]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/of/base.c
d687e6de24a07e11a2c2cecd94e7711610d52005
[mirror_ubuntu-zesty-kernel.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20
21 #define pr_fmt(fmt) "OF: " fmt
22
23 #include <linux/console.h>
24 #include <linux/ctype.h>
25 #include <linux/cpu.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_graph.h>
29 #include <linux/spinlock.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/proc_fs.h>
33
34 #include "of_private.h"
35
36 LIST_HEAD(aliases_lookup);
37
38 struct device_node *of_root;
39 EXPORT_SYMBOL(of_root);
40 struct device_node *of_chosen;
41 struct device_node *of_aliases;
42 struct device_node *of_stdout;
43 static const char *of_stdout_options;
44
45 struct kset *of_kset;
46
47 /*
48 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
49 * This mutex must be held whenever modifications are being made to the
50 * device tree. The of_{attach,detach}_node() and
51 * of_{add,remove,update}_property() helpers make sure this happens.
52 */
53 DEFINE_MUTEX(of_mutex);
54
55 /* use when traversing tree through the child, sibling,
56 * or parent members of struct device_node.
57 */
58 DEFINE_RAW_SPINLOCK(devtree_lock);
59
60 int of_n_addr_cells(struct device_node *np)
61 {
62 const __be32 *ip;
63
64 do {
65 if (np->parent)
66 np = np->parent;
67 ip = of_get_property(np, "#address-cells", NULL);
68 if (ip)
69 return be32_to_cpup(ip);
70 } while (np->parent);
71 /* No #address-cells property for the root node */
72 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
73 }
74 EXPORT_SYMBOL(of_n_addr_cells);
75
76 int of_n_size_cells(struct device_node *np)
77 {
78 const __be32 *ip;
79
80 do {
81 if (np->parent)
82 np = np->parent;
83 ip = of_get_property(np, "#size-cells", NULL);
84 if (ip)
85 return be32_to_cpup(ip);
86 } while (np->parent);
87 /* No #size-cells property for the root node */
88 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
89 }
90 EXPORT_SYMBOL(of_n_size_cells);
91
92 #ifdef CONFIG_NUMA
93 int __weak of_node_to_nid(struct device_node *np)
94 {
95 return NUMA_NO_NODE;
96 }
97 #endif
98
99 #ifndef CONFIG_OF_DYNAMIC
100 static void of_node_release(struct kobject *kobj)
101 {
102 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
103 }
104 #endif /* CONFIG_OF_DYNAMIC */
105
106 struct kobj_type of_node_ktype = {
107 .release = of_node_release,
108 };
109
110 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
111 struct bin_attribute *bin_attr, char *buf,
112 loff_t offset, size_t count)
113 {
114 struct property *pp = container_of(bin_attr, struct property, attr);
115 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
116 }
117
118 /* always return newly allocated name, caller must free after use */
119 static const char *safe_name(struct kobject *kobj, const char *orig_name)
120 {
121 const char *name = orig_name;
122 struct kernfs_node *kn;
123 int i = 0;
124
125 /* don't be a hero. After 16 tries give up */
126 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
127 sysfs_put(kn);
128 if (name != orig_name)
129 kfree(name);
130 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
131 }
132
133 if (name == orig_name) {
134 name = kstrdup(orig_name, GFP_KERNEL);
135 } else {
136 pr_warn("Duplicate name in %s, renamed to \"%s\"\n",
137 kobject_name(kobj), name);
138 }
139 return name;
140 }
141
142 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
143 {
144 int rc;
145
146 /* Important: Don't leak passwords */
147 bool secure = strncmp(pp->name, "security-", 9) == 0;
148
149 if (!IS_ENABLED(CONFIG_SYSFS))
150 return 0;
151
152 if (!of_kset || !of_node_is_attached(np))
153 return 0;
154
155 sysfs_bin_attr_init(&pp->attr);
156 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
157 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
158 pp->attr.size = secure ? 0 : pp->length;
159 pp->attr.read = of_node_property_read;
160
161 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
162 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
163 return rc;
164 }
165
166 int __of_attach_node_sysfs(struct device_node *np)
167 {
168 const char *name;
169 struct kobject *parent;
170 struct property *pp;
171 int rc;
172
173 if (!IS_ENABLED(CONFIG_SYSFS))
174 return 0;
175
176 if (!of_kset)
177 return 0;
178
179 np->kobj.kset = of_kset;
180 if (!np->parent) {
181 /* Nodes without parents are new top level trees */
182 name = safe_name(&of_kset->kobj, "base");
183 parent = NULL;
184 } else {
185 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
186 parent = &np->parent->kobj;
187 }
188 if (!name)
189 return -ENOMEM;
190 rc = kobject_add(&np->kobj, parent, "%s", name);
191 kfree(name);
192 if (rc)
193 return rc;
194
195 for_each_property_of_node(np, pp)
196 __of_add_property_sysfs(np, pp);
197
198 return 0;
199 }
200
201 void __init of_core_init(void)
202 {
203 struct device_node *np;
204
205 /* Create the kset, and register existing nodes */
206 mutex_lock(&of_mutex);
207 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
208 if (!of_kset) {
209 mutex_unlock(&of_mutex);
210 pr_err("failed to register existing nodes\n");
211 return;
212 }
213 for_each_of_allnodes(np)
214 __of_attach_node_sysfs(np);
215 mutex_unlock(&of_mutex);
216
217 /* Symlink in /proc as required by userspace ABI */
218 if (of_root)
219 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
220 }
221
222 static struct property *__of_find_property(const struct device_node *np,
223 const char *name, int *lenp)
224 {
225 struct property *pp;
226
227 if (!np)
228 return NULL;
229
230 for (pp = np->properties; pp; pp = pp->next) {
231 if (of_prop_cmp(pp->name, name) == 0) {
232 if (lenp)
233 *lenp = pp->length;
234 break;
235 }
236 }
237
238 return pp;
239 }
240
241 struct property *of_find_property(const struct device_node *np,
242 const char *name,
243 int *lenp)
244 {
245 struct property *pp;
246 unsigned long flags;
247
248 raw_spin_lock_irqsave(&devtree_lock, flags);
249 pp = __of_find_property(np, name, lenp);
250 raw_spin_unlock_irqrestore(&devtree_lock, flags);
251
252 return pp;
253 }
254 EXPORT_SYMBOL(of_find_property);
255
256 struct device_node *__of_find_all_nodes(struct device_node *prev)
257 {
258 struct device_node *np;
259 if (!prev) {
260 np = of_root;
261 } else if (prev->child) {
262 np = prev->child;
263 } else {
264 /* Walk back up looking for a sibling, or the end of the structure */
265 np = prev;
266 while (np->parent && !np->sibling)
267 np = np->parent;
268 np = np->sibling; /* Might be null at the end of the tree */
269 }
270 return np;
271 }
272
273 /**
274 * of_find_all_nodes - Get next node in global list
275 * @prev: Previous node or NULL to start iteration
276 * of_node_put() will be called on it
277 *
278 * Returns a node pointer with refcount incremented, use
279 * of_node_put() on it when done.
280 */
281 struct device_node *of_find_all_nodes(struct device_node *prev)
282 {
283 struct device_node *np;
284 unsigned long flags;
285
286 raw_spin_lock_irqsave(&devtree_lock, flags);
287 np = __of_find_all_nodes(prev);
288 of_node_get(np);
289 of_node_put(prev);
290 raw_spin_unlock_irqrestore(&devtree_lock, flags);
291 return np;
292 }
293 EXPORT_SYMBOL(of_find_all_nodes);
294
295 /*
296 * Find a property with a given name for a given node
297 * and return the value.
298 */
299 const void *__of_get_property(const struct device_node *np,
300 const char *name, int *lenp)
301 {
302 struct property *pp = __of_find_property(np, name, lenp);
303
304 return pp ? pp->value : NULL;
305 }
306
307 /*
308 * Find a property with a given name for a given node
309 * and return the value.
310 */
311 const void *of_get_property(const struct device_node *np, const char *name,
312 int *lenp)
313 {
314 struct property *pp = of_find_property(np, name, lenp);
315
316 return pp ? pp->value : NULL;
317 }
318 EXPORT_SYMBOL(of_get_property);
319
320 /*
321 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
322 *
323 * @cpu: logical cpu index of a core/thread
324 * @phys_id: physical identifier of a core/thread
325 *
326 * CPU logical to physical index mapping is architecture specific.
327 * However this __weak function provides a default match of physical
328 * id to logical cpu index. phys_id provided here is usually values read
329 * from the device tree which must match the hardware internal registers.
330 *
331 * Returns true if the physical identifier and the logical cpu index
332 * correspond to the same core/thread, false otherwise.
333 */
334 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
335 {
336 return (u32)phys_id == cpu;
337 }
338
339 /**
340 * Checks if the given "prop_name" property holds the physical id of the
341 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
342 * NULL, local thread number within the core is returned in it.
343 */
344 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
345 const char *prop_name, int cpu, unsigned int *thread)
346 {
347 const __be32 *cell;
348 int ac, prop_len, tid;
349 u64 hwid;
350
351 ac = of_n_addr_cells(cpun);
352 cell = of_get_property(cpun, prop_name, &prop_len);
353 if (!cell || !ac)
354 return false;
355 prop_len /= sizeof(*cell) * ac;
356 for (tid = 0; tid < prop_len; tid++) {
357 hwid = of_read_number(cell, ac);
358 if (arch_match_cpu_phys_id(cpu, hwid)) {
359 if (thread)
360 *thread = tid;
361 return true;
362 }
363 cell += ac;
364 }
365 return false;
366 }
367
368 /*
369 * arch_find_n_match_cpu_physical_id - See if the given device node is
370 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
371 * else false. If 'thread' is non-NULL, the local thread number within the
372 * core is returned in it.
373 */
374 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
375 int cpu, unsigned int *thread)
376 {
377 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
378 * for thread ids on PowerPC. If it doesn't exist fallback to
379 * standard "reg" property.
380 */
381 if (IS_ENABLED(CONFIG_PPC) &&
382 __of_find_n_match_cpu_property(cpun,
383 "ibm,ppc-interrupt-server#s",
384 cpu, thread))
385 return true;
386
387 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
388 }
389
390 /**
391 * of_get_cpu_node - Get device node associated with the given logical CPU
392 *
393 * @cpu: CPU number(logical index) for which device node is required
394 * @thread: if not NULL, local thread number within the physical core is
395 * returned
396 *
397 * The main purpose of this function is to retrieve the device node for the
398 * given logical CPU index. It should be used to initialize the of_node in
399 * cpu device. Once of_node in cpu device is populated, all the further
400 * references can use that instead.
401 *
402 * CPU logical to physical index mapping is architecture specific and is built
403 * before booting secondary cores. This function uses arch_match_cpu_phys_id
404 * which can be overridden by architecture specific implementation.
405 *
406 * Returns a node pointer for the logical cpu with refcount incremented, use
407 * of_node_put() on it when done. Returns NULL if not found.
408 */
409 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
410 {
411 struct device_node *cpun;
412
413 for_each_node_by_type(cpun, "cpu") {
414 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
415 return cpun;
416 }
417 return NULL;
418 }
419 EXPORT_SYMBOL(of_get_cpu_node);
420
421 /**
422 * __of_device_is_compatible() - Check if the node matches given constraints
423 * @device: pointer to node
424 * @compat: required compatible string, NULL or "" for any match
425 * @type: required device_type value, NULL or "" for any match
426 * @name: required node name, NULL or "" for any match
427 *
428 * Checks if the given @compat, @type and @name strings match the
429 * properties of the given @device. A constraints can be skipped by
430 * passing NULL or an empty string as the constraint.
431 *
432 * Returns 0 for no match, and a positive integer on match. The return
433 * value is a relative score with larger values indicating better
434 * matches. The score is weighted for the most specific compatible value
435 * to get the highest score. Matching type is next, followed by matching
436 * name. Practically speaking, this results in the following priority
437 * order for matches:
438 *
439 * 1. specific compatible && type && name
440 * 2. specific compatible && type
441 * 3. specific compatible && name
442 * 4. specific compatible
443 * 5. general compatible && type && name
444 * 6. general compatible && type
445 * 7. general compatible && name
446 * 8. general compatible
447 * 9. type && name
448 * 10. type
449 * 11. name
450 */
451 static int __of_device_is_compatible(const struct device_node *device,
452 const char *compat, const char *type, const char *name)
453 {
454 struct property *prop;
455 const char *cp;
456 int index = 0, score = 0;
457
458 /* Compatible match has highest priority */
459 if (compat && compat[0]) {
460 prop = __of_find_property(device, "compatible", NULL);
461 for (cp = of_prop_next_string(prop, NULL); cp;
462 cp = of_prop_next_string(prop, cp), index++) {
463 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
464 score = INT_MAX/2 - (index << 2);
465 break;
466 }
467 }
468 if (!score)
469 return 0;
470 }
471
472 /* Matching type is better than matching name */
473 if (type && type[0]) {
474 if (!device->type || of_node_cmp(type, device->type))
475 return 0;
476 score += 2;
477 }
478
479 /* Matching name is a bit better than not */
480 if (name && name[0]) {
481 if (!device->name || of_node_cmp(name, device->name))
482 return 0;
483 score++;
484 }
485
486 return score;
487 }
488
489 /** Checks if the given "compat" string matches one of the strings in
490 * the device's "compatible" property
491 */
492 int of_device_is_compatible(const struct device_node *device,
493 const char *compat)
494 {
495 unsigned long flags;
496 int res;
497
498 raw_spin_lock_irqsave(&devtree_lock, flags);
499 res = __of_device_is_compatible(device, compat, NULL, NULL);
500 raw_spin_unlock_irqrestore(&devtree_lock, flags);
501 return res;
502 }
503 EXPORT_SYMBOL(of_device_is_compatible);
504
505 /** Checks if the device is compatible with any of the entries in
506 * a NULL terminated array of strings. Returns the best match
507 * score or 0.
508 */
509 int of_device_compatible_match(struct device_node *device,
510 const char *const *compat)
511 {
512 unsigned int tmp, score = 0;
513
514 if (!compat)
515 return 0;
516
517 while (*compat) {
518 tmp = of_device_is_compatible(device, *compat);
519 if (tmp > score)
520 score = tmp;
521 compat++;
522 }
523
524 return score;
525 }
526
527 /**
528 * of_machine_is_compatible - Test root of device tree for a given compatible value
529 * @compat: compatible string to look for in root node's compatible property.
530 *
531 * Returns a positive integer if the root node has the given value in its
532 * compatible property.
533 */
534 int of_machine_is_compatible(const char *compat)
535 {
536 struct device_node *root;
537 int rc = 0;
538
539 root = of_find_node_by_path("/");
540 if (root) {
541 rc = of_device_is_compatible(root, compat);
542 of_node_put(root);
543 }
544 return rc;
545 }
546 EXPORT_SYMBOL(of_machine_is_compatible);
547
548 /**
549 * __of_device_is_available - check if a device is available for use
550 *
551 * @device: Node to check for availability, with locks already held
552 *
553 * Returns true if the status property is absent or set to "okay" or "ok",
554 * false otherwise
555 */
556 static bool __of_device_is_available(const struct device_node *device)
557 {
558 const char *status;
559 int statlen;
560
561 if (!device)
562 return false;
563
564 status = __of_get_property(device, "status", &statlen);
565 if (status == NULL)
566 return true;
567
568 if (statlen > 0) {
569 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
570 return true;
571 }
572
573 return false;
574 }
575
576 /**
577 * of_device_is_available - check if a device is available for use
578 *
579 * @device: Node to check for availability
580 *
581 * Returns true if the status property is absent or set to "okay" or "ok",
582 * false otherwise
583 */
584 bool of_device_is_available(const struct device_node *device)
585 {
586 unsigned long flags;
587 bool res;
588
589 raw_spin_lock_irqsave(&devtree_lock, flags);
590 res = __of_device_is_available(device);
591 raw_spin_unlock_irqrestore(&devtree_lock, flags);
592 return res;
593
594 }
595 EXPORT_SYMBOL(of_device_is_available);
596
597 /**
598 * of_device_is_big_endian - check if a device has BE registers
599 *
600 * @device: Node to check for endianness
601 *
602 * Returns true if the device has a "big-endian" property, or if the kernel
603 * was compiled for BE *and* the device has a "native-endian" property.
604 * Returns false otherwise.
605 *
606 * Callers would nominally use ioread32be/iowrite32be if
607 * of_device_is_big_endian() == true, or readl/writel otherwise.
608 */
609 bool of_device_is_big_endian(const struct device_node *device)
610 {
611 if (of_property_read_bool(device, "big-endian"))
612 return true;
613 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
614 of_property_read_bool(device, "native-endian"))
615 return true;
616 return false;
617 }
618 EXPORT_SYMBOL(of_device_is_big_endian);
619
620 /**
621 * of_get_parent - Get a node's parent if any
622 * @node: Node to get parent
623 *
624 * Returns a node pointer with refcount incremented, use
625 * of_node_put() on it when done.
626 */
627 struct device_node *of_get_parent(const struct device_node *node)
628 {
629 struct device_node *np;
630 unsigned long flags;
631
632 if (!node)
633 return NULL;
634
635 raw_spin_lock_irqsave(&devtree_lock, flags);
636 np = of_node_get(node->parent);
637 raw_spin_unlock_irqrestore(&devtree_lock, flags);
638 return np;
639 }
640 EXPORT_SYMBOL(of_get_parent);
641
642 /**
643 * of_get_next_parent - Iterate to a node's parent
644 * @node: Node to get parent of
645 *
646 * This is like of_get_parent() except that it drops the
647 * refcount on the passed node, making it suitable for iterating
648 * through a node's parents.
649 *
650 * Returns a node pointer with refcount incremented, use
651 * of_node_put() on it when done.
652 */
653 struct device_node *of_get_next_parent(struct device_node *node)
654 {
655 struct device_node *parent;
656 unsigned long flags;
657
658 if (!node)
659 return NULL;
660
661 raw_spin_lock_irqsave(&devtree_lock, flags);
662 parent = of_node_get(node->parent);
663 of_node_put(node);
664 raw_spin_unlock_irqrestore(&devtree_lock, flags);
665 return parent;
666 }
667 EXPORT_SYMBOL(of_get_next_parent);
668
669 static struct device_node *__of_get_next_child(const struct device_node *node,
670 struct device_node *prev)
671 {
672 struct device_node *next;
673
674 if (!node)
675 return NULL;
676
677 next = prev ? prev->sibling : node->child;
678 for (; next; next = next->sibling)
679 if (of_node_get(next))
680 break;
681 of_node_put(prev);
682 return next;
683 }
684 #define __for_each_child_of_node(parent, child) \
685 for (child = __of_get_next_child(parent, NULL); child != NULL; \
686 child = __of_get_next_child(parent, child))
687
688 /**
689 * of_get_next_child - Iterate a node childs
690 * @node: parent node
691 * @prev: previous child of the parent node, or NULL to get first
692 *
693 * Returns a node pointer with refcount incremented, use of_node_put() on
694 * it when done. Returns NULL when prev is the last child. Decrements the
695 * refcount of prev.
696 */
697 struct device_node *of_get_next_child(const struct device_node *node,
698 struct device_node *prev)
699 {
700 struct device_node *next;
701 unsigned long flags;
702
703 raw_spin_lock_irqsave(&devtree_lock, flags);
704 next = __of_get_next_child(node, prev);
705 raw_spin_unlock_irqrestore(&devtree_lock, flags);
706 return next;
707 }
708 EXPORT_SYMBOL(of_get_next_child);
709
710 /**
711 * of_get_next_available_child - Find the next available child node
712 * @node: parent node
713 * @prev: previous child of the parent node, or NULL to get first
714 *
715 * This function is like of_get_next_child(), except that it
716 * automatically skips any disabled nodes (i.e. status = "disabled").
717 */
718 struct device_node *of_get_next_available_child(const struct device_node *node,
719 struct device_node *prev)
720 {
721 struct device_node *next;
722 unsigned long flags;
723
724 if (!node)
725 return NULL;
726
727 raw_spin_lock_irqsave(&devtree_lock, flags);
728 next = prev ? prev->sibling : node->child;
729 for (; next; next = next->sibling) {
730 if (!__of_device_is_available(next))
731 continue;
732 if (of_node_get(next))
733 break;
734 }
735 of_node_put(prev);
736 raw_spin_unlock_irqrestore(&devtree_lock, flags);
737 return next;
738 }
739 EXPORT_SYMBOL(of_get_next_available_child);
740
741 /**
742 * of_get_child_by_name - Find the child node by name for a given parent
743 * @node: parent node
744 * @name: child name to look for.
745 *
746 * This function looks for child node for given matching name
747 *
748 * Returns a node pointer if found, with refcount incremented, use
749 * of_node_put() on it when done.
750 * Returns NULL if node is not found.
751 */
752 struct device_node *of_get_child_by_name(const struct device_node *node,
753 const char *name)
754 {
755 struct device_node *child;
756
757 for_each_child_of_node(node, child)
758 if (child->name && (of_node_cmp(child->name, name) == 0))
759 break;
760 return child;
761 }
762 EXPORT_SYMBOL(of_get_child_by_name);
763
764 static struct device_node *__of_find_node_by_path(struct device_node *parent,
765 const char *path)
766 {
767 struct device_node *child;
768 int len;
769
770 len = strcspn(path, "/:");
771 if (!len)
772 return NULL;
773
774 __for_each_child_of_node(parent, child) {
775 const char *name = strrchr(child->full_name, '/');
776 if (WARN(!name, "malformed device_node %s\n", child->full_name))
777 continue;
778 name++;
779 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
780 return child;
781 }
782 return NULL;
783 }
784
785 /**
786 * of_find_node_opts_by_path - Find a node matching a full OF path
787 * @path: Either the full path to match, or if the path does not
788 * start with '/', the name of a property of the /aliases
789 * node (an alias). In the case of an alias, the node
790 * matching the alias' value will be returned.
791 * @opts: Address of a pointer into which to store the start of
792 * an options string appended to the end of the path with
793 * a ':' separator.
794 *
795 * Valid paths:
796 * /foo/bar Full path
797 * foo Valid alias
798 * foo/bar Valid alias + relative path
799 *
800 * Returns a node pointer with refcount incremented, use
801 * of_node_put() on it when done.
802 */
803 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
804 {
805 struct device_node *np = NULL;
806 struct property *pp;
807 unsigned long flags;
808 const char *separator = strchr(path, ':');
809
810 if (opts)
811 *opts = separator ? separator + 1 : NULL;
812
813 if (strcmp(path, "/") == 0)
814 return of_node_get(of_root);
815
816 /* The path could begin with an alias */
817 if (*path != '/') {
818 int len;
819 const char *p = separator;
820
821 if (!p)
822 p = strchrnul(path, '/');
823 len = p - path;
824
825 /* of_aliases must not be NULL */
826 if (!of_aliases)
827 return NULL;
828
829 for_each_property_of_node(of_aliases, pp) {
830 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
831 np = of_find_node_by_path(pp->value);
832 break;
833 }
834 }
835 if (!np)
836 return NULL;
837 path = p;
838 }
839
840 /* Step down the tree matching path components */
841 raw_spin_lock_irqsave(&devtree_lock, flags);
842 if (!np)
843 np = of_node_get(of_root);
844 while (np && *path == '/') {
845 path++; /* Increment past '/' delimiter */
846 np = __of_find_node_by_path(np, path);
847 path = strchrnul(path, '/');
848 if (separator && separator < path)
849 break;
850 }
851 raw_spin_unlock_irqrestore(&devtree_lock, flags);
852 return np;
853 }
854 EXPORT_SYMBOL(of_find_node_opts_by_path);
855
856 /**
857 * of_find_node_by_name - Find a node by its "name" property
858 * @from: The node to start searching from or NULL, the node
859 * you pass will not be searched, only the next one
860 * will; typically, you pass what the previous call
861 * returned. of_node_put() will be called on it
862 * @name: The name string to match against
863 *
864 * Returns a node pointer with refcount incremented, use
865 * of_node_put() on it when done.
866 */
867 struct device_node *of_find_node_by_name(struct device_node *from,
868 const char *name)
869 {
870 struct device_node *np;
871 unsigned long flags;
872
873 raw_spin_lock_irqsave(&devtree_lock, flags);
874 for_each_of_allnodes_from(from, np)
875 if (np->name && (of_node_cmp(np->name, name) == 0)
876 && of_node_get(np))
877 break;
878 of_node_put(from);
879 raw_spin_unlock_irqrestore(&devtree_lock, flags);
880 return np;
881 }
882 EXPORT_SYMBOL(of_find_node_by_name);
883
884 /**
885 * of_find_node_by_type - Find a node by its "device_type" property
886 * @from: The node to start searching from, or NULL to start searching
887 * the entire device tree. The node you pass will not be
888 * searched, only the next one will; typically, you pass
889 * what the previous call returned. of_node_put() will be
890 * called on from for you.
891 * @type: The type string to match against
892 *
893 * Returns a node pointer with refcount incremented, use
894 * of_node_put() on it when done.
895 */
896 struct device_node *of_find_node_by_type(struct device_node *from,
897 const char *type)
898 {
899 struct device_node *np;
900 unsigned long flags;
901
902 raw_spin_lock_irqsave(&devtree_lock, flags);
903 for_each_of_allnodes_from(from, np)
904 if (np->type && (of_node_cmp(np->type, type) == 0)
905 && of_node_get(np))
906 break;
907 of_node_put(from);
908 raw_spin_unlock_irqrestore(&devtree_lock, flags);
909 return np;
910 }
911 EXPORT_SYMBOL(of_find_node_by_type);
912
913 /**
914 * of_find_compatible_node - Find a node based on type and one of the
915 * tokens in its "compatible" property
916 * @from: The node to start searching from or NULL, the node
917 * you pass will not be searched, only the next one
918 * will; typically, you pass what the previous call
919 * returned. of_node_put() will be called on it
920 * @type: The type string to match "device_type" or NULL to ignore
921 * @compatible: The string to match to one of the tokens in the device
922 * "compatible" list.
923 *
924 * Returns a node pointer with refcount incremented, use
925 * of_node_put() on it when done.
926 */
927 struct device_node *of_find_compatible_node(struct device_node *from,
928 const char *type, const char *compatible)
929 {
930 struct device_node *np;
931 unsigned long flags;
932
933 raw_spin_lock_irqsave(&devtree_lock, flags);
934 for_each_of_allnodes_from(from, np)
935 if (__of_device_is_compatible(np, compatible, type, NULL) &&
936 of_node_get(np))
937 break;
938 of_node_put(from);
939 raw_spin_unlock_irqrestore(&devtree_lock, flags);
940 return np;
941 }
942 EXPORT_SYMBOL(of_find_compatible_node);
943
944 /**
945 * of_find_node_with_property - Find a node which has a property with
946 * the given name.
947 * @from: The node to start searching from or NULL, the node
948 * you pass will not be searched, only the next one
949 * will; typically, you pass what the previous call
950 * returned. of_node_put() will be called on it
951 * @prop_name: The name of the property to look for.
952 *
953 * Returns a node pointer with refcount incremented, use
954 * of_node_put() on it when done.
955 */
956 struct device_node *of_find_node_with_property(struct device_node *from,
957 const char *prop_name)
958 {
959 struct device_node *np;
960 struct property *pp;
961 unsigned long flags;
962
963 raw_spin_lock_irqsave(&devtree_lock, flags);
964 for_each_of_allnodes_from(from, np) {
965 for (pp = np->properties; pp; pp = pp->next) {
966 if (of_prop_cmp(pp->name, prop_name) == 0) {
967 of_node_get(np);
968 goto out;
969 }
970 }
971 }
972 out:
973 of_node_put(from);
974 raw_spin_unlock_irqrestore(&devtree_lock, flags);
975 return np;
976 }
977 EXPORT_SYMBOL(of_find_node_with_property);
978
979 static
980 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
981 const struct device_node *node)
982 {
983 const struct of_device_id *best_match = NULL;
984 int score, best_score = 0;
985
986 if (!matches)
987 return NULL;
988
989 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
990 score = __of_device_is_compatible(node, matches->compatible,
991 matches->type, matches->name);
992 if (score > best_score) {
993 best_match = matches;
994 best_score = score;
995 }
996 }
997
998 return best_match;
999 }
1000
1001 /**
1002 * of_match_node - Tell if a device_node has a matching of_match structure
1003 * @matches: array of of device match structures to search in
1004 * @node: the of device structure to match against
1005 *
1006 * Low level utility function used by device matching.
1007 */
1008 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1009 const struct device_node *node)
1010 {
1011 const struct of_device_id *match;
1012 unsigned long flags;
1013
1014 raw_spin_lock_irqsave(&devtree_lock, flags);
1015 match = __of_match_node(matches, node);
1016 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1017 return match;
1018 }
1019 EXPORT_SYMBOL(of_match_node);
1020
1021 /**
1022 * of_find_matching_node_and_match - Find a node based on an of_device_id
1023 * match table.
1024 * @from: The node to start searching from or NULL, the node
1025 * you pass will not be searched, only the next one
1026 * will; typically, you pass what the previous call
1027 * returned. of_node_put() will be called on it
1028 * @matches: array of of device match structures to search in
1029 * @match Updated to point at the matches entry which matched
1030 *
1031 * Returns a node pointer with refcount incremented, use
1032 * of_node_put() on it when done.
1033 */
1034 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1035 const struct of_device_id *matches,
1036 const struct of_device_id **match)
1037 {
1038 struct device_node *np;
1039 const struct of_device_id *m;
1040 unsigned long flags;
1041
1042 if (match)
1043 *match = NULL;
1044
1045 raw_spin_lock_irqsave(&devtree_lock, flags);
1046 for_each_of_allnodes_from(from, np) {
1047 m = __of_match_node(matches, np);
1048 if (m && of_node_get(np)) {
1049 if (match)
1050 *match = m;
1051 break;
1052 }
1053 }
1054 of_node_put(from);
1055 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1056 return np;
1057 }
1058 EXPORT_SYMBOL(of_find_matching_node_and_match);
1059
1060 /**
1061 * of_modalias_node - Lookup appropriate modalias for a device node
1062 * @node: pointer to a device tree node
1063 * @modalias: Pointer to buffer that modalias value will be copied into
1064 * @len: Length of modalias value
1065 *
1066 * Based on the value of the compatible property, this routine will attempt
1067 * to choose an appropriate modalias value for a particular device tree node.
1068 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1069 * from the first entry in the compatible list property.
1070 *
1071 * This routine returns 0 on success, <0 on failure.
1072 */
1073 int of_modalias_node(struct device_node *node, char *modalias, int len)
1074 {
1075 const char *compatible, *p;
1076 int cplen;
1077
1078 compatible = of_get_property(node, "compatible", &cplen);
1079 if (!compatible || strlen(compatible) > cplen)
1080 return -ENODEV;
1081 p = strchr(compatible, ',');
1082 strlcpy(modalias, p ? p + 1 : compatible, len);
1083 return 0;
1084 }
1085 EXPORT_SYMBOL_GPL(of_modalias_node);
1086
1087 /**
1088 * of_find_node_by_phandle - Find a node given a phandle
1089 * @handle: phandle of the node to find
1090 *
1091 * Returns a node pointer with refcount incremented, use
1092 * of_node_put() on it when done.
1093 */
1094 struct device_node *of_find_node_by_phandle(phandle handle)
1095 {
1096 struct device_node *np;
1097 unsigned long flags;
1098
1099 if (!handle)
1100 return NULL;
1101
1102 raw_spin_lock_irqsave(&devtree_lock, flags);
1103 for_each_of_allnodes(np)
1104 if (np->phandle == handle)
1105 break;
1106 of_node_get(np);
1107 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1108 return np;
1109 }
1110 EXPORT_SYMBOL(of_find_node_by_phandle);
1111
1112 /**
1113 * of_property_count_elems_of_size - Count the number of elements in a property
1114 *
1115 * @np: device node from which the property value is to be read.
1116 * @propname: name of the property to be searched.
1117 * @elem_size: size of the individual element
1118 *
1119 * Search for a property in a device node and count the number of elements of
1120 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1121 * property does not exist or its length does not match a multiple of elem_size
1122 * and -ENODATA if the property does not have a value.
1123 */
1124 int of_property_count_elems_of_size(const struct device_node *np,
1125 const char *propname, int elem_size)
1126 {
1127 struct property *prop = of_find_property(np, propname, NULL);
1128
1129 if (!prop)
1130 return -EINVAL;
1131 if (!prop->value)
1132 return -ENODATA;
1133
1134 if (prop->length % elem_size != 0) {
1135 pr_err("size of %s in node %s is not a multiple of %d\n",
1136 propname, np->full_name, elem_size);
1137 return -EINVAL;
1138 }
1139
1140 return prop->length / elem_size;
1141 }
1142 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1143
1144 /**
1145 * of_find_property_value_of_size
1146 *
1147 * @np: device node from which the property value is to be read.
1148 * @propname: name of the property to be searched.
1149 * @min: minimum allowed length of property value
1150 * @max: maximum allowed length of property value (0 means unlimited)
1151 * @len: if !=NULL, actual length is written to here
1152 *
1153 * Search for a property in a device node and valid the requested size.
1154 * Returns the property value on success, -EINVAL if the property does not
1155 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1156 * property data is too small or too large.
1157 *
1158 */
1159 static void *of_find_property_value_of_size(const struct device_node *np,
1160 const char *propname, u32 min, u32 max, size_t *len)
1161 {
1162 struct property *prop = of_find_property(np, propname, NULL);
1163
1164 if (!prop)
1165 return ERR_PTR(-EINVAL);
1166 if (!prop->value)
1167 return ERR_PTR(-ENODATA);
1168 if (prop->length < min)
1169 return ERR_PTR(-EOVERFLOW);
1170 if (max && prop->length > max)
1171 return ERR_PTR(-EOVERFLOW);
1172
1173 if (len)
1174 *len = prop->length;
1175
1176 return prop->value;
1177 }
1178
1179 /**
1180 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1181 *
1182 * @np: device node from which the property value is to be read.
1183 * @propname: name of the property to be searched.
1184 * @index: index of the u32 in the list of values
1185 * @out_value: pointer to return value, modified only if no error.
1186 *
1187 * Search for a property in a device node and read nth 32-bit value from
1188 * it. Returns 0 on success, -EINVAL if the property does not exist,
1189 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1190 * property data isn't large enough.
1191 *
1192 * The out_value is modified only if a valid u32 value can be decoded.
1193 */
1194 int of_property_read_u32_index(const struct device_node *np,
1195 const char *propname,
1196 u32 index, u32 *out_value)
1197 {
1198 const u32 *val = of_find_property_value_of_size(np, propname,
1199 ((index + 1) * sizeof(*out_value)),
1200 0,
1201 NULL);
1202
1203 if (IS_ERR(val))
1204 return PTR_ERR(val);
1205
1206 *out_value = be32_to_cpup(((__be32 *)val) + index);
1207 return 0;
1208 }
1209 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1210
1211 /**
1212 * of_property_read_variable_u8_array - Find and read an array of u8 from a
1213 * property, with bounds on the minimum and maximum array size.
1214 *
1215 * @np: device node from which the property value is to be read.
1216 * @propname: name of the property to be searched.
1217 * @out_values: pointer to return value, modified only if return value is 0.
1218 * @sz_min: minimum number of array elements to read
1219 * @sz_max: maximum number of array elements to read, if zero there is no
1220 * upper limit on the number of elements in the dts entry but only
1221 * sz_min will be read.
1222 *
1223 * Search for a property in a device node and read 8-bit value(s) from
1224 * it. Returns number of elements read on success, -EINVAL if the property
1225 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1226 * if the property data is smaller than sz_min or longer than sz_max.
1227 *
1228 * dts entry of array should be like:
1229 * property = /bits/ 8 <0x50 0x60 0x70>;
1230 *
1231 * The out_values is modified only if a valid u8 value can be decoded.
1232 */
1233 int of_property_read_variable_u8_array(const struct device_node *np,
1234 const char *propname, u8 *out_values,
1235 size_t sz_min, size_t sz_max)
1236 {
1237 size_t sz, count;
1238 const u8 *val = of_find_property_value_of_size(np, propname,
1239 (sz_min * sizeof(*out_values)),
1240 (sz_max * sizeof(*out_values)),
1241 &sz);
1242
1243 if (IS_ERR(val))
1244 return PTR_ERR(val);
1245
1246 if (!sz_max)
1247 sz = sz_min;
1248 else
1249 sz /= sizeof(*out_values);
1250
1251 count = sz;
1252 while (count--)
1253 *out_values++ = *val++;
1254
1255 return sz;
1256 }
1257 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
1258
1259 /**
1260 * of_property_read_variable_u16_array - Find and read an array of u16 from a
1261 * property, with bounds on the minimum and maximum array size.
1262 *
1263 * @np: device node from which the property value is to be read.
1264 * @propname: name of the property to be searched.
1265 * @out_values: pointer to return value, modified only if return value is 0.
1266 * @sz_min: minimum number of array elements to read
1267 * @sz_max: maximum number of array elements to read, if zero there is no
1268 * upper limit on the number of elements in the dts entry but only
1269 * sz_min will be read.
1270 *
1271 * Search for a property in a device node and read 16-bit value(s) from
1272 * it. Returns number of elements read on success, -EINVAL if the property
1273 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1274 * if the property data is smaller than sz_min or longer than sz_max.
1275 *
1276 * dts entry of array should be like:
1277 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
1278 *
1279 * The out_values is modified only if a valid u16 value can be decoded.
1280 */
1281 int of_property_read_variable_u16_array(const struct device_node *np,
1282 const char *propname, u16 *out_values,
1283 size_t sz_min, size_t sz_max)
1284 {
1285 size_t sz, count;
1286 const __be16 *val = of_find_property_value_of_size(np, propname,
1287 (sz_min * sizeof(*out_values)),
1288 (sz_max * sizeof(*out_values)),
1289 &sz);
1290
1291 if (IS_ERR(val))
1292 return PTR_ERR(val);
1293
1294 if (!sz_max)
1295 sz = sz_min;
1296 else
1297 sz /= sizeof(*out_values);
1298
1299 count = sz;
1300 while (count--)
1301 *out_values++ = be16_to_cpup(val++);
1302
1303 return sz;
1304 }
1305 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
1306
1307 /**
1308 * of_property_read_variable_u32_array - Find and read an array of 32 bit
1309 * integers from a property, with bounds on the minimum and maximum array size.
1310 *
1311 * @np: device node from which the property value is to be read.
1312 * @propname: name of the property to be searched.
1313 * @out_values: pointer to return value, modified only if return value is 0.
1314 * @sz_min: minimum number of array elements to read
1315 * @sz_max: maximum number of array elements to read, if zero there is no
1316 * upper limit on the number of elements in the dts entry but only
1317 * sz_min will be read.
1318 *
1319 * Search for a property in a device node and read 32-bit value(s) from
1320 * it. Returns number of elements read on success, -EINVAL if the property
1321 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1322 * if the property data is smaller than sz_min or longer than sz_max.
1323 *
1324 * The out_values is modified only if a valid u32 value can be decoded.
1325 */
1326 int of_property_read_variable_u32_array(const struct device_node *np,
1327 const char *propname, u32 *out_values,
1328 size_t sz_min, size_t sz_max)
1329 {
1330 size_t sz, count;
1331 const __be32 *val = of_find_property_value_of_size(np, propname,
1332 (sz_min * sizeof(*out_values)),
1333 (sz_max * sizeof(*out_values)),
1334 &sz);
1335
1336 if (IS_ERR(val))
1337 return PTR_ERR(val);
1338
1339 if (!sz_max)
1340 sz = sz_min;
1341 else
1342 sz /= sizeof(*out_values);
1343
1344 count = sz;
1345 while (count--)
1346 *out_values++ = be32_to_cpup(val++);
1347
1348 return sz;
1349 }
1350 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
1351
1352 /**
1353 * of_property_read_u64 - Find and read a 64 bit integer from a property
1354 * @np: device node from which the property value is to be read.
1355 * @propname: name of the property to be searched.
1356 * @out_value: pointer to return value, modified only if return value is 0.
1357 *
1358 * Search for a property in a device node and read a 64-bit value from
1359 * it. Returns 0 on success, -EINVAL if the property does not exist,
1360 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1361 * property data isn't large enough.
1362 *
1363 * The out_value is modified only if a valid u64 value can be decoded.
1364 */
1365 int of_property_read_u64(const struct device_node *np, const char *propname,
1366 u64 *out_value)
1367 {
1368 const __be32 *val = of_find_property_value_of_size(np, propname,
1369 sizeof(*out_value),
1370 0,
1371 NULL);
1372
1373 if (IS_ERR(val))
1374 return PTR_ERR(val);
1375
1376 *out_value = of_read_number(val, 2);
1377 return 0;
1378 }
1379 EXPORT_SYMBOL_GPL(of_property_read_u64);
1380
1381 /**
1382 * of_property_read_variable_u64_array - Find and read an array of 64 bit
1383 * integers from a property, with bounds on the minimum and maximum array size.
1384 *
1385 * @np: device node from which the property value is to be read.
1386 * @propname: name of the property to be searched.
1387 * @out_values: pointer to return value, modified only if return value is 0.
1388 * @sz_min: minimum number of array elements to read
1389 * @sz_max: maximum number of array elements to read, if zero there is no
1390 * upper limit on the number of elements in the dts entry but only
1391 * sz_min will be read.
1392 *
1393 * Search for a property in a device node and read 64-bit value(s) from
1394 * it. Returns number of elements read on success, -EINVAL if the property
1395 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1396 * if the property data is smaller than sz_min or longer than sz_max.
1397 *
1398 * The out_values is modified only if a valid u64 value can be decoded.
1399 */
1400 int of_property_read_variable_u64_array(const struct device_node *np,
1401 const char *propname, u64 *out_values,
1402 size_t sz_min, size_t sz_max)
1403 {
1404 size_t sz, count;
1405 const __be32 *val = of_find_property_value_of_size(np, propname,
1406 (sz_min * sizeof(*out_values)),
1407 (sz_max * sizeof(*out_values)),
1408 &sz);
1409
1410 if (IS_ERR(val))
1411 return PTR_ERR(val);
1412
1413 if (!sz_max)
1414 sz = sz_min;
1415 else
1416 sz /= sizeof(*out_values);
1417
1418 count = sz;
1419 while (count--) {
1420 *out_values++ = of_read_number(val, 2);
1421 val += 2;
1422 }
1423
1424 return sz;
1425 }
1426 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
1427
1428 /**
1429 * of_property_read_string - Find and read a string from a property
1430 * @np: device node from which the property value is to be read.
1431 * @propname: name of the property to be searched.
1432 * @out_string: pointer to null terminated return string, modified only if
1433 * return value is 0.
1434 *
1435 * Search for a property in a device tree node and retrieve a null
1436 * terminated string value (pointer to data, not a copy). Returns 0 on
1437 * success, -EINVAL if the property does not exist, -ENODATA if property
1438 * does not have a value, and -EILSEQ if the string is not null-terminated
1439 * within the length of the property data.
1440 *
1441 * The out_string pointer is modified only if a valid string can be decoded.
1442 */
1443 int of_property_read_string(const struct device_node *np, const char *propname,
1444 const char **out_string)
1445 {
1446 const struct property *prop = of_find_property(np, propname, NULL);
1447 if (!prop)
1448 return -EINVAL;
1449 if (!prop->value)
1450 return -ENODATA;
1451 if (strnlen(prop->value, prop->length) >= prop->length)
1452 return -EILSEQ;
1453 *out_string = prop->value;
1454 return 0;
1455 }
1456 EXPORT_SYMBOL_GPL(of_property_read_string);
1457
1458 /**
1459 * of_property_match_string() - Find string in a list and return index
1460 * @np: pointer to node containing string list property
1461 * @propname: string list property name
1462 * @string: pointer to string to search for in string list
1463 *
1464 * This function searches a string list property and returns the index
1465 * of a specific string value.
1466 */
1467 int of_property_match_string(const struct device_node *np, const char *propname,
1468 const char *string)
1469 {
1470 const struct property *prop = of_find_property(np, propname, NULL);
1471 size_t l;
1472 int i;
1473 const char *p, *end;
1474
1475 if (!prop)
1476 return -EINVAL;
1477 if (!prop->value)
1478 return -ENODATA;
1479
1480 p = prop->value;
1481 end = p + prop->length;
1482
1483 for (i = 0; p < end; i++, p += l) {
1484 l = strnlen(p, end - p) + 1;
1485 if (p + l > end)
1486 return -EILSEQ;
1487 pr_debug("comparing %s with %s\n", string, p);
1488 if (strcmp(string, p) == 0)
1489 return i; /* Found it; return index */
1490 }
1491 return -ENODATA;
1492 }
1493 EXPORT_SYMBOL_GPL(of_property_match_string);
1494
1495 /**
1496 * of_property_read_string_helper() - Utility helper for parsing string properties
1497 * @np: device node from which the property value is to be read.
1498 * @propname: name of the property to be searched.
1499 * @out_strs: output array of string pointers.
1500 * @sz: number of array elements to read.
1501 * @skip: Number of strings to skip over at beginning of list.
1502 *
1503 * Don't call this function directly. It is a utility helper for the
1504 * of_property_read_string*() family of functions.
1505 */
1506 int of_property_read_string_helper(const struct device_node *np,
1507 const char *propname, const char **out_strs,
1508 size_t sz, int skip)
1509 {
1510 const struct property *prop = of_find_property(np, propname, NULL);
1511 int l = 0, i = 0;
1512 const char *p, *end;
1513
1514 if (!prop)
1515 return -EINVAL;
1516 if (!prop->value)
1517 return -ENODATA;
1518 p = prop->value;
1519 end = p + prop->length;
1520
1521 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1522 l = strnlen(p, end - p) + 1;
1523 if (p + l > end)
1524 return -EILSEQ;
1525 if (out_strs && i >= skip)
1526 *out_strs++ = p;
1527 }
1528 i -= skip;
1529 return i <= 0 ? -ENODATA : i;
1530 }
1531 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1532
1533 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1534 {
1535 int i;
1536 printk("%s %s", msg, of_node_full_name(args->np));
1537 for (i = 0; i < args->args_count; i++)
1538 printk(i ? ",%08x" : ":%08x", args->args[i]);
1539 printk("\n");
1540 }
1541
1542 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1543 const struct device_node *np,
1544 const char *list_name,
1545 const char *cells_name,
1546 int cell_count)
1547 {
1548 const __be32 *list;
1549 int size;
1550
1551 memset(it, 0, sizeof(*it));
1552
1553 list = of_get_property(np, list_name, &size);
1554 if (!list)
1555 return -ENOENT;
1556
1557 it->cells_name = cells_name;
1558 it->cell_count = cell_count;
1559 it->parent = np;
1560 it->list_end = list + size / sizeof(*list);
1561 it->phandle_end = list;
1562 it->cur = list;
1563
1564 return 0;
1565 }
1566
1567 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1568 {
1569 uint32_t count = 0;
1570
1571 if (it->node) {
1572 of_node_put(it->node);
1573 it->node = NULL;
1574 }
1575
1576 if (!it->cur || it->phandle_end >= it->list_end)
1577 return -ENOENT;
1578
1579 it->cur = it->phandle_end;
1580
1581 /* If phandle is 0, then it is an empty entry with no arguments. */
1582 it->phandle = be32_to_cpup(it->cur++);
1583
1584 if (it->phandle) {
1585
1586 /*
1587 * Find the provider node and parse the #*-cells property to
1588 * determine the argument length.
1589 */
1590 it->node = of_find_node_by_phandle(it->phandle);
1591
1592 if (it->cells_name) {
1593 if (!it->node) {
1594 pr_err("%s: could not find phandle\n",
1595 it->parent->full_name);
1596 goto err;
1597 }
1598
1599 if (of_property_read_u32(it->node, it->cells_name,
1600 &count)) {
1601 pr_err("%s: could not get %s for %s\n",
1602 it->parent->full_name,
1603 it->cells_name,
1604 it->node->full_name);
1605 goto err;
1606 }
1607 } else {
1608 count = it->cell_count;
1609 }
1610
1611 /*
1612 * Make sure that the arguments actually fit in the remaining
1613 * property data length
1614 */
1615 if (it->cur + count > it->list_end) {
1616 pr_err("%s: arguments longer than property\n",
1617 it->parent->full_name);
1618 goto err;
1619 }
1620 }
1621
1622 it->phandle_end = it->cur + count;
1623 it->cur_count = count;
1624
1625 return 0;
1626
1627 err:
1628 if (it->node) {
1629 of_node_put(it->node);
1630 it->node = NULL;
1631 }
1632
1633 return -EINVAL;
1634 }
1635
1636 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1637 uint32_t *args,
1638 int size)
1639 {
1640 int i, count;
1641
1642 count = it->cur_count;
1643
1644 if (WARN_ON(size < count))
1645 count = size;
1646
1647 for (i = 0; i < count; i++)
1648 args[i] = be32_to_cpup(it->cur++);
1649
1650 return count;
1651 }
1652
1653 static int __of_parse_phandle_with_args(const struct device_node *np,
1654 const char *list_name,
1655 const char *cells_name,
1656 int cell_count, int index,
1657 struct of_phandle_args *out_args)
1658 {
1659 struct of_phandle_iterator it;
1660 int rc, cur_index = 0;
1661
1662 /* Loop over the phandles until all the requested entry is found */
1663 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1664 /*
1665 * All of the error cases bail out of the loop, so at
1666 * this point, the parsing is successful. If the requested
1667 * index matches, then fill the out_args structure and return,
1668 * or return -ENOENT for an empty entry.
1669 */
1670 rc = -ENOENT;
1671 if (cur_index == index) {
1672 if (!it.phandle)
1673 goto err;
1674
1675 if (out_args) {
1676 int c;
1677
1678 c = of_phandle_iterator_args(&it,
1679 out_args->args,
1680 MAX_PHANDLE_ARGS);
1681 out_args->np = it.node;
1682 out_args->args_count = c;
1683 } else {
1684 of_node_put(it.node);
1685 }
1686
1687 /* Found it! return success */
1688 return 0;
1689 }
1690
1691 cur_index++;
1692 }
1693
1694 /*
1695 * Unlock node before returning result; will be one of:
1696 * -ENOENT : index is for empty phandle
1697 * -EINVAL : parsing error on data
1698 */
1699
1700 err:
1701 of_node_put(it.node);
1702 return rc;
1703 }
1704
1705 /**
1706 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1707 * @np: Pointer to device node holding phandle property
1708 * @phandle_name: Name of property holding a phandle value
1709 * @index: For properties holding a table of phandles, this is the index into
1710 * the table
1711 *
1712 * Returns the device_node pointer with refcount incremented. Use
1713 * of_node_put() on it when done.
1714 */
1715 struct device_node *of_parse_phandle(const struct device_node *np,
1716 const char *phandle_name, int index)
1717 {
1718 struct of_phandle_args args;
1719
1720 if (index < 0)
1721 return NULL;
1722
1723 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1724 index, &args))
1725 return NULL;
1726
1727 return args.np;
1728 }
1729 EXPORT_SYMBOL(of_parse_phandle);
1730
1731 /**
1732 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1733 * @np: pointer to a device tree node containing a list
1734 * @list_name: property name that contains a list
1735 * @cells_name: property name that specifies phandles' arguments count
1736 * @index: index of a phandle to parse out
1737 * @out_args: optional pointer to output arguments structure (will be filled)
1738 *
1739 * This function is useful to parse lists of phandles and their arguments.
1740 * Returns 0 on success and fills out_args, on error returns appropriate
1741 * errno value.
1742 *
1743 * Caller is responsible to call of_node_put() on the returned out_args->np
1744 * pointer.
1745 *
1746 * Example:
1747 *
1748 * phandle1: node1 {
1749 * #list-cells = <2>;
1750 * }
1751 *
1752 * phandle2: node2 {
1753 * #list-cells = <1>;
1754 * }
1755 *
1756 * node3 {
1757 * list = <&phandle1 1 2 &phandle2 3>;
1758 * }
1759 *
1760 * To get a device_node of the `node2' node you may call this:
1761 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1762 */
1763 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1764 const char *cells_name, int index,
1765 struct of_phandle_args *out_args)
1766 {
1767 if (index < 0)
1768 return -EINVAL;
1769 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1770 index, out_args);
1771 }
1772 EXPORT_SYMBOL(of_parse_phandle_with_args);
1773
1774 /**
1775 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1776 * @np: pointer to a device tree node containing a list
1777 * @list_name: property name that contains a list
1778 * @cell_count: number of argument cells following the phandle
1779 * @index: index of a phandle to parse out
1780 * @out_args: optional pointer to output arguments structure (will be filled)
1781 *
1782 * This function is useful to parse lists of phandles and their arguments.
1783 * Returns 0 on success and fills out_args, on error returns appropriate
1784 * errno value.
1785 *
1786 * Caller is responsible to call of_node_put() on the returned out_args->np
1787 * pointer.
1788 *
1789 * Example:
1790 *
1791 * phandle1: node1 {
1792 * }
1793 *
1794 * phandle2: node2 {
1795 * }
1796 *
1797 * node3 {
1798 * list = <&phandle1 0 2 &phandle2 2 3>;
1799 * }
1800 *
1801 * To get a device_node of the `node2' node you may call this:
1802 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1803 */
1804 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1805 const char *list_name, int cell_count,
1806 int index, struct of_phandle_args *out_args)
1807 {
1808 if (index < 0)
1809 return -EINVAL;
1810 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1811 index, out_args);
1812 }
1813 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1814
1815 /**
1816 * of_count_phandle_with_args() - Find the number of phandles references in a property
1817 * @np: pointer to a device tree node containing a list
1818 * @list_name: property name that contains a list
1819 * @cells_name: property name that specifies phandles' arguments count
1820 *
1821 * Returns the number of phandle + argument tuples within a property. It
1822 * is a typical pattern to encode a list of phandle and variable
1823 * arguments into a single property. The number of arguments is encoded
1824 * by a property in the phandle-target node. For example, a gpios
1825 * property would contain a list of GPIO specifies consisting of a
1826 * phandle and 1 or more arguments. The number of arguments are
1827 * determined by the #gpio-cells property in the node pointed to by the
1828 * phandle.
1829 */
1830 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1831 const char *cells_name)
1832 {
1833 struct of_phandle_iterator it;
1834 int rc, cur_index = 0;
1835
1836 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1837 if (rc)
1838 return rc;
1839
1840 while ((rc = of_phandle_iterator_next(&it)) == 0)
1841 cur_index += 1;
1842
1843 if (rc != -ENOENT)
1844 return rc;
1845
1846 return cur_index;
1847 }
1848 EXPORT_SYMBOL(of_count_phandle_with_args);
1849
1850 /**
1851 * __of_add_property - Add a property to a node without lock operations
1852 */
1853 int __of_add_property(struct device_node *np, struct property *prop)
1854 {
1855 struct property **next;
1856
1857 prop->next = NULL;
1858 next = &np->properties;
1859 while (*next) {
1860 if (strcmp(prop->name, (*next)->name) == 0)
1861 /* duplicate ! don't insert it */
1862 return -EEXIST;
1863
1864 next = &(*next)->next;
1865 }
1866 *next = prop;
1867
1868 return 0;
1869 }
1870
1871 /**
1872 * of_add_property - Add a property to a node
1873 */
1874 int of_add_property(struct device_node *np, struct property *prop)
1875 {
1876 unsigned long flags;
1877 int rc;
1878
1879 mutex_lock(&of_mutex);
1880
1881 raw_spin_lock_irqsave(&devtree_lock, flags);
1882 rc = __of_add_property(np, prop);
1883 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1884
1885 if (!rc)
1886 __of_add_property_sysfs(np, prop);
1887
1888 mutex_unlock(&of_mutex);
1889
1890 if (!rc)
1891 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1892
1893 return rc;
1894 }
1895
1896 int __of_remove_property(struct device_node *np, struct property *prop)
1897 {
1898 struct property **next;
1899
1900 for (next = &np->properties; *next; next = &(*next)->next) {
1901 if (*next == prop)
1902 break;
1903 }
1904 if (*next == NULL)
1905 return -ENODEV;
1906
1907 /* found the node */
1908 *next = prop->next;
1909 prop->next = np->deadprops;
1910 np->deadprops = prop;
1911
1912 return 0;
1913 }
1914
1915 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop)
1916 {
1917 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1918 kfree(prop->attr.attr.name);
1919 }
1920
1921 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1922 {
1923 if (!IS_ENABLED(CONFIG_SYSFS))
1924 return;
1925
1926 /* at early boot, bail here and defer setup to of_init() */
1927 if (of_kset && of_node_is_attached(np))
1928 __of_sysfs_remove_bin_file(np, prop);
1929 }
1930
1931 /**
1932 * of_remove_property - Remove a property from a node.
1933 *
1934 * Note that we don't actually remove it, since we have given out
1935 * who-knows-how-many pointers to the data using get-property.
1936 * Instead we just move the property to the "dead properties"
1937 * list, so it won't be found any more.
1938 */
1939 int of_remove_property(struct device_node *np, struct property *prop)
1940 {
1941 unsigned long flags;
1942 int rc;
1943
1944 if (!prop)
1945 return -ENODEV;
1946
1947 mutex_lock(&of_mutex);
1948
1949 raw_spin_lock_irqsave(&devtree_lock, flags);
1950 rc = __of_remove_property(np, prop);
1951 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1952
1953 if (!rc)
1954 __of_remove_property_sysfs(np, prop);
1955
1956 mutex_unlock(&of_mutex);
1957
1958 if (!rc)
1959 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1960
1961 return rc;
1962 }
1963
1964 int __of_update_property(struct device_node *np, struct property *newprop,
1965 struct property **oldpropp)
1966 {
1967 struct property **next, *oldprop;
1968
1969 for (next = &np->properties; *next; next = &(*next)->next) {
1970 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1971 break;
1972 }
1973 *oldpropp = oldprop = *next;
1974
1975 if (oldprop) {
1976 /* replace the node */
1977 newprop->next = oldprop->next;
1978 *next = newprop;
1979 oldprop->next = np->deadprops;
1980 np->deadprops = oldprop;
1981 } else {
1982 /* new node */
1983 newprop->next = NULL;
1984 *next = newprop;
1985 }
1986
1987 return 0;
1988 }
1989
1990 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1991 struct property *oldprop)
1992 {
1993 if (!IS_ENABLED(CONFIG_SYSFS))
1994 return;
1995
1996 /* At early boot, bail out and defer setup to of_init() */
1997 if (!of_kset)
1998 return;
1999
2000 if (oldprop)
2001 __of_sysfs_remove_bin_file(np, oldprop);
2002 __of_add_property_sysfs(np, newprop);
2003 }
2004
2005 /*
2006 * of_update_property - Update a property in a node, if the property does
2007 * not exist, add it.
2008 *
2009 * Note that we don't actually remove it, since we have given out
2010 * who-knows-how-many pointers to the data using get-property.
2011 * Instead we just move the property to the "dead properties" list,
2012 * and add the new property to the property list
2013 */
2014 int of_update_property(struct device_node *np, struct property *newprop)
2015 {
2016 struct property *oldprop;
2017 unsigned long flags;
2018 int rc;
2019
2020 if (!newprop->name)
2021 return -EINVAL;
2022
2023 mutex_lock(&of_mutex);
2024
2025 raw_spin_lock_irqsave(&devtree_lock, flags);
2026 rc = __of_update_property(np, newprop, &oldprop);
2027 raw_spin_unlock_irqrestore(&devtree_lock, flags);
2028
2029 if (!rc)
2030 __of_update_property_sysfs(np, newprop, oldprop);
2031
2032 mutex_unlock(&of_mutex);
2033
2034 if (!rc)
2035 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
2036
2037 return rc;
2038 }
2039
2040 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
2041 int id, const char *stem, int stem_len)
2042 {
2043 ap->np = np;
2044 ap->id = id;
2045 strncpy(ap->stem, stem, stem_len);
2046 ap->stem[stem_len] = 0;
2047 list_add_tail(&ap->link, &aliases_lookup);
2048 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
2049 ap->alias, ap->stem, ap->id, of_node_full_name(np));
2050 }
2051
2052 /**
2053 * of_alias_scan - Scan all properties of the 'aliases' node
2054 *
2055 * The function scans all the properties of the 'aliases' node and populates
2056 * the global lookup table with the properties. It returns the
2057 * number of alias properties found, or an error code in case of failure.
2058 *
2059 * @dt_alloc: An allocator that provides a virtual address to memory
2060 * for storing the resulting tree
2061 */
2062 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
2063 {
2064 struct property *pp;
2065
2066 of_aliases = of_find_node_by_path("/aliases");
2067 of_chosen = of_find_node_by_path("/chosen");
2068 if (of_chosen == NULL)
2069 of_chosen = of_find_node_by_path("/chosen@0");
2070
2071 if (of_chosen) {
2072 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2073 const char *name = of_get_property(of_chosen, "stdout-path", NULL);
2074 if (!name)
2075 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
2076 if (IS_ENABLED(CONFIG_PPC) && !name)
2077 name = of_get_property(of_aliases, "stdout", NULL);
2078 if (name)
2079 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2080 if (of_stdout)
2081 console_set_by_of();
2082 }
2083
2084 if (!of_aliases)
2085 return;
2086
2087 for_each_property_of_node(of_aliases, pp) {
2088 const char *start = pp->name;
2089 const char *end = start + strlen(start);
2090 struct device_node *np;
2091 struct alias_prop *ap;
2092 int id, len;
2093
2094 /* Skip those we do not want to proceed */
2095 if (!strcmp(pp->name, "name") ||
2096 !strcmp(pp->name, "phandle") ||
2097 !strcmp(pp->name, "linux,phandle"))
2098 continue;
2099
2100 np = of_find_node_by_path(pp->value);
2101 if (!np)
2102 continue;
2103
2104 /* walk the alias backwards to extract the id and work out
2105 * the 'stem' string */
2106 while (isdigit(*(end-1)) && end > start)
2107 end--;
2108 len = end - start;
2109
2110 if (kstrtoint(end, 10, &id) < 0)
2111 continue;
2112
2113 /* Allocate an alias_prop with enough space for the stem */
2114 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
2115 if (!ap)
2116 continue;
2117 memset(ap, 0, sizeof(*ap) + len + 1);
2118 ap->alias = start;
2119 of_alias_add(ap, np, id, start, len);
2120 }
2121 }
2122
2123 /**
2124 * of_alias_get_id - Get alias id for the given device_node
2125 * @np: Pointer to the given device_node
2126 * @stem: Alias stem of the given device_node
2127 *
2128 * The function travels the lookup table to get the alias id for the given
2129 * device_node and alias stem. It returns the alias id if found.
2130 */
2131 int of_alias_get_id(struct device_node *np, const char *stem)
2132 {
2133 struct alias_prop *app;
2134 int id = -ENODEV;
2135
2136 mutex_lock(&of_mutex);
2137 list_for_each_entry(app, &aliases_lookup, link) {
2138 if (strcmp(app->stem, stem) != 0)
2139 continue;
2140
2141 if (np == app->np) {
2142 id = app->id;
2143 break;
2144 }
2145 }
2146 mutex_unlock(&of_mutex);
2147
2148 return id;
2149 }
2150 EXPORT_SYMBOL_GPL(of_alias_get_id);
2151
2152 /**
2153 * of_alias_get_highest_id - Get highest alias id for the given stem
2154 * @stem: Alias stem to be examined
2155 *
2156 * The function travels the lookup table to get the highest alias id for the
2157 * given alias stem. It returns the alias id if found.
2158 */
2159 int of_alias_get_highest_id(const char *stem)
2160 {
2161 struct alias_prop *app;
2162 int id = -ENODEV;
2163
2164 mutex_lock(&of_mutex);
2165 list_for_each_entry(app, &aliases_lookup, link) {
2166 if (strcmp(app->stem, stem) != 0)
2167 continue;
2168
2169 if (app->id > id)
2170 id = app->id;
2171 }
2172 mutex_unlock(&of_mutex);
2173
2174 return id;
2175 }
2176 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2177
2178 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2179 u32 *pu)
2180 {
2181 const void *curv = cur;
2182
2183 if (!prop)
2184 return NULL;
2185
2186 if (!cur) {
2187 curv = prop->value;
2188 goto out_val;
2189 }
2190
2191 curv += sizeof(*cur);
2192 if (curv >= prop->value + prop->length)
2193 return NULL;
2194
2195 out_val:
2196 *pu = be32_to_cpup(curv);
2197 return curv;
2198 }
2199 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2200
2201 const char *of_prop_next_string(struct property *prop, const char *cur)
2202 {
2203 const void *curv = cur;
2204
2205 if (!prop)
2206 return NULL;
2207
2208 if (!cur)
2209 return prop->value;
2210
2211 curv += strlen(cur) + 1;
2212 if (curv >= prop->value + prop->length)
2213 return NULL;
2214
2215 return curv;
2216 }
2217 EXPORT_SYMBOL_GPL(of_prop_next_string);
2218
2219 /**
2220 * of_console_check() - Test and setup console for DT setup
2221 * @dn - Pointer to device node
2222 * @name - Name to use for preferred console without index. ex. "ttyS"
2223 * @index - Index to use for preferred console.
2224 *
2225 * Check if the given device node matches the stdout-path property in the
2226 * /chosen node. If it does then register it as the preferred console and return
2227 * TRUE. Otherwise return FALSE.
2228 */
2229 bool of_console_check(struct device_node *dn, char *name, int index)
2230 {
2231 if (!dn || dn != of_stdout || console_set_on_cmdline)
2232 return false;
2233 return !add_preferred_console(name, index,
2234 kstrdup(of_stdout_options, GFP_KERNEL));
2235 }
2236 EXPORT_SYMBOL_GPL(of_console_check);
2237
2238 /**
2239 * of_find_next_cache_node - Find a node's subsidiary cache
2240 * @np: node of type "cpu" or "cache"
2241 *
2242 * Returns a node pointer with refcount incremented, use
2243 * of_node_put() on it when done. Caller should hold a reference
2244 * to np.
2245 */
2246 struct device_node *of_find_next_cache_node(const struct device_node *np)
2247 {
2248 struct device_node *child;
2249 const phandle *handle;
2250
2251 handle = of_get_property(np, "l2-cache", NULL);
2252 if (!handle)
2253 handle = of_get_property(np, "next-level-cache", NULL);
2254
2255 if (handle)
2256 return of_find_node_by_phandle(be32_to_cpup(handle));
2257
2258 /* OF on pmac has nodes instead of properties named "l2-cache"
2259 * beneath CPU nodes.
2260 */
2261 if (!strcmp(np->type, "cpu"))
2262 for_each_child_of_node(np, child)
2263 if (!strcmp(child->type, "cache"))
2264 return child;
2265
2266 return NULL;
2267 }
2268
2269 /**
2270 * of_graph_parse_endpoint() - parse common endpoint node properties
2271 * @node: pointer to endpoint device_node
2272 * @endpoint: pointer to the OF endpoint data structure
2273 *
2274 * The caller should hold a reference to @node.
2275 */
2276 int of_graph_parse_endpoint(const struct device_node *node,
2277 struct of_endpoint *endpoint)
2278 {
2279 struct device_node *port_node = of_get_parent(node);
2280
2281 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2282 __func__, node->full_name);
2283
2284 memset(endpoint, 0, sizeof(*endpoint));
2285
2286 endpoint->local_node = node;
2287 /*
2288 * It doesn't matter whether the two calls below succeed.
2289 * If they don't then the default value 0 is used.
2290 */
2291 of_property_read_u32(port_node, "reg", &endpoint->port);
2292 of_property_read_u32(node, "reg", &endpoint->id);
2293
2294 of_node_put(port_node);
2295
2296 return 0;
2297 }
2298 EXPORT_SYMBOL(of_graph_parse_endpoint);
2299
2300 /**
2301 * of_graph_get_port_by_id() - get the port matching a given id
2302 * @parent: pointer to the parent device node
2303 * @id: id of the port
2304 *
2305 * Return: A 'port' node pointer with refcount incremented. The caller
2306 * has to use of_node_put() on it when done.
2307 */
2308 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2309 {
2310 struct device_node *node, *port;
2311
2312 node = of_get_child_by_name(parent, "ports");
2313 if (node)
2314 parent = node;
2315
2316 for_each_child_of_node(parent, port) {
2317 u32 port_id = 0;
2318
2319 if (of_node_cmp(port->name, "port") != 0)
2320 continue;
2321 of_property_read_u32(port, "reg", &port_id);
2322 if (id == port_id)
2323 break;
2324 }
2325
2326 of_node_put(node);
2327
2328 return port;
2329 }
2330 EXPORT_SYMBOL(of_graph_get_port_by_id);
2331
2332 /**
2333 * of_graph_get_next_endpoint() - get next endpoint node
2334 * @parent: pointer to the parent device node
2335 * @prev: previous endpoint node, or NULL to get first
2336 *
2337 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2338 * of the passed @prev node is decremented.
2339 */
2340 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2341 struct device_node *prev)
2342 {
2343 struct device_node *endpoint;
2344 struct device_node *port;
2345
2346 if (!parent)
2347 return NULL;
2348
2349 /*
2350 * Start by locating the port node. If no previous endpoint is specified
2351 * search for the first port node, otherwise get the previous endpoint
2352 * parent port node.
2353 */
2354 if (!prev) {
2355 struct device_node *node;
2356
2357 node = of_get_child_by_name(parent, "ports");
2358 if (node)
2359 parent = node;
2360
2361 port = of_get_child_by_name(parent, "port");
2362 of_node_put(node);
2363
2364 if (!port) {
2365 pr_err("graph: no port node found in %s\n",
2366 parent->full_name);
2367 return NULL;
2368 }
2369 } else {
2370 port = of_get_parent(prev);
2371 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2372 __func__, prev->full_name))
2373 return NULL;
2374 }
2375
2376 while (1) {
2377 /*
2378 * Now that we have a port node, get the next endpoint by
2379 * getting the next child. If the previous endpoint is NULL this
2380 * will return the first child.
2381 */
2382 endpoint = of_get_next_child(port, prev);
2383 if (endpoint) {
2384 of_node_put(port);
2385 return endpoint;
2386 }
2387
2388 /* No more endpoints under this port, try the next one. */
2389 prev = NULL;
2390
2391 do {
2392 port = of_get_next_child(parent, port);
2393 if (!port)
2394 return NULL;
2395 } while (of_node_cmp(port->name, "port"));
2396 }
2397 }
2398 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2399
2400 /**
2401 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
2402 * @parent: pointer to the parent device node
2403 * @port_reg: identifier (value of reg property) of the parent port node
2404 * @reg: identifier (value of reg property) of the endpoint node
2405 *
2406 * Return: An 'endpoint' node pointer which is identified by reg and at the same
2407 * is the child of a port node identified by port_reg. reg and port_reg are
2408 * ignored when they are -1.
2409 */
2410 struct device_node *of_graph_get_endpoint_by_regs(
2411 const struct device_node *parent, int port_reg, int reg)
2412 {
2413 struct of_endpoint endpoint;
2414 struct device_node *node = NULL;
2415
2416 for_each_endpoint_of_node(parent, node) {
2417 of_graph_parse_endpoint(node, &endpoint);
2418 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
2419 ((reg == -1) || (endpoint.id == reg)))
2420 return node;
2421 }
2422
2423 return NULL;
2424 }
2425 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2426
2427 /**
2428 * of_graph_get_remote_port_parent() - get remote port's parent node
2429 * @node: pointer to a local endpoint device_node
2430 *
2431 * Return: Remote device node associated with remote endpoint node linked
2432 * to @node. Use of_node_put() on it when done.
2433 */
2434 struct device_node *of_graph_get_remote_port_parent(
2435 const struct device_node *node)
2436 {
2437 struct device_node *np;
2438 unsigned int depth;
2439
2440 /* Get remote endpoint node. */
2441 np = of_parse_phandle(node, "remote-endpoint", 0);
2442
2443 /* Walk 3 levels up only if there is 'ports' node. */
2444 for (depth = 3; depth && np; depth--) {
2445 np = of_get_next_parent(np);
2446 if (depth == 2 && of_node_cmp(np->name, "ports"))
2447 break;
2448 }
2449 return np;
2450 }
2451 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2452
2453 /**
2454 * of_graph_get_remote_port() - get remote port node
2455 * @node: pointer to a local endpoint device_node
2456 *
2457 * Return: Remote port node associated with remote endpoint node linked
2458 * to @node. Use of_node_put() on it when done.
2459 */
2460 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2461 {
2462 struct device_node *np;
2463
2464 /* Get remote endpoint node. */
2465 np = of_parse_phandle(node, "remote-endpoint", 0);
2466 if (!np)
2467 return NULL;
2468 return of_get_next_parent(np);
2469 }
2470 EXPORT_SYMBOL(of_graph_get_remote_port);