]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/vrf.c
82232897c994540c719e092b31c1cbf6a10d28a0
[mirror_ubuntu-zesty-kernel.git] / drivers / net / vrf.c
1 /*
2 * vrf.c: device driver to encapsulate a VRF space
3 *
4 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7 *
8 * Based on dummy, team and ipvlan drivers
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38 #include <net/fib_rules.h>
39
40 #define DRV_NAME "vrf"
41 #define DRV_VERSION "1.0"
42
43 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
44 static bool add_fib_rules = true;
45
46 struct net_vrf {
47 struct rtable __rcu *rth;
48 struct rtable __rcu *rth_local;
49 struct rt6_info __rcu *rt6;
50 struct rt6_info __rcu *rt6_local;
51 u32 tb_id;
52 };
53
54 struct pcpu_dstats {
55 u64 tx_pkts;
56 u64 tx_bytes;
57 u64 tx_drps;
58 u64 rx_pkts;
59 u64 rx_bytes;
60 u64 rx_drps;
61 struct u64_stats_sync syncp;
62 };
63
64 static void vrf_rx_stats(struct net_device *dev, int len)
65 {
66 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
67
68 u64_stats_update_begin(&dstats->syncp);
69 dstats->rx_pkts++;
70 dstats->rx_bytes += len;
71 u64_stats_update_end(&dstats->syncp);
72 }
73
74 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
75 {
76 vrf_dev->stats.tx_errors++;
77 kfree_skb(skb);
78 }
79
80 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
81 struct rtnl_link_stats64 *stats)
82 {
83 int i;
84
85 for_each_possible_cpu(i) {
86 const struct pcpu_dstats *dstats;
87 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
88 unsigned int start;
89
90 dstats = per_cpu_ptr(dev->dstats, i);
91 do {
92 start = u64_stats_fetch_begin_irq(&dstats->syncp);
93 tbytes = dstats->tx_bytes;
94 tpkts = dstats->tx_pkts;
95 tdrops = dstats->tx_drps;
96 rbytes = dstats->rx_bytes;
97 rpkts = dstats->rx_pkts;
98 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
99 stats->tx_bytes += tbytes;
100 stats->tx_packets += tpkts;
101 stats->tx_dropped += tdrops;
102 stats->rx_bytes += rbytes;
103 stats->rx_packets += rpkts;
104 }
105 return stats;
106 }
107
108 /* Local traffic destined to local address. Reinsert the packet to rx
109 * path, similar to loopback handling.
110 */
111 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
112 struct dst_entry *dst)
113 {
114 int len = skb->len;
115
116 skb_orphan(skb);
117
118 skb_dst_set(skb, dst);
119 skb_dst_force(skb);
120
121 /* set pkt_type to avoid skb hitting packet taps twice -
122 * once on Tx and again in Rx processing
123 */
124 skb->pkt_type = PACKET_LOOPBACK;
125
126 skb->protocol = eth_type_trans(skb, dev);
127
128 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
129 vrf_rx_stats(dev, len);
130 else
131 this_cpu_inc(dev->dstats->rx_drps);
132
133 return NETDEV_TX_OK;
134 }
135
136 #if IS_ENABLED(CONFIG_IPV6)
137 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
138 struct sk_buff *skb)
139 {
140 int err;
141
142 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
143 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
144
145 if (likely(err == 1))
146 err = dst_output(net, sk, skb);
147
148 return err;
149 }
150
151 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
152 struct net_device *dev)
153 {
154 const struct ipv6hdr *iph = ipv6_hdr(skb);
155 struct net *net = dev_net(skb->dev);
156 struct flowi6 fl6 = {
157 /* needed to match OIF rule */
158 .flowi6_oif = dev->ifindex,
159 .flowi6_iif = LOOPBACK_IFINDEX,
160 .daddr = iph->daddr,
161 .saddr = iph->saddr,
162 .flowlabel = ip6_flowinfo(iph),
163 .flowi6_mark = skb->mark,
164 .flowi6_proto = iph->nexthdr,
165 .flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF,
166 };
167 int ret = NET_XMIT_DROP;
168 struct dst_entry *dst;
169 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
170
171 dst = ip6_route_output(net, NULL, &fl6);
172 if (dst == dst_null)
173 goto err;
174
175 skb_dst_drop(skb);
176
177 /* if dst.dev is loopback or the VRF device again this is locally
178 * originated traffic destined to a local address. Short circuit
179 * to Rx path using our local dst
180 */
181 if (dst->dev == net->loopback_dev || dst->dev == dev) {
182 struct net_vrf *vrf = netdev_priv(dev);
183 struct rt6_info *rt6_local;
184
185 /* release looked up dst and use cached local dst */
186 dst_release(dst);
187
188 rcu_read_lock();
189
190 rt6_local = rcu_dereference(vrf->rt6_local);
191 if (unlikely(!rt6_local)) {
192 rcu_read_unlock();
193 goto err;
194 }
195
196 /* Ordering issue: cached local dst is created on newlink
197 * before the IPv6 initialization. Using the local dst
198 * requires rt6i_idev to be set so make sure it is.
199 */
200 if (unlikely(!rt6_local->rt6i_idev)) {
201 rt6_local->rt6i_idev = in6_dev_get(dev);
202 if (!rt6_local->rt6i_idev) {
203 rcu_read_unlock();
204 goto err;
205 }
206 }
207
208 dst = &rt6_local->dst;
209 dst_hold(dst);
210
211 rcu_read_unlock();
212
213 return vrf_local_xmit(skb, dev, &rt6_local->dst);
214 }
215
216 skb_dst_set(skb, dst);
217
218 /* strip the ethernet header added for pass through VRF device */
219 __skb_pull(skb, skb_network_offset(skb));
220
221 ret = vrf_ip6_local_out(net, skb->sk, skb);
222 if (unlikely(net_xmit_eval(ret)))
223 dev->stats.tx_errors++;
224 else
225 ret = NET_XMIT_SUCCESS;
226
227 return ret;
228 err:
229 vrf_tx_error(dev, skb);
230 return NET_XMIT_DROP;
231 }
232 #else
233 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
234 struct net_device *dev)
235 {
236 vrf_tx_error(dev, skb);
237 return NET_XMIT_DROP;
238 }
239 #endif
240
241 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
242 static int vrf_ip_local_out(struct net *net, struct sock *sk,
243 struct sk_buff *skb)
244 {
245 int err;
246
247 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
248 skb, NULL, skb_dst(skb)->dev, dst_output);
249 if (likely(err == 1))
250 err = dst_output(net, sk, skb);
251
252 return err;
253 }
254
255 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
256 struct net_device *vrf_dev)
257 {
258 struct iphdr *ip4h = ip_hdr(skb);
259 int ret = NET_XMIT_DROP;
260 struct flowi4 fl4 = {
261 /* needed to match OIF rule */
262 .flowi4_oif = vrf_dev->ifindex,
263 .flowi4_iif = LOOPBACK_IFINDEX,
264 .flowi4_tos = RT_TOS(ip4h->tos),
265 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF,
266 .flowi4_proto = ip4h->protocol,
267 .daddr = ip4h->daddr,
268 .saddr = ip4h->saddr,
269 };
270 struct net *net = dev_net(vrf_dev);
271 struct rtable *rt;
272
273 rt = ip_route_output_flow(net, &fl4, NULL);
274 if (IS_ERR(rt))
275 goto err;
276
277 skb_dst_drop(skb);
278
279 /* if dst.dev is loopback or the VRF device again this is locally
280 * originated traffic destined to a local address. Short circuit
281 * to Rx path using our local dst
282 */
283 if (rt->dst.dev == net->loopback_dev || rt->dst.dev == vrf_dev) {
284 struct net_vrf *vrf = netdev_priv(vrf_dev);
285 struct rtable *rth_local;
286 struct dst_entry *dst = NULL;
287
288 ip_rt_put(rt);
289
290 rcu_read_lock();
291
292 rth_local = rcu_dereference(vrf->rth_local);
293 if (likely(rth_local)) {
294 dst = &rth_local->dst;
295 dst_hold(dst);
296 }
297
298 rcu_read_unlock();
299
300 if (unlikely(!dst))
301 goto err;
302
303 return vrf_local_xmit(skb, vrf_dev, dst);
304 }
305
306 skb_dst_set(skb, &rt->dst);
307
308 /* strip the ethernet header added for pass through VRF device */
309 __skb_pull(skb, skb_network_offset(skb));
310
311 if (!ip4h->saddr) {
312 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
313 RT_SCOPE_LINK);
314 }
315
316 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
317 if (unlikely(net_xmit_eval(ret)))
318 vrf_dev->stats.tx_errors++;
319 else
320 ret = NET_XMIT_SUCCESS;
321
322 out:
323 return ret;
324 err:
325 vrf_tx_error(vrf_dev, skb);
326 goto out;
327 }
328
329 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
330 {
331 switch (skb->protocol) {
332 case htons(ETH_P_IP):
333 return vrf_process_v4_outbound(skb, dev);
334 case htons(ETH_P_IPV6):
335 return vrf_process_v6_outbound(skb, dev);
336 default:
337 vrf_tx_error(dev, skb);
338 return NET_XMIT_DROP;
339 }
340 }
341
342 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
343 {
344 int len = skb->len;
345 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
346
347 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
348 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
349
350 u64_stats_update_begin(&dstats->syncp);
351 dstats->tx_pkts++;
352 dstats->tx_bytes += len;
353 u64_stats_update_end(&dstats->syncp);
354 } else {
355 this_cpu_inc(dev->dstats->tx_drps);
356 }
357
358 return ret;
359 }
360
361 #if IS_ENABLED(CONFIG_IPV6)
362 /* modelled after ip6_finish_output2 */
363 static int vrf_finish_output6(struct net *net, struct sock *sk,
364 struct sk_buff *skb)
365 {
366 struct dst_entry *dst = skb_dst(skb);
367 struct net_device *dev = dst->dev;
368 struct neighbour *neigh;
369 struct in6_addr *nexthop;
370 int ret;
371
372 nf_reset(skb);
373
374 skb->protocol = htons(ETH_P_IPV6);
375 skb->dev = dev;
376
377 rcu_read_lock_bh();
378 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
379 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
380 if (unlikely(!neigh))
381 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
382 if (!IS_ERR(neigh)) {
383 sock_confirm_neigh(skb, neigh);
384 ret = dst_neigh_output(dst, neigh, skb);
385 rcu_read_unlock_bh();
386 return ret;
387 }
388 rcu_read_unlock_bh();
389
390 IP6_INC_STATS(dev_net(dst->dev),
391 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
392 kfree_skb(skb);
393 return -EINVAL;
394 }
395
396 /* modelled after ip6_output */
397 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
398 {
399 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
400 net, sk, skb, NULL, skb_dst(skb)->dev,
401 vrf_finish_output6,
402 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
403 }
404
405 /* set dst on skb to send packet to us via dev_xmit path. Allows
406 * packet to go through device based features such as qdisc, netfilter
407 * hooks and packet sockets with skb->dev set to vrf device.
408 */
409 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
410 struct sock *sk,
411 struct sk_buff *skb)
412 {
413 struct net_vrf *vrf = netdev_priv(vrf_dev);
414 struct dst_entry *dst = NULL;
415 struct rt6_info *rt6;
416
417 /* don't divert link scope packets */
418 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
419 return skb;
420
421 rcu_read_lock();
422
423 rt6 = rcu_dereference(vrf->rt6);
424 if (likely(rt6)) {
425 dst = &rt6->dst;
426 dst_hold(dst);
427 }
428
429 rcu_read_unlock();
430
431 if (unlikely(!dst)) {
432 vrf_tx_error(vrf_dev, skb);
433 return NULL;
434 }
435
436 skb_dst_drop(skb);
437 skb_dst_set(skb, dst);
438
439 return skb;
440 }
441
442 /* holding rtnl */
443 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
444 {
445 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
446 struct rt6_info *rt6_local = rtnl_dereference(vrf->rt6_local);
447 struct net *net = dev_net(dev);
448 struct dst_entry *dst;
449
450 RCU_INIT_POINTER(vrf->rt6, NULL);
451 RCU_INIT_POINTER(vrf->rt6_local, NULL);
452 synchronize_rcu();
453
454 /* move dev in dst's to loopback so this VRF device can be deleted
455 * - based on dst_ifdown
456 */
457 if (rt6) {
458 dst = &rt6->dst;
459 dev_put(dst->dev);
460 dst->dev = net->loopback_dev;
461 dev_hold(dst->dev);
462 dst_release(dst);
463 }
464
465 if (rt6_local) {
466 if (rt6_local->rt6i_idev) {
467 in6_dev_put(rt6_local->rt6i_idev);
468 rt6_local->rt6i_idev = NULL;
469 }
470
471 dst = &rt6_local->dst;
472 dev_put(dst->dev);
473 dst->dev = net->loopback_dev;
474 dev_hold(dst->dev);
475 dst_release(dst);
476 }
477 }
478
479 static int vrf_rt6_create(struct net_device *dev)
480 {
481 int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM | DST_NOCACHE;
482 struct net_vrf *vrf = netdev_priv(dev);
483 struct net *net = dev_net(dev);
484 struct fib6_table *rt6i_table;
485 struct rt6_info *rt6, *rt6_local;
486 int rc = -ENOMEM;
487
488 /* IPv6 can be CONFIG enabled and then disabled runtime */
489 if (!ipv6_mod_enabled())
490 return 0;
491
492 rt6i_table = fib6_new_table(net, vrf->tb_id);
493 if (!rt6i_table)
494 goto out;
495
496 /* create a dst for routing packets out a VRF device */
497 rt6 = ip6_dst_alloc(net, dev, flags);
498 if (!rt6)
499 goto out;
500
501 dst_hold(&rt6->dst);
502
503 rt6->rt6i_table = rt6i_table;
504 rt6->dst.output = vrf_output6;
505
506 /* create a dst for local routing - packets sent locally
507 * to local address via the VRF device as a loopback
508 */
509 rt6_local = ip6_dst_alloc(net, dev, flags);
510 if (!rt6_local) {
511 dst_release(&rt6->dst);
512 goto out;
513 }
514
515 dst_hold(&rt6_local->dst);
516
517 rt6_local->rt6i_idev = in6_dev_get(dev);
518 rt6_local->rt6i_flags = RTF_UP | RTF_NONEXTHOP | RTF_LOCAL;
519 rt6_local->rt6i_table = rt6i_table;
520 rt6_local->dst.input = ip6_input;
521
522 rcu_assign_pointer(vrf->rt6, rt6);
523 rcu_assign_pointer(vrf->rt6_local, rt6_local);
524
525 rc = 0;
526 out:
527 return rc;
528 }
529 #else
530 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
531 struct sock *sk,
532 struct sk_buff *skb)
533 {
534 return skb;
535 }
536
537 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
538 {
539 }
540
541 static int vrf_rt6_create(struct net_device *dev)
542 {
543 return 0;
544 }
545 #endif
546
547 /* modelled after ip_finish_output2 */
548 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
549 {
550 struct dst_entry *dst = skb_dst(skb);
551 struct rtable *rt = (struct rtable *)dst;
552 struct net_device *dev = dst->dev;
553 unsigned int hh_len = LL_RESERVED_SPACE(dev);
554 struct neighbour *neigh;
555 u32 nexthop;
556 int ret = -EINVAL;
557
558 nf_reset(skb);
559
560 /* Be paranoid, rather than too clever. */
561 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
562 struct sk_buff *skb2;
563
564 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
565 if (!skb2) {
566 ret = -ENOMEM;
567 goto err;
568 }
569 if (skb->sk)
570 skb_set_owner_w(skb2, skb->sk);
571
572 consume_skb(skb);
573 skb = skb2;
574 }
575
576 rcu_read_lock_bh();
577
578 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
579 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
580 if (unlikely(!neigh))
581 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
582 if (!IS_ERR(neigh)) {
583 sock_confirm_neigh(skb, neigh);
584 ret = dst_neigh_output(dst, neigh, skb);
585 }
586
587 rcu_read_unlock_bh();
588 err:
589 if (unlikely(ret < 0))
590 vrf_tx_error(skb->dev, skb);
591 return ret;
592 }
593
594 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
595 {
596 struct net_device *dev = skb_dst(skb)->dev;
597
598 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
599
600 skb->dev = dev;
601 skb->protocol = htons(ETH_P_IP);
602
603 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
604 net, sk, skb, NULL, dev,
605 vrf_finish_output,
606 !(IPCB(skb)->flags & IPSKB_REROUTED));
607 }
608
609 /* set dst on skb to send packet to us via dev_xmit path. Allows
610 * packet to go through device based features such as qdisc, netfilter
611 * hooks and packet sockets with skb->dev set to vrf device.
612 */
613 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
614 struct sock *sk,
615 struct sk_buff *skb)
616 {
617 struct net_vrf *vrf = netdev_priv(vrf_dev);
618 struct dst_entry *dst = NULL;
619 struct rtable *rth;
620
621 /* don't divert multicast */
622 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
623 return skb;
624
625 rcu_read_lock();
626
627 rth = rcu_dereference(vrf->rth);
628 if (likely(rth)) {
629 dst = &rth->dst;
630 dst_hold(dst);
631 }
632
633 rcu_read_unlock();
634
635 if (unlikely(!dst)) {
636 vrf_tx_error(vrf_dev, skb);
637 return NULL;
638 }
639
640 skb_dst_drop(skb);
641 skb_dst_set(skb, dst);
642
643 return skb;
644 }
645
646 /* called with rcu lock held */
647 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
648 struct sock *sk,
649 struct sk_buff *skb,
650 u16 proto)
651 {
652 switch (proto) {
653 case AF_INET:
654 return vrf_ip_out(vrf_dev, sk, skb);
655 case AF_INET6:
656 return vrf_ip6_out(vrf_dev, sk, skb);
657 }
658
659 return skb;
660 }
661
662 /* holding rtnl */
663 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
664 {
665 struct rtable *rth = rtnl_dereference(vrf->rth);
666 struct rtable *rth_local = rtnl_dereference(vrf->rth_local);
667 struct net *net = dev_net(dev);
668 struct dst_entry *dst;
669
670 RCU_INIT_POINTER(vrf->rth, NULL);
671 RCU_INIT_POINTER(vrf->rth_local, NULL);
672 synchronize_rcu();
673
674 /* move dev in dst's to loopback so this VRF device can be deleted
675 * - based on dst_ifdown
676 */
677 if (rth) {
678 dst = &rth->dst;
679 dev_put(dst->dev);
680 dst->dev = net->loopback_dev;
681 dev_hold(dst->dev);
682 dst_release(dst);
683 }
684
685 if (rth_local) {
686 dst = &rth_local->dst;
687 dev_put(dst->dev);
688 dst->dev = net->loopback_dev;
689 dev_hold(dst->dev);
690 dst_release(dst);
691 }
692 }
693
694 static int vrf_rtable_create(struct net_device *dev)
695 {
696 struct net_vrf *vrf = netdev_priv(dev);
697 struct rtable *rth, *rth_local;
698
699 if (!fib_new_table(dev_net(dev), vrf->tb_id))
700 return -ENOMEM;
701
702 /* create a dst for routing packets out through a VRF device */
703 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
704 if (!rth)
705 return -ENOMEM;
706
707 /* create a dst for local ingress routing - packets sent locally
708 * to local address via the VRF device as a loopback
709 */
710 rth_local = rt_dst_alloc(dev, RTCF_LOCAL, RTN_LOCAL, 1, 1, 0);
711 if (!rth_local) {
712 dst_release(&rth->dst);
713 return -ENOMEM;
714 }
715
716 rth->dst.output = vrf_output;
717 rth->rt_table_id = vrf->tb_id;
718
719 rth_local->rt_table_id = vrf->tb_id;
720
721 rcu_assign_pointer(vrf->rth, rth);
722 rcu_assign_pointer(vrf->rth_local, rth_local);
723
724 return 0;
725 }
726
727 /**************************** device handling ********************/
728
729 /* cycle interface to flush neighbor cache and move routes across tables */
730 static void cycle_netdev(struct net_device *dev)
731 {
732 unsigned int flags = dev->flags;
733 int ret;
734
735 if (!netif_running(dev))
736 return;
737
738 ret = dev_change_flags(dev, flags & ~IFF_UP);
739 if (ret >= 0)
740 ret = dev_change_flags(dev, flags);
741
742 if (ret < 0) {
743 netdev_err(dev,
744 "Failed to cycle device %s; route tables might be wrong!\n",
745 dev->name);
746 }
747 }
748
749 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
750 {
751 int ret;
752
753 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
754 if (ret < 0)
755 return ret;
756
757 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
758 cycle_netdev(port_dev);
759
760 return 0;
761 }
762
763 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
764 {
765 if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
766 return -EINVAL;
767
768 return do_vrf_add_slave(dev, port_dev);
769 }
770
771 /* inverse of do_vrf_add_slave */
772 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
773 {
774 netdev_upper_dev_unlink(port_dev, dev);
775 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
776
777 cycle_netdev(port_dev);
778
779 return 0;
780 }
781
782 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
783 {
784 return do_vrf_del_slave(dev, port_dev);
785 }
786
787 static void vrf_dev_uninit(struct net_device *dev)
788 {
789 struct net_vrf *vrf = netdev_priv(dev);
790 struct net_device *port_dev;
791 struct list_head *iter;
792
793 vrf_rtable_release(dev, vrf);
794 vrf_rt6_release(dev, vrf);
795
796 netdev_for_each_lower_dev(dev, port_dev, iter)
797 vrf_del_slave(dev, port_dev);
798
799 free_percpu(dev->dstats);
800 dev->dstats = NULL;
801 }
802
803 static int vrf_dev_init(struct net_device *dev)
804 {
805 struct net_vrf *vrf = netdev_priv(dev);
806
807 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
808 if (!dev->dstats)
809 goto out_nomem;
810
811 /* create the default dst which points back to us */
812 if (vrf_rtable_create(dev) != 0)
813 goto out_stats;
814
815 if (vrf_rt6_create(dev) != 0)
816 goto out_rth;
817
818 dev->flags = IFF_MASTER | IFF_NOARP;
819
820 /* MTU is irrelevant for VRF device; set to 64k similar to lo */
821 dev->mtu = 64 * 1024;
822
823 /* similarly, oper state is irrelevant; set to up to avoid confusion */
824 dev->operstate = IF_OPER_UP;
825 netdev_lockdep_set_classes(dev);
826 return 0;
827
828 out_rth:
829 vrf_rtable_release(dev, vrf);
830 out_stats:
831 free_percpu(dev->dstats);
832 dev->dstats = NULL;
833 out_nomem:
834 return -ENOMEM;
835 }
836
837 static const struct net_device_ops vrf_netdev_ops = {
838 .ndo_init = vrf_dev_init,
839 .ndo_uninit = vrf_dev_uninit,
840 .ndo_start_xmit = vrf_xmit,
841 .ndo_get_stats64 = vrf_get_stats64,
842 .ndo_add_slave = vrf_add_slave,
843 .ndo_del_slave = vrf_del_slave,
844 };
845
846 static u32 vrf_fib_table(const struct net_device *dev)
847 {
848 struct net_vrf *vrf = netdev_priv(dev);
849
850 return vrf->tb_id;
851 }
852
853 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
854 {
855 return 0;
856 }
857
858 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
859 struct sk_buff *skb,
860 struct net_device *dev)
861 {
862 struct net *net = dev_net(dev);
863
864 if (NF_HOOK(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) < 0)
865 skb = NULL; /* kfree_skb(skb) handled by nf code */
866
867 return skb;
868 }
869
870 #if IS_ENABLED(CONFIG_IPV6)
871 /* neighbor handling is done with actual device; do not want
872 * to flip skb->dev for those ndisc packets. This really fails
873 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
874 * a start.
875 */
876 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
877 {
878 const struct ipv6hdr *iph = ipv6_hdr(skb);
879 bool rc = false;
880
881 if (iph->nexthdr == NEXTHDR_ICMP) {
882 const struct icmp6hdr *icmph;
883 struct icmp6hdr _icmph;
884
885 icmph = skb_header_pointer(skb, sizeof(*iph),
886 sizeof(_icmph), &_icmph);
887 if (!icmph)
888 goto out;
889
890 switch (icmph->icmp6_type) {
891 case NDISC_ROUTER_SOLICITATION:
892 case NDISC_ROUTER_ADVERTISEMENT:
893 case NDISC_NEIGHBOUR_SOLICITATION:
894 case NDISC_NEIGHBOUR_ADVERTISEMENT:
895 case NDISC_REDIRECT:
896 rc = true;
897 break;
898 }
899 }
900
901 out:
902 return rc;
903 }
904
905 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
906 const struct net_device *dev,
907 struct flowi6 *fl6,
908 int ifindex,
909 int flags)
910 {
911 struct net_vrf *vrf = netdev_priv(dev);
912 struct fib6_table *table = NULL;
913 struct rt6_info *rt6;
914
915 rcu_read_lock();
916
917 /* fib6_table does not have a refcnt and can not be freed */
918 rt6 = rcu_dereference(vrf->rt6);
919 if (likely(rt6))
920 table = rt6->rt6i_table;
921
922 rcu_read_unlock();
923
924 if (!table)
925 return NULL;
926
927 return ip6_pol_route(net, table, ifindex, fl6, flags);
928 }
929
930 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
931 int ifindex)
932 {
933 const struct ipv6hdr *iph = ipv6_hdr(skb);
934 struct flowi6 fl6 = {
935 .daddr = iph->daddr,
936 .saddr = iph->saddr,
937 .flowlabel = ip6_flowinfo(iph),
938 .flowi6_mark = skb->mark,
939 .flowi6_proto = iph->nexthdr,
940 .flowi6_iif = ifindex,
941 };
942 struct net *net = dev_net(vrf_dev);
943 struct rt6_info *rt6;
944
945 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex,
946 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
947 if (unlikely(!rt6))
948 return;
949
950 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
951 return;
952
953 skb_dst_set(skb, &rt6->dst);
954 }
955
956 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
957 struct sk_buff *skb)
958 {
959 int orig_iif = skb->skb_iif;
960 bool need_strict;
961
962 /* loopback traffic; do not push through packet taps again.
963 * Reset pkt_type for upper layers to process skb
964 */
965 if (skb->pkt_type == PACKET_LOOPBACK) {
966 skb->dev = vrf_dev;
967 skb->skb_iif = vrf_dev->ifindex;
968 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
969 skb->pkt_type = PACKET_HOST;
970 goto out;
971 }
972
973 /* if packet is NDISC or addressed to multicast or link-local
974 * then keep the ingress interface
975 */
976 need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
977 if (!ipv6_ndisc_frame(skb) && !need_strict) {
978 vrf_rx_stats(vrf_dev, skb->len);
979 skb->dev = vrf_dev;
980 skb->skb_iif = vrf_dev->ifindex;
981
982 skb_push(skb, skb->mac_len);
983 dev_queue_xmit_nit(skb, vrf_dev);
984 skb_pull(skb, skb->mac_len);
985
986 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
987 }
988
989 if (need_strict)
990 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
991
992 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
993 out:
994 return skb;
995 }
996
997 #else
998 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
999 struct sk_buff *skb)
1000 {
1001 return skb;
1002 }
1003 #endif
1004
1005 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1006 struct sk_buff *skb)
1007 {
1008 skb->dev = vrf_dev;
1009 skb->skb_iif = vrf_dev->ifindex;
1010 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1011
1012 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1013 goto out;
1014
1015 /* loopback traffic; do not push through packet taps again.
1016 * Reset pkt_type for upper layers to process skb
1017 */
1018 if (skb->pkt_type == PACKET_LOOPBACK) {
1019 skb->pkt_type = PACKET_HOST;
1020 goto out;
1021 }
1022
1023 vrf_rx_stats(vrf_dev, skb->len);
1024
1025 skb_push(skb, skb->mac_len);
1026 dev_queue_xmit_nit(skb, vrf_dev);
1027 skb_pull(skb, skb->mac_len);
1028
1029 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1030 out:
1031 return skb;
1032 }
1033
1034 /* called with rcu lock held */
1035 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1036 struct sk_buff *skb,
1037 u16 proto)
1038 {
1039 switch (proto) {
1040 case AF_INET:
1041 return vrf_ip_rcv(vrf_dev, skb);
1042 case AF_INET6:
1043 return vrf_ip6_rcv(vrf_dev, skb);
1044 }
1045
1046 return skb;
1047 }
1048
1049 #if IS_ENABLED(CONFIG_IPV6)
1050 /* send to link-local or multicast address via interface enslaved to
1051 * VRF device. Force lookup to VRF table without changing flow struct
1052 */
1053 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1054 struct flowi6 *fl6)
1055 {
1056 struct net *net = dev_net(dev);
1057 int flags = RT6_LOOKUP_F_IFACE;
1058 struct dst_entry *dst = NULL;
1059 struct rt6_info *rt;
1060
1061 /* VRF device does not have a link-local address and
1062 * sending packets to link-local or mcast addresses over
1063 * a VRF device does not make sense
1064 */
1065 if (fl6->flowi6_oif == dev->ifindex) {
1066 dst = &net->ipv6.ip6_null_entry->dst;
1067 dst_hold(dst);
1068 return dst;
1069 }
1070
1071 if (!ipv6_addr_any(&fl6->saddr))
1072 flags |= RT6_LOOKUP_F_HAS_SADDR;
1073
1074 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags);
1075 if (rt)
1076 dst = &rt->dst;
1077
1078 return dst;
1079 }
1080 #endif
1081
1082 static const struct l3mdev_ops vrf_l3mdev_ops = {
1083 .l3mdev_fib_table = vrf_fib_table,
1084 .l3mdev_l3_rcv = vrf_l3_rcv,
1085 .l3mdev_l3_out = vrf_l3_out,
1086 #if IS_ENABLED(CONFIG_IPV6)
1087 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1088 #endif
1089 };
1090
1091 static void vrf_get_drvinfo(struct net_device *dev,
1092 struct ethtool_drvinfo *info)
1093 {
1094 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1095 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1096 }
1097
1098 static const struct ethtool_ops vrf_ethtool_ops = {
1099 .get_drvinfo = vrf_get_drvinfo,
1100 };
1101
1102 static inline size_t vrf_fib_rule_nl_size(void)
1103 {
1104 size_t sz;
1105
1106 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1107 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1108 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1109
1110 return sz;
1111 }
1112
1113 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1114 {
1115 struct fib_rule_hdr *frh;
1116 struct nlmsghdr *nlh;
1117 struct sk_buff *skb;
1118 int err;
1119
1120 if (family == AF_INET6 && !ipv6_mod_enabled())
1121 return 0;
1122
1123 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1124 if (!skb)
1125 return -ENOMEM;
1126
1127 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1128 if (!nlh)
1129 goto nla_put_failure;
1130
1131 /* rule only needs to appear once */
1132 nlh->nlmsg_flags |= NLM_F_EXCL;
1133
1134 frh = nlmsg_data(nlh);
1135 memset(frh, 0, sizeof(*frh));
1136 frh->family = family;
1137 frh->action = FR_ACT_TO_TBL;
1138
1139 if (nla_put_u32(skb, FRA_L3MDEV, 1))
1140 goto nla_put_failure;
1141
1142 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1143 goto nla_put_failure;
1144
1145 nlmsg_end(skb, nlh);
1146
1147 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1148 skb->sk = dev_net(dev)->rtnl;
1149 if (add_it) {
1150 err = fib_nl_newrule(skb, nlh);
1151 if (err == -EEXIST)
1152 err = 0;
1153 } else {
1154 err = fib_nl_delrule(skb, nlh);
1155 if (err == -ENOENT)
1156 err = 0;
1157 }
1158 nlmsg_free(skb);
1159
1160 return err;
1161
1162 nla_put_failure:
1163 nlmsg_free(skb);
1164
1165 return -EMSGSIZE;
1166 }
1167
1168 static int vrf_add_fib_rules(const struct net_device *dev)
1169 {
1170 int err;
1171
1172 err = vrf_fib_rule(dev, AF_INET, true);
1173 if (err < 0)
1174 goto out_err;
1175
1176 err = vrf_fib_rule(dev, AF_INET6, true);
1177 if (err < 0)
1178 goto ipv6_err;
1179
1180 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1181 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1182 if (err < 0)
1183 goto ipmr_err;
1184 #endif
1185
1186 return 0;
1187
1188 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1189 ipmr_err:
1190 vrf_fib_rule(dev, AF_INET6, false);
1191 #endif
1192
1193 ipv6_err:
1194 vrf_fib_rule(dev, AF_INET, false);
1195
1196 out_err:
1197 netdev_err(dev, "Failed to add FIB rules.\n");
1198 return err;
1199 }
1200
1201 static void vrf_setup(struct net_device *dev)
1202 {
1203 ether_setup(dev);
1204
1205 /* Initialize the device structure. */
1206 dev->netdev_ops = &vrf_netdev_ops;
1207 dev->l3mdev_ops = &vrf_l3mdev_ops;
1208 dev->ethtool_ops = &vrf_ethtool_ops;
1209 dev->destructor = free_netdev;
1210
1211 /* Fill in device structure with ethernet-generic values. */
1212 eth_hw_addr_random(dev);
1213
1214 /* don't acquire vrf device's netif_tx_lock when transmitting */
1215 dev->features |= NETIF_F_LLTX;
1216
1217 /* don't allow vrf devices to change network namespaces. */
1218 dev->features |= NETIF_F_NETNS_LOCAL;
1219
1220 /* does not make sense for a VLAN to be added to a vrf device */
1221 dev->features |= NETIF_F_VLAN_CHALLENGED;
1222
1223 /* enable offload features */
1224 dev->features |= NETIF_F_GSO_SOFTWARE;
1225 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM;
1226 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1227
1228 dev->hw_features = dev->features;
1229 dev->hw_enc_features = dev->features;
1230
1231 /* default to no qdisc; user can add if desired */
1232 dev->priv_flags |= IFF_NO_QUEUE;
1233 }
1234
1235 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
1236 {
1237 if (tb[IFLA_ADDRESS]) {
1238 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1239 return -EINVAL;
1240 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1241 return -EADDRNOTAVAIL;
1242 }
1243 return 0;
1244 }
1245
1246 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1247 {
1248 unregister_netdevice_queue(dev, head);
1249 }
1250
1251 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1252 struct nlattr *tb[], struct nlattr *data[])
1253 {
1254 struct net_vrf *vrf = netdev_priv(dev);
1255 int err;
1256
1257 if (!data || !data[IFLA_VRF_TABLE])
1258 return -EINVAL;
1259
1260 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1261 if (vrf->tb_id == RT_TABLE_UNSPEC)
1262 return -EINVAL;
1263
1264 dev->priv_flags |= IFF_L3MDEV_MASTER;
1265
1266 err = register_netdevice(dev);
1267 if (err)
1268 goto out;
1269
1270 if (add_fib_rules) {
1271 err = vrf_add_fib_rules(dev);
1272 if (err) {
1273 unregister_netdevice(dev);
1274 goto out;
1275 }
1276 add_fib_rules = false;
1277 }
1278
1279 out:
1280 return err;
1281 }
1282
1283 static size_t vrf_nl_getsize(const struct net_device *dev)
1284 {
1285 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1286 }
1287
1288 static int vrf_fillinfo(struct sk_buff *skb,
1289 const struct net_device *dev)
1290 {
1291 struct net_vrf *vrf = netdev_priv(dev);
1292
1293 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1294 }
1295
1296 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1297 const struct net_device *slave_dev)
1298 {
1299 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1300 }
1301
1302 static int vrf_fill_slave_info(struct sk_buff *skb,
1303 const struct net_device *vrf_dev,
1304 const struct net_device *slave_dev)
1305 {
1306 struct net_vrf *vrf = netdev_priv(vrf_dev);
1307
1308 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1309 return -EMSGSIZE;
1310
1311 return 0;
1312 }
1313
1314 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1315 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1316 };
1317
1318 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1319 .kind = DRV_NAME,
1320 .priv_size = sizeof(struct net_vrf),
1321
1322 .get_size = vrf_nl_getsize,
1323 .policy = vrf_nl_policy,
1324 .validate = vrf_validate,
1325 .fill_info = vrf_fillinfo,
1326
1327 .get_slave_size = vrf_get_slave_size,
1328 .fill_slave_info = vrf_fill_slave_info,
1329
1330 .newlink = vrf_newlink,
1331 .dellink = vrf_dellink,
1332 .setup = vrf_setup,
1333 .maxtype = IFLA_VRF_MAX,
1334 };
1335
1336 static int vrf_device_event(struct notifier_block *unused,
1337 unsigned long event, void *ptr)
1338 {
1339 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1340
1341 /* only care about unregister events to drop slave references */
1342 if (event == NETDEV_UNREGISTER) {
1343 struct net_device *vrf_dev;
1344
1345 if (!netif_is_l3_slave(dev))
1346 goto out;
1347
1348 vrf_dev = netdev_master_upper_dev_get(dev);
1349 vrf_del_slave(vrf_dev, dev);
1350 }
1351 out:
1352 return NOTIFY_DONE;
1353 }
1354
1355 static struct notifier_block vrf_notifier_block __read_mostly = {
1356 .notifier_call = vrf_device_event,
1357 };
1358
1359 static int __init vrf_init_module(void)
1360 {
1361 int rc;
1362
1363 register_netdevice_notifier(&vrf_notifier_block);
1364
1365 rc = rtnl_link_register(&vrf_link_ops);
1366 if (rc < 0)
1367 goto error;
1368
1369 return 0;
1370
1371 error:
1372 unregister_netdevice_notifier(&vrf_notifier_block);
1373 return rc;
1374 }
1375
1376 module_init(vrf_init_module);
1377 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1378 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1379 MODULE_LICENSE("GPL");
1380 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1381 MODULE_VERSION(DRV_VERSION);