7248 return false;
7249 }
7250
7251 /* map page for use */
7252 dma = dma_map_page_attrs(rx_ring->dev, page, 0, PAGE_SIZE,
7253 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
7254
7255 /* if mapping failed free memory back to system since
7256 * there isn't much point in holding memory we can't use
7257 */
7258 if (dma_mapping_error(rx_ring->dev, dma)) {
7259 __free_page(page);
7260
7261 rx_ring->rx_stats.alloc_failed++;
7262 return false;
7263 }
7264
7265 bi->dma = dma;
7266 bi->page = page;
7267 bi->page_offset = 0;
7268 bi->pagecnt_bias = 1;
7269
7270 return true;
7271 }
7272
7273 /**
7274 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7275 * @adapter: address of board private structure
7276 **/
7277 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7278 {
7279 union e1000_adv_rx_desc *rx_desc;
7280 struct igb_rx_buffer *bi;
7281 u16 i = rx_ring->next_to_use;
7282
7283 /* nothing to do */
7284 if (!cleaned_count)
7285 return;
7286
7287 rx_desc = IGB_RX_DESC(rx_ring, i);
7288 bi = &rx_ring->rx_buffer_info[i];
7289 i -= rx_ring->count;
7290
7291 do {
7292 if (!igb_alloc_mapped_page(rx_ring, bi))
7293 break;
7294
7295 /* sync the buffer for use by the device */
7296 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
7297 bi->page_offset,
7298 IGB_RX_BUFSZ,
7299 DMA_FROM_DEVICE);
7300
7301 /* Refresh the desc even if buffer_addrs didn't change
7302 * because each write-back erases this info.
7303 */
7304 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7305
7306 rx_desc++;
7307 bi++;
7308 i++;
7309 if (unlikely(!i)) {
7310 rx_desc = IGB_RX_DESC(rx_ring, 0);
7311 bi = rx_ring->rx_buffer_info;
7312 i -= rx_ring->count;
7313 }
7314
7315 /* clear the status bits for the next_to_use descriptor */
7316 rx_desc->wb.upper.status_error = 0;
7317
7318 cleaned_count--;
7319 } while (cleaned_count);
7320
7321 i += rx_ring->count;
7322
7323 if (rx_ring->next_to_use != i) {
7324 /* record the next descriptor to use */
7325 rx_ring->next_to_use = i;
7326
7327 /* update next to alloc since we have filled the ring */
7328 rx_ring->next_to_alloc = i;
7329
7330 /* Force memory writes to complete before letting h/w
7331 * know there are new descriptors to fetch. (Only
7332 * applicable for weak-ordered memory model archs,
7333 * such as IA-64).
7334 */
7335 wmb();
7336 writel(i, rx_ring->tail);
7337 }
7338 }
7339
7340 /**
7341 * igb_mii_ioctl -
7342 * @netdev:
7343 * @ifreq:
7344 * @cmd:
7345 **/
7346 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7347 {
7348 struct igb_adapter *adapter = netdev_priv(netdev);
7349 struct mii_ioctl_data *data = if_mii(ifr);
7350
7351 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7352 return -EOPNOTSUPP;
7353
7354 switch (cmd) {
7355 case SIOCGMIIPHY:
7356 data->phy_id = adapter->hw.phy.addr;
7357 break;
7358 case SIOCGMIIREG:
7359 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7360 &data->val_out))
7361 return -EIO;
7362 break;
7363 case SIOCSMIIREG:
7364 default:
7365 return -EOPNOTSUPP;
7366 }
7367 return 0;
7368 }
7369
7370 /**
7371 * igb_ioctl -
7372 * @netdev:
7373 * @ifreq:
7374 * @cmd:
7375 **/
7376 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7377 {
7378 switch (cmd) {
7379 case SIOCGMIIPHY:
7380 case SIOCGMIIREG:
7381 case SIOCSMIIREG:
7382 return igb_mii_ioctl(netdev, ifr, cmd);
7383 case SIOCGHWTSTAMP:
7384 return igb_ptp_get_ts_config(netdev, ifr);
7385 case SIOCSHWTSTAMP:
7386 return igb_ptp_set_ts_config(netdev, ifr);
7387 default:
7388 return -EOPNOTSUPP;
7389 }
7390 }
7391
7392 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7393 {
7394 struct igb_adapter *adapter = hw->back;
7395
7396 pci_read_config_word(adapter->pdev, reg, value);
7397 }
7398
7399 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7400 {
7401 struct igb_adapter *adapter = hw->back;
7402
7403 pci_write_config_word(adapter->pdev, reg, *value);
7404 }
7405
7406 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7407 {
7408 struct igb_adapter *adapter = hw->back;
7409
7410 if (pcie_capability_read_word(adapter->pdev, reg, value))
7411 return -E1000_ERR_CONFIG;
7412
7413 return 0;
7414 }
7415
7416 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7417 {
7418 struct igb_adapter *adapter = hw->back;
7419
7420 if (pcie_capability_write_word(adapter->pdev, reg, *value))
7421 return -E1000_ERR_CONFIG;
7422
7423 return 0;
7424 }
7425
7426 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7427 {
7428 struct igb_adapter *adapter = netdev_priv(netdev);
7429 struct e1000_hw *hw = &adapter->hw;
7430 u32 ctrl, rctl;
7431 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7432
7433 if (enable) {
7434 /* enable VLAN tag insert/strip */
7435 ctrl = rd32(E1000_CTRL);
7436 ctrl |= E1000_CTRL_VME;
7437 wr32(E1000_CTRL, ctrl);
7438
7439 /* Disable CFI check */
7440 rctl = rd32(E1000_RCTL);
7441 rctl &= ~E1000_RCTL_CFIEN;
7442 wr32(E1000_RCTL, rctl);
7443 } else {
7444 /* disable VLAN tag insert/strip */
7445 ctrl = rd32(E1000_CTRL);
7446 ctrl &= ~E1000_CTRL_VME;
7447 wr32(E1000_CTRL, ctrl);
7448 }
7449
7450 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7451 }
7452
7453 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7454 __be16 proto, u16 vid)
7455 {
7456 struct igb_adapter *adapter = netdev_priv(netdev);
7457 struct e1000_hw *hw = &adapter->hw;
7458 int pf_id = adapter->vfs_allocated_count;
7459
7460 /* add the filter since PF can receive vlans w/o entry in vlvf */
7461 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7462 igb_vfta_set(hw, vid, pf_id, true, !!vid);
7463
7464 set_bit(vid, adapter->active_vlans);
7465
7466 return 0;
7467 }
7468
7469 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7470 __be16 proto, u16 vid)
7471 {
7472 struct igb_adapter *adapter = netdev_priv(netdev);
7473 int pf_id = adapter->vfs_allocated_count;
7474 struct e1000_hw *hw = &adapter->hw;
7475
7476 /* remove VID from filter table */
7477 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7478 igb_vfta_set(hw, vid, pf_id, false, true);
7479
7480 clear_bit(vid, adapter->active_vlans);
7481
7482 return 0;
7483 }
7484
7485 static void igb_restore_vlan(struct igb_adapter *adapter)
7486 {
7487 u16 vid = 1;
7488
7489 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7490 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7491
7492 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7493 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7494 }
7495
7496 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7497 {
7498 struct pci_dev *pdev = adapter->pdev;
7499 struct e1000_mac_info *mac = &adapter->hw.mac;
7500
7501 mac->autoneg = 0;
7502
7503 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7504 * for the switch() below to work
7505 */
7506 if ((spd & 1) || (dplx & ~1))
7507 goto err_inval;
7508
7509 /* Fiber NIC's only allow 1000 gbps Full duplex
7510 * and 100Mbps Full duplex for 100baseFx sfp
7511 */
7512 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7513 switch (spd + dplx) {
7514 case SPEED_10 + DUPLEX_HALF:
7515 case SPEED_10 + DUPLEX_FULL:
7516 case SPEED_100 + DUPLEX_HALF:
7517 goto err_inval;
7518 default:
7519 break;
7520 }
7521 }
7522
7523 switch (spd + dplx) {
7524 case SPEED_10 + DUPLEX_HALF:
7525 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7526 break;
7527 case SPEED_10 + DUPLEX_FULL:
7528 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7529 break;
7530 case SPEED_100 + DUPLEX_HALF:
7531 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7532 break;
7533 case SPEED_100 + DUPLEX_FULL:
7534 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7535 break;
7536 case SPEED_1000 + DUPLEX_FULL:
7537 mac->autoneg = 1;
7538 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7539 break;
7540 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7541 default:
7542 goto err_inval;
7543 }
7544
7545 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7546 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7547
7548 return 0;
7549
7550 err_inval:
7551 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7552 return -EINVAL;
7553 }
7554
7555 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7556 bool runtime)
7557 {
7558 struct net_device *netdev = pci_get_drvdata(pdev);
7559 struct igb_adapter *adapter = netdev_priv(netdev);
7560 struct e1000_hw *hw = &adapter->hw;
7561 u32 ctrl, rctl, status;
7562 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7563 #ifdef CONFIG_PM
7564 int retval = 0;
7565 #endif
7566
7567 netif_device_detach(netdev);
7568
7569 if (netif_running(netdev))
7570 __igb_close(netdev, true);
7571
7572 igb_ptp_suspend(adapter);
7573
7574 igb_clear_interrupt_scheme(adapter);
7575
7576 #ifdef CONFIG_PM
7577 retval = pci_save_state(pdev);
7578 if (retval)
7579 return retval;
7580 #endif
7581
7582 status = rd32(E1000_STATUS);
7583 if (status & E1000_STATUS_LU)
7584 wufc &= ~E1000_WUFC_LNKC;
7585
7586 if (wufc) {
7587 igb_setup_rctl(adapter);
7588 igb_set_rx_mode(netdev);
7589
7590 /* turn on all-multi mode if wake on multicast is enabled */
7591 if (wufc & E1000_WUFC_MC) {
7592 rctl = rd32(E1000_RCTL);
7593 rctl |= E1000_RCTL_MPE;
7594 wr32(E1000_RCTL, rctl);
7595 }
7596
7597 ctrl = rd32(E1000_CTRL);
7598 /* advertise wake from D3Cold */
7599 #define E1000_CTRL_ADVD3WUC 0x00100000
7600 /* phy power management enable */
7601 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7602 ctrl |= E1000_CTRL_ADVD3WUC;
7603 wr32(E1000_CTRL, ctrl);
7604
7605 /* Allow time for pending master requests to run */
7606 igb_disable_pcie_master(hw);
7607
7608 wr32(E1000_WUC, E1000_WUC_PME_EN);
7609 wr32(E1000_WUFC, wufc);
7610 } else {
7611 wr32(E1000_WUC, 0);
7612 wr32(E1000_WUFC, 0);
7613 }
7614
7615 *enable_wake = wufc || adapter->en_mng_pt;
7616 if (!*enable_wake)
7617 igb_power_down_link(adapter);
7618 else
7619 igb_power_up_link(adapter);
7620
7621 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7622 * would have already happened in close and is redundant.
7623 */
7624 igb_release_hw_control(adapter);
7625
7626 pci_disable_device(pdev);
7627
7628 return 0;
7629 }
7630
7631 #ifdef CONFIG_PM
7632 #ifdef CONFIG_PM_SLEEP
7633 static int igb_suspend(struct device *dev)
7634 {
7635 int retval;
7636 bool wake;
7637 struct pci_dev *pdev = to_pci_dev(dev);
7638
7639 retval = __igb_shutdown(pdev, &wake, 0);
7640 if (retval)
7641 return retval;
7642
7643 if (wake) {
7644 pci_prepare_to_sleep(pdev);
7645 } else {
7646 pci_wake_from_d3(pdev, false);
7647 pci_set_power_state(pdev, PCI_D3hot);
7648 }
7649
7650 return 0;
7651 }
7652 #endif /* CONFIG_PM_SLEEP */
7653
7654 static int igb_resume(struct device *dev)
7655 {
7656 struct pci_dev *pdev = to_pci_dev(dev);
7657 struct net_device *netdev = pci_get_drvdata(pdev);
7658 struct igb_adapter *adapter = netdev_priv(netdev);
7659 struct e1000_hw *hw = &adapter->hw;
7660 u32 err;
7661
7662 pci_set_power_state(pdev, PCI_D0);
7663 pci_restore_state(pdev);
7664 pci_save_state(pdev);
7665
7666 if (!pci_device_is_present(pdev))
7667 return -ENODEV;
7668 err = pci_enable_device_mem(pdev);
7669 if (err) {
7670 dev_err(&pdev->dev,
7671 "igb: Cannot enable PCI device from suspend\n");
7672 return err;
7673 }
7674 pci_set_master(pdev);
7675
7676 pci_enable_wake(pdev, PCI_D3hot, 0);
7677 pci_enable_wake(pdev, PCI_D3cold, 0);
7678
7679 if (igb_init_interrupt_scheme(adapter, true)) {
7680 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7681 return -ENOMEM;
7682 }
7683
7684 igb_reset(adapter);
7685
7686 /* let the f/w know that the h/w is now under the control of the
7687 * driver.
7688 */
7689 igb_get_hw_control(adapter);
7690
7691 wr32(E1000_WUS, ~0);
7692
7693 if (netdev->flags & IFF_UP) {
7694 rtnl_lock();
7695 err = __igb_open(netdev, true);
7696 rtnl_unlock();
7697 if (err)
7698 return err;
7699 }
7700
7701 netif_device_attach(netdev);
7702 return 0;
7703 }
7704
7705 static int igb_runtime_idle(struct device *dev)
7706 {
7707 struct pci_dev *pdev = to_pci_dev(dev);
7708 struct net_device *netdev = pci_get_drvdata(pdev);
7709 struct igb_adapter *adapter = netdev_priv(netdev);
7710
7711 if (!igb_has_link(adapter))
7712 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7713
7714 return -EBUSY;
7715 }
7716
7717 static int igb_runtime_suspend(struct device *dev)
7718 {
7719 struct pci_dev *pdev = to_pci_dev(dev);
7720 int retval;
7721 bool wake;
7722
7723 retval = __igb_shutdown(pdev, &wake, 1);
7724 if (retval)
7725 return retval;
7726
7727 if (wake) {
7728 pci_prepare_to_sleep(pdev);
7729 } else {
7730 pci_wake_from_d3(pdev, false);
7731 pci_set_power_state(pdev, PCI_D3hot);
7732 }
7733
7734 return 0;
7735 }
7736
7737 static int igb_runtime_resume(struct device *dev)
7738 {
7739 return igb_resume(dev);
7740 }
7741 #endif /* CONFIG_PM */
7742
7743 static void igb_shutdown(struct pci_dev *pdev)
7744 {
7745 bool wake;
7746
7747 __igb_shutdown(pdev, &wake, 0);
7748
7749 if (system_state == SYSTEM_POWER_OFF) {
7750 pci_wake_from_d3(pdev, wake);
7751 pci_set_power_state(pdev, PCI_D3hot);
7752 }
7753 }
7754
7755 #ifdef CONFIG_PCI_IOV
7756 static int igb_sriov_reinit(struct pci_dev *dev)
7757 {
7758 struct net_device *netdev = pci_get_drvdata(dev);
7759 struct igb_adapter *adapter = netdev_priv(netdev);
7760 struct pci_dev *pdev = adapter->pdev;
7761
7762 rtnl_lock();
7763
7764 if (netif_running(netdev))
7765 igb_close(netdev);
7766 else
7767 igb_reset(adapter);
7768
7769 igb_clear_interrupt_scheme(adapter);
7770
7771 igb_init_queue_configuration(adapter);
7772
7773 if (igb_init_interrupt_scheme(adapter, true)) {
7774 rtnl_unlock();
7775 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7776 return -ENOMEM;
7777 }
7778
7779 if (netif_running(netdev))
7780 igb_open(netdev);
7781
7782 rtnl_unlock();
7783
7784 return 0;
7785 }
7786
7787 static int igb_pci_disable_sriov(struct pci_dev *dev)
7788 {
7789 int err = igb_disable_sriov(dev);
7790
7791 if (!err)
7792 err = igb_sriov_reinit(dev);
7793
7794 return err;
7795 }
7796
7797 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7798 {
7799 int err = igb_enable_sriov(dev, num_vfs);
7800
7801 if (err)
7802 goto out;
7803
7804 err = igb_sriov_reinit(dev);
7805 if (!err)
7806 return num_vfs;
7807
7808 out:
7809 return err;
7810 }
7811
7812 #endif
7813 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7814 {
7815 #ifdef CONFIG_PCI_IOV
7816 if (num_vfs == 0)
7817 return igb_pci_disable_sriov(dev);
7818 else
7819 return igb_pci_enable_sriov(dev, num_vfs);
7820 #endif
7821 return 0;
7822 }
7823
7824 #ifdef CONFIG_NET_POLL_CONTROLLER
7825 /* Polling 'interrupt' - used by things like netconsole to send skbs
7826 * without having to re-enable interrupts. It's not called while
7827 * the interrupt routine is executing.
7828 */
7829 static void igb_netpoll(struct net_device *netdev)
7830 {
7831 struct igb_adapter *adapter = netdev_priv(netdev);
7832 struct e1000_hw *hw = &adapter->hw;
7833 struct igb_q_vector *q_vector;
7834 int i;
7835
7836 for (i = 0; i < adapter->num_q_vectors; i++) {
7837 q_vector = adapter->q_vector[i];
7838 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7839 wr32(E1000_EIMC, q_vector->eims_value);
7840 else
7841 igb_irq_disable(adapter);
7842 napi_schedule(&q_vector->napi);
7843 }
7844 }
7845 #endif /* CONFIG_NET_POLL_CONTROLLER */
7846
7847 /**
7848 * igb_io_error_detected - called when PCI error is detected
7849 * @pdev: Pointer to PCI device
7850 * @state: The current pci connection state
7851 *
7852 * This function is called after a PCI bus error affecting
7853 * this device has been detected.
7854 **/
7855 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7856 pci_channel_state_t state)
7857 {
7858 struct net_device *netdev = pci_get_drvdata(pdev);
7859 struct igb_adapter *adapter = netdev_priv(netdev);
7860
7861 netif_device_detach(netdev);
7862
7863 if (state == pci_channel_io_perm_failure)
7864 return PCI_ERS_RESULT_DISCONNECT;
7865
7866 if (netif_running(netdev))
7867 igb_down(adapter);
7868 pci_disable_device(pdev);
7869
7870 /* Request a slot slot reset. */
7871 return PCI_ERS_RESULT_NEED_RESET;
7872 }
7873
7874 /**
7875 * igb_io_slot_reset - called after the pci bus has been reset.
7876 * @pdev: Pointer to PCI device
7877 *
7878 * Restart the card from scratch, as if from a cold-boot. Implementation
7879 * resembles the first-half of the igb_resume routine.
7880 **/
7881 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7882 {
7883 struct net_device *netdev = pci_get_drvdata(pdev);
7884 struct igb_adapter *adapter = netdev_priv(netdev);
7885 struct e1000_hw *hw = &adapter->hw;
7886 pci_ers_result_t result;
7887 int err;
7888
7889 if (pci_enable_device_mem(pdev)) {
7890 dev_err(&pdev->dev,
7891 "Cannot re-enable PCI device after reset.\n");
7892 result = PCI_ERS_RESULT_DISCONNECT;
7893 } else {
7894 pci_set_master(pdev);
7895 pci_restore_state(pdev);
7896 pci_save_state(pdev);
7897
7898 pci_enable_wake(pdev, PCI_D3hot, 0);
7899 pci_enable_wake(pdev, PCI_D3cold, 0);
7900
7901 igb_reset(adapter);
7902 wr32(E1000_WUS, ~0);
7903 result = PCI_ERS_RESULT_RECOVERED;
7904 }
7905
7906 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7907 if (err) {
7908 dev_err(&pdev->dev,
7909 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7910 err);
7911 /* non-fatal, continue */
7912 }
7913
7914 return result;
7915 }
7916
7917 /**
7918 * igb_io_resume - called when traffic can start flowing again.
7919 * @pdev: Pointer to PCI device
7920 *
7921 * This callback is called when the error recovery driver tells us that
7922 * its OK to resume normal operation. Implementation resembles the
7923 * second-half of the igb_resume routine.
7924 */
7925 static void igb_io_resume(struct pci_dev *pdev)
7926 {
7927 struct net_device *netdev = pci_get_drvdata(pdev);
7928 struct igb_adapter *adapter = netdev_priv(netdev);
7929
7930 if (netif_running(netdev)) {
7931 if (igb_up(adapter)) {
7932 dev_err(&pdev->dev, "igb_up failed after reset\n");
7933 return;
7934 }
7935 }
7936
7937 netif_device_attach(netdev);
7938
7939 /* let the f/w know that the h/w is now under the control of the
7940 * driver.
7941 */
7942 igb_get_hw_control(adapter);
7943 }
7944
7945 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7946 u8 qsel)
7947 {
7948 struct e1000_hw *hw = &adapter->hw;
7949 u32 rar_low, rar_high;
7950
7951 /* HW expects these to be in network order when they are plugged
7952 * into the registers which are little endian. In order to guarantee
7953 * that ordering we need to do an leXX_to_cpup here in order to be
7954 * ready for the byteswap that occurs with writel
7955 */
7956 rar_low = le32_to_cpup((__le32 *)(addr));
7957 rar_high = le16_to_cpup((__le16 *)(addr + 4));
7958
7959 /* Indicate to hardware the Address is Valid. */
7960 rar_high |= E1000_RAH_AV;
7961
7962 if (hw->mac.type == e1000_82575)
7963 rar_high |= E1000_RAH_POOL_1 * qsel;
7964 else
7965 rar_high |= E1000_RAH_POOL_1 << qsel;
7966
7967 wr32(E1000_RAL(index), rar_low);
7968 wrfl();
7969 wr32(E1000_RAH(index), rar_high);
7970 wrfl();
7971 }
7972
7973 static int igb_set_vf_mac(struct igb_adapter *adapter,
7974 int vf, unsigned char *mac_addr)
7975 {
7976 struct e1000_hw *hw = &adapter->hw;
7977 /* VF MAC addresses start at end of receive addresses and moves
7978 * towards the first, as a result a collision should not be possible
7979 */
7980 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7981
7982 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7983
7984 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7985
7986 return 0;
7987 }
7988
7989 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7990 {
7991 struct igb_adapter *adapter = netdev_priv(netdev);
7992 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7993 return -EINVAL;
7994 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7995 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7996 dev_info(&adapter->pdev->dev,
7997 "Reload the VF driver to make this change effective.");
7998 if (test_bit(__IGB_DOWN, &adapter->state)) {
7999 dev_warn(&adapter->pdev->dev,
8000 "The VF MAC address has been set, but the PF device is not up.\n");
8001 dev_warn(&adapter->pdev->dev,
8002 "Bring the PF device up before attempting to use the VF device.\n");
8003 }
8004 return igb_set_vf_mac(adapter, vf, mac);
8005 }
8006
8007 static int igb_link_mbps(int internal_link_speed)
8008 {
8009 switch (internal_link_speed) {
8010 case SPEED_100:
8011 return 100;
8012 case SPEED_1000:
8013 return 1000;
8014 default:
8015 return 0;
8016 }
8017 }
8018
8019 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
8020 int link_speed)
8021 {
8022 int rf_dec, rf_int;
8023 u32 bcnrc_val;
8024
8025 if (tx_rate != 0) {
8026 /* Calculate the rate factor values to set */
8027 rf_int = link_speed / tx_rate;
8028 rf_dec = (link_speed - (rf_int * tx_rate));
8029 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
8030 tx_rate;
8031
8032 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
8033 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
8034 E1000_RTTBCNRC_RF_INT_MASK);
8035 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
8036 } else {
8037 bcnrc_val = 0;
8038 }
8039
8040 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
8041 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
8042 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
8043 */
8044 wr32(E1000_RTTBCNRM, 0x14);
8045 wr32(E1000_RTTBCNRC, bcnrc_val);
8046 }
8047
8048 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8049 {
8050 int actual_link_speed, i;
8051 bool reset_rate = false;
8052
8053 /* VF TX rate limit was not set or not supported */
8054 if ((adapter->vf_rate_link_speed == 0) ||
8055 (adapter->hw.mac.type != e1000_82576))
8056 return;
8057
8058 actual_link_speed = igb_link_mbps(adapter->link_speed);
8059 if (actual_link_speed != adapter->vf_rate_link_speed) {
8060 reset_rate = true;
8061 adapter->vf_rate_link_speed = 0;
8062 dev_info(&adapter->pdev->dev,
8063 "Link speed has been changed. VF Transmit rate is disabled\n");
8064 }
8065
8066 for (i = 0; i < adapter->vfs_allocated_count; i++) {
8067 if (reset_rate)
8068 adapter->vf_data[i].tx_rate = 0;
8069
8070 igb_set_vf_rate_limit(&adapter->hw, i,
8071 adapter->vf_data[i].tx_rate,
8072 actual_link_speed);
8073 }
8074 }
8075
8076 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8077 int min_tx_rate, int max_tx_rate)
8078 {
8079 struct igb_adapter *adapter = netdev_priv(netdev);
8080 struct e1000_hw *hw = &adapter->hw;
8081 int actual_link_speed;
8082
8083 if (hw->mac.type != e1000_82576)
8084 return -EOPNOTSUPP;
8085
8086 if (min_tx_rate)
8087 return -EINVAL;
8088
8089 actual_link_speed = igb_link_mbps(adapter->link_speed);
8090 if ((vf >= adapter->vfs_allocated_count) ||
8091 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8092 (max_tx_rate < 0) ||
8093 (max_tx_rate > actual_link_speed))
8094 return -EINVAL;
8095
8096 adapter->vf_rate_link_speed = actual_link_speed;
8097 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8098 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8099
8100 return 0;
8101 }
8102
8103 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8104 bool setting)
8105 {
8106 struct igb_adapter *adapter = netdev_priv(netdev);
8107 struct e1000_hw *hw = &adapter->hw;
8108 u32 reg_val, reg_offset;
8109
8110 if (!adapter->vfs_allocated_count)
8111 return -EOPNOTSUPP;
8112
8113 if (vf >= adapter->vfs_allocated_count)
8114 return -EINVAL;
8115
8116 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8117 reg_val = rd32(reg_offset);
8118 if (setting)
8119 reg_val |= (BIT(vf) |
8120 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8121 else
8122 reg_val &= ~(BIT(vf) |
8123 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8124 wr32(reg_offset, reg_val);
8125
8126 adapter->vf_data[vf].spoofchk_enabled = setting;
8127 return 0;
8128 }
8129
8130 static int igb_ndo_get_vf_config(struct net_device *netdev,
8131 int vf, struct ifla_vf_info *ivi)
8132 {
8133 struct igb_adapter *adapter = netdev_priv(netdev);
8134 if (vf >= adapter->vfs_allocated_count)
8135 return -EINVAL;
8136 ivi->vf = vf;
8137 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8138 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8139 ivi->min_tx_rate = 0;
8140 ivi->vlan = adapter->vf_data[vf].pf_vlan;
8141 ivi->qos = adapter->vf_data[vf].pf_qos;
8142 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8143 return 0;
8144 }
8145
8146 static void igb_vmm_control(struct igb_adapter *adapter)
8147 {
8148 struct e1000_hw *hw = &adapter->hw;
8149 u32 reg;
8150
8151 switch (hw->mac.type) {
8152 case e1000_82575:
8153 case e1000_i210:
8154 case e1000_i211:
8155 case e1000_i354:
8156 default:
8157 /* replication is not supported for 82575 */
8158 return;
8159 case e1000_82576:
8160 /* notify HW that the MAC is adding vlan tags */
8161 reg = rd32(E1000_DTXCTL);
8162 reg |= E1000_DTXCTL_VLAN_ADDED;
8163 wr32(E1000_DTXCTL, reg);
8164 /* Fall through */
8165 case e1000_82580:
8166 /* enable replication vlan tag stripping */
8167 reg = rd32(E1000_RPLOLR);
8168 reg |= E1000_RPLOLR_STRVLAN;
8169 wr32(E1000_RPLOLR, reg);
8170 /* Fall through */
8171 case e1000_i350:
8172 /* none of the above registers are supported by i350 */
8173 break;
8174 }
8175
8176 if (adapter->vfs_allocated_count) {
8177 igb_vmdq_set_loopback_pf(hw, true);
8178 igb_vmdq_set_replication_pf(hw, true);
8179 igb_vmdq_set_anti_spoofing_pf(hw, true,
8180 adapter->vfs_allocated_count);
8181 } else {
8182 igb_vmdq_set_loopback_pf(hw, false);
8183 igb_vmdq_set_replication_pf(hw, false);
8184 }
8185 }
8186
8187 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8188 {
8189 struct e1000_hw *hw = &adapter->hw;
8190 u32 dmac_thr;
8191 u16 hwm;
8192
8193 if (hw->mac.type > e1000_82580) {
8194 if (adapter->flags & IGB_FLAG_DMAC) {
8195 u32 reg;
8196
8197 /* force threshold to 0. */
8198 wr32(E1000_DMCTXTH, 0);
8199
8200 /* DMA Coalescing high water mark needs to be greater
8201 * than the Rx threshold. Set hwm to PBA - max frame
8202 * size in 16B units, capping it at PBA - 6KB.
8203 */
8204 hwm = 64 * (pba - 6);
8205 reg = rd32(E1000_FCRTC);
8206 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8207 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8208 & E1000_FCRTC_RTH_COAL_MASK);
8209 wr32(E1000_FCRTC, reg);
8210
8211 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8212 * frame size, capping it at PBA - 10KB.
8213 */
8214 dmac_thr = pba - 10;
8215 reg = rd32(E1000_DMACR);
8216 reg &= ~E1000_DMACR_DMACTHR_MASK;
8217 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8218 & E1000_DMACR_DMACTHR_MASK);
8219
8220 /* transition to L0x or L1 if available..*/
8221 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8222
8223 /* watchdog timer= +-1000 usec in 32usec intervals */
8224 reg |= (1000 >> 5);
8225
8226 /* Disable BMC-to-OS Watchdog Enable */
8227 if (hw->mac.type != e1000_i354)
8228 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8229
8230 wr32(E1000_DMACR, reg);
8231
8232 /* no lower threshold to disable
8233 * coalescing(smart fifb)-UTRESH=0
8234 */
8235 wr32(E1000_DMCRTRH, 0);
8236
8237 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8238
8239 wr32(E1000_DMCTLX, reg);
8240
8241 /* free space in tx packet buffer to wake from
8242 * DMA coal
8243 */
8244 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8245 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8246
8247 /* make low power state decision controlled
8248 * by DMA coal
8249 */
8250 reg = rd32(E1000_PCIEMISC);
8251 reg &= ~E1000_PCIEMISC_LX_DECISION;
8252 wr32(E1000_PCIEMISC, reg);
8253 } /* endif adapter->dmac is not disabled */
8254 } else if (hw->mac.type == e1000_82580) {
8255 u32 reg = rd32(E1000_PCIEMISC);
8256
8257 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8258 wr32(E1000_DMACR, 0);
8259 }
8260 }
8261
8262 /**
8263 * igb_read_i2c_byte - Reads 8 bit word over I2C
8264 * @hw: pointer to hardware structure
8265 * @byte_offset: byte offset to read
8266 * @dev_addr: device address
8267 * @data: value read
8268 *
8269 * Performs byte read operation over I2C interface at
8270 * a specified device address.
8271 **/
8272 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8273 u8 dev_addr, u8 *data)
8274 {
8275 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8276 struct i2c_client *this_client = adapter->i2c_client;
8277 s32 status;
8278 u16 swfw_mask = 0;
8279
8280 if (!this_client)
8281 return E1000_ERR_I2C;
8282
8283 swfw_mask = E1000_SWFW_PHY0_SM;
8284
8285 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8286 return E1000_ERR_SWFW_SYNC;
8287
8288 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8289 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8290
8291 if (status < 0)
8292 return E1000_ERR_I2C;
8293 else {
8294 *data = status;
8295 return 0;
8296 }
8297 }
8298
8299 /**
8300 * igb_write_i2c_byte - Writes 8 bit word over I2C
8301 * @hw: pointer to hardware structure
8302 * @byte_offset: byte offset to write
8303 * @dev_addr: device address
8304 * @data: value to write
8305 *
8306 * Performs byte write operation over I2C interface at
8307 * a specified device address.
8308 **/
8309 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8310 u8 dev_addr, u8 data)
8311 {
8312 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8313 struct i2c_client *this_client = adapter->i2c_client;
8314 s32 status;
8315 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8316
8317 if (!this_client)
8318 return E1000_ERR_I2C;
8319
8320 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8321 return E1000_ERR_SWFW_SYNC;
8322 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8323 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8324
8325 if (status)
8326 return E1000_ERR_I2C;
8327 else
8328 return 0;
8329
8330 }
8331
8332 int igb_reinit_queues(struct igb_adapter *adapter)
8333 {
8334 struct net_device *netdev = adapter->netdev;
8335 struct pci_dev *pdev = adapter->pdev;
8336 int err = 0;
8337
8338 if (netif_running(netdev))
8339 igb_close(netdev);
8340
8341 igb_reset_interrupt_capability(adapter);
8342
8343 if (igb_init_interrupt_scheme(adapter, true)) {
8344 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8345 return -ENOMEM;
8346 }
8347
8348 if (netif_running(netdev))
8349 err = igb_open(netdev);
8350
8351 return err;
8352 }
8353
8354 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
8355 {
8356 struct igb_nfc_filter *rule;
8357
8358 spin_lock(&adapter->nfc_lock);
8359
8360 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
8361 igb_erase_filter(adapter, rule);
8362
8363 spin_unlock(&adapter->nfc_lock);
8364 }
8365
8366 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
8367 {
8368 struct igb_nfc_filter *rule;
8369
8370 spin_lock(&adapter->nfc_lock);
8371
8372 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
8373 igb_add_filter(adapter, rule);
8374
8375 spin_unlock(&adapter->nfc_lock);
8376 }
8377 /* igb_main.c */