]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/cxlflash/main.c
scsi: cxlflash: Support dynamic number of FC ports
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / cxlflash / main.c
1 /*
2 * CXL Flash Device Driver
3 *
4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
6 *
7 * Copyright (C) 2015 IBM Corporation
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15 #include <linux/delay.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19
20 #include <asm/unaligned.h>
21
22 #include <misc/cxl.h>
23
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_host.h>
26 #include <uapi/scsi/cxlflash_ioctl.h>
27
28 #include "main.h"
29 #include "sislite.h"
30 #include "common.h"
31
32 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
33 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
34 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
35 MODULE_LICENSE("GPL");
36
37 /**
38 * process_cmd_err() - command error handler
39 * @cmd: AFU command that experienced the error.
40 * @scp: SCSI command associated with the AFU command in error.
41 *
42 * Translates error bits from AFU command to SCSI command results.
43 */
44 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
45 {
46 struct afu *afu = cmd->parent;
47 struct cxlflash_cfg *cfg = afu->parent;
48 struct device *dev = &cfg->dev->dev;
49 struct sisl_ioarcb *ioarcb;
50 struct sisl_ioasa *ioasa;
51 u32 resid;
52
53 if (unlikely(!cmd))
54 return;
55
56 ioarcb = &(cmd->rcb);
57 ioasa = &(cmd->sa);
58
59 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
60 resid = ioasa->resid;
61 scsi_set_resid(scp, resid);
62 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
63 __func__, cmd, scp, resid);
64 }
65
66 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
67 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
68 __func__, cmd, scp);
69 scp->result = (DID_ERROR << 16);
70 }
71
72 dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
73 "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
74 ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
75 ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
76
77 if (ioasa->rc.scsi_rc) {
78 /* We have a SCSI status */
79 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
80 memcpy(scp->sense_buffer, ioasa->sense_data,
81 SISL_SENSE_DATA_LEN);
82 scp->result = ioasa->rc.scsi_rc;
83 } else
84 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
85 }
86
87 /*
88 * We encountered an error. Set scp->result based on nature
89 * of error.
90 */
91 if (ioasa->rc.fc_rc) {
92 /* We have an FC status */
93 switch (ioasa->rc.fc_rc) {
94 case SISL_FC_RC_LINKDOWN:
95 scp->result = (DID_REQUEUE << 16);
96 break;
97 case SISL_FC_RC_RESID:
98 /* This indicates an FCP resid underrun */
99 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
100 /* If the SISL_RC_FLAGS_OVERRUN flag was set,
101 * then we will handle this error else where.
102 * If not then we must handle it here.
103 * This is probably an AFU bug.
104 */
105 scp->result = (DID_ERROR << 16);
106 }
107 break;
108 case SISL_FC_RC_RESIDERR:
109 /* Resid mismatch between adapter and device */
110 case SISL_FC_RC_TGTABORT:
111 case SISL_FC_RC_ABORTOK:
112 case SISL_FC_RC_ABORTFAIL:
113 case SISL_FC_RC_NOLOGI:
114 case SISL_FC_RC_ABORTPEND:
115 case SISL_FC_RC_WRABORTPEND:
116 case SISL_FC_RC_NOEXP:
117 case SISL_FC_RC_INUSE:
118 scp->result = (DID_ERROR << 16);
119 break;
120 }
121 }
122
123 if (ioasa->rc.afu_rc) {
124 /* We have an AFU error */
125 switch (ioasa->rc.afu_rc) {
126 case SISL_AFU_RC_NO_CHANNELS:
127 scp->result = (DID_NO_CONNECT << 16);
128 break;
129 case SISL_AFU_RC_DATA_DMA_ERR:
130 switch (ioasa->afu_extra) {
131 case SISL_AFU_DMA_ERR_PAGE_IN:
132 /* Retry */
133 scp->result = (DID_IMM_RETRY << 16);
134 break;
135 case SISL_AFU_DMA_ERR_INVALID_EA:
136 default:
137 scp->result = (DID_ERROR << 16);
138 }
139 break;
140 case SISL_AFU_RC_OUT_OF_DATA_BUFS:
141 /* Retry */
142 scp->result = (DID_ALLOC_FAILURE << 16);
143 break;
144 default:
145 scp->result = (DID_ERROR << 16);
146 }
147 }
148 }
149
150 /**
151 * cmd_complete() - command completion handler
152 * @cmd: AFU command that has completed.
153 *
154 * Prepares and submits command that has either completed or timed out to
155 * the SCSI stack. Checks AFU command back into command pool for non-internal
156 * (cmd->scp populated) commands.
157 */
158 static void cmd_complete(struct afu_cmd *cmd)
159 {
160 struct scsi_cmnd *scp;
161 ulong lock_flags;
162 struct afu *afu = cmd->parent;
163 struct cxlflash_cfg *cfg = afu->parent;
164 struct device *dev = &cfg->dev->dev;
165 bool cmd_is_tmf;
166
167 if (cmd->scp) {
168 scp = cmd->scp;
169 if (unlikely(cmd->sa.ioasc))
170 process_cmd_err(cmd, scp);
171 else
172 scp->result = (DID_OK << 16);
173
174 cmd_is_tmf = cmd->cmd_tmf;
175
176 dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
177 __func__, scp, scp->result, cmd->sa.ioasc);
178
179 scsi_dma_unmap(scp);
180 scp->scsi_done(scp);
181
182 if (cmd_is_tmf) {
183 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
184 cfg->tmf_active = false;
185 wake_up_all_locked(&cfg->tmf_waitq);
186 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
187 }
188 } else
189 complete(&cmd->cevent);
190 }
191
192 /**
193 * context_reset() - reset command owner context via specified register
194 * @cmd: AFU command that timed out.
195 * @reset_reg: MMIO register to perform reset.
196 */
197 static void context_reset(struct afu_cmd *cmd, __be64 __iomem *reset_reg)
198 {
199 int nretry = 0;
200 u64 rrin = 0x1;
201 struct afu *afu = cmd->parent;
202 struct cxlflash_cfg *cfg = afu->parent;
203 struct device *dev = &cfg->dev->dev;
204
205 dev_dbg(dev, "%s: cmd=%p\n", __func__, cmd);
206
207 writeq_be(rrin, reset_reg);
208 do {
209 rrin = readq_be(reset_reg);
210 if (rrin != 0x1)
211 break;
212 /* Double delay each time */
213 udelay(1 << nretry);
214 } while (nretry++ < MC_ROOM_RETRY_CNT);
215
216 dev_dbg(dev, "%s: returning rrin=%016llx nretry=%d\n",
217 __func__, rrin, nretry);
218 }
219
220 /**
221 * context_reset_ioarrin() - reset command owner context via IOARRIN register
222 * @cmd: AFU command that timed out.
223 */
224 static void context_reset_ioarrin(struct afu_cmd *cmd)
225 {
226 struct afu *afu = cmd->parent;
227
228 context_reset(cmd, &afu->host_map->ioarrin);
229 }
230
231 /**
232 * context_reset_sq() - reset command owner context w/ SQ Context Reset register
233 * @cmd: AFU command that timed out.
234 */
235 static void context_reset_sq(struct afu_cmd *cmd)
236 {
237 struct afu *afu = cmd->parent;
238
239 context_reset(cmd, &afu->host_map->sq_ctx_reset);
240 }
241
242 /**
243 * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
244 * @afu: AFU associated with the host.
245 * @cmd: AFU command to send.
246 *
247 * Return:
248 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
249 */
250 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
251 {
252 struct cxlflash_cfg *cfg = afu->parent;
253 struct device *dev = &cfg->dev->dev;
254 int rc = 0;
255 s64 room;
256 ulong lock_flags;
257
258 /*
259 * To avoid the performance penalty of MMIO, spread the update of
260 * 'room' over multiple commands.
261 */
262 spin_lock_irqsave(&afu->rrin_slock, lock_flags);
263 if (--afu->room < 0) {
264 room = readq_be(&afu->host_map->cmd_room);
265 if (room <= 0) {
266 dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
267 "0x%02X, room=0x%016llX\n",
268 __func__, cmd->rcb.cdb[0], room);
269 afu->room = 0;
270 rc = SCSI_MLQUEUE_HOST_BUSY;
271 goto out;
272 }
273 afu->room = room - 1;
274 }
275
276 writeq_be((u64)&cmd->rcb, &afu->host_map->ioarrin);
277 out:
278 spin_unlock_irqrestore(&afu->rrin_slock, lock_flags);
279 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n", __func__,
280 cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
281 return rc;
282 }
283
284 /**
285 * send_cmd_sq() - sends an AFU command via SQ ring
286 * @afu: AFU associated with the host.
287 * @cmd: AFU command to send.
288 *
289 * Return:
290 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
291 */
292 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
293 {
294 struct cxlflash_cfg *cfg = afu->parent;
295 struct device *dev = &cfg->dev->dev;
296 int rc = 0;
297 int newval;
298 ulong lock_flags;
299
300 newval = atomic_dec_if_positive(&afu->hsq_credits);
301 if (newval <= 0) {
302 rc = SCSI_MLQUEUE_HOST_BUSY;
303 goto out;
304 }
305
306 cmd->rcb.ioasa = &cmd->sa;
307
308 spin_lock_irqsave(&afu->hsq_slock, lock_flags);
309
310 *afu->hsq_curr = cmd->rcb;
311 if (afu->hsq_curr < afu->hsq_end)
312 afu->hsq_curr++;
313 else
314 afu->hsq_curr = afu->hsq_start;
315 writeq_be((u64)afu->hsq_curr, &afu->host_map->sq_tail);
316
317 spin_unlock_irqrestore(&afu->hsq_slock, lock_flags);
318 out:
319 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
320 "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
321 cmd->rcb.data_ea, cmd->rcb.ioasa, rc, afu->hsq_curr,
322 readq_be(&afu->host_map->sq_head),
323 readq_be(&afu->host_map->sq_tail));
324 return rc;
325 }
326
327 /**
328 * wait_resp() - polls for a response or timeout to a sent AFU command
329 * @afu: AFU associated with the host.
330 * @cmd: AFU command that was sent.
331 *
332 * Return:
333 * 0 on success, -1 on timeout/error
334 */
335 static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
336 {
337 struct cxlflash_cfg *cfg = afu->parent;
338 struct device *dev = &cfg->dev->dev;
339 int rc = 0;
340 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
341
342 timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
343 if (!timeout) {
344 afu->context_reset(cmd);
345 rc = -1;
346 }
347
348 if (unlikely(cmd->sa.ioasc != 0)) {
349 dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
350 __func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
351 rc = -1;
352 }
353
354 return rc;
355 }
356
357 /**
358 * send_tmf() - sends a Task Management Function (TMF)
359 * @afu: AFU to checkout from.
360 * @scp: SCSI command from stack.
361 * @tmfcmd: TMF command to send.
362 *
363 * Return:
364 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
365 */
366 static int send_tmf(struct afu *afu, struct scsi_cmnd *scp, u64 tmfcmd)
367 {
368 u32 port_sel = scp->device->channel + 1;
369 struct cxlflash_cfg *cfg = shost_priv(scp->device->host);
370 struct afu_cmd *cmd = sc_to_afucz(scp);
371 struct device *dev = &cfg->dev->dev;
372 ulong lock_flags;
373 int rc = 0;
374 ulong to;
375
376 /* When Task Management Function is active do not send another */
377 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
378 if (cfg->tmf_active)
379 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
380 !cfg->tmf_active,
381 cfg->tmf_slock);
382 cfg->tmf_active = true;
383 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
384
385 cmd->scp = scp;
386 cmd->parent = afu;
387 cmd->cmd_tmf = true;
388
389 cmd->rcb.ctx_id = afu->ctx_hndl;
390 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
391 cmd->rcb.port_sel = port_sel;
392 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
393 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
394 SISL_REQ_FLAGS_SUP_UNDERRUN |
395 SISL_REQ_FLAGS_TMF_CMD);
396 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
397
398 rc = afu->send_cmd(afu, cmd);
399 if (unlikely(rc)) {
400 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
401 cfg->tmf_active = false;
402 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
403 goto out;
404 }
405
406 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
407 to = msecs_to_jiffies(5000);
408 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
409 !cfg->tmf_active,
410 cfg->tmf_slock,
411 to);
412 if (!to) {
413 cfg->tmf_active = false;
414 dev_err(dev, "%s: TMF timed out\n", __func__);
415 rc = -1;
416 }
417 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
418 out:
419 return rc;
420 }
421
422 /**
423 * cxlflash_driver_info() - information handler for this host driver
424 * @host: SCSI host associated with device.
425 *
426 * Return: A string describing the device.
427 */
428 static const char *cxlflash_driver_info(struct Scsi_Host *host)
429 {
430 return CXLFLASH_ADAPTER_NAME;
431 }
432
433 /**
434 * cxlflash_queuecommand() - sends a mid-layer request
435 * @host: SCSI host associated with device.
436 * @scp: SCSI command to send.
437 *
438 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
439 */
440 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
441 {
442 struct cxlflash_cfg *cfg = shost_priv(host);
443 struct afu *afu = cfg->afu;
444 struct device *dev = &cfg->dev->dev;
445 struct afu_cmd *cmd = sc_to_afucz(scp);
446 struct scatterlist *sg = scsi_sglist(scp);
447 u32 port_sel = scp->device->channel + 1;
448 u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
449 ulong lock_flags;
450 int nseg = 0;
451 int rc = 0;
452
453 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
454 "cdb=(%08x-%08x-%08x-%08x)\n",
455 __func__, scp, host->host_no, scp->device->channel,
456 scp->device->id, scp->device->lun,
457 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
458 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
459 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
460 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
461
462 /*
463 * If a Task Management Function is active, wait for it to complete
464 * before continuing with regular commands.
465 */
466 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
467 if (cfg->tmf_active) {
468 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
469 rc = SCSI_MLQUEUE_HOST_BUSY;
470 goto out;
471 }
472 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
473
474 switch (cfg->state) {
475 case STATE_RESET:
476 dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
477 rc = SCSI_MLQUEUE_HOST_BUSY;
478 goto out;
479 case STATE_FAILTERM:
480 dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
481 scp->result = (DID_NO_CONNECT << 16);
482 scp->scsi_done(scp);
483 rc = 0;
484 goto out;
485 default:
486 break;
487 }
488
489 if (likely(sg)) {
490 nseg = scsi_dma_map(scp);
491 if (unlikely(nseg < 0)) {
492 dev_err(dev, "%s: Fail DMA map\n", __func__);
493 rc = SCSI_MLQUEUE_HOST_BUSY;
494 goto out;
495 }
496
497 cmd->rcb.data_len = sg_dma_len(sg);
498 cmd->rcb.data_ea = sg_dma_address(sg);
499 }
500
501 cmd->scp = scp;
502 cmd->parent = afu;
503
504 cmd->rcb.ctx_id = afu->ctx_hndl;
505 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
506 cmd->rcb.port_sel = port_sel;
507 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
508
509 if (scp->sc_data_direction == DMA_TO_DEVICE)
510 req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
511
512 cmd->rcb.req_flags = req_flags;
513 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
514
515 rc = afu->send_cmd(afu, cmd);
516 if (unlikely(rc))
517 scsi_dma_unmap(scp);
518 out:
519 return rc;
520 }
521
522 /**
523 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
524 * @cfg: Internal structure associated with the host.
525 */
526 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
527 {
528 struct pci_dev *pdev = cfg->dev;
529
530 if (pci_channel_offline(pdev))
531 wait_event_timeout(cfg->reset_waitq,
532 !pci_channel_offline(pdev),
533 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
534 }
535
536 /**
537 * free_mem() - free memory associated with the AFU
538 * @cfg: Internal structure associated with the host.
539 */
540 static void free_mem(struct cxlflash_cfg *cfg)
541 {
542 struct afu *afu = cfg->afu;
543
544 if (cfg->afu) {
545 free_pages((ulong)afu, get_order(sizeof(struct afu)));
546 cfg->afu = NULL;
547 }
548 }
549
550 /**
551 * stop_afu() - stops the AFU command timers and unmaps the MMIO space
552 * @cfg: Internal structure associated with the host.
553 *
554 * Safe to call with AFU in a partially allocated/initialized state.
555 *
556 * Cancels scheduled worker threads, waits for any active internal AFU
557 * commands to timeout, disables IRQ polling and then unmaps the MMIO space.
558 */
559 static void stop_afu(struct cxlflash_cfg *cfg)
560 {
561 struct afu *afu = cfg->afu;
562
563 cancel_work_sync(&cfg->work_q);
564
565 if (likely(afu)) {
566 while (atomic_read(&afu->cmds_active))
567 ssleep(1);
568 if (afu_is_irqpoll_enabled(afu))
569 irq_poll_disable(&afu->irqpoll);
570 if (likely(afu->afu_map)) {
571 cxl_psa_unmap((void __iomem *)afu->afu_map);
572 afu->afu_map = NULL;
573 }
574 }
575 }
576
577 /**
578 * term_intr() - disables all AFU interrupts
579 * @cfg: Internal structure associated with the host.
580 * @level: Depth of allocation, where to begin waterfall tear down.
581 *
582 * Safe to call with AFU/MC in partially allocated/initialized state.
583 */
584 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level)
585 {
586 struct afu *afu = cfg->afu;
587 struct device *dev = &cfg->dev->dev;
588
589 if (!afu || !cfg->mcctx) {
590 dev_err(dev, "%s: returning with NULL afu or MC\n", __func__);
591 return;
592 }
593
594 switch (level) {
595 case UNMAP_THREE:
596 cxl_unmap_afu_irq(cfg->mcctx, 3, afu);
597 case UNMAP_TWO:
598 cxl_unmap_afu_irq(cfg->mcctx, 2, afu);
599 case UNMAP_ONE:
600 cxl_unmap_afu_irq(cfg->mcctx, 1, afu);
601 case FREE_IRQ:
602 cxl_free_afu_irqs(cfg->mcctx);
603 /* fall through */
604 case UNDO_NOOP:
605 /* No action required */
606 break;
607 }
608 }
609
610 /**
611 * term_mc() - terminates the master context
612 * @cfg: Internal structure associated with the host.
613 * @level: Depth of allocation, where to begin waterfall tear down.
614 *
615 * Safe to call with AFU/MC in partially allocated/initialized state.
616 */
617 static void term_mc(struct cxlflash_cfg *cfg)
618 {
619 int rc = 0;
620 struct afu *afu = cfg->afu;
621 struct device *dev = &cfg->dev->dev;
622
623 if (!afu || !cfg->mcctx) {
624 dev_err(dev, "%s: returning with NULL afu or MC\n", __func__);
625 return;
626 }
627
628 rc = cxl_stop_context(cfg->mcctx);
629 WARN_ON(rc);
630 cfg->mcctx = NULL;
631 }
632
633 /**
634 * term_afu() - terminates the AFU
635 * @cfg: Internal structure associated with the host.
636 *
637 * Safe to call with AFU/MC in partially allocated/initialized state.
638 */
639 static void term_afu(struct cxlflash_cfg *cfg)
640 {
641 struct device *dev = &cfg->dev->dev;
642
643 /*
644 * Tear down is carefully orchestrated to ensure
645 * no interrupts can come in when the problem state
646 * area is unmapped.
647 *
648 * 1) Disable all AFU interrupts
649 * 2) Unmap the problem state area
650 * 3) Stop the master context
651 */
652 term_intr(cfg, UNMAP_THREE);
653 if (cfg->afu)
654 stop_afu(cfg);
655
656 term_mc(cfg);
657
658 dev_dbg(dev, "%s: returning\n", __func__);
659 }
660
661 /**
662 * notify_shutdown() - notifies device of pending shutdown
663 * @cfg: Internal structure associated with the host.
664 * @wait: Whether to wait for shutdown processing to complete.
665 *
666 * This function will notify the AFU that the adapter is being shutdown
667 * and will wait for shutdown processing to complete if wait is true.
668 * This notification should flush pending I/Os to the device and halt
669 * further I/Os until the next AFU reset is issued and device restarted.
670 */
671 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
672 {
673 struct afu *afu = cfg->afu;
674 struct device *dev = &cfg->dev->dev;
675 struct sisl_global_map __iomem *global;
676 struct dev_dependent_vals *ddv;
677 u64 reg, status;
678 int i, retry_cnt = 0;
679
680 ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
681 if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
682 return;
683
684 if (!afu || !afu->afu_map) {
685 dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
686 return;
687 }
688
689 global = &afu->afu_map->global;
690
691 /* Notify AFU */
692 for (i = 0; i < cfg->num_fc_ports; i++) {
693 reg = readq_be(&global->fc_regs[i][FC_CONFIG2 / 8]);
694 reg |= SISL_FC_SHUTDOWN_NORMAL;
695 writeq_be(reg, &global->fc_regs[i][FC_CONFIG2 / 8]);
696 }
697
698 if (!wait)
699 return;
700
701 /* Wait up to 1.5 seconds for shutdown processing to complete */
702 for (i = 0; i < cfg->num_fc_ports; i++) {
703 retry_cnt = 0;
704 while (true) {
705 status = readq_be(&global->fc_regs[i][FC_STATUS / 8]);
706 if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
707 break;
708 if (++retry_cnt >= MC_RETRY_CNT) {
709 dev_dbg(dev, "%s: port %d shutdown processing "
710 "not yet completed\n", __func__, i);
711 break;
712 }
713 msleep(100 * retry_cnt);
714 }
715 }
716 }
717
718 /**
719 * cxlflash_remove() - PCI entry point to tear down host
720 * @pdev: PCI device associated with the host.
721 *
722 * Safe to use as a cleanup in partially allocated/initialized state.
723 */
724 static void cxlflash_remove(struct pci_dev *pdev)
725 {
726 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
727 struct device *dev = &pdev->dev;
728 ulong lock_flags;
729
730 if (!pci_is_enabled(pdev)) {
731 dev_dbg(dev, "%s: Device is disabled\n", __func__);
732 return;
733 }
734
735 /* If a Task Management Function is active, wait for it to complete
736 * before continuing with remove.
737 */
738 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
739 if (cfg->tmf_active)
740 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
741 !cfg->tmf_active,
742 cfg->tmf_slock);
743 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
744
745 /* Notify AFU and wait for shutdown processing to complete */
746 notify_shutdown(cfg, true);
747
748 cfg->state = STATE_FAILTERM;
749 cxlflash_stop_term_user_contexts(cfg);
750
751 switch (cfg->init_state) {
752 case INIT_STATE_SCSI:
753 cxlflash_term_local_luns(cfg);
754 scsi_remove_host(cfg->host);
755 /* fall through */
756 case INIT_STATE_AFU:
757 term_afu(cfg);
758 case INIT_STATE_PCI:
759 pci_disable_device(pdev);
760 case INIT_STATE_NONE:
761 free_mem(cfg);
762 scsi_host_put(cfg->host);
763 break;
764 }
765
766 dev_dbg(dev, "%s: returning\n", __func__);
767 }
768
769 /**
770 * alloc_mem() - allocates the AFU and its command pool
771 * @cfg: Internal structure associated with the host.
772 *
773 * A partially allocated state remains on failure.
774 *
775 * Return:
776 * 0 on success
777 * -ENOMEM on failure to allocate memory
778 */
779 static int alloc_mem(struct cxlflash_cfg *cfg)
780 {
781 int rc = 0;
782 struct device *dev = &cfg->dev->dev;
783
784 /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
785 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
786 get_order(sizeof(struct afu)));
787 if (unlikely(!cfg->afu)) {
788 dev_err(dev, "%s: cannot get %d free pages\n",
789 __func__, get_order(sizeof(struct afu)));
790 rc = -ENOMEM;
791 goto out;
792 }
793 cfg->afu->parent = cfg;
794 cfg->afu->afu_map = NULL;
795 out:
796 return rc;
797 }
798
799 /**
800 * init_pci() - initializes the host as a PCI device
801 * @cfg: Internal structure associated with the host.
802 *
803 * Return: 0 on success, -errno on failure
804 */
805 static int init_pci(struct cxlflash_cfg *cfg)
806 {
807 struct pci_dev *pdev = cfg->dev;
808 struct device *dev = &cfg->dev->dev;
809 int rc = 0;
810
811 rc = pci_enable_device(pdev);
812 if (rc || pci_channel_offline(pdev)) {
813 if (pci_channel_offline(pdev)) {
814 cxlflash_wait_for_pci_err_recovery(cfg);
815 rc = pci_enable_device(pdev);
816 }
817
818 if (rc) {
819 dev_err(dev, "%s: Cannot enable adapter\n", __func__);
820 cxlflash_wait_for_pci_err_recovery(cfg);
821 goto out;
822 }
823 }
824
825 out:
826 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
827 return rc;
828 }
829
830 /**
831 * init_scsi() - adds the host to the SCSI stack and kicks off host scan
832 * @cfg: Internal structure associated with the host.
833 *
834 * Return: 0 on success, -errno on failure
835 */
836 static int init_scsi(struct cxlflash_cfg *cfg)
837 {
838 struct pci_dev *pdev = cfg->dev;
839 struct device *dev = &cfg->dev->dev;
840 int rc = 0;
841
842 rc = scsi_add_host(cfg->host, &pdev->dev);
843 if (rc) {
844 dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
845 goto out;
846 }
847
848 scsi_scan_host(cfg->host);
849
850 out:
851 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
852 return rc;
853 }
854
855 /**
856 * set_port_online() - transitions the specified host FC port to online state
857 * @fc_regs: Top of MMIO region defined for specified port.
858 *
859 * The provided MMIO region must be mapped prior to call. Online state means
860 * that the FC link layer has synced, completed the handshaking process, and
861 * is ready for login to start.
862 */
863 static void set_port_online(__be64 __iomem *fc_regs)
864 {
865 u64 cmdcfg;
866
867 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
868 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
869 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */
870 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
871 }
872
873 /**
874 * set_port_offline() - transitions the specified host FC port to offline state
875 * @fc_regs: Top of MMIO region defined for specified port.
876 *
877 * The provided MMIO region must be mapped prior to call.
878 */
879 static void set_port_offline(__be64 __iomem *fc_regs)
880 {
881 u64 cmdcfg;
882
883 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
884 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */
885 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */
886 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
887 }
888
889 /**
890 * wait_port_online() - waits for the specified host FC port come online
891 * @fc_regs: Top of MMIO region defined for specified port.
892 * @delay_us: Number of microseconds to delay between reading port status.
893 * @nretry: Number of cycles to retry reading port status.
894 *
895 * The provided MMIO region must be mapped prior to call. This will timeout
896 * when the cable is not plugged in.
897 *
898 * Return:
899 * TRUE (1) when the specified port is online
900 * FALSE (0) when the specified port fails to come online after timeout
901 */
902 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
903 {
904 u64 status;
905
906 WARN_ON(delay_us < 1000);
907
908 do {
909 msleep(delay_us / 1000);
910 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
911 if (status == U64_MAX)
912 nretry /= 2;
913 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
914 nretry--);
915
916 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
917 }
918
919 /**
920 * wait_port_offline() - waits for the specified host FC port go offline
921 * @fc_regs: Top of MMIO region defined for specified port.
922 * @delay_us: Number of microseconds to delay between reading port status.
923 * @nretry: Number of cycles to retry reading port status.
924 *
925 * The provided MMIO region must be mapped prior to call.
926 *
927 * Return:
928 * TRUE (1) when the specified port is offline
929 * FALSE (0) when the specified port fails to go offline after timeout
930 */
931 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
932 {
933 u64 status;
934
935 WARN_ON(delay_us < 1000);
936
937 do {
938 msleep(delay_us / 1000);
939 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
940 if (status == U64_MAX)
941 nretry /= 2;
942 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
943 nretry--);
944
945 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
946 }
947
948 /**
949 * afu_set_wwpn() - configures the WWPN for the specified host FC port
950 * @afu: AFU associated with the host that owns the specified FC port.
951 * @port: Port number being configured.
952 * @fc_regs: Top of MMIO region defined for specified port.
953 * @wwpn: The world-wide-port-number previously discovered for port.
954 *
955 * The provided MMIO region must be mapped prior to call. As part of the
956 * sequence to configure the WWPN, the port is toggled offline and then back
957 * online. This toggling action can cause this routine to delay up to a few
958 * seconds. When configured to use the internal LUN feature of the AFU, a
959 * failure to come online is overridden.
960 */
961 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
962 u64 wwpn)
963 {
964 struct cxlflash_cfg *cfg = afu->parent;
965 struct device *dev = &cfg->dev->dev;
966
967 set_port_offline(fc_regs);
968 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
969 FC_PORT_STATUS_RETRY_CNT)) {
970 dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
971 __func__, port);
972 }
973
974 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
975
976 set_port_online(fc_regs);
977 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
978 FC_PORT_STATUS_RETRY_CNT)) {
979 dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
980 __func__, port);
981 }
982 }
983
984 /**
985 * afu_link_reset() - resets the specified host FC port
986 * @afu: AFU associated with the host that owns the specified FC port.
987 * @port: Port number being configured.
988 * @fc_regs: Top of MMIO region defined for specified port.
989 *
990 * The provided MMIO region must be mapped prior to call. The sequence to
991 * reset the port involves toggling it offline and then back online. This
992 * action can cause this routine to delay up to a few seconds. An effort
993 * is made to maintain link with the device by switching to host to use
994 * the alternate port exclusively while the reset takes place.
995 * failure to come online is overridden.
996 */
997 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
998 {
999 struct cxlflash_cfg *cfg = afu->parent;
1000 struct device *dev = &cfg->dev->dev;
1001 u64 port_sel;
1002
1003 /* first switch the AFU to the other links, if any */
1004 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1005 port_sel &= ~(1ULL << port);
1006 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1007 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1008
1009 set_port_offline(fc_regs);
1010 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1011 FC_PORT_STATUS_RETRY_CNT))
1012 dev_err(dev, "%s: wait on port %d to go offline timed out\n",
1013 __func__, port);
1014
1015 set_port_online(fc_regs);
1016 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1017 FC_PORT_STATUS_RETRY_CNT))
1018 dev_err(dev, "%s: wait on port %d to go online timed out\n",
1019 __func__, port);
1020
1021 /* switch back to include this port */
1022 port_sel |= (1ULL << port);
1023 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1024 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1025
1026 dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
1027 }
1028
1029 /*
1030 * Asynchronous interrupt information table
1031 */
1032 static const struct asyc_intr_info ainfo[] = {
1033 {SISL_ASTATUS_FC0_OTHER, "other error", 0, CLR_FC_ERROR | LINK_RESET},
1034 {SISL_ASTATUS_FC0_LOGO, "target initiated LOGO", 0, 0},
1035 {SISL_ASTATUS_FC0_CRC_T, "CRC threshold exceeded", 0, LINK_RESET},
1036 {SISL_ASTATUS_FC0_LOGI_R, "login timed out, retrying", 0, LINK_RESET},
1037 {SISL_ASTATUS_FC0_LOGI_F, "login failed", 0, CLR_FC_ERROR},
1038 {SISL_ASTATUS_FC0_LOGI_S, "login succeeded", 0, SCAN_HOST},
1039 {SISL_ASTATUS_FC0_LINK_DN, "link down", 0, 0},
1040 {SISL_ASTATUS_FC0_LINK_UP, "link up", 0, 0},
1041 {SISL_ASTATUS_FC1_OTHER, "other error", 1, CLR_FC_ERROR | LINK_RESET},
1042 {SISL_ASTATUS_FC1_LOGO, "target initiated LOGO", 1, 0},
1043 {SISL_ASTATUS_FC1_CRC_T, "CRC threshold exceeded", 1, LINK_RESET},
1044 {SISL_ASTATUS_FC1_LOGI_R, "login timed out, retrying", 1, LINK_RESET},
1045 {SISL_ASTATUS_FC1_LOGI_F, "login failed", 1, CLR_FC_ERROR},
1046 {SISL_ASTATUS_FC1_LOGI_S, "login succeeded", 1, SCAN_HOST},
1047 {SISL_ASTATUS_FC1_LINK_DN, "link down", 1, 0},
1048 {SISL_ASTATUS_FC1_LINK_UP, "link up", 1, 0},
1049 {0x0, "", 0, 0} /* terminator */
1050 };
1051
1052 /**
1053 * find_ainfo() - locates and returns asynchronous interrupt information
1054 * @status: Status code set by AFU on error.
1055 *
1056 * Return: The located information or NULL when the status code is invalid.
1057 */
1058 static const struct asyc_intr_info *find_ainfo(u64 status)
1059 {
1060 const struct asyc_intr_info *info;
1061
1062 for (info = &ainfo[0]; info->status; info++)
1063 if (info->status == status)
1064 return info;
1065
1066 return NULL;
1067 }
1068
1069 /**
1070 * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1071 * @afu: AFU associated with the host.
1072 */
1073 static void afu_err_intr_init(struct afu *afu)
1074 {
1075 struct cxlflash_cfg *cfg = afu->parent;
1076 int i;
1077 u64 reg;
1078
1079 /* global async interrupts: AFU clears afu_ctrl on context exit
1080 * if async interrupts were sent to that context. This prevents
1081 * the AFU form sending further async interrupts when
1082 * there is
1083 * nobody to receive them.
1084 */
1085
1086 /* mask all */
1087 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1088 /* set LISN# to send and point to master context */
1089 reg = ((u64) (((afu->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1090
1091 if (afu->internal_lun)
1092 reg |= 1; /* Bit 63 indicates local lun */
1093 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1094 /* clear all */
1095 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1096 /* unmask bits that are of interest */
1097 /* note: afu can send an interrupt after this step */
1098 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1099 /* clear again in case a bit came on after previous clear but before */
1100 /* unmask */
1101 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1102
1103 /* Clear/Set internal lun bits */
1104 reg = readq_be(&afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1105 reg &= SISL_FC_INTERNAL_MASK;
1106 if (afu->internal_lun)
1107 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1108 writeq_be(reg, &afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1109
1110 /* now clear FC errors */
1111 for (i = 0; i < cfg->num_fc_ports; i++) {
1112 writeq_be(0xFFFFFFFFU,
1113 &afu->afu_map->global.fc_regs[i][FC_ERROR / 8]);
1114 writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRCAP / 8]);
1115 }
1116
1117 /* sync interrupts for master's IOARRIN write */
1118 /* note that unlike asyncs, there can be no pending sync interrupts */
1119 /* at this time (this is a fresh context and master has not written */
1120 /* IOARRIN yet), so there is nothing to clear. */
1121
1122 /* set LISN#, it is always sent to the context that wrote IOARRIN */
1123 writeq_be(SISL_MSI_SYNC_ERROR, &afu->host_map->ctx_ctrl);
1124 writeq_be(SISL_ISTATUS_MASK, &afu->host_map->intr_mask);
1125 }
1126
1127 /**
1128 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1129 * @irq: Interrupt number.
1130 * @data: Private data provided at interrupt registration, the AFU.
1131 *
1132 * Return: Always return IRQ_HANDLED.
1133 */
1134 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1135 {
1136 struct afu *afu = (struct afu *)data;
1137 struct cxlflash_cfg *cfg = afu->parent;
1138 struct device *dev = &cfg->dev->dev;
1139 u64 reg;
1140 u64 reg_unmasked;
1141
1142 reg = readq_be(&afu->host_map->intr_status);
1143 reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1144
1145 if (reg_unmasked == 0UL) {
1146 dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
1147 __func__, reg);
1148 goto cxlflash_sync_err_irq_exit;
1149 }
1150
1151 dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
1152 __func__, reg);
1153
1154 writeq_be(reg_unmasked, &afu->host_map->intr_clear);
1155
1156 cxlflash_sync_err_irq_exit:
1157 return IRQ_HANDLED;
1158 }
1159
1160 /**
1161 * process_hrrq() - process the read-response queue
1162 * @afu: AFU associated with the host.
1163 * @doneq: Queue of commands harvested from the RRQ.
1164 * @budget: Threshold of RRQ entries to process.
1165 *
1166 * This routine must be called holding the disabled RRQ spin lock.
1167 *
1168 * Return: The number of entries processed.
1169 */
1170 static int process_hrrq(struct afu *afu, struct list_head *doneq, int budget)
1171 {
1172 struct afu_cmd *cmd;
1173 struct sisl_ioasa *ioasa;
1174 struct sisl_ioarcb *ioarcb;
1175 bool toggle = afu->toggle;
1176 int num_hrrq = 0;
1177 u64 entry,
1178 *hrrq_start = afu->hrrq_start,
1179 *hrrq_end = afu->hrrq_end,
1180 *hrrq_curr = afu->hrrq_curr;
1181
1182 /* Process ready RRQ entries up to the specified budget (if any) */
1183 while (true) {
1184 entry = *hrrq_curr;
1185
1186 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1187 break;
1188
1189 entry &= ~SISL_RESP_HANDLE_T_BIT;
1190
1191 if (afu_is_sq_cmd_mode(afu)) {
1192 ioasa = (struct sisl_ioasa *)entry;
1193 cmd = container_of(ioasa, struct afu_cmd, sa);
1194 } else {
1195 ioarcb = (struct sisl_ioarcb *)entry;
1196 cmd = container_of(ioarcb, struct afu_cmd, rcb);
1197 }
1198
1199 list_add_tail(&cmd->queue, doneq);
1200
1201 /* Advance to next entry or wrap and flip the toggle bit */
1202 if (hrrq_curr < hrrq_end)
1203 hrrq_curr++;
1204 else {
1205 hrrq_curr = hrrq_start;
1206 toggle ^= SISL_RESP_HANDLE_T_BIT;
1207 }
1208
1209 atomic_inc(&afu->hsq_credits);
1210 num_hrrq++;
1211
1212 if (budget > 0 && num_hrrq >= budget)
1213 break;
1214 }
1215
1216 afu->hrrq_curr = hrrq_curr;
1217 afu->toggle = toggle;
1218
1219 return num_hrrq;
1220 }
1221
1222 /**
1223 * process_cmd_doneq() - process a queue of harvested RRQ commands
1224 * @doneq: Queue of completed commands.
1225 *
1226 * Note that upon return the queue can no longer be trusted.
1227 */
1228 static void process_cmd_doneq(struct list_head *doneq)
1229 {
1230 struct afu_cmd *cmd, *tmp;
1231
1232 WARN_ON(list_empty(doneq));
1233
1234 list_for_each_entry_safe(cmd, tmp, doneq, queue)
1235 cmd_complete(cmd);
1236 }
1237
1238 /**
1239 * cxlflash_irqpoll() - process a queue of harvested RRQ commands
1240 * @irqpoll: IRQ poll structure associated with queue to poll.
1241 * @budget: Threshold of RRQ entries to process per poll.
1242 *
1243 * Return: The number of entries processed.
1244 */
1245 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
1246 {
1247 struct afu *afu = container_of(irqpoll, struct afu, irqpoll);
1248 unsigned long hrrq_flags;
1249 LIST_HEAD(doneq);
1250 int num_entries = 0;
1251
1252 spin_lock_irqsave(&afu->hrrq_slock, hrrq_flags);
1253
1254 num_entries = process_hrrq(afu, &doneq, budget);
1255 if (num_entries < budget)
1256 irq_poll_complete(irqpoll);
1257
1258 spin_unlock_irqrestore(&afu->hrrq_slock, hrrq_flags);
1259
1260 process_cmd_doneq(&doneq);
1261 return num_entries;
1262 }
1263
1264 /**
1265 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1266 * @irq: Interrupt number.
1267 * @data: Private data provided at interrupt registration, the AFU.
1268 *
1269 * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
1270 */
1271 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1272 {
1273 struct afu *afu = (struct afu *)data;
1274 unsigned long hrrq_flags;
1275 LIST_HEAD(doneq);
1276 int num_entries = 0;
1277
1278 spin_lock_irqsave(&afu->hrrq_slock, hrrq_flags);
1279
1280 if (afu_is_irqpoll_enabled(afu)) {
1281 irq_poll_sched(&afu->irqpoll);
1282 spin_unlock_irqrestore(&afu->hrrq_slock, hrrq_flags);
1283 return IRQ_HANDLED;
1284 }
1285
1286 num_entries = process_hrrq(afu, &doneq, -1);
1287 spin_unlock_irqrestore(&afu->hrrq_slock, hrrq_flags);
1288
1289 if (num_entries == 0)
1290 return IRQ_NONE;
1291
1292 process_cmd_doneq(&doneq);
1293 return IRQ_HANDLED;
1294 }
1295
1296 /**
1297 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1298 * @irq: Interrupt number.
1299 * @data: Private data provided at interrupt registration, the AFU.
1300 *
1301 * Return: Always return IRQ_HANDLED.
1302 */
1303 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1304 {
1305 struct afu *afu = (struct afu *)data;
1306 struct cxlflash_cfg *cfg = afu->parent;
1307 struct device *dev = &cfg->dev->dev;
1308 u64 reg_unmasked;
1309 const struct asyc_intr_info *info;
1310 struct sisl_global_map __iomem *global = &afu->afu_map->global;
1311 u64 reg;
1312 u8 port;
1313 int i;
1314
1315 reg = readq_be(&global->regs.aintr_status);
1316 reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1317
1318 if (reg_unmasked == 0) {
1319 dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
1320 __func__, reg);
1321 goto out;
1322 }
1323
1324 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1325 writeq_be(reg_unmasked, &global->regs.aintr_clear);
1326
1327 /* Check each bit that is on */
1328 for (i = 0; reg_unmasked; i++, reg_unmasked = (reg_unmasked >> 1)) {
1329 info = find_ainfo(1ULL << i);
1330 if (((reg_unmasked & 0x1) == 0) || !info)
1331 continue;
1332
1333 port = info->port;
1334
1335 dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
1336 __func__, port, info->desc,
1337 readq_be(&global->fc_regs[port][FC_STATUS / 8]));
1338
1339 /*
1340 * Do link reset first, some OTHER errors will set FC_ERROR
1341 * again if cleared before or w/o a reset
1342 */
1343 if (info->action & LINK_RESET) {
1344 dev_err(dev, "%s: FC Port %d: resetting link\n",
1345 __func__, port);
1346 cfg->lr_state = LINK_RESET_REQUIRED;
1347 cfg->lr_port = port;
1348 schedule_work(&cfg->work_q);
1349 }
1350
1351 if (info->action & CLR_FC_ERROR) {
1352 reg = readq_be(&global->fc_regs[port][FC_ERROR / 8]);
1353
1354 /*
1355 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1356 * should be the same and tracing one is sufficient.
1357 */
1358
1359 dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
1360 __func__, port, reg);
1361
1362 writeq_be(reg, &global->fc_regs[port][FC_ERROR / 8]);
1363 writeq_be(0, &global->fc_regs[port][FC_ERRCAP / 8]);
1364 }
1365
1366 if (info->action & SCAN_HOST) {
1367 atomic_inc(&cfg->scan_host_needed);
1368 schedule_work(&cfg->work_q);
1369 }
1370 }
1371
1372 out:
1373 return IRQ_HANDLED;
1374 }
1375
1376 /**
1377 * start_context() - starts the master context
1378 * @cfg: Internal structure associated with the host.
1379 *
1380 * Return: A success or failure value from CXL services.
1381 */
1382 static int start_context(struct cxlflash_cfg *cfg)
1383 {
1384 struct device *dev = &cfg->dev->dev;
1385 int rc = 0;
1386
1387 rc = cxl_start_context(cfg->mcctx,
1388 cfg->afu->work.work_element_descriptor,
1389 NULL);
1390
1391 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1392 return rc;
1393 }
1394
1395 /**
1396 * read_vpd() - obtains the WWPNs from VPD
1397 * @cfg: Internal structure associated with the host.
1398 * @wwpn: Array of size MAX_FC_PORTS to pass back WWPNs
1399 *
1400 * Return: 0 on success, -errno on failure
1401 */
1402 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1403 {
1404 struct device *dev = &cfg->dev->dev;
1405 struct pci_dev *pdev = cfg->dev;
1406 int rc = 0;
1407 int ro_start, ro_size, i, j, k;
1408 ssize_t vpd_size;
1409 char vpd_data[CXLFLASH_VPD_LEN];
1410 char tmp_buf[WWPN_BUF_LEN] = { 0 };
1411 char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6" };
1412
1413 /* Get the VPD data from the device */
1414 vpd_size = cxl_read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
1415 if (unlikely(vpd_size <= 0)) {
1416 dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
1417 __func__, vpd_size);
1418 rc = -ENODEV;
1419 goto out;
1420 }
1421
1422 /* Get the read only section offset */
1423 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1424 PCI_VPD_LRDT_RO_DATA);
1425 if (unlikely(ro_start < 0)) {
1426 dev_err(dev, "%s: VPD Read-only data not found\n", __func__);
1427 rc = -ENODEV;
1428 goto out;
1429 }
1430
1431 /* Get the read only section size, cap when extends beyond read VPD */
1432 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1433 j = ro_size;
1434 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1435 if (unlikely((i + j) > vpd_size)) {
1436 dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n",
1437 __func__, (i + j), vpd_size);
1438 ro_size = vpd_size - i;
1439 }
1440
1441 /*
1442 * Find the offset of the WWPN tag within the read only
1443 * VPD data and validate the found field (partials are
1444 * no good to us). Convert the ASCII data to an integer
1445 * value. Note that we must copy to a temporary buffer
1446 * because the conversion service requires that the ASCII
1447 * string be terminated.
1448 */
1449 for (k = 0; k < cfg->num_fc_ports; k++) {
1450 j = ro_size;
1451 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1452
1453 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1454 if (unlikely(i < 0)) {
1455 dev_err(dev, "%s: Port %d WWPN not found in VPD\n",
1456 __func__, k);
1457 rc = -ENODEV;
1458 goto out;
1459 }
1460
1461 j = pci_vpd_info_field_size(&vpd_data[i]);
1462 i += PCI_VPD_INFO_FLD_HDR_SIZE;
1463 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
1464 dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
1465 __func__, k);
1466 rc = -ENODEV;
1467 goto out;
1468 }
1469
1470 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1471 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1472 if (unlikely(rc)) {
1473 dev_err(dev, "%s: WWPN conversion failed for port %d\n",
1474 __func__, k);
1475 rc = -ENODEV;
1476 goto out;
1477 }
1478
1479 dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
1480 }
1481
1482 out:
1483 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1484 return rc;
1485 }
1486
1487 /**
1488 * init_pcr() - initialize the provisioning and control registers
1489 * @cfg: Internal structure associated with the host.
1490 *
1491 * Also sets up fast access to the mapped registers and initializes AFU
1492 * command fields that never change.
1493 */
1494 static void init_pcr(struct cxlflash_cfg *cfg)
1495 {
1496 struct afu *afu = cfg->afu;
1497 struct sisl_ctrl_map __iomem *ctrl_map;
1498 int i;
1499
1500 for (i = 0; i < MAX_CONTEXT; i++) {
1501 ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1502 /* Disrupt any clients that could be running */
1503 /* e.g. clients that survived a master restart */
1504 writeq_be(0, &ctrl_map->rht_start);
1505 writeq_be(0, &ctrl_map->rht_cnt_id);
1506 writeq_be(0, &ctrl_map->ctx_cap);
1507 }
1508
1509 /* Copy frequently used fields into afu */
1510 afu->ctx_hndl = (u16) cxl_process_element(cfg->mcctx);
1511 afu->host_map = &afu->afu_map->hosts[afu->ctx_hndl].host;
1512 afu->ctrl_map = &afu->afu_map->ctrls[afu->ctx_hndl].ctrl;
1513
1514 /* Program the Endian Control for the master context */
1515 writeq_be(SISL_ENDIAN_CTRL, &afu->host_map->endian_ctrl);
1516 }
1517
1518 /**
1519 * init_global() - initialize AFU global registers
1520 * @cfg: Internal structure associated with the host.
1521 */
1522 static int init_global(struct cxlflash_cfg *cfg)
1523 {
1524 struct afu *afu = cfg->afu;
1525 struct device *dev = &cfg->dev->dev;
1526 u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */
1527 int i = 0, num_ports = 0;
1528 int rc = 0;
1529 u64 reg;
1530
1531 rc = read_vpd(cfg, &wwpn[0]);
1532 if (rc) {
1533 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1534 goto out;
1535 }
1536
1537 /* Set up RRQ and SQ in AFU for master issued cmds */
1538 writeq_be((u64) afu->hrrq_start, &afu->host_map->rrq_start);
1539 writeq_be((u64) afu->hrrq_end, &afu->host_map->rrq_end);
1540
1541 if (afu_is_sq_cmd_mode(afu)) {
1542 writeq_be((u64)afu->hsq_start, &afu->host_map->sq_start);
1543 writeq_be((u64)afu->hsq_end, &afu->host_map->sq_end);
1544 }
1545
1546 /* AFU configuration */
1547 reg = readq_be(&afu->afu_map->global.regs.afu_config);
1548 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1549 /* enable all auto retry options and control endianness */
1550 /* leave others at default: */
1551 /* CTX_CAP write protected, mbox_r does not clear on read and */
1552 /* checker on if dual afu */
1553 writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1554
1555 /* Global port select: select either port */
1556 if (afu->internal_lun) {
1557 /* Only use port 0 */
1558 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1559 num_ports = 0;
1560 } else {
1561 writeq_be(BOTH_PORTS, &afu->afu_map->global.regs.afu_port_sel);
1562 num_ports = cfg->num_fc_ports;
1563 }
1564
1565 for (i = 0; i < num_ports; i++) {
1566 /* Unmask all errors (but they are still masked at AFU) */
1567 writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRMSK / 8]);
1568 /* Clear CRC error cnt & set a threshold */
1569 (void)readq_be(&afu->afu_map->global.
1570 fc_regs[i][FC_CNT_CRCERR / 8]);
1571 writeq_be(MC_CRC_THRESH, &afu->afu_map->global.fc_regs[i]
1572 [FC_CRC_THRESH / 8]);
1573
1574 /* Set WWPNs. If already programmed, wwpn[i] is 0 */
1575 if (wwpn[i] != 0)
1576 afu_set_wwpn(afu, i,
1577 &afu->afu_map->global.fc_regs[i][0],
1578 wwpn[i]);
1579 /* Programming WWPN back to back causes additional
1580 * offline/online transitions and a PLOGI
1581 */
1582 msleep(100);
1583 }
1584
1585 /* Set up master's own CTX_CAP to allow real mode, host translation */
1586 /* tables, afu cmds and read/write GSCSI cmds. */
1587 /* First, unlock ctx_cap write by reading mbox */
1588 (void)readq_be(&afu->ctrl_map->mbox_r); /* unlock ctx_cap */
1589 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1590 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1591 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1592 &afu->ctrl_map->ctx_cap);
1593 /* Initialize heartbeat */
1594 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1595 out:
1596 return rc;
1597 }
1598
1599 /**
1600 * start_afu() - initializes and starts the AFU
1601 * @cfg: Internal structure associated with the host.
1602 */
1603 static int start_afu(struct cxlflash_cfg *cfg)
1604 {
1605 struct afu *afu = cfg->afu;
1606 struct device *dev = &cfg->dev->dev;
1607 int rc = 0;
1608
1609 init_pcr(cfg);
1610
1611 /* Initialize RRQ */
1612 memset(&afu->rrq_entry, 0, sizeof(afu->rrq_entry));
1613 afu->hrrq_start = &afu->rrq_entry[0];
1614 afu->hrrq_end = &afu->rrq_entry[NUM_RRQ_ENTRY - 1];
1615 afu->hrrq_curr = afu->hrrq_start;
1616 afu->toggle = 1;
1617 spin_lock_init(&afu->hrrq_slock);
1618
1619 /* Initialize SQ */
1620 if (afu_is_sq_cmd_mode(afu)) {
1621 memset(&afu->sq, 0, sizeof(afu->sq));
1622 afu->hsq_start = &afu->sq[0];
1623 afu->hsq_end = &afu->sq[NUM_SQ_ENTRY - 1];
1624 afu->hsq_curr = afu->hsq_start;
1625
1626 spin_lock_init(&afu->hsq_slock);
1627 atomic_set(&afu->hsq_credits, NUM_SQ_ENTRY - 1);
1628 }
1629
1630 /* Initialize IRQ poll */
1631 if (afu_is_irqpoll_enabled(afu))
1632 irq_poll_init(&afu->irqpoll, afu->irqpoll_weight,
1633 cxlflash_irqpoll);
1634
1635 rc = init_global(cfg);
1636
1637 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1638 return rc;
1639 }
1640
1641 /**
1642 * init_intr() - setup interrupt handlers for the master context
1643 * @cfg: Internal structure associated with the host.
1644 *
1645 * Return: 0 on success, -errno on failure
1646 */
1647 static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1648 struct cxl_context *ctx)
1649 {
1650 struct afu *afu = cfg->afu;
1651 struct device *dev = &cfg->dev->dev;
1652 int rc = 0;
1653 enum undo_level level = UNDO_NOOP;
1654
1655 rc = cxl_allocate_afu_irqs(ctx, 3);
1656 if (unlikely(rc)) {
1657 dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
1658 __func__, rc);
1659 level = UNDO_NOOP;
1660 goto out;
1661 }
1662
1663 rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, afu,
1664 "SISL_MSI_SYNC_ERROR");
1665 if (unlikely(rc <= 0)) {
1666 dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
1667 level = FREE_IRQ;
1668 goto out;
1669 }
1670
1671 rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, afu,
1672 "SISL_MSI_RRQ_UPDATED");
1673 if (unlikely(rc <= 0)) {
1674 dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
1675 level = UNMAP_ONE;
1676 goto out;
1677 }
1678
1679 rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, afu,
1680 "SISL_MSI_ASYNC_ERROR");
1681 if (unlikely(rc <= 0)) {
1682 dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
1683 level = UNMAP_TWO;
1684 goto out;
1685 }
1686 out:
1687 return level;
1688 }
1689
1690 /**
1691 * init_mc() - create and register as the master context
1692 * @cfg: Internal structure associated with the host.
1693 *
1694 * Return: 0 on success, -errno on failure
1695 */
1696 static int init_mc(struct cxlflash_cfg *cfg)
1697 {
1698 struct cxl_context *ctx;
1699 struct device *dev = &cfg->dev->dev;
1700 int rc = 0;
1701 enum undo_level level;
1702
1703 ctx = cxl_get_context(cfg->dev);
1704 if (unlikely(!ctx)) {
1705 rc = -ENOMEM;
1706 goto ret;
1707 }
1708 cfg->mcctx = ctx;
1709
1710 /* Set it up as a master with the CXL */
1711 cxl_set_master(ctx);
1712
1713 /* During initialization reset the AFU to start from a clean slate */
1714 rc = cxl_afu_reset(cfg->mcctx);
1715 if (unlikely(rc)) {
1716 dev_err(dev, "%s: AFU reset failed rc=%d\n", __func__, rc);
1717 goto ret;
1718 }
1719
1720 level = init_intr(cfg, ctx);
1721 if (unlikely(level)) {
1722 dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
1723 goto out;
1724 }
1725
1726 /* This performs the equivalent of the CXL_IOCTL_START_WORK.
1727 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process
1728 * element (pe) that is embedded in the context (ctx)
1729 */
1730 rc = start_context(cfg);
1731 if (unlikely(rc)) {
1732 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
1733 level = UNMAP_THREE;
1734 goto out;
1735 }
1736 ret:
1737 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1738 return rc;
1739 out:
1740 term_intr(cfg, level);
1741 goto ret;
1742 }
1743
1744 /**
1745 * init_afu() - setup as master context and start AFU
1746 * @cfg: Internal structure associated with the host.
1747 *
1748 * This routine is a higher level of control for configuring the
1749 * AFU on probe and reset paths.
1750 *
1751 * Return: 0 on success, -errno on failure
1752 */
1753 static int init_afu(struct cxlflash_cfg *cfg)
1754 {
1755 u64 reg;
1756 int rc = 0;
1757 struct afu *afu = cfg->afu;
1758 struct device *dev = &cfg->dev->dev;
1759
1760 cxl_perst_reloads_same_image(cfg->cxl_afu, true);
1761
1762 rc = init_mc(cfg);
1763 if (rc) {
1764 dev_err(dev, "%s: init_mc failed rc=%d\n",
1765 __func__, rc);
1766 goto out;
1767 }
1768
1769 /* Map the entire MMIO space of the AFU */
1770 afu->afu_map = cxl_psa_map(cfg->mcctx);
1771 if (!afu->afu_map) {
1772 dev_err(dev, "%s: cxl_psa_map failed\n", __func__);
1773 rc = -ENOMEM;
1774 goto err1;
1775 }
1776
1777 /* No byte reverse on reading afu_version or string will be backwards */
1778 reg = readq(&afu->afu_map->global.regs.afu_version);
1779 memcpy(afu->version, &reg, sizeof(reg));
1780 afu->interface_version =
1781 readq_be(&afu->afu_map->global.regs.interface_version);
1782 if ((afu->interface_version + 1) == 0) {
1783 dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
1784 "interface version %016llx\n", afu->version,
1785 afu->interface_version);
1786 rc = -EINVAL;
1787 goto err1;
1788 }
1789
1790 if (afu_is_sq_cmd_mode(afu)) {
1791 afu->send_cmd = send_cmd_sq;
1792 afu->context_reset = context_reset_sq;
1793 } else {
1794 afu->send_cmd = send_cmd_ioarrin;
1795 afu->context_reset = context_reset_ioarrin;
1796 }
1797
1798 dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
1799 afu->version, afu->interface_version);
1800
1801 rc = start_afu(cfg);
1802 if (rc) {
1803 dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
1804 goto err1;
1805 }
1806
1807 afu_err_intr_init(cfg->afu);
1808 spin_lock_init(&afu->rrin_slock);
1809 afu->room = readq_be(&afu->host_map->cmd_room);
1810
1811 /* Restore the LUN mappings */
1812 cxlflash_restore_luntable(cfg);
1813 out:
1814 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1815 return rc;
1816
1817 err1:
1818 term_intr(cfg, UNMAP_THREE);
1819 term_mc(cfg);
1820 goto out;
1821 }
1822
1823 /**
1824 * cxlflash_afu_sync() - builds and sends an AFU sync command
1825 * @afu: AFU associated with the host.
1826 * @ctx_hndl_u: Identifies context requesting sync.
1827 * @res_hndl_u: Identifies resource requesting sync.
1828 * @mode: Type of sync to issue (lightweight, heavyweight, global).
1829 *
1830 * The AFU can only take 1 sync command at a time. This routine enforces this
1831 * limitation by using a mutex to provide exclusive access to the AFU during
1832 * the sync. This design point requires calling threads to not be on interrupt
1833 * context due to the possibility of sleeping during concurrent sync operations.
1834 *
1835 * AFU sync operations are only necessary and allowed when the device is
1836 * operating normally. When not operating normally, sync requests can occur as
1837 * part of cleaning up resources associated with an adapter prior to removal.
1838 * In this scenario, these requests are simply ignored (safe due to the AFU
1839 * going away).
1840 *
1841 * Return:
1842 * 0 on success
1843 * -1 on failure
1844 */
1845 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx_hndl_u,
1846 res_hndl_t res_hndl_u, u8 mode)
1847 {
1848 struct cxlflash_cfg *cfg = afu->parent;
1849 struct device *dev = &cfg->dev->dev;
1850 struct afu_cmd *cmd = NULL;
1851 char *buf = NULL;
1852 int rc = 0;
1853 static DEFINE_MUTEX(sync_active);
1854
1855 if (cfg->state != STATE_NORMAL) {
1856 dev_dbg(dev, "%s: Sync not required state=%u\n",
1857 __func__, cfg->state);
1858 return 0;
1859 }
1860
1861 mutex_lock(&sync_active);
1862 atomic_inc(&afu->cmds_active);
1863 buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
1864 if (unlikely(!buf)) {
1865 dev_err(dev, "%s: no memory for command\n", __func__);
1866 rc = -1;
1867 goto out;
1868 }
1869
1870 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
1871 init_completion(&cmd->cevent);
1872 cmd->parent = afu;
1873
1874 dev_dbg(dev, "%s: afu=%p cmd=%p %d\n", __func__, afu, cmd, ctx_hndl_u);
1875
1876 cmd->rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
1877 cmd->rcb.ctx_id = afu->ctx_hndl;
1878 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
1879 cmd->rcb.timeout = MC_AFU_SYNC_TIMEOUT;
1880
1881 cmd->rcb.cdb[0] = 0xC0; /* AFU Sync */
1882 cmd->rcb.cdb[1] = mode;
1883
1884 /* The cdb is aligned, no unaligned accessors required */
1885 *((__be16 *)&cmd->rcb.cdb[2]) = cpu_to_be16(ctx_hndl_u);
1886 *((__be32 *)&cmd->rcb.cdb[4]) = cpu_to_be32(res_hndl_u);
1887
1888 rc = afu->send_cmd(afu, cmd);
1889 if (unlikely(rc))
1890 goto out;
1891
1892 rc = wait_resp(afu, cmd);
1893 if (unlikely(rc))
1894 rc = -1;
1895 out:
1896 atomic_dec(&afu->cmds_active);
1897 mutex_unlock(&sync_active);
1898 kfree(buf);
1899 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1900 return rc;
1901 }
1902
1903 /**
1904 * afu_reset() - resets the AFU
1905 * @cfg: Internal structure associated with the host.
1906 *
1907 * Return: 0 on success, -errno on failure
1908 */
1909 static int afu_reset(struct cxlflash_cfg *cfg)
1910 {
1911 struct device *dev = &cfg->dev->dev;
1912 int rc = 0;
1913
1914 /* Stop the context before the reset. Since the context is
1915 * no longer available restart it after the reset is complete
1916 */
1917 term_afu(cfg);
1918
1919 rc = init_afu(cfg);
1920
1921 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1922 return rc;
1923 }
1924
1925 /**
1926 * drain_ioctls() - wait until all currently executing ioctls have completed
1927 * @cfg: Internal structure associated with the host.
1928 *
1929 * Obtain write access to read/write semaphore that wraps ioctl
1930 * handling to 'drain' ioctls currently executing.
1931 */
1932 static void drain_ioctls(struct cxlflash_cfg *cfg)
1933 {
1934 down_write(&cfg->ioctl_rwsem);
1935 up_write(&cfg->ioctl_rwsem);
1936 }
1937
1938 /**
1939 * cxlflash_eh_device_reset_handler() - reset a single LUN
1940 * @scp: SCSI command to send.
1941 *
1942 * Return:
1943 * SUCCESS as defined in scsi/scsi.h
1944 * FAILED as defined in scsi/scsi.h
1945 */
1946 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
1947 {
1948 int rc = SUCCESS;
1949 struct Scsi_Host *host = scp->device->host;
1950 struct cxlflash_cfg *cfg = shost_priv(host);
1951 struct device *dev = &cfg->dev->dev;
1952 struct afu *afu = cfg->afu;
1953 int rcr = 0;
1954
1955 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
1956 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
1957 scp->device->channel, scp->device->id, scp->device->lun,
1958 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1959 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1960 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1961 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1962
1963 retry:
1964 switch (cfg->state) {
1965 case STATE_NORMAL:
1966 rcr = send_tmf(afu, scp, TMF_LUN_RESET);
1967 if (unlikely(rcr))
1968 rc = FAILED;
1969 break;
1970 case STATE_RESET:
1971 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
1972 goto retry;
1973 default:
1974 rc = FAILED;
1975 break;
1976 }
1977
1978 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1979 return rc;
1980 }
1981
1982 /**
1983 * cxlflash_eh_host_reset_handler() - reset the host adapter
1984 * @scp: SCSI command from stack identifying host.
1985 *
1986 * Following a reset, the state is evaluated again in case an EEH occurred
1987 * during the reset. In such a scenario, the host reset will either yield
1988 * until the EEH recovery is complete or return success or failure based
1989 * upon the current device state.
1990 *
1991 * Return:
1992 * SUCCESS as defined in scsi/scsi.h
1993 * FAILED as defined in scsi/scsi.h
1994 */
1995 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
1996 {
1997 int rc = SUCCESS;
1998 int rcr = 0;
1999 struct Scsi_Host *host = scp->device->host;
2000 struct cxlflash_cfg *cfg = shost_priv(host);
2001 struct device *dev = &cfg->dev->dev;
2002
2003 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2004 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2005 scp->device->channel, scp->device->id, scp->device->lun,
2006 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2007 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2008 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2009 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2010
2011 switch (cfg->state) {
2012 case STATE_NORMAL:
2013 cfg->state = STATE_RESET;
2014 drain_ioctls(cfg);
2015 cxlflash_mark_contexts_error(cfg);
2016 rcr = afu_reset(cfg);
2017 if (rcr) {
2018 rc = FAILED;
2019 cfg->state = STATE_FAILTERM;
2020 } else
2021 cfg->state = STATE_NORMAL;
2022 wake_up_all(&cfg->reset_waitq);
2023 ssleep(1);
2024 /* fall through */
2025 case STATE_RESET:
2026 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2027 if (cfg->state == STATE_NORMAL)
2028 break;
2029 /* fall through */
2030 default:
2031 rc = FAILED;
2032 break;
2033 }
2034
2035 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2036 return rc;
2037 }
2038
2039 /**
2040 * cxlflash_change_queue_depth() - change the queue depth for the device
2041 * @sdev: SCSI device destined for queue depth change.
2042 * @qdepth: Requested queue depth value to set.
2043 *
2044 * The requested queue depth is capped to the maximum supported value.
2045 *
2046 * Return: The actual queue depth set.
2047 */
2048 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2049 {
2050
2051 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2052 qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2053
2054 scsi_change_queue_depth(sdev, qdepth);
2055 return sdev->queue_depth;
2056 }
2057
2058 /**
2059 * cxlflash_show_port_status() - queries and presents the current port status
2060 * @port: Desired port for status reporting.
2061 * @cfg: Internal structure associated with the host.
2062 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2063 *
2064 * Return: The size of the ASCII string returned in @buf or -EINVAL.
2065 */
2066 static ssize_t cxlflash_show_port_status(u32 port,
2067 struct cxlflash_cfg *cfg,
2068 char *buf)
2069 {
2070 struct device *dev = &cfg->dev->dev;
2071 struct afu *afu = cfg->afu;
2072 char *disp_status;
2073 u64 status;
2074 __be64 __iomem *fc_regs;
2075
2076 WARN_ON(port >= MAX_FC_PORTS);
2077
2078 if (port >= cfg->num_fc_ports) {
2079 dev_info(dev, "%s: Port %d not supported on this card.\n",
2080 __func__, port);
2081 return -EINVAL;
2082 }
2083
2084 fc_regs = &afu->afu_map->global.fc_regs[port][0];
2085 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
2086 status &= FC_MTIP_STATUS_MASK;
2087
2088 if (status == FC_MTIP_STATUS_ONLINE)
2089 disp_status = "online";
2090 else if (status == FC_MTIP_STATUS_OFFLINE)
2091 disp_status = "offline";
2092 else
2093 disp_status = "unknown";
2094
2095 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2096 }
2097
2098 /**
2099 * port0_show() - queries and presents the current status of port 0
2100 * @dev: Generic device associated with the host owning the port.
2101 * @attr: Device attribute representing the port.
2102 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2103 *
2104 * Return: The size of the ASCII string returned in @buf.
2105 */
2106 static ssize_t port0_show(struct device *dev,
2107 struct device_attribute *attr,
2108 char *buf)
2109 {
2110 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2111
2112 return cxlflash_show_port_status(0, cfg, buf);
2113 }
2114
2115 /**
2116 * port1_show() - queries and presents the current status of port 1
2117 * @dev: Generic device associated with the host owning the port.
2118 * @attr: Device attribute representing the port.
2119 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2120 *
2121 * Return: The size of the ASCII string returned in @buf.
2122 */
2123 static ssize_t port1_show(struct device *dev,
2124 struct device_attribute *attr,
2125 char *buf)
2126 {
2127 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2128
2129 return cxlflash_show_port_status(1, cfg, buf);
2130 }
2131
2132 /**
2133 * lun_mode_show() - presents the current LUN mode of the host
2134 * @dev: Generic device associated with the host.
2135 * @attr: Device attribute representing the LUN mode.
2136 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2137 *
2138 * Return: The size of the ASCII string returned in @buf.
2139 */
2140 static ssize_t lun_mode_show(struct device *dev,
2141 struct device_attribute *attr, char *buf)
2142 {
2143 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2144 struct afu *afu = cfg->afu;
2145
2146 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2147 }
2148
2149 /**
2150 * lun_mode_store() - sets the LUN mode of the host
2151 * @dev: Generic device associated with the host.
2152 * @attr: Device attribute representing the LUN mode.
2153 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2154 * @count: Length of data resizing in @buf.
2155 *
2156 * The CXL Flash AFU supports a dummy LUN mode where the external
2157 * links and storage are not required. Space on the FPGA is used
2158 * to create 1 or 2 small LUNs which are presented to the system
2159 * as if they were a normal storage device. This feature is useful
2160 * during development and also provides manufacturing with a way
2161 * to test the AFU without an actual device.
2162 *
2163 * 0 = external LUN[s] (default)
2164 * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2165 * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2166 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2167 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2168 *
2169 * Return: The size of the ASCII string returned in @buf.
2170 */
2171 static ssize_t lun_mode_store(struct device *dev,
2172 struct device_attribute *attr,
2173 const char *buf, size_t count)
2174 {
2175 struct Scsi_Host *shost = class_to_shost(dev);
2176 struct cxlflash_cfg *cfg = shost_priv(shost);
2177 struct afu *afu = cfg->afu;
2178 int rc;
2179 u32 lun_mode;
2180
2181 rc = kstrtouint(buf, 10, &lun_mode);
2182 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2183 afu->internal_lun = lun_mode;
2184
2185 /*
2186 * When configured for internal LUN, there is only one channel,
2187 * channel number 0, else there will be one less than the number
2188 * of fc ports for this card.
2189 */
2190 if (afu->internal_lun)
2191 shost->max_channel = 0;
2192 else
2193 shost->max_channel = cfg->num_fc_ports - 1;
2194
2195 afu_reset(cfg);
2196 scsi_scan_host(cfg->host);
2197 }
2198
2199 return count;
2200 }
2201
2202 /**
2203 * ioctl_version_show() - presents the current ioctl version of the host
2204 * @dev: Generic device associated with the host.
2205 * @attr: Device attribute representing the ioctl version.
2206 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version.
2207 *
2208 * Return: The size of the ASCII string returned in @buf.
2209 */
2210 static ssize_t ioctl_version_show(struct device *dev,
2211 struct device_attribute *attr, char *buf)
2212 {
2213 return scnprintf(buf, PAGE_SIZE, "%u\n", DK_CXLFLASH_VERSION_0);
2214 }
2215
2216 /**
2217 * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2218 * @port: Desired port for status reporting.
2219 * @cfg: Internal structure associated with the host.
2220 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2221 *
2222 * Return: The size of the ASCII string returned in @buf or -EINVAL.
2223 */
2224 static ssize_t cxlflash_show_port_lun_table(u32 port,
2225 struct cxlflash_cfg *cfg,
2226 char *buf)
2227 {
2228 struct device *dev = &cfg->dev->dev;
2229 struct afu *afu = cfg->afu;
2230 int i;
2231 ssize_t bytes = 0;
2232 __be64 __iomem *fc_port;
2233
2234 WARN_ON(port >= MAX_FC_PORTS);
2235
2236 if (port >= cfg->num_fc_ports) {
2237 dev_info(dev, "%s: Port %d not supported on this card.\n",
2238 __func__, port);
2239 return -EINVAL;
2240 }
2241
2242 fc_port = &afu->afu_map->global.fc_port[port][0];
2243
2244 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2245 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2246 "%03d: %016llx\n", i, readq_be(&fc_port[i]));
2247 return bytes;
2248 }
2249
2250 /**
2251 * port0_lun_table_show() - presents the current LUN table of port 0
2252 * @dev: Generic device associated with the host owning the port.
2253 * @attr: Device attribute representing the port.
2254 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2255 *
2256 * Return: The size of the ASCII string returned in @buf.
2257 */
2258 static ssize_t port0_lun_table_show(struct device *dev,
2259 struct device_attribute *attr,
2260 char *buf)
2261 {
2262 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2263
2264 return cxlflash_show_port_lun_table(0, cfg, buf);
2265 }
2266
2267 /**
2268 * port1_lun_table_show() - presents the current LUN table of port 1
2269 * @dev: Generic device associated with the host owning the port.
2270 * @attr: Device attribute representing the port.
2271 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2272 *
2273 * Return: The size of the ASCII string returned in @buf.
2274 */
2275 static ssize_t port1_lun_table_show(struct device *dev,
2276 struct device_attribute *attr,
2277 char *buf)
2278 {
2279 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2280
2281 return cxlflash_show_port_lun_table(1, cfg, buf);
2282 }
2283
2284 /**
2285 * irqpoll_weight_show() - presents the current IRQ poll weight for the host
2286 * @dev: Generic device associated with the host.
2287 * @attr: Device attribute representing the IRQ poll weight.
2288 * @buf: Buffer of length PAGE_SIZE to report back the current IRQ poll
2289 * weight in ASCII.
2290 *
2291 * An IRQ poll weight of 0 indicates polling is disabled.
2292 *
2293 * Return: The size of the ASCII string returned in @buf.
2294 */
2295 static ssize_t irqpoll_weight_show(struct device *dev,
2296 struct device_attribute *attr, char *buf)
2297 {
2298 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2299 struct afu *afu = cfg->afu;
2300
2301 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
2302 }
2303
2304 /**
2305 * irqpoll_weight_store() - sets the current IRQ poll weight for the host
2306 * @dev: Generic device associated with the host.
2307 * @attr: Device attribute representing the IRQ poll weight.
2308 * @buf: Buffer of length PAGE_SIZE containing the desired IRQ poll
2309 * weight in ASCII.
2310 * @count: Length of data resizing in @buf.
2311 *
2312 * An IRQ poll weight of 0 indicates polling is disabled.
2313 *
2314 * Return: The size of the ASCII string returned in @buf.
2315 */
2316 static ssize_t irqpoll_weight_store(struct device *dev,
2317 struct device_attribute *attr,
2318 const char *buf, size_t count)
2319 {
2320 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2321 struct device *cfgdev = &cfg->dev->dev;
2322 struct afu *afu = cfg->afu;
2323 u32 weight;
2324 int rc;
2325
2326 rc = kstrtouint(buf, 10, &weight);
2327 if (rc)
2328 return -EINVAL;
2329
2330 if (weight > 256) {
2331 dev_info(cfgdev,
2332 "Invalid IRQ poll weight. It must be 256 or less.\n");
2333 return -EINVAL;
2334 }
2335
2336 if (weight == afu->irqpoll_weight) {
2337 dev_info(cfgdev,
2338 "Current IRQ poll weight has the same weight.\n");
2339 return -EINVAL;
2340 }
2341
2342 if (afu_is_irqpoll_enabled(afu))
2343 irq_poll_disable(&afu->irqpoll);
2344
2345 afu->irqpoll_weight = weight;
2346
2347 if (weight > 0)
2348 irq_poll_init(&afu->irqpoll, weight, cxlflash_irqpoll);
2349
2350 return count;
2351 }
2352
2353 /**
2354 * mode_show() - presents the current mode of the device
2355 * @dev: Generic device associated with the device.
2356 * @attr: Device attribute representing the device mode.
2357 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
2358 *
2359 * Return: The size of the ASCII string returned in @buf.
2360 */
2361 static ssize_t mode_show(struct device *dev,
2362 struct device_attribute *attr, char *buf)
2363 {
2364 struct scsi_device *sdev = to_scsi_device(dev);
2365
2366 return scnprintf(buf, PAGE_SIZE, "%s\n",
2367 sdev->hostdata ? "superpipe" : "legacy");
2368 }
2369
2370 /*
2371 * Host attributes
2372 */
2373 static DEVICE_ATTR_RO(port0);
2374 static DEVICE_ATTR_RO(port1);
2375 static DEVICE_ATTR_RW(lun_mode);
2376 static DEVICE_ATTR_RO(ioctl_version);
2377 static DEVICE_ATTR_RO(port0_lun_table);
2378 static DEVICE_ATTR_RO(port1_lun_table);
2379 static DEVICE_ATTR_RW(irqpoll_weight);
2380
2381 static struct device_attribute *cxlflash_host_attrs[] = {
2382 &dev_attr_port0,
2383 &dev_attr_port1,
2384 &dev_attr_lun_mode,
2385 &dev_attr_ioctl_version,
2386 &dev_attr_port0_lun_table,
2387 &dev_attr_port1_lun_table,
2388 &dev_attr_irqpoll_weight,
2389 NULL
2390 };
2391
2392 /*
2393 * Device attributes
2394 */
2395 static DEVICE_ATTR_RO(mode);
2396
2397 static struct device_attribute *cxlflash_dev_attrs[] = {
2398 &dev_attr_mode,
2399 NULL
2400 };
2401
2402 /*
2403 * Host template
2404 */
2405 static struct scsi_host_template driver_template = {
2406 .module = THIS_MODULE,
2407 .name = CXLFLASH_ADAPTER_NAME,
2408 .info = cxlflash_driver_info,
2409 .ioctl = cxlflash_ioctl,
2410 .proc_name = CXLFLASH_NAME,
2411 .queuecommand = cxlflash_queuecommand,
2412 .eh_device_reset_handler = cxlflash_eh_device_reset_handler,
2413 .eh_host_reset_handler = cxlflash_eh_host_reset_handler,
2414 .change_queue_depth = cxlflash_change_queue_depth,
2415 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
2416 .can_queue = CXLFLASH_MAX_CMDS,
2417 .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
2418 .this_id = -1,
2419 .sg_tablesize = 1, /* No scatter gather support */
2420 .max_sectors = CXLFLASH_MAX_SECTORS,
2421 .use_clustering = ENABLE_CLUSTERING,
2422 .shost_attrs = cxlflash_host_attrs,
2423 .sdev_attrs = cxlflash_dev_attrs,
2424 };
2425
2426 /*
2427 * Device dependent values
2428 */
2429 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
2430 0ULL };
2431 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
2432 CXLFLASH_NOTIFY_SHUTDOWN };
2433 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
2434 CXLFLASH_NOTIFY_SHUTDOWN };
2435
2436 /*
2437 * PCI device binding table
2438 */
2439 static struct pci_device_id cxlflash_pci_table[] = {
2440 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
2441 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
2442 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
2443 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
2444 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
2445 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
2446 {}
2447 };
2448
2449 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
2450
2451 /**
2452 * cxlflash_worker_thread() - work thread handler for the AFU
2453 * @work: Work structure contained within cxlflash associated with host.
2454 *
2455 * Handles the following events:
2456 * - Link reset which cannot be performed on interrupt context due to
2457 * blocking up to a few seconds
2458 * - Rescan the host
2459 */
2460 static void cxlflash_worker_thread(struct work_struct *work)
2461 {
2462 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
2463 work_q);
2464 struct afu *afu = cfg->afu;
2465 struct device *dev = &cfg->dev->dev;
2466 int port;
2467 ulong lock_flags;
2468
2469 /* Avoid MMIO if the device has failed */
2470
2471 if (cfg->state != STATE_NORMAL)
2472 return;
2473
2474 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2475
2476 if (cfg->lr_state == LINK_RESET_REQUIRED) {
2477 port = cfg->lr_port;
2478 if (port < 0)
2479 dev_err(dev, "%s: invalid port index %d\n",
2480 __func__, port);
2481 else {
2482 spin_unlock_irqrestore(cfg->host->host_lock,
2483 lock_flags);
2484
2485 /* The reset can block... */
2486 afu_link_reset(afu, port,
2487 &afu->afu_map->global.fc_regs[port][0]);
2488 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2489 }
2490
2491 cfg->lr_state = LINK_RESET_COMPLETE;
2492 }
2493
2494 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
2495
2496 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
2497 scsi_scan_host(cfg->host);
2498 }
2499
2500 /**
2501 * cxlflash_probe() - PCI entry point to add host
2502 * @pdev: PCI device associated with the host.
2503 * @dev_id: PCI device id associated with device.
2504 *
2505 * Return: 0 on success, -errno on failure
2506 */
2507 static int cxlflash_probe(struct pci_dev *pdev,
2508 const struct pci_device_id *dev_id)
2509 {
2510 struct Scsi_Host *host;
2511 struct cxlflash_cfg *cfg = NULL;
2512 struct device *dev = &pdev->dev;
2513 struct dev_dependent_vals *ddv;
2514 int rc = 0;
2515 int k;
2516
2517 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
2518 __func__, pdev->irq);
2519
2520 ddv = (struct dev_dependent_vals *)dev_id->driver_data;
2521 driver_template.max_sectors = ddv->max_sectors;
2522
2523 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
2524 if (!host) {
2525 dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
2526 rc = -ENOMEM;
2527 goto out;
2528 }
2529
2530 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
2531 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
2532 host->max_channel = NUM_FC_PORTS - 1;
2533 host->unique_id = host->host_no;
2534 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
2535
2536 cfg = shost_priv(host);
2537 cfg->host = host;
2538 rc = alloc_mem(cfg);
2539 if (rc) {
2540 dev_err(dev, "%s: alloc_mem failed\n", __func__);
2541 rc = -ENOMEM;
2542 scsi_host_put(cfg->host);
2543 goto out;
2544 }
2545
2546 cfg->init_state = INIT_STATE_NONE;
2547 cfg->dev = pdev;
2548 cfg->num_fc_ports = NUM_FC_PORTS;
2549 cfg->cxl_fops = cxlflash_cxl_fops;
2550
2551 /*
2552 * Promoted LUNs move to the top of the LUN table. The rest stay on
2553 * the bottom half. The bottom half grows from the end (index = 255),
2554 * whereas the top half grows from the beginning (index = 0).
2555 *
2556 * Initialize the last LUN index for all possible ports.
2557 */
2558 cfg->promote_lun_index = 0;
2559
2560 for (k = 0; k < MAX_FC_PORTS; k++)
2561 cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
2562
2563 cfg->dev_id = (struct pci_device_id *)dev_id;
2564
2565 init_waitqueue_head(&cfg->tmf_waitq);
2566 init_waitqueue_head(&cfg->reset_waitq);
2567
2568 INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
2569 cfg->lr_state = LINK_RESET_INVALID;
2570 cfg->lr_port = -1;
2571 spin_lock_init(&cfg->tmf_slock);
2572 mutex_init(&cfg->ctx_tbl_list_mutex);
2573 mutex_init(&cfg->ctx_recovery_mutex);
2574 init_rwsem(&cfg->ioctl_rwsem);
2575 INIT_LIST_HEAD(&cfg->ctx_err_recovery);
2576 INIT_LIST_HEAD(&cfg->lluns);
2577
2578 pci_set_drvdata(pdev, cfg);
2579
2580 cfg->cxl_afu = cxl_pci_to_afu(pdev);
2581
2582 rc = init_pci(cfg);
2583 if (rc) {
2584 dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
2585 goto out_remove;
2586 }
2587 cfg->init_state = INIT_STATE_PCI;
2588
2589 rc = init_afu(cfg);
2590 if (rc) {
2591 dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
2592 goto out_remove;
2593 }
2594 cfg->init_state = INIT_STATE_AFU;
2595
2596 rc = init_scsi(cfg);
2597 if (rc) {
2598 dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
2599 goto out_remove;
2600 }
2601 cfg->init_state = INIT_STATE_SCSI;
2602
2603 out:
2604 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2605 return rc;
2606
2607 out_remove:
2608 cxlflash_remove(pdev);
2609 goto out;
2610 }
2611
2612 /**
2613 * cxlflash_pci_error_detected() - called when a PCI error is detected
2614 * @pdev: PCI device struct.
2615 * @state: PCI channel state.
2616 *
2617 * When an EEH occurs during an active reset, wait until the reset is
2618 * complete and then take action based upon the device state.
2619 *
2620 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
2621 */
2622 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
2623 pci_channel_state_t state)
2624 {
2625 int rc = 0;
2626 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2627 struct device *dev = &cfg->dev->dev;
2628
2629 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
2630
2631 switch (state) {
2632 case pci_channel_io_frozen:
2633 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2634 if (cfg->state == STATE_FAILTERM)
2635 return PCI_ERS_RESULT_DISCONNECT;
2636
2637 cfg->state = STATE_RESET;
2638 scsi_block_requests(cfg->host);
2639 drain_ioctls(cfg);
2640 rc = cxlflash_mark_contexts_error(cfg);
2641 if (unlikely(rc))
2642 dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
2643 __func__, rc);
2644 term_afu(cfg);
2645 return PCI_ERS_RESULT_NEED_RESET;
2646 case pci_channel_io_perm_failure:
2647 cfg->state = STATE_FAILTERM;
2648 wake_up_all(&cfg->reset_waitq);
2649 scsi_unblock_requests(cfg->host);
2650 return PCI_ERS_RESULT_DISCONNECT;
2651 default:
2652 break;
2653 }
2654 return PCI_ERS_RESULT_NEED_RESET;
2655 }
2656
2657 /**
2658 * cxlflash_pci_slot_reset() - called when PCI slot has been reset
2659 * @pdev: PCI device struct.
2660 *
2661 * This routine is called by the pci error recovery code after the PCI
2662 * slot has been reset, just before we should resume normal operations.
2663 *
2664 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
2665 */
2666 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
2667 {
2668 int rc = 0;
2669 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2670 struct device *dev = &cfg->dev->dev;
2671
2672 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2673
2674 rc = init_afu(cfg);
2675 if (unlikely(rc)) {
2676 dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
2677 return PCI_ERS_RESULT_DISCONNECT;
2678 }
2679
2680 return PCI_ERS_RESULT_RECOVERED;
2681 }
2682
2683 /**
2684 * cxlflash_pci_resume() - called when normal operation can resume
2685 * @pdev: PCI device struct
2686 */
2687 static void cxlflash_pci_resume(struct pci_dev *pdev)
2688 {
2689 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2690 struct device *dev = &cfg->dev->dev;
2691
2692 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2693
2694 cfg->state = STATE_NORMAL;
2695 wake_up_all(&cfg->reset_waitq);
2696 scsi_unblock_requests(cfg->host);
2697 }
2698
2699 static const struct pci_error_handlers cxlflash_err_handler = {
2700 .error_detected = cxlflash_pci_error_detected,
2701 .slot_reset = cxlflash_pci_slot_reset,
2702 .resume = cxlflash_pci_resume,
2703 };
2704
2705 /*
2706 * PCI device structure
2707 */
2708 static struct pci_driver cxlflash_driver = {
2709 .name = CXLFLASH_NAME,
2710 .id_table = cxlflash_pci_table,
2711 .probe = cxlflash_probe,
2712 .remove = cxlflash_remove,
2713 .shutdown = cxlflash_remove,
2714 .err_handler = &cxlflash_err_handler,
2715 };
2716
2717 /**
2718 * init_cxlflash() - module entry point
2719 *
2720 * Return: 0 on success, -errno on failure
2721 */
2722 static int __init init_cxlflash(void)
2723 {
2724 cxlflash_list_init();
2725
2726 return pci_register_driver(&cxlflash_driver);
2727 }
2728
2729 /**
2730 * exit_cxlflash() - module exit point
2731 */
2732 static void __exit exit_cxlflash(void)
2733 {
2734 cxlflash_term_global_luns();
2735 cxlflash_free_errpage();
2736
2737 pci_unregister_driver(&cxlflash_driver);
2738 }
2739
2740 module_init(init_cxlflash);
2741 module_exit(exit_cxlflash);