]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/cxlflash/main.c
5d068696eee45ce594444a783e1ce123223957f1
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / cxlflash / main.c
1 /*
2 * CXL Flash Device Driver
3 *
4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
6 *
7 * Copyright (C) 2015 IBM Corporation
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15 #include <linux/delay.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19
20 #include <asm/unaligned.h>
21
22 #include <misc/cxl.h>
23
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_host.h>
26 #include <uapi/scsi/cxlflash_ioctl.h>
27
28 #include "main.h"
29 #include "sislite.h"
30 #include "common.h"
31
32 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
33 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
34 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
35 MODULE_LICENSE("GPL");
36
37 /**
38 * process_cmd_err() - command error handler
39 * @cmd: AFU command that experienced the error.
40 * @scp: SCSI command associated with the AFU command in error.
41 *
42 * Translates error bits from AFU command to SCSI command results.
43 */
44 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
45 {
46 struct afu *afu = cmd->parent;
47 struct cxlflash_cfg *cfg = afu->parent;
48 struct device *dev = &cfg->dev->dev;
49 struct sisl_ioarcb *ioarcb;
50 struct sisl_ioasa *ioasa;
51 u32 resid;
52
53 if (unlikely(!cmd))
54 return;
55
56 ioarcb = &(cmd->rcb);
57 ioasa = &(cmd->sa);
58
59 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
60 resid = ioasa->resid;
61 scsi_set_resid(scp, resid);
62 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
63 __func__, cmd, scp, resid);
64 }
65
66 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
67 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
68 __func__, cmd, scp);
69 scp->result = (DID_ERROR << 16);
70 }
71
72 dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
73 "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
74 ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
75 ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
76
77 if (ioasa->rc.scsi_rc) {
78 /* We have a SCSI status */
79 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
80 memcpy(scp->sense_buffer, ioasa->sense_data,
81 SISL_SENSE_DATA_LEN);
82 scp->result = ioasa->rc.scsi_rc;
83 } else
84 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
85 }
86
87 /*
88 * We encountered an error. Set scp->result based on nature
89 * of error.
90 */
91 if (ioasa->rc.fc_rc) {
92 /* We have an FC status */
93 switch (ioasa->rc.fc_rc) {
94 case SISL_FC_RC_LINKDOWN:
95 scp->result = (DID_REQUEUE << 16);
96 break;
97 case SISL_FC_RC_RESID:
98 /* This indicates an FCP resid underrun */
99 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
100 /* If the SISL_RC_FLAGS_OVERRUN flag was set,
101 * then we will handle this error else where.
102 * If not then we must handle it here.
103 * This is probably an AFU bug.
104 */
105 scp->result = (DID_ERROR << 16);
106 }
107 break;
108 case SISL_FC_RC_RESIDERR:
109 /* Resid mismatch between adapter and device */
110 case SISL_FC_RC_TGTABORT:
111 case SISL_FC_RC_ABORTOK:
112 case SISL_FC_RC_ABORTFAIL:
113 case SISL_FC_RC_NOLOGI:
114 case SISL_FC_RC_ABORTPEND:
115 case SISL_FC_RC_WRABORTPEND:
116 case SISL_FC_RC_NOEXP:
117 case SISL_FC_RC_INUSE:
118 scp->result = (DID_ERROR << 16);
119 break;
120 }
121 }
122
123 if (ioasa->rc.afu_rc) {
124 /* We have an AFU error */
125 switch (ioasa->rc.afu_rc) {
126 case SISL_AFU_RC_NO_CHANNELS:
127 scp->result = (DID_NO_CONNECT << 16);
128 break;
129 case SISL_AFU_RC_DATA_DMA_ERR:
130 switch (ioasa->afu_extra) {
131 case SISL_AFU_DMA_ERR_PAGE_IN:
132 /* Retry */
133 scp->result = (DID_IMM_RETRY << 16);
134 break;
135 case SISL_AFU_DMA_ERR_INVALID_EA:
136 default:
137 scp->result = (DID_ERROR << 16);
138 }
139 break;
140 case SISL_AFU_RC_OUT_OF_DATA_BUFS:
141 /* Retry */
142 scp->result = (DID_ALLOC_FAILURE << 16);
143 break;
144 default:
145 scp->result = (DID_ERROR << 16);
146 }
147 }
148 }
149
150 /**
151 * cmd_complete() - command completion handler
152 * @cmd: AFU command that has completed.
153 *
154 * Prepares and submits command that has either completed or timed out to
155 * the SCSI stack. Checks AFU command back into command pool for non-internal
156 * (cmd->scp populated) commands.
157 */
158 static void cmd_complete(struct afu_cmd *cmd)
159 {
160 struct scsi_cmnd *scp;
161 ulong lock_flags;
162 struct afu *afu = cmd->parent;
163 struct cxlflash_cfg *cfg = afu->parent;
164 struct device *dev = &cfg->dev->dev;
165 bool cmd_is_tmf;
166
167 if (cmd->scp) {
168 scp = cmd->scp;
169 if (unlikely(cmd->sa.ioasc))
170 process_cmd_err(cmd, scp);
171 else
172 scp->result = (DID_OK << 16);
173
174 cmd_is_tmf = cmd->cmd_tmf;
175
176 dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
177 __func__, scp, scp->result, cmd->sa.ioasc);
178
179 scp->scsi_done(scp);
180
181 if (cmd_is_tmf) {
182 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
183 cfg->tmf_active = false;
184 wake_up_all_locked(&cfg->tmf_waitq);
185 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
186 }
187 } else
188 complete(&cmd->cevent);
189 }
190
191 /**
192 * context_reset() - reset command owner context via specified register
193 * @cmd: AFU command that timed out.
194 * @reset_reg: MMIO register to perform reset.
195 */
196 static void context_reset(struct afu_cmd *cmd, __be64 __iomem *reset_reg)
197 {
198 int nretry = 0;
199 u64 rrin = 0x1;
200 struct afu *afu = cmd->parent;
201 struct cxlflash_cfg *cfg = afu->parent;
202 struct device *dev = &cfg->dev->dev;
203
204 dev_dbg(dev, "%s: cmd=%p\n", __func__, cmd);
205
206 writeq_be(rrin, reset_reg);
207 do {
208 rrin = readq_be(reset_reg);
209 if (rrin != 0x1)
210 break;
211 /* Double delay each time */
212 udelay(1 << nretry);
213 } while (nretry++ < MC_ROOM_RETRY_CNT);
214
215 dev_dbg(dev, "%s: returning rrin=%016llx nretry=%d\n",
216 __func__, rrin, nretry);
217 }
218
219 /**
220 * context_reset_ioarrin() - reset command owner context via IOARRIN register
221 * @cmd: AFU command that timed out.
222 */
223 static void context_reset_ioarrin(struct afu_cmd *cmd)
224 {
225 struct afu *afu = cmd->parent;
226 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
227
228 context_reset(cmd, &hwq->host_map->ioarrin);
229 }
230
231 /**
232 * context_reset_sq() - reset command owner context w/ SQ Context Reset register
233 * @cmd: AFU command that timed out.
234 */
235 static void context_reset_sq(struct afu_cmd *cmd)
236 {
237 struct afu *afu = cmd->parent;
238 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
239
240 context_reset(cmd, &hwq->host_map->sq_ctx_reset);
241 }
242
243 /**
244 * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
245 * @afu: AFU associated with the host.
246 * @cmd: AFU command to send.
247 *
248 * Return:
249 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
250 */
251 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
252 {
253 struct cxlflash_cfg *cfg = afu->parent;
254 struct device *dev = &cfg->dev->dev;
255 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
256 int rc = 0;
257 s64 room;
258 ulong lock_flags;
259
260 /*
261 * To avoid the performance penalty of MMIO, spread the update of
262 * 'room' over multiple commands.
263 */
264 spin_lock_irqsave(&hwq->rrin_slock, lock_flags);
265 if (--hwq->room < 0) {
266 room = readq_be(&hwq->host_map->cmd_room);
267 if (room <= 0) {
268 dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
269 "0x%02X, room=0x%016llX\n",
270 __func__, cmd->rcb.cdb[0], room);
271 hwq->room = 0;
272 rc = SCSI_MLQUEUE_HOST_BUSY;
273 goto out;
274 }
275 hwq->room = room - 1;
276 }
277
278 writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin);
279 out:
280 spin_unlock_irqrestore(&hwq->rrin_slock, lock_flags);
281 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n", __func__,
282 cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
283 return rc;
284 }
285
286 /**
287 * send_cmd_sq() - sends an AFU command via SQ ring
288 * @afu: AFU associated with the host.
289 * @cmd: AFU command to send.
290 *
291 * Return:
292 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
293 */
294 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
295 {
296 struct cxlflash_cfg *cfg = afu->parent;
297 struct device *dev = &cfg->dev->dev;
298 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
299 int rc = 0;
300 int newval;
301 ulong lock_flags;
302
303 newval = atomic_dec_if_positive(&hwq->hsq_credits);
304 if (newval <= 0) {
305 rc = SCSI_MLQUEUE_HOST_BUSY;
306 goto out;
307 }
308
309 cmd->rcb.ioasa = &cmd->sa;
310
311 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
312
313 *hwq->hsq_curr = cmd->rcb;
314 if (hwq->hsq_curr < hwq->hsq_end)
315 hwq->hsq_curr++;
316 else
317 hwq->hsq_curr = hwq->hsq_start;
318 writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail);
319
320 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
321 out:
322 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
323 "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
324 cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr,
325 readq_be(&hwq->host_map->sq_head),
326 readq_be(&hwq->host_map->sq_tail));
327 return rc;
328 }
329
330 /**
331 * wait_resp() - polls for a response or timeout to a sent AFU command
332 * @afu: AFU associated with the host.
333 * @cmd: AFU command that was sent.
334 *
335 * Return:
336 * 0 on success, -1 on timeout/error
337 */
338 static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
339 {
340 struct cxlflash_cfg *cfg = afu->parent;
341 struct device *dev = &cfg->dev->dev;
342 int rc = 0;
343 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
344
345 timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
346 if (!timeout) {
347 afu->context_reset(cmd);
348 rc = -1;
349 }
350
351 if (unlikely(cmd->sa.ioasc != 0)) {
352 dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
353 __func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
354 rc = -1;
355 }
356
357 return rc;
358 }
359
360 /**
361 * send_tmf() - sends a Task Management Function (TMF)
362 * @afu: AFU to checkout from.
363 * @scp: SCSI command from stack.
364 * @tmfcmd: TMF command to send.
365 *
366 * Return:
367 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
368 */
369 static int send_tmf(struct afu *afu, struct scsi_cmnd *scp, u64 tmfcmd)
370 {
371 struct cxlflash_cfg *cfg = shost_priv(scp->device->host);
372 struct afu_cmd *cmd = sc_to_afucz(scp);
373 struct device *dev = &cfg->dev->dev;
374 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
375 ulong lock_flags;
376 int rc = 0;
377 ulong to;
378
379 /* When Task Management Function is active do not send another */
380 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
381 if (cfg->tmf_active)
382 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
383 !cfg->tmf_active,
384 cfg->tmf_slock);
385 cfg->tmf_active = true;
386 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
387
388 cmd->scp = scp;
389 cmd->parent = afu;
390 cmd->cmd_tmf = true;
391 cmd->hwq_index = hwq->index;
392
393 cmd->rcb.ctx_id = hwq->ctx_hndl;
394 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
395 cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
396 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
397 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
398 SISL_REQ_FLAGS_SUP_UNDERRUN |
399 SISL_REQ_FLAGS_TMF_CMD);
400 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
401
402 rc = afu->send_cmd(afu, cmd);
403 if (unlikely(rc)) {
404 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
405 cfg->tmf_active = false;
406 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
407 goto out;
408 }
409
410 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
411 to = msecs_to_jiffies(5000);
412 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
413 !cfg->tmf_active,
414 cfg->tmf_slock,
415 to);
416 if (!to) {
417 cfg->tmf_active = false;
418 dev_err(dev, "%s: TMF timed out\n", __func__);
419 rc = -1;
420 }
421 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
422 out:
423 return rc;
424 }
425
426 /**
427 * cxlflash_driver_info() - information handler for this host driver
428 * @host: SCSI host associated with device.
429 *
430 * Return: A string describing the device.
431 */
432 static const char *cxlflash_driver_info(struct Scsi_Host *host)
433 {
434 return CXLFLASH_ADAPTER_NAME;
435 }
436
437 /**
438 * cxlflash_queuecommand() - sends a mid-layer request
439 * @host: SCSI host associated with device.
440 * @scp: SCSI command to send.
441 *
442 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
443 */
444 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
445 {
446 struct cxlflash_cfg *cfg = shost_priv(host);
447 struct afu *afu = cfg->afu;
448 struct device *dev = &cfg->dev->dev;
449 struct afu_cmd *cmd = sc_to_afucz(scp);
450 struct scatterlist *sg = scsi_sglist(scp);
451 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
452 u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
453 ulong lock_flags;
454 int rc = 0;
455
456 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
457 "cdb=(%08x-%08x-%08x-%08x)\n",
458 __func__, scp, host->host_no, scp->device->channel,
459 scp->device->id, scp->device->lun,
460 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
461 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
462 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
463 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
464
465 /*
466 * If a Task Management Function is active, wait for it to complete
467 * before continuing with regular commands.
468 */
469 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
470 if (cfg->tmf_active) {
471 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
472 rc = SCSI_MLQUEUE_HOST_BUSY;
473 goto out;
474 }
475 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
476
477 switch (cfg->state) {
478 case STATE_PROBING:
479 case STATE_PROBED:
480 case STATE_RESET:
481 dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
482 rc = SCSI_MLQUEUE_HOST_BUSY;
483 goto out;
484 case STATE_FAILTERM:
485 dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
486 scp->result = (DID_NO_CONNECT << 16);
487 scp->scsi_done(scp);
488 rc = 0;
489 goto out;
490 default:
491 break;
492 }
493
494 if (likely(sg)) {
495 cmd->rcb.data_len = sg->length;
496 cmd->rcb.data_ea = (uintptr_t)sg_virt(sg);
497 }
498
499 cmd->scp = scp;
500 cmd->parent = afu;
501 cmd->hwq_index = hwq->index;
502
503 cmd->rcb.ctx_id = hwq->ctx_hndl;
504 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
505 cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
506 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
507
508 if (scp->sc_data_direction == DMA_TO_DEVICE)
509 req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
510
511 cmd->rcb.req_flags = req_flags;
512 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
513
514 rc = afu->send_cmd(afu, cmd);
515 out:
516 return rc;
517 }
518
519 /**
520 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
521 * @cfg: Internal structure associated with the host.
522 */
523 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
524 {
525 struct pci_dev *pdev = cfg->dev;
526
527 if (pci_channel_offline(pdev))
528 wait_event_timeout(cfg->reset_waitq,
529 !pci_channel_offline(pdev),
530 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
531 }
532
533 /**
534 * free_mem() - free memory associated with the AFU
535 * @cfg: Internal structure associated with the host.
536 */
537 static void free_mem(struct cxlflash_cfg *cfg)
538 {
539 struct afu *afu = cfg->afu;
540
541 if (cfg->afu) {
542 free_pages((ulong)afu, get_order(sizeof(struct afu)));
543 cfg->afu = NULL;
544 }
545 }
546
547 /**
548 * stop_afu() - stops the AFU command timers and unmaps the MMIO space
549 * @cfg: Internal structure associated with the host.
550 *
551 * Safe to call with AFU in a partially allocated/initialized state.
552 *
553 * Cancels scheduled worker threads, waits for any active internal AFU
554 * commands to timeout, disables IRQ polling and then unmaps the MMIO space.
555 */
556 static void stop_afu(struct cxlflash_cfg *cfg)
557 {
558 struct afu *afu = cfg->afu;
559 struct hwq *hwq;
560 int i;
561
562 cancel_work_sync(&cfg->work_q);
563
564 if (likely(afu)) {
565 while (atomic_read(&afu->cmds_active))
566 ssleep(1);
567
568 if (afu_is_irqpoll_enabled(afu)) {
569 for (i = 0; i < CXLFLASH_NUM_HWQS; i++) {
570 hwq = get_hwq(afu, i);
571
572 irq_poll_disable(&hwq->irqpoll);
573 }
574 }
575
576 if (likely(afu->afu_map)) {
577 cxl_psa_unmap((void __iomem *)afu->afu_map);
578 afu->afu_map = NULL;
579 }
580 }
581 }
582
583 /**
584 * term_intr() - disables all AFU interrupts
585 * @cfg: Internal structure associated with the host.
586 * @level: Depth of allocation, where to begin waterfall tear down.
587 * @index: Index of the hardware queue.
588 *
589 * Safe to call with AFU/MC in partially allocated/initialized state.
590 */
591 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level,
592 u32 index)
593 {
594 struct afu *afu = cfg->afu;
595 struct device *dev = &cfg->dev->dev;
596 struct hwq *hwq;
597
598 if (!afu) {
599 dev_err(dev, "%s: returning with NULL afu\n", __func__);
600 return;
601 }
602
603 hwq = get_hwq(afu, index);
604
605 if (!hwq->ctx) {
606 dev_err(dev, "%s: returning with NULL MC\n", __func__);
607 return;
608 }
609
610 switch (level) {
611 case UNMAP_THREE:
612 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
613 if (index == PRIMARY_HWQ)
614 cxl_unmap_afu_irq(hwq->ctx, 3, hwq);
615 case UNMAP_TWO:
616 cxl_unmap_afu_irq(hwq->ctx, 2, hwq);
617 case UNMAP_ONE:
618 cxl_unmap_afu_irq(hwq->ctx, 1, hwq);
619 case FREE_IRQ:
620 cxl_free_afu_irqs(hwq->ctx);
621 /* fall through */
622 case UNDO_NOOP:
623 /* No action required */
624 break;
625 }
626 }
627
628 /**
629 * term_mc() - terminates the master context
630 * @cfg: Internal structure associated with the host.
631 * @index: Index of the hardware queue.
632 *
633 * Safe to call with AFU/MC in partially allocated/initialized state.
634 */
635 static void term_mc(struct cxlflash_cfg *cfg, u32 index)
636 {
637 struct afu *afu = cfg->afu;
638 struct device *dev = &cfg->dev->dev;
639 struct hwq *hwq;
640
641 if (!afu) {
642 dev_err(dev, "%s: returning with NULL afu\n", __func__);
643 return;
644 }
645
646 hwq = get_hwq(afu, index);
647
648 if (!hwq->ctx) {
649 dev_err(dev, "%s: returning with NULL MC\n", __func__);
650 return;
651 }
652
653 WARN_ON(cxl_stop_context(hwq->ctx));
654 if (index != PRIMARY_HWQ)
655 WARN_ON(cxl_release_context(hwq->ctx));
656 hwq->ctx = NULL;
657 }
658
659 /**
660 * term_afu() - terminates the AFU
661 * @cfg: Internal structure associated with the host.
662 *
663 * Safe to call with AFU/MC in partially allocated/initialized state.
664 */
665 static void term_afu(struct cxlflash_cfg *cfg)
666 {
667 struct device *dev = &cfg->dev->dev;
668 int k;
669
670 /*
671 * Tear down is carefully orchestrated to ensure
672 * no interrupts can come in when the problem state
673 * area is unmapped.
674 *
675 * 1) Disable all AFU interrupts for each master
676 * 2) Unmap the problem state area
677 * 3) Stop each master context
678 */
679 for (k = CXLFLASH_NUM_HWQS - 1; k >= 0; k--)
680 term_intr(cfg, UNMAP_THREE, k);
681
682 if (cfg->afu)
683 stop_afu(cfg);
684
685 for (k = CXLFLASH_NUM_HWQS - 1; k >= 0; k--)
686 term_mc(cfg, k);
687
688 dev_dbg(dev, "%s: returning\n", __func__);
689 }
690
691 /**
692 * notify_shutdown() - notifies device of pending shutdown
693 * @cfg: Internal structure associated with the host.
694 * @wait: Whether to wait for shutdown processing to complete.
695 *
696 * This function will notify the AFU that the adapter is being shutdown
697 * and will wait for shutdown processing to complete if wait is true.
698 * This notification should flush pending I/Os to the device and halt
699 * further I/Os until the next AFU reset is issued and device restarted.
700 */
701 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
702 {
703 struct afu *afu = cfg->afu;
704 struct device *dev = &cfg->dev->dev;
705 struct dev_dependent_vals *ddv;
706 __be64 __iomem *fc_port_regs;
707 u64 reg, status;
708 int i, retry_cnt = 0;
709
710 ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
711 if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
712 return;
713
714 if (!afu || !afu->afu_map) {
715 dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
716 return;
717 }
718
719 /* Notify AFU */
720 for (i = 0; i < cfg->num_fc_ports; i++) {
721 fc_port_regs = get_fc_port_regs(cfg, i);
722
723 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
724 reg |= SISL_FC_SHUTDOWN_NORMAL;
725 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
726 }
727
728 if (!wait)
729 return;
730
731 /* Wait up to 1.5 seconds for shutdown processing to complete */
732 for (i = 0; i < cfg->num_fc_ports; i++) {
733 fc_port_regs = get_fc_port_regs(cfg, i);
734 retry_cnt = 0;
735
736 while (true) {
737 status = readq_be(&fc_port_regs[FC_STATUS / 8]);
738 if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
739 break;
740 if (++retry_cnt >= MC_RETRY_CNT) {
741 dev_dbg(dev, "%s: port %d shutdown processing "
742 "not yet completed\n", __func__, i);
743 break;
744 }
745 msleep(100 * retry_cnt);
746 }
747 }
748 }
749
750 /**
751 * cxlflash_remove() - PCI entry point to tear down host
752 * @pdev: PCI device associated with the host.
753 *
754 * Safe to use as a cleanup in partially allocated/initialized state. Note that
755 * the reset_waitq is flushed as part of the stop/termination of user contexts.
756 */
757 static void cxlflash_remove(struct pci_dev *pdev)
758 {
759 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
760 struct device *dev = &pdev->dev;
761 ulong lock_flags;
762
763 if (!pci_is_enabled(pdev)) {
764 dev_dbg(dev, "%s: Device is disabled\n", __func__);
765 return;
766 }
767
768 /* If a Task Management Function is active, wait for it to complete
769 * before continuing with remove.
770 */
771 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
772 if (cfg->tmf_active)
773 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
774 !cfg->tmf_active,
775 cfg->tmf_slock);
776 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
777
778 /* Notify AFU and wait for shutdown processing to complete */
779 notify_shutdown(cfg, true);
780
781 cfg->state = STATE_FAILTERM;
782 cxlflash_stop_term_user_contexts(cfg);
783
784 switch (cfg->init_state) {
785 case INIT_STATE_SCSI:
786 cxlflash_term_local_luns(cfg);
787 scsi_remove_host(cfg->host);
788 case INIT_STATE_AFU:
789 term_afu(cfg);
790 case INIT_STATE_PCI:
791 pci_disable_device(pdev);
792 case INIT_STATE_NONE:
793 free_mem(cfg);
794 scsi_host_put(cfg->host);
795 break;
796 }
797
798 dev_dbg(dev, "%s: returning\n", __func__);
799 }
800
801 /**
802 * alloc_mem() - allocates the AFU and its command pool
803 * @cfg: Internal structure associated with the host.
804 *
805 * A partially allocated state remains on failure.
806 *
807 * Return:
808 * 0 on success
809 * -ENOMEM on failure to allocate memory
810 */
811 static int alloc_mem(struct cxlflash_cfg *cfg)
812 {
813 int rc = 0;
814 struct device *dev = &cfg->dev->dev;
815
816 /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
817 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
818 get_order(sizeof(struct afu)));
819 if (unlikely(!cfg->afu)) {
820 dev_err(dev, "%s: cannot get %d free pages\n",
821 __func__, get_order(sizeof(struct afu)));
822 rc = -ENOMEM;
823 goto out;
824 }
825 cfg->afu->parent = cfg;
826 cfg->afu->afu_map = NULL;
827 out:
828 return rc;
829 }
830
831 /**
832 * init_pci() - initializes the host as a PCI device
833 * @cfg: Internal structure associated with the host.
834 *
835 * Return: 0 on success, -errno on failure
836 */
837 static int init_pci(struct cxlflash_cfg *cfg)
838 {
839 struct pci_dev *pdev = cfg->dev;
840 struct device *dev = &cfg->dev->dev;
841 int rc = 0;
842
843 rc = pci_enable_device(pdev);
844 if (rc || pci_channel_offline(pdev)) {
845 if (pci_channel_offline(pdev)) {
846 cxlflash_wait_for_pci_err_recovery(cfg);
847 rc = pci_enable_device(pdev);
848 }
849
850 if (rc) {
851 dev_err(dev, "%s: Cannot enable adapter\n", __func__);
852 cxlflash_wait_for_pci_err_recovery(cfg);
853 goto out;
854 }
855 }
856
857 out:
858 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
859 return rc;
860 }
861
862 /**
863 * init_scsi() - adds the host to the SCSI stack and kicks off host scan
864 * @cfg: Internal structure associated with the host.
865 *
866 * Return: 0 on success, -errno on failure
867 */
868 static int init_scsi(struct cxlflash_cfg *cfg)
869 {
870 struct pci_dev *pdev = cfg->dev;
871 struct device *dev = &cfg->dev->dev;
872 int rc = 0;
873
874 rc = scsi_add_host(cfg->host, &pdev->dev);
875 if (rc) {
876 dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
877 goto out;
878 }
879
880 scsi_scan_host(cfg->host);
881
882 out:
883 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
884 return rc;
885 }
886
887 /**
888 * set_port_online() - transitions the specified host FC port to online state
889 * @fc_regs: Top of MMIO region defined for specified port.
890 *
891 * The provided MMIO region must be mapped prior to call. Online state means
892 * that the FC link layer has synced, completed the handshaking process, and
893 * is ready for login to start.
894 */
895 static void set_port_online(__be64 __iomem *fc_regs)
896 {
897 u64 cmdcfg;
898
899 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
900 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
901 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */
902 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
903 }
904
905 /**
906 * set_port_offline() - transitions the specified host FC port to offline state
907 * @fc_regs: Top of MMIO region defined for specified port.
908 *
909 * The provided MMIO region must be mapped prior to call.
910 */
911 static void set_port_offline(__be64 __iomem *fc_regs)
912 {
913 u64 cmdcfg;
914
915 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
916 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */
917 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */
918 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
919 }
920
921 /**
922 * wait_port_online() - waits for the specified host FC port come online
923 * @fc_regs: Top of MMIO region defined for specified port.
924 * @delay_us: Number of microseconds to delay between reading port status.
925 * @nretry: Number of cycles to retry reading port status.
926 *
927 * The provided MMIO region must be mapped prior to call. This will timeout
928 * when the cable is not plugged in.
929 *
930 * Return:
931 * TRUE (1) when the specified port is online
932 * FALSE (0) when the specified port fails to come online after timeout
933 */
934 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
935 {
936 u64 status;
937
938 WARN_ON(delay_us < 1000);
939
940 do {
941 msleep(delay_us / 1000);
942 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
943 if (status == U64_MAX)
944 nretry /= 2;
945 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
946 nretry--);
947
948 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
949 }
950
951 /**
952 * wait_port_offline() - waits for the specified host FC port go offline
953 * @fc_regs: Top of MMIO region defined for specified port.
954 * @delay_us: Number of microseconds to delay between reading port status.
955 * @nretry: Number of cycles to retry reading port status.
956 *
957 * The provided MMIO region must be mapped prior to call.
958 *
959 * Return:
960 * TRUE (1) when the specified port is offline
961 * FALSE (0) when the specified port fails to go offline after timeout
962 */
963 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
964 {
965 u64 status;
966
967 WARN_ON(delay_us < 1000);
968
969 do {
970 msleep(delay_us / 1000);
971 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
972 if (status == U64_MAX)
973 nretry /= 2;
974 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
975 nretry--);
976
977 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
978 }
979
980 /**
981 * afu_set_wwpn() - configures the WWPN for the specified host FC port
982 * @afu: AFU associated with the host that owns the specified FC port.
983 * @port: Port number being configured.
984 * @fc_regs: Top of MMIO region defined for specified port.
985 * @wwpn: The world-wide-port-number previously discovered for port.
986 *
987 * The provided MMIO region must be mapped prior to call. As part of the
988 * sequence to configure the WWPN, the port is toggled offline and then back
989 * online. This toggling action can cause this routine to delay up to a few
990 * seconds. When configured to use the internal LUN feature of the AFU, a
991 * failure to come online is overridden.
992 */
993 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
994 u64 wwpn)
995 {
996 struct cxlflash_cfg *cfg = afu->parent;
997 struct device *dev = &cfg->dev->dev;
998
999 set_port_offline(fc_regs);
1000 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1001 FC_PORT_STATUS_RETRY_CNT)) {
1002 dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
1003 __func__, port);
1004 }
1005
1006 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1007
1008 set_port_online(fc_regs);
1009 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1010 FC_PORT_STATUS_RETRY_CNT)) {
1011 dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
1012 __func__, port);
1013 }
1014 }
1015
1016 /**
1017 * afu_link_reset() - resets the specified host FC port
1018 * @afu: AFU associated with the host that owns the specified FC port.
1019 * @port: Port number being configured.
1020 * @fc_regs: Top of MMIO region defined for specified port.
1021 *
1022 * The provided MMIO region must be mapped prior to call. The sequence to
1023 * reset the port involves toggling it offline and then back online. This
1024 * action can cause this routine to delay up to a few seconds. An effort
1025 * is made to maintain link with the device by switching to host to use
1026 * the alternate port exclusively while the reset takes place.
1027 * failure to come online is overridden.
1028 */
1029 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
1030 {
1031 struct cxlflash_cfg *cfg = afu->parent;
1032 struct device *dev = &cfg->dev->dev;
1033 u64 port_sel;
1034
1035 /* first switch the AFU to the other links, if any */
1036 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1037 port_sel &= ~(1ULL << port);
1038 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1039 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1040
1041 set_port_offline(fc_regs);
1042 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1043 FC_PORT_STATUS_RETRY_CNT))
1044 dev_err(dev, "%s: wait on port %d to go offline timed out\n",
1045 __func__, port);
1046
1047 set_port_online(fc_regs);
1048 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1049 FC_PORT_STATUS_RETRY_CNT))
1050 dev_err(dev, "%s: wait on port %d to go online timed out\n",
1051 __func__, port);
1052
1053 /* switch back to include this port */
1054 port_sel |= (1ULL << port);
1055 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1056 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1057
1058 dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
1059 }
1060
1061 /**
1062 * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1063 * @afu: AFU associated with the host.
1064 */
1065 static void afu_err_intr_init(struct afu *afu)
1066 {
1067 struct cxlflash_cfg *cfg = afu->parent;
1068 __be64 __iomem *fc_port_regs;
1069 int i;
1070 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
1071 u64 reg;
1072
1073 /* global async interrupts: AFU clears afu_ctrl on context exit
1074 * if async interrupts were sent to that context. This prevents
1075 * the AFU form sending further async interrupts when
1076 * there is
1077 * nobody to receive them.
1078 */
1079
1080 /* mask all */
1081 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1082 /* set LISN# to send and point to primary master context */
1083 reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1084
1085 if (afu->internal_lun)
1086 reg |= 1; /* Bit 63 indicates local lun */
1087 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1088 /* clear all */
1089 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1090 /* unmask bits that are of interest */
1091 /* note: afu can send an interrupt after this step */
1092 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1093 /* clear again in case a bit came on after previous clear but before */
1094 /* unmask */
1095 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1096
1097 /* Clear/Set internal lun bits */
1098 fc_port_regs = get_fc_port_regs(cfg, 0);
1099 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
1100 reg &= SISL_FC_INTERNAL_MASK;
1101 if (afu->internal_lun)
1102 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1103 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
1104
1105 /* now clear FC errors */
1106 for (i = 0; i < cfg->num_fc_ports; i++) {
1107 fc_port_regs = get_fc_port_regs(cfg, i);
1108
1109 writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]);
1110 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1111 }
1112
1113 /* sync interrupts for master's IOARRIN write */
1114 /* note that unlike asyncs, there can be no pending sync interrupts */
1115 /* at this time (this is a fresh context and master has not written */
1116 /* IOARRIN yet), so there is nothing to clear. */
1117
1118 /* set LISN#, it is always sent to the context that wrote IOARRIN */
1119 for (i = 0; i < CXLFLASH_NUM_HWQS; i++) {
1120 hwq = get_hwq(afu, i);
1121
1122 writeq_be(SISL_MSI_SYNC_ERROR, &hwq->host_map->ctx_ctrl);
1123 writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask);
1124 }
1125 }
1126
1127 /**
1128 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1129 * @irq: Interrupt number.
1130 * @data: Private data provided at interrupt registration, the AFU.
1131 *
1132 * Return: Always return IRQ_HANDLED.
1133 */
1134 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1135 {
1136 struct hwq *hwq = (struct hwq *)data;
1137 struct cxlflash_cfg *cfg = hwq->afu->parent;
1138 struct device *dev = &cfg->dev->dev;
1139 u64 reg;
1140 u64 reg_unmasked;
1141
1142 reg = readq_be(&hwq->host_map->intr_status);
1143 reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1144
1145 if (reg_unmasked == 0UL) {
1146 dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
1147 __func__, reg);
1148 goto cxlflash_sync_err_irq_exit;
1149 }
1150
1151 dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
1152 __func__, reg);
1153
1154 writeq_be(reg_unmasked, &hwq->host_map->intr_clear);
1155
1156 cxlflash_sync_err_irq_exit:
1157 return IRQ_HANDLED;
1158 }
1159
1160 /**
1161 * process_hrrq() - process the read-response queue
1162 * @afu: AFU associated with the host.
1163 * @doneq: Queue of commands harvested from the RRQ.
1164 * @budget: Threshold of RRQ entries to process.
1165 *
1166 * This routine must be called holding the disabled RRQ spin lock.
1167 *
1168 * Return: The number of entries processed.
1169 */
1170 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget)
1171 {
1172 struct afu *afu = hwq->afu;
1173 struct afu_cmd *cmd;
1174 struct sisl_ioasa *ioasa;
1175 struct sisl_ioarcb *ioarcb;
1176 bool toggle = hwq->toggle;
1177 int num_hrrq = 0;
1178 u64 entry,
1179 *hrrq_start = hwq->hrrq_start,
1180 *hrrq_end = hwq->hrrq_end,
1181 *hrrq_curr = hwq->hrrq_curr;
1182
1183 /* Process ready RRQ entries up to the specified budget (if any) */
1184 while (true) {
1185 entry = *hrrq_curr;
1186
1187 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1188 break;
1189
1190 entry &= ~SISL_RESP_HANDLE_T_BIT;
1191
1192 if (afu_is_sq_cmd_mode(afu)) {
1193 ioasa = (struct sisl_ioasa *)entry;
1194 cmd = container_of(ioasa, struct afu_cmd, sa);
1195 } else {
1196 ioarcb = (struct sisl_ioarcb *)entry;
1197 cmd = container_of(ioarcb, struct afu_cmd, rcb);
1198 }
1199
1200 list_add_tail(&cmd->queue, doneq);
1201
1202 /* Advance to next entry or wrap and flip the toggle bit */
1203 if (hrrq_curr < hrrq_end)
1204 hrrq_curr++;
1205 else {
1206 hrrq_curr = hrrq_start;
1207 toggle ^= SISL_RESP_HANDLE_T_BIT;
1208 }
1209
1210 atomic_inc(&hwq->hsq_credits);
1211 num_hrrq++;
1212
1213 if (budget > 0 && num_hrrq >= budget)
1214 break;
1215 }
1216
1217 hwq->hrrq_curr = hrrq_curr;
1218 hwq->toggle = toggle;
1219
1220 return num_hrrq;
1221 }
1222
1223 /**
1224 * process_cmd_doneq() - process a queue of harvested RRQ commands
1225 * @doneq: Queue of completed commands.
1226 *
1227 * Note that upon return the queue can no longer be trusted.
1228 */
1229 static void process_cmd_doneq(struct list_head *doneq)
1230 {
1231 struct afu_cmd *cmd, *tmp;
1232
1233 WARN_ON(list_empty(doneq));
1234
1235 list_for_each_entry_safe(cmd, tmp, doneq, queue)
1236 cmd_complete(cmd);
1237 }
1238
1239 /**
1240 * cxlflash_irqpoll() - process a queue of harvested RRQ commands
1241 * @irqpoll: IRQ poll structure associated with queue to poll.
1242 * @budget: Threshold of RRQ entries to process per poll.
1243 *
1244 * Return: The number of entries processed.
1245 */
1246 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
1247 {
1248 struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll);
1249 unsigned long hrrq_flags;
1250 LIST_HEAD(doneq);
1251 int num_entries = 0;
1252
1253 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1254
1255 num_entries = process_hrrq(hwq, &doneq, budget);
1256 if (num_entries < budget)
1257 irq_poll_complete(irqpoll);
1258
1259 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1260
1261 process_cmd_doneq(&doneq);
1262 return num_entries;
1263 }
1264
1265 /**
1266 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1267 * @irq: Interrupt number.
1268 * @data: Private data provided at interrupt registration, the AFU.
1269 *
1270 * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
1271 */
1272 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1273 {
1274 struct hwq *hwq = (struct hwq *)data;
1275 struct afu *afu = hwq->afu;
1276 unsigned long hrrq_flags;
1277 LIST_HEAD(doneq);
1278 int num_entries = 0;
1279
1280 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1281
1282 if (afu_is_irqpoll_enabled(afu)) {
1283 irq_poll_sched(&hwq->irqpoll);
1284 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1285 return IRQ_HANDLED;
1286 }
1287
1288 num_entries = process_hrrq(hwq, &doneq, -1);
1289 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1290
1291 if (num_entries == 0)
1292 return IRQ_NONE;
1293
1294 process_cmd_doneq(&doneq);
1295 return IRQ_HANDLED;
1296 }
1297
1298 /*
1299 * Asynchronous interrupt information table
1300 *
1301 * NOTE:
1302 * - Order matters here as this array is indexed by bit position.
1303 *
1304 * - The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro
1305 * as complex and complains due to a lack of parentheses/braces.
1306 */
1307 #define ASTATUS_FC(_a, _b, _c, _d) \
1308 { SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) }
1309
1310 #define BUILD_SISL_ASTATUS_FC_PORT(_a) \
1311 ASTATUS_FC(_a, LINK_UP, "link up", 0), \
1312 ASTATUS_FC(_a, LINK_DN, "link down", 0), \
1313 ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST), \
1314 ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR), \
1315 ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \
1316 ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET), \
1317 ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0), \
1318 ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET)
1319
1320 static const struct asyc_intr_info ainfo[] = {
1321 BUILD_SISL_ASTATUS_FC_PORT(1),
1322 BUILD_SISL_ASTATUS_FC_PORT(0),
1323 BUILD_SISL_ASTATUS_FC_PORT(3),
1324 BUILD_SISL_ASTATUS_FC_PORT(2)
1325 };
1326
1327 /**
1328 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1329 * @irq: Interrupt number.
1330 * @data: Private data provided at interrupt registration, the AFU.
1331 *
1332 * Return: Always return IRQ_HANDLED.
1333 */
1334 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1335 {
1336 struct hwq *hwq = (struct hwq *)data;
1337 struct afu *afu = hwq->afu;
1338 struct cxlflash_cfg *cfg = afu->parent;
1339 struct device *dev = &cfg->dev->dev;
1340 const struct asyc_intr_info *info;
1341 struct sisl_global_map __iomem *global = &afu->afu_map->global;
1342 __be64 __iomem *fc_port_regs;
1343 u64 reg_unmasked;
1344 u64 reg;
1345 u64 bit;
1346 u8 port;
1347
1348 reg = readq_be(&global->regs.aintr_status);
1349 reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1350
1351 if (unlikely(reg_unmasked == 0)) {
1352 dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
1353 __func__, reg);
1354 goto out;
1355 }
1356
1357 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1358 writeq_be(reg_unmasked, &global->regs.aintr_clear);
1359
1360 /* Check each bit that is on */
1361 for_each_set_bit(bit, (ulong *)&reg_unmasked, BITS_PER_LONG) {
1362 if (unlikely(bit >= ARRAY_SIZE(ainfo))) {
1363 WARN_ON_ONCE(1);
1364 continue;
1365 }
1366
1367 info = &ainfo[bit];
1368 if (unlikely(info->status != 1ULL << bit)) {
1369 WARN_ON_ONCE(1);
1370 continue;
1371 }
1372
1373 port = info->port;
1374 fc_port_regs = get_fc_port_regs(cfg, port);
1375
1376 dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
1377 __func__, port, info->desc,
1378 readq_be(&fc_port_regs[FC_STATUS / 8]));
1379
1380 /*
1381 * Do link reset first, some OTHER errors will set FC_ERROR
1382 * again if cleared before or w/o a reset
1383 */
1384 if (info->action & LINK_RESET) {
1385 dev_err(dev, "%s: FC Port %d: resetting link\n",
1386 __func__, port);
1387 cfg->lr_state = LINK_RESET_REQUIRED;
1388 cfg->lr_port = port;
1389 schedule_work(&cfg->work_q);
1390 }
1391
1392 if (info->action & CLR_FC_ERROR) {
1393 reg = readq_be(&fc_port_regs[FC_ERROR / 8]);
1394
1395 /*
1396 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1397 * should be the same and tracing one is sufficient.
1398 */
1399
1400 dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
1401 __func__, port, reg);
1402
1403 writeq_be(reg, &fc_port_regs[FC_ERROR / 8]);
1404 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1405 }
1406
1407 if (info->action & SCAN_HOST) {
1408 atomic_inc(&cfg->scan_host_needed);
1409 schedule_work(&cfg->work_q);
1410 }
1411 }
1412
1413 out:
1414 return IRQ_HANDLED;
1415 }
1416
1417 /**
1418 * start_context() - starts the master context
1419 * @cfg: Internal structure associated with the host.
1420 * @index: Index of the hardware queue.
1421 *
1422 * Return: A success or failure value from CXL services.
1423 */
1424 static int start_context(struct cxlflash_cfg *cfg, u32 index)
1425 {
1426 struct device *dev = &cfg->dev->dev;
1427 struct hwq *hwq = get_hwq(cfg->afu, index);
1428 int rc = 0;
1429
1430 rc = cxl_start_context(hwq->ctx,
1431 hwq->work.work_element_descriptor,
1432 NULL);
1433
1434 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1435 return rc;
1436 }
1437
1438 /**
1439 * read_vpd() - obtains the WWPNs from VPD
1440 * @cfg: Internal structure associated with the host.
1441 * @wwpn: Array of size MAX_FC_PORTS to pass back WWPNs
1442 *
1443 * Return: 0 on success, -errno on failure
1444 */
1445 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1446 {
1447 struct device *dev = &cfg->dev->dev;
1448 struct pci_dev *pdev = cfg->dev;
1449 int rc = 0;
1450 int ro_start, ro_size, i, j, k;
1451 ssize_t vpd_size;
1452 char vpd_data[CXLFLASH_VPD_LEN];
1453 char tmp_buf[WWPN_BUF_LEN] = { 0 };
1454 char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" };
1455
1456 /* Get the VPD data from the device */
1457 vpd_size = cxl_read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
1458 if (unlikely(vpd_size <= 0)) {
1459 dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
1460 __func__, vpd_size);
1461 rc = -ENODEV;
1462 goto out;
1463 }
1464
1465 /* Get the read only section offset */
1466 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1467 PCI_VPD_LRDT_RO_DATA);
1468 if (unlikely(ro_start < 0)) {
1469 dev_err(dev, "%s: VPD Read-only data not found\n", __func__);
1470 rc = -ENODEV;
1471 goto out;
1472 }
1473
1474 /* Get the read only section size, cap when extends beyond read VPD */
1475 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1476 j = ro_size;
1477 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1478 if (unlikely((i + j) > vpd_size)) {
1479 dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n",
1480 __func__, (i + j), vpd_size);
1481 ro_size = vpd_size - i;
1482 }
1483
1484 /*
1485 * Find the offset of the WWPN tag within the read only
1486 * VPD data and validate the found field (partials are
1487 * no good to us). Convert the ASCII data to an integer
1488 * value. Note that we must copy to a temporary buffer
1489 * because the conversion service requires that the ASCII
1490 * string be terminated.
1491 */
1492 for (k = 0; k < cfg->num_fc_ports; k++) {
1493 j = ro_size;
1494 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1495
1496 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1497 if (unlikely(i < 0)) {
1498 dev_err(dev, "%s: Port %d WWPN not found in VPD\n",
1499 __func__, k);
1500 rc = -ENODEV;
1501 goto out;
1502 }
1503
1504 j = pci_vpd_info_field_size(&vpd_data[i]);
1505 i += PCI_VPD_INFO_FLD_HDR_SIZE;
1506 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
1507 dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
1508 __func__, k);
1509 rc = -ENODEV;
1510 goto out;
1511 }
1512
1513 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1514 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1515 if (unlikely(rc)) {
1516 dev_err(dev, "%s: WWPN conversion failed for port %d\n",
1517 __func__, k);
1518 rc = -ENODEV;
1519 goto out;
1520 }
1521
1522 dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
1523 }
1524
1525 out:
1526 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1527 return rc;
1528 }
1529
1530 /**
1531 * init_pcr() - initialize the provisioning and control registers
1532 * @cfg: Internal structure associated with the host.
1533 *
1534 * Also sets up fast access to the mapped registers and initializes AFU
1535 * command fields that never change.
1536 */
1537 static void init_pcr(struct cxlflash_cfg *cfg)
1538 {
1539 struct afu *afu = cfg->afu;
1540 struct sisl_ctrl_map __iomem *ctrl_map;
1541 struct hwq *hwq;
1542 int i;
1543
1544 for (i = 0; i < MAX_CONTEXT; i++) {
1545 ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1546 /* Disrupt any clients that could be running */
1547 /* e.g. clients that survived a master restart */
1548 writeq_be(0, &ctrl_map->rht_start);
1549 writeq_be(0, &ctrl_map->rht_cnt_id);
1550 writeq_be(0, &ctrl_map->ctx_cap);
1551 }
1552
1553 /* Copy frequently used fields into hwq */
1554 for (i = 0; i < CXLFLASH_NUM_HWQS; i++) {
1555 hwq = get_hwq(afu, i);
1556
1557 hwq->ctx_hndl = (u16) cxl_process_element(hwq->ctx);
1558 hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host;
1559 hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl;
1560
1561 /* Program the Endian Control for the master context */
1562 writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl);
1563 }
1564 }
1565
1566 /**
1567 * init_global() - initialize AFU global registers
1568 * @cfg: Internal structure associated with the host.
1569 */
1570 static int init_global(struct cxlflash_cfg *cfg)
1571 {
1572 struct afu *afu = cfg->afu;
1573 struct device *dev = &cfg->dev->dev;
1574 struct hwq *hwq;
1575 struct sisl_host_map __iomem *hmap;
1576 __be64 __iomem *fc_port_regs;
1577 u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */
1578 int i = 0, num_ports = 0;
1579 int rc = 0;
1580 u64 reg;
1581
1582 rc = read_vpd(cfg, &wwpn[0]);
1583 if (rc) {
1584 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1585 goto out;
1586 }
1587
1588 /* Set up RRQ and SQ in HWQ for master issued cmds */
1589 for (i = 0; i < CXLFLASH_NUM_HWQS; i++) {
1590 hwq = get_hwq(afu, i);
1591 hmap = hwq->host_map;
1592
1593 writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start);
1594 writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end);
1595
1596 if (afu_is_sq_cmd_mode(afu)) {
1597 writeq_be((u64)hwq->hsq_start, &hmap->sq_start);
1598 writeq_be((u64)hwq->hsq_end, &hmap->sq_end);
1599 }
1600 }
1601
1602 /* AFU configuration */
1603 reg = readq_be(&afu->afu_map->global.regs.afu_config);
1604 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1605 /* enable all auto retry options and control endianness */
1606 /* leave others at default: */
1607 /* CTX_CAP write protected, mbox_r does not clear on read and */
1608 /* checker on if dual afu */
1609 writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1610
1611 /* Global port select: select either port */
1612 if (afu->internal_lun) {
1613 /* Only use port 0 */
1614 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1615 num_ports = 0;
1616 } else {
1617 writeq_be(PORT_MASK(cfg->num_fc_ports),
1618 &afu->afu_map->global.regs.afu_port_sel);
1619 num_ports = cfg->num_fc_ports;
1620 }
1621
1622 for (i = 0; i < num_ports; i++) {
1623 fc_port_regs = get_fc_port_regs(cfg, i);
1624
1625 /* Unmask all errors (but they are still masked at AFU) */
1626 writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]);
1627 /* Clear CRC error cnt & set a threshold */
1628 (void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]);
1629 writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]);
1630
1631 /* Set WWPNs. If already programmed, wwpn[i] is 0 */
1632 if (wwpn[i] != 0)
1633 afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]);
1634 /* Programming WWPN back to back causes additional
1635 * offline/online transitions and a PLOGI
1636 */
1637 msleep(100);
1638 }
1639
1640 /* Set up master's own CTX_CAP to allow real mode, host translation */
1641 /* tables, afu cmds and read/write GSCSI cmds. */
1642 /* First, unlock ctx_cap write by reading mbox */
1643 for (i = 0; i < CXLFLASH_NUM_HWQS; i++) {
1644 hwq = get_hwq(afu, i);
1645
1646 (void)readq_be(&hwq->ctrl_map->mbox_r); /* unlock ctx_cap */
1647 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1648 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1649 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1650 &hwq->ctrl_map->ctx_cap);
1651 }
1652 /* Initialize heartbeat */
1653 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1654 out:
1655 return rc;
1656 }
1657
1658 /**
1659 * start_afu() - initializes and starts the AFU
1660 * @cfg: Internal structure associated with the host.
1661 */
1662 static int start_afu(struct cxlflash_cfg *cfg)
1663 {
1664 struct afu *afu = cfg->afu;
1665 struct device *dev = &cfg->dev->dev;
1666 struct hwq *hwq;
1667 int rc = 0;
1668 int i;
1669
1670 init_pcr(cfg);
1671
1672 /* Initialize each HWQ */
1673 for (i = 0; i < CXLFLASH_NUM_HWQS; i++) {
1674 hwq = get_hwq(afu, i);
1675
1676 /* After an AFU reset, RRQ entries are stale, clear them */
1677 memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry));
1678
1679 /* Initialize RRQ pointers */
1680 hwq->hrrq_start = &hwq->rrq_entry[0];
1681 hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1];
1682 hwq->hrrq_curr = hwq->hrrq_start;
1683 hwq->toggle = 1;
1684 spin_lock_init(&hwq->hrrq_slock);
1685
1686 /* Initialize SQ */
1687 if (afu_is_sq_cmd_mode(afu)) {
1688 memset(&hwq->sq, 0, sizeof(hwq->sq));
1689 hwq->hsq_start = &hwq->sq[0];
1690 hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1];
1691 hwq->hsq_curr = hwq->hsq_start;
1692
1693 spin_lock_init(&hwq->hsq_slock);
1694 atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1);
1695 }
1696
1697 /* Initialize IRQ poll */
1698 if (afu_is_irqpoll_enabled(afu))
1699 irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight,
1700 cxlflash_irqpoll);
1701
1702 }
1703
1704 rc = init_global(cfg);
1705
1706 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1707 return rc;
1708 }
1709
1710 /**
1711 * init_intr() - setup interrupt handlers for the master context
1712 * @cfg: Internal structure associated with the host.
1713 * @hwq: Hardware queue to initialize.
1714 *
1715 * Return: 0 on success, -errno on failure
1716 */
1717 static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1718 struct hwq *hwq)
1719 {
1720 struct device *dev = &cfg->dev->dev;
1721 struct cxl_context *ctx = hwq->ctx;
1722 int rc = 0;
1723 enum undo_level level = UNDO_NOOP;
1724 bool is_primary_hwq = (hwq->index == PRIMARY_HWQ);
1725 int num_irqs = is_primary_hwq ? 3 : 2;
1726
1727 rc = cxl_allocate_afu_irqs(ctx, num_irqs);
1728 if (unlikely(rc)) {
1729 dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
1730 __func__, rc);
1731 level = UNDO_NOOP;
1732 goto out;
1733 }
1734
1735 rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq,
1736 "SISL_MSI_SYNC_ERROR");
1737 if (unlikely(rc <= 0)) {
1738 dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
1739 level = FREE_IRQ;
1740 goto out;
1741 }
1742
1743 rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq,
1744 "SISL_MSI_RRQ_UPDATED");
1745 if (unlikely(rc <= 0)) {
1746 dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
1747 level = UNMAP_ONE;
1748 goto out;
1749 }
1750
1751 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
1752 if (!is_primary_hwq)
1753 goto out;
1754
1755 rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq,
1756 "SISL_MSI_ASYNC_ERROR");
1757 if (unlikely(rc <= 0)) {
1758 dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
1759 level = UNMAP_TWO;
1760 goto out;
1761 }
1762 out:
1763 return level;
1764 }
1765
1766 /**
1767 * init_mc() - create and register as the master context
1768 * @cfg: Internal structure associated with the host.
1769 * index: HWQ Index of the master context.
1770 *
1771 * Return: 0 on success, -errno on failure
1772 */
1773 static int init_mc(struct cxlflash_cfg *cfg, u32 index)
1774 {
1775 struct cxl_context *ctx;
1776 struct device *dev = &cfg->dev->dev;
1777 struct hwq *hwq = get_hwq(cfg->afu, index);
1778 int rc = 0;
1779 enum undo_level level;
1780
1781 hwq->afu = cfg->afu;
1782 hwq->index = index;
1783
1784 if (index == PRIMARY_HWQ)
1785 ctx = cxl_get_context(cfg->dev);
1786 else
1787 ctx = cxl_dev_context_init(cfg->dev);
1788 if (unlikely(!ctx)) {
1789 rc = -ENOMEM;
1790 goto err1;
1791 }
1792
1793 WARN_ON(hwq->ctx);
1794 hwq->ctx = ctx;
1795
1796 /* Set it up as a master with the CXL */
1797 cxl_set_master(ctx);
1798
1799 /* Reset AFU when initializing primary context */
1800 if (index == PRIMARY_HWQ) {
1801 rc = cxl_afu_reset(ctx);
1802 if (unlikely(rc)) {
1803 dev_err(dev, "%s: AFU reset failed rc=%d\n",
1804 __func__, rc);
1805 goto err1;
1806 }
1807 }
1808
1809 level = init_intr(cfg, hwq);
1810 if (unlikely(level)) {
1811 dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
1812 goto err2;
1813 }
1814
1815 /* This performs the equivalent of the CXL_IOCTL_START_WORK.
1816 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process
1817 * element (pe) that is embedded in the context (ctx)
1818 */
1819 rc = start_context(cfg, index);
1820 if (unlikely(rc)) {
1821 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
1822 level = UNMAP_THREE;
1823 goto err2;
1824 }
1825
1826 out:
1827 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1828 return rc;
1829 err2:
1830 term_intr(cfg, level, index);
1831 if (index != PRIMARY_HWQ)
1832 cxl_release_context(ctx);
1833 err1:
1834 hwq->ctx = NULL;
1835 goto out;
1836 }
1837
1838 /**
1839 * get_num_afu_ports() - determines and configures the number of AFU ports
1840 * @cfg: Internal structure associated with the host.
1841 *
1842 * This routine determines the number of AFU ports by converting the global
1843 * port selection mask. The converted value is only valid following an AFU
1844 * reset (explicit or power-on). This routine must be invoked shortly after
1845 * mapping as other routines are dependent on the number of ports during the
1846 * initialization sequence.
1847 *
1848 * To support legacy AFUs that might not have reflected an initial global
1849 * port mask (value read is 0), default to the number of ports originally
1850 * supported by the cxlflash driver (2) before hardware with other port
1851 * offerings was introduced.
1852 */
1853 static void get_num_afu_ports(struct cxlflash_cfg *cfg)
1854 {
1855 struct afu *afu = cfg->afu;
1856 struct device *dev = &cfg->dev->dev;
1857 u64 port_mask;
1858 int num_fc_ports = LEGACY_FC_PORTS;
1859
1860 port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1861 if (port_mask != 0ULL)
1862 num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS);
1863
1864 dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n",
1865 __func__, port_mask, num_fc_ports);
1866
1867 cfg->num_fc_ports = num_fc_ports;
1868 cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports);
1869 }
1870
1871 /**
1872 * init_afu() - setup as master context and start AFU
1873 * @cfg: Internal structure associated with the host.
1874 *
1875 * This routine is a higher level of control for configuring the
1876 * AFU on probe and reset paths.
1877 *
1878 * Return: 0 on success, -errno on failure
1879 */
1880 static int init_afu(struct cxlflash_cfg *cfg)
1881 {
1882 u64 reg;
1883 int rc = 0;
1884 struct afu *afu = cfg->afu;
1885 struct device *dev = &cfg->dev->dev;
1886 struct hwq *hwq;
1887 int i;
1888
1889 cxl_perst_reloads_same_image(cfg->cxl_afu, true);
1890
1891 for (i = 0; i < CXLFLASH_NUM_HWQS; i++) {
1892 rc = init_mc(cfg, i);
1893 if (rc) {
1894 dev_err(dev, "%s: init_mc failed rc=%d index=%d\n",
1895 __func__, rc, i);
1896 goto err1;
1897 }
1898 }
1899
1900 /* Map the entire MMIO space of the AFU using the first context */
1901 hwq = get_hwq(afu, PRIMARY_HWQ);
1902 afu->afu_map = cxl_psa_map(hwq->ctx);
1903 if (!afu->afu_map) {
1904 dev_err(dev, "%s: cxl_psa_map failed\n", __func__);
1905 rc = -ENOMEM;
1906 goto err1;
1907 }
1908
1909 /* No byte reverse on reading afu_version or string will be backwards */
1910 reg = readq(&afu->afu_map->global.regs.afu_version);
1911 memcpy(afu->version, &reg, sizeof(reg));
1912 afu->interface_version =
1913 readq_be(&afu->afu_map->global.regs.interface_version);
1914 if ((afu->interface_version + 1) == 0) {
1915 dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
1916 "interface version %016llx\n", afu->version,
1917 afu->interface_version);
1918 rc = -EINVAL;
1919 goto err1;
1920 }
1921
1922 if (afu_is_sq_cmd_mode(afu)) {
1923 afu->send_cmd = send_cmd_sq;
1924 afu->context_reset = context_reset_sq;
1925 } else {
1926 afu->send_cmd = send_cmd_ioarrin;
1927 afu->context_reset = context_reset_ioarrin;
1928 }
1929
1930 dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
1931 afu->version, afu->interface_version);
1932
1933 get_num_afu_ports(cfg);
1934
1935 rc = start_afu(cfg);
1936 if (rc) {
1937 dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
1938 goto err1;
1939 }
1940
1941 afu_err_intr_init(cfg->afu);
1942 for (i = 0; i < CXLFLASH_NUM_HWQS; i++) {
1943 hwq = get_hwq(afu, i);
1944
1945 spin_lock_init(&hwq->rrin_slock);
1946 hwq->room = readq_be(&hwq->host_map->cmd_room);
1947 }
1948
1949 /* Restore the LUN mappings */
1950 cxlflash_restore_luntable(cfg);
1951 out:
1952 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1953 return rc;
1954
1955 err1:
1956 for (i = CXLFLASH_NUM_HWQS - 1; i >= 0; i--) {
1957 term_intr(cfg, UNMAP_THREE, i);
1958 term_mc(cfg, i);
1959 }
1960 goto out;
1961 }
1962
1963 /**
1964 * cxlflash_afu_sync() - builds and sends an AFU sync command
1965 * @afu: AFU associated with the host.
1966 * @ctx_hndl_u: Identifies context requesting sync.
1967 * @res_hndl_u: Identifies resource requesting sync.
1968 * @mode: Type of sync to issue (lightweight, heavyweight, global).
1969 *
1970 * The AFU can only take 1 sync command at a time. This routine enforces this
1971 * limitation by using a mutex to provide exclusive access to the AFU during
1972 * the sync. This design point requires calling threads to not be on interrupt
1973 * context due to the possibility of sleeping during concurrent sync operations.
1974 *
1975 * AFU sync operations are only necessary and allowed when the device is
1976 * operating normally. When not operating normally, sync requests can occur as
1977 * part of cleaning up resources associated with an adapter prior to removal.
1978 * In this scenario, these requests are simply ignored (safe due to the AFU
1979 * going away).
1980 *
1981 * Return:
1982 * 0 on success
1983 * -1 on failure
1984 */
1985 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx_hndl_u,
1986 res_hndl_t res_hndl_u, u8 mode)
1987 {
1988 struct cxlflash_cfg *cfg = afu->parent;
1989 struct device *dev = &cfg->dev->dev;
1990 struct afu_cmd *cmd = NULL;
1991 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
1992 char *buf = NULL;
1993 int rc = 0;
1994 static DEFINE_MUTEX(sync_active);
1995
1996 if (cfg->state != STATE_NORMAL) {
1997 dev_dbg(dev, "%s: Sync not required state=%u\n",
1998 __func__, cfg->state);
1999 return 0;
2000 }
2001
2002 mutex_lock(&sync_active);
2003 atomic_inc(&afu->cmds_active);
2004 buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
2005 if (unlikely(!buf)) {
2006 dev_err(dev, "%s: no memory for command\n", __func__);
2007 rc = -1;
2008 goto out;
2009 }
2010
2011 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
2012 init_completion(&cmd->cevent);
2013 cmd->parent = afu;
2014 cmd->hwq_index = hwq->index;
2015
2016 dev_dbg(dev, "%s: afu=%p cmd=%p %d\n", __func__, afu, cmd, ctx_hndl_u);
2017
2018 cmd->rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
2019 cmd->rcb.ctx_id = hwq->ctx_hndl;
2020 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
2021 cmd->rcb.timeout = MC_AFU_SYNC_TIMEOUT;
2022
2023 cmd->rcb.cdb[0] = 0xC0; /* AFU Sync */
2024 cmd->rcb.cdb[1] = mode;
2025
2026 /* The cdb is aligned, no unaligned accessors required */
2027 *((__be16 *)&cmd->rcb.cdb[2]) = cpu_to_be16(ctx_hndl_u);
2028 *((__be32 *)&cmd->rcb.cdb[4]) = cpu_to_be32(res_hndl_u);
2029
2030 rc = afu->send_cmd(afu, cmd);
2031 if (unlikely(rc))
2032 goto out;
2033
2034 rc = wait_resp(afu, cmd);
2035 if (unlikely(rc))
2036 rc = -1;
2037 out:
2038 atomic_dec(&afu->cmds_active);
2039 mutex_unlock(&sync_active);
2040 kfree(buf);
2041 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2042 return rc;
2043 }
2044
2045 /**
2046 * afu_reset() - resets the AFU
2047 * @cfg: Internal structure associated with the host.
2048 *
2049 * Return: 0 on success, -errno on failure
2050 */
2051 static int afu_reset(struct cxlflash_cfg *cfg)
2052 {
2053 struct device *dev = &cfg->dev->dev;
2054 int rc = 0;
2055
2056 /* Stop the context before the reset. Since the context is
2057 * no longer available restart it after the reset is complete
2058 */
2059 term_afu(cfg);
2060
2061 rc = init_afu(cfg);
2062
2063 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2064 return rc;
2065 }
2066
2067 /**
2068 * drain_ioctls() - wait until all currently executing ioctls have completed
2069 * @cfg: Internal structure associated with the host.
2070 *
2071 * Obtain write access to read/write semaphore that wraps ioctl
2072 * handling to 'drain' ioctls currently executing.
2073 */
2074 static void drain_ioctls(struct cxlflash_cfg *cfg)
2075 {
2076 down_write(&cfg->ioctl_rwsem);
2077 up_write(&cfg->ioctl_rwsem);
2078 }
2079
2080 /**
2081 * cxlflash_eh_device_reset_handler() - reset a single LUN
2082 * @scp: SCSI command to send.
2083 *
2084 * Return:
2085 * SUCCESS as defined in scsi/scsi.h
2086 * FAILED as defined in scsi/scsi.h
2087 */
2088 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
2089 {
2090 int rc = SUCCESS;
2091 struct Scsi_Host *host = scp->device->host;
2092 struct cxlflash_cfg *cfg = shost_priv(host);
2093 struct device *dev = &cfg->dev->dev;
2094 struct afu *afu = cfg->afu;
2095 int rcr = 0;
2096
2097 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2098 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2099 scp->device->channel, scp->device->id, scp->device->lun,
2100 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2101 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2102 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2103 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2104
2105 retry:
2106 switch (cfg->state) {
2107 case STATE_NORMAL:
2108 rcr = send_tmf(afu, scp, TMF_LUN_RESET);
2109 if (unlikely(rcr))
2110 rc = FAILED;
2111 break;
2112 case STATE_RESET:
2113 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2114 goto retry;
2115 default:
2116 rc = FAILED;
2117 break;
2118 }
2119
2120 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2121 return rc;
2122 }
2123
2124 /**
2125 * cxlflash_eh_host_reset_handler() - reset the host adapter
2126 * @scp: SCSI command from stack identifying host.
2127 *
2128 * Following a reset, the state is evaluated again in case an EEH occurred
2129 * during the reset. In such a scenario, the host reset will either yield
2130 * until the EEH recovery is complete or return success or failure based
2131 * upon the current device state.
2132 *
2133 * Return:
2134 * SUCCESS as defined in scsi/scsi.h
2135 * FAILED as defined in scsi/scsi.h
2136 */
2137 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
2138 {
2139 int rc = SUCCESS;
2140 int rcr = 0;
2141 struct Scsi_Host *host = scp->device->host;
2142 struct cxlflash_cfg *cfg = shost_priv(host);
2143 struct device *dev = &cfg->dev->dev;
2144
2145 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2146 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2147 scp->device->channel, scp->device->id, scp->device->lun,
2148 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2149 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2150 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2151 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2152
2153 switch (cfg->state) {
2154 case STATE_NORMAL:
2155 cfg->state = STATE_RESET;
2156 drain_ioctls(cfg);
2157 cxlflash_mark_contexts_error(cfg);
2158 rcr = afu_reset(cfg);
2159 if (rcr) {
2160 rc = FAILED;
2161 cfg->state = STATE_FAILTERM;
2162 } else
2163 cfg->state = STATE_NORMAL;
2164 wake_up_all(&cfg->reset_waitq);
2165 ssleep(1);
2166 /* fall through */
2167 case STATE_RESET:
2168 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2169 if (cfg->state == STATE_NORMAL)
2170 break;
2171 /* fall through */
2172 default:
2173 rc = FAILED;
2174 break;
2175 }
2176
2177 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2178 return rc;
2179 }
2180
2181 /**
2182 * cxlflash_change_queue_depth() - change the queue depth for the device
2183 * @sdev: SCSI device destined for queue depth change.
2184 * @qdepth: Requested queue depth value to set.
2185 *
2186 * The requested queue depth is capped to the maximum supported value.
2187 *
2188 * Return: The actual queue depth set.
2189 */
2190 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2191 {
2192
2193 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2194 qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2195
2196 scsi_change_queue_depth(sdev, qdepth);
2197 return sdev->queue_depth;
2198 }
2199
2200 /**
2201 * cxlflash_show_port_status() - queries and presents the current port status
2202 * @port: Desired port for status reporting.
2203 * @cfg: Internal structure associated with the host.
2204 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2205 *
2206 * Return: The size of the ASCII string returned in @buf or -EINVAL.
2207 */
2208 static ssize_t cxlflash_show_port_status(u32 port,
2209 struct cxlflash_cfg *cfg,
2210 char *buf)
2211 {
2212 struct device *dev = &cfg->dev->dev;
2213 char *disp_status;
2214 u64 status;
2215 __be64 __iomem *fc_port_regs;
2216
2217 WARN_ON(port >= MAX_FC_PORTS);
2218
2219 if (port >= cfg->num_fc_ports) {
2220 dev_info(dev, "%s: Port %d not supported on this card.\n",
2221 __func__, port);
2222 return -EINVAL;
2223 }
2224
2225 fc_port_regs = get_fc_port_regs(cfg, port);
2226 status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]);
2227 status &= FC_MTIP_STATUS_MASK;
2228
2229 if (status == FC_MTIP_STATUS_ONLINE)
2230 disp_status = "online";
2231 else if (status == FC_MTIP_STATUS_OFFLINE)
2232 disp_status = "offline";
2233 else
2234 disp_status = "unknown";
2235
2236 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2237 }
2238
2239 /**
2240 * port0_show() - queries and presents the current status of port 0
2241 * @dev: Generic device associated with the host owning the port.
2242 * @attr: Device attribute representing the port.
2243 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2244 *
2245 * Return: The size of the ASCII string returned in @buf.
2246 */
2247 static ssize_t port0_show(struct device *dev,
2248 struct device_attribute *attr,
2249 char *buf)
2250 {
2251 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2252
2253 return cxlflash_show_port_status(0, cfg, buf);
2254 }
2255
2256 /**
2257 * port1_show() - queries and presents the current status of port 1
2258 * @dev: Generic device associated with the host owning the port.
2259 * @attr: Device attribute representing the port.
2260 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2261 *
2262 * Return: The size of the ASCII string returned in @buf.
2263 */
2264 static ssize_t port1_show(struct device *dev,
2265 struct device_attribute *attr,
2266 char *buf)
2267 {
2268 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2269
2270 return cxlflash_show_port_status(1, cfg, buf);
2271 }
2272
2273 /**
2274 * port2_show() - queries and presents the current status of port 2
2275 * @dev: Generic device associated with the host owning the port.
2276 * @attr: Device attribute representing the port.
2277 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2278 *
2279 * Return: The size of the ASCII string returned in @buf.
2280 */
2281 static ssize_t port2_show(struct device *dev,
2282 struct device_attribute *attr,
2283 char *buf)
2284 {
2285 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2286
2287 return cxlflash_show_port_status(2, cfg, buf);
2288 }
2289
2290 /**
2291 * port3_show() - queries and presents the current status of port 3
2292 * @dev: Generic device associated with the host owning the port.
2293 * @attr: Device attribute representing the port.
2294 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2295 *
2296 * Return: The size of the ASCII string returned in @buf.
2297 */
2298 static ssize_t port3_show(struct device *dev,
2299 struct device_attribute *attr,
2300 char *buf)
2301 {
2302 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2303
2304 return cxlflash_show_port_status(3, cfg, buf);
2305 }
2306
2307 /**
2308 * lun_mode_show() - presents the current LUN mode of the host
2309 * @dev: Generic device associated with the host.
2310 * @attr: Device attribute representing the LUN mode.
2311 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2312 *
2313 * Return: The size of the ASCII string returned in @buf.
2314 */
2315 static ssize_t lun_mode_show(struct device *dev,
2316 struct device_attribute *attr, char *buf)
2317 {
2318 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2319 struct afu *afu = cfg->afu;
2320
2321 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2322 }
2323
2324 /**
2325 * lun_mode_store() - sets the LUN mode of the host
2326 * @dev: Generic device associated with the host.
2327 * @attr: Device attribute representing the LUN mode.
2328 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2329 * @count: Length of data resizing in @buf.
2330 *
2331 * The CXL Flash AFU supports a dummy LUN mode where the external
2332 * links and storage are not required. Space on the FPGA is used
2333 * to create 1 or 2 small LUNs which are presented to the system
2334 * as if they were a normal storage device. This feature is useful
2335 * during development and also provides manufacturing with a way
2336 * to test the AFU without an actual device.
2337 *
2338 * 0 = external LUN[s] (default)
2339 * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2340 * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2341 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2342 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2343 *
2344 * Return: The size of the ASCII string returned in @buf.
2345 */
2346 static ssize_t lun_mode_store(struct device *dev,
2347 struct device_attribute *attr,
2348 const char *buf, size_t count)
2349 {
2350 struct Scsi_Host *shost = class_to_shost(dev);
2351 struct cxlflash_cfg *cfg = shost_priv(shost);
2352 struct afu *afu = cfg->afu;
2353 int rc;
2354 u32 lun_mode;
2355
2356 rc = kstrtouint(buf, 10, &lun_mode);
2357 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2358 afu->internal_lun = lun_mode;
2359
2360 /*
2361 * When configured for internal LUN, there is only one channel,
2362 * channel number 0, else there will be one less than the number
2363 * of fc ports for this card.
2364 */
2365 if (afu->internal_lun)
2366 shost->max_channel = 0;
2367 else
2368 shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports);
2369
2370 afu_reset(cfg);
2371 scsi_scan_host(cfg->host);
2372 }
2373
2374 return count;
2375 }
2376
2377 /**
2378 * ioctl_version_show() - presents the current ioctl version of the host
2379 * @dev: Generic device associated with the host.
2380 * @attr: Device attribute representing the ioctl version.
2381 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version.
2382 *
2383 * Return: The size of the ASCII string returned in @buf.
2384 */
2385 static ssize_t ioctl_version_show(struct device *dev,
2386 struct device_attribute *attr, char *buf)
2387 {
2388 return scnprintf(buf, PAGE_SIZE, "%u\n", DK_CXLFLASH_VERSION_0);
2389 }
2390
2391 /**
2392 * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2393 * @port: Desired port for status reporting.
2394 * @cfg: Internal structure associated with the host.
2395 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2396 *
2397 * Return: The size of the ASCII string returned in @buf or -EINVAL.
2398 */
2399 static ssize_t cxlflash_show_port_lun_table(u32 port,
2400 struct cxlflash_cfg *cfg,
2401 char *buf)
2402 {
2403 struct device *dev = &cfg->dev->dev;
2404 __be64 __iomem *fc_port_luns;
2405 int i;
2406 ssize_t bytes = 0;
2407
2408 WARN_ON(port >= MAX_FC_PORTS);
2409
2410 if (port >= cfg->num_fc_ports) {
2411 dev_info(dev, "%s: Port %d not supported on this card.\n",
2412 __func__, port);
2413 return -EINVAL;
2414 }
2415
2416 fc_port_luns = get_fc_port_luns(cfg, port);
2417
2418 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2419 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2420 "%03d: %016llx\n",
2421 i, readq_be(&fc_port_luns[i]));
2422 return bytes;
2423 }
2424
2425 /**
2426 * port0_lun_table_show() - presents the current LUN table of port 0
2427 * @dev: Generic device associated with the host owning the port.
2428 * @attr: Device attribute representing the port.
2429 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2430 *
2431 * Return: The size of the ASCII string returned in @buf.
2432 */
2433 static ssize_t port0_lun_table_show(struct device *dev,
2434 struct device_attribute *attr,
2435 char *buf)
2436 {
2437 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2438
2439 return cxlflash_show_port_lun_table(0, cfg, buf);
2440 }
2441
2442 /**
2443 * port1_lun_table_show() - presents the current LUN table of port 1
2444 * @dev: Generic device associated with the host owning the port.
2445 * @attr: Device attribute representing the port.
2446 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2447 *
2448 * Return: The size of the ASCII string returned in @buf.
2449 */
2450 static ssize_t port1_lun_table_show(struct device *dev,
2451 struct device_attribute *attr,
2452 char *buf)
2453 {
2454 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2455
2456 return cxlflash_show_port_lun_table(1, cfg, buf);
2457 }
2458
2459 /**
2460 * port2_lun_table_show() - presents the current LUN table of port 2
2461 * @dev: Generic device associated with the host owning the port.
2462 * @attr: Device attribute representing the port.
2463 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2464 *
2465 * Return: The size of the ASCII string returned in @buf.
2466 */
2467 static ssize_t port2_lun_table_show(struct device *dev,
2468 struct device_attribute *attr,
2469 char *buf)
2470 {
2471 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2472
2473 return cxlflash_show_port_lun_table(2, cfg, buf);
2474 }
2475
2476 /**
2477 * port3_lun_table_show() - presents the current LUN table of port 3
2478 * @dev: Generic device associated with the host owning the port.
2479 * @attr: Device attribute representing the port.
2480 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2481 *
2482 * Return: The size of the ASCII string returned in @buf.
2483 */
2484 static ssize_t port3_lun_table_show(struct device *dev,
2485 struct device_attribute *attr,
2486 char *buf)
2487 {
2488 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2489
2490 return cxlflash_show_port_lun_table(3, cfg, buf);
2491 }
2492
2493 /**
2494 * irqpoll_weight_show() - presents the current IRQ poll weight for the host
2495 * @dev: Generic device associated with the host.
2496 * @attr: Device attribute representing the IRQ poll weight.
2497 * @buf: Buffer of length PAGE_SIZE to report back the current IRQ poll
2498 * weight in ASCII.
2499 *
2500 * An IRQ poll weight of 0 indicates polling is disabled.
2501 *
2502 * Return: The size of the ASCII string returned in @buf.
2503 */
2504 static ssize_t irqpoll_weight_show(struct device *dev,
2505 struct device_attribute *attr, char *buf)
2506 {
2507 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2508 struct afu *afu = cfg->afu;
2509
2510 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
2511 }
2512
2513 /**
2514 * irqpoll_weight_store() - sets the current IRQ poll weight for the host
2515 * @dev: Generic device associated with the host.
2516 * @attr: Device attribute representing the IRQ poll weight.
2517 * @buf: Buffer of length PAGE_SIZE containing the desired IRQ poll
2518 * weight in ASCII.
2519 * @count: Length of data resizing in @buf.
2520 *
2521 * An IRQ poll weight of 0 indicates polling is disabled.
2522 *
2523 * Return: The size of the ASCII string returned in @buf.
2524 */
2525 static ssize_t irqpoll_weight_store(struct device *dev,
2526 struct device_attribute *attr,
2527 const char *buf, size_t count)
2528 {
2529 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2530 struct device *cfgdev = &cfg->dev->dev;
2531 struct afu *afu = cfg->afu;
2532 struct hwq *hwq;
2533 u32 weight;
2534 int rc, i;
2535
2536 rc = kstrtouint(buf, 10, &weight);
2537 if (rc)
2538 return -EINVAL;
2539
2540 if (weight > 256) {
2541 dev_info(cfgdev,
2542 "Invalid IRQ poll weight. It must be 256 or less.\n");
2543 return -EINVAL;
2544 }
2545
2546 if (weight == afu->irqpoll_weight) {
2547 dev_info(cfgdev,
2548 "Current IRQ poll weight has the same weight.\n");
2549 return -EINVAL;
2550 }
2551
2552 if (afu_is_irqpoll_enabled(afu)) {
2553 for (i = 0; i < CXLFLASH_NUM_HWQS; i++) {
2554 hwq = get_hwq(afu, i);
2555
2556 irq_poll_disable(&hwq->irqpoll);
2557 }
2558 }
2559
2560 afu->irqpoll_weight = weight;
2561
2562 if (weight > 0) {
2563 for (i = 0; i < CXLFLASH_NUM_HWQS; i++) {
2564 hwq = get_hwq(afu, i);
2565
2566 irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll);
2567 }
2568 }
2569
2570 return count;
2571 }
2572
2573 /**
2574 * mode_show() - presents the current mode of the device
2575 * @dev: Generic device associated with the device.
2576 * @attr: Device attribute representing the device mode.
2577 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
2578 *
2579 * Return: The size of the ASCII string returned in @buf.
2580 */
2581 static ssize_t mode_show(struct device *dev,
2582 struct device_attribute *attr, char *buf)
2583 {
2584 struct scsi_device *sdev = to_scsi_device(dev);
2585
2586 return scnprintf(buf, PAGE_SIZE, "%s\n",
2587 sdev->hostdata ? "superpipe" : "legacy");
2588 }
2589
2590 /*
2591 * Host attributes
2592 */
2593 static DEVICE_ATTR_RO(port0);
2594 static DEVICE_ATTR_RO(port1);
2595 static DEVICE_ATTR_RO(port2);
2596 static DEVICE_ATTR_RO(port3);
2597 static DEVICE_ATTR_RW(lun_mode);
2598 static DEVICE_ATTR_RO(ioctl_version);
2599 static DEVICE_ATTR_RO(port0_lun_table);
2600 static DEVICE_ATTR_RO(port1_lun_table);
2601 static DEVICE_ATTR_RO(port2_lun_table);
2602 static DEVICE_ATTR_RO(port3_lun_table);
2603 static DEVICE_ATTR_RW(irqpoll_weight);
2604
2605 static struct device_attribute *cxlflash_host_attrs[] = {
2606 &dev_attr_port0,
2607 &dev_attr_port1,
2608 &dev_attr_port2,
2609 &dev_attr_port3,
2610 &dev_attr_lun_mode,
2611 &dev_attr_ioctl_version,
2612 &dev_attr_port0_lun_table,
2613 &dev_attr_port1_lun_table,
2614 &dev_attr_port2_lun_table,
2615 &dev_attr_port3_lun_table,
2616 &dev_attr_irqpoll_weight,
2617 NULL
2618 };
2619
2620 /*
2621 * Device attributes
2622 */
2623 static DEVICE_ATTR_RO(mode);
2624
2625 static struct device_attribute *cxlflash_dev_attrs[] = {
2626 &dev_attr_mode,
2627 NULL
2628 };
2629
2630 /*
2631 * Host template
2632 */
2633 static struct scsi_host_template driver_template = {
2634 .module = THIS_MODULE,
2635 .name = CXLFLASH_ADAPTER_NAME,
2636 .info = cxlflash_driver_info,
2637 .ioctl = cxlflash_ioctl,
2638 .proc_name = CXLFLASH_NAME,
2639 .queuecommand = cxlflash_queuecommand,
2640 .eh_device_reset_handler = cxlflash_eh_device_reset_handler,
2641 .eh_host_reset_handler = cxlflash_eh_host_reset_handler,
2642 .change_queue_depth = cxlflash_change_queue_depth,
2643 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
2644 .can_queue = CXLFLASH_MAX_CMDS,
2645 .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
2646 .this_id = -1,
2647 .sg_tablesize = 1, /* No scatter gather support */
2648 .max_sectors = CXLFLASH_MAX_SECTORS,
2649 .use_clustering = ENABLE_CLUSTERING,
2650 .shost_attrs = cxlflash_host_attrs,
2651 .sdev_attrs = cxlflash_dev_attrs,
2652 };
2653
2654 /*
2655 * Device dependent values
2656 */
2657 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
2658 0ULL };
2659 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
2660 CXLFLASH_NOTIFY_SHUTDOWN };
2661 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
2662 CXLFLASH_NOTIFY_SHUTDOWN };
2663
2664 /*
2665 * PCI device binding table
2666 */
2667 static struct pci_device_id cxlflash_pci_table[] = {
2668 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
2669 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
2670 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
2671 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
2672 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
2673 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
2674 {}
2675 };
2676
2677 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
2678
2679 /**
2680 * cxlflash_worker_thread() - work thread handler for the AFU
2681 * @work: Work structure contained within cxlflash associated with host.
2682 *
2683 * Handles the following events:
2684 * - Link reset which cannot be performed on interrupt context due to
2685 * blocking up to a few seconds
2686 * - Rescan the host
2687 */
2688 static void cxlflash_worker_thread(struct work_struct *work)
2689 {
2690 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
2691 work_q);
2692 struct afu *afu = cfg->afu;
2693 struct device *dev = &cfg->dev->dev;
2694 __be64 __iomem *fc_port_regs;
2695 int port;
2696 ulong lock_flags;
2697
2698 /* Avoid MMIO if the device has failed */
2699
2700 if (cfg->state != STATE_NORMAL)
2701 return;
2702
2703 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2704
2705 if (cfg->lr_state == LINK_RESET_REQUIRED) {
2706 port = cfg->lr_port;
2707 if (port < 0)
2708 dev_err(dev, "%s: invalid port index %d\n",
2709 __func__, port);
2710 else {
2711 spin_unlock_irqrestore(cfg->host->host_lock,
2712 lock_flags);
2713
2714 /* The reset can block... */
2715 fc_port_regs = get_fc_port_regs(cfg, port);
2716 afu_link_reset(afu, port, fc_port_regs);
2717 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2718 }
2719
2720 cfg->lr_state = LINK_RESET_COMPLETE;
2721 }
2722
2723 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
2724
2725 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
2726 scsi_scan_host(cfg->host);
2727 }
2728
2729 /**
2730 * cxlflash_probe() - PCI entry point to add host
2731 * @pdev: PCI device associated with the host.
2732 * @dev_id: PCI device id associated with device.
2733 *
2734 * The device will initially start out in a 'probing' state and
2735 * transition to the 'normal' state at the end of a successful
2736 * probe. Should an EEH event occur during probe, the notification
2737 * thread (error_detected()) will wait until the probe handler
2738 * is nearly complete. At that time, the device will be moved to
2739 * a 'probed' state and the EEH thread woken up to drive the slot
2740 * reset and recovery (device moves to 'normal' state). Meanwhile,
2741 * the probe will be allowed to exit successfully.
2742 *
2743 * Return: 0 on success, -errno on failure
2744 */
2745 static int cxlflash_probe(struct pci_dev *pdev,
2746 const struct pci_device_id *dev_id)
2747 {
2748 struct Scsi_Host *host;
2749 struct cxlflash_cfg *cfg = NULL;
2750 struct device *dev = &pdev->dev;
2751 struct dev_dependent_vals *ddv;
2752 int rc = 0;
2753 int k;
2754
2755 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
2756 __func__, pdev->irq);
2757
2758 ddv = (struct dev_dependent_vals *)dev_id->driver_data;
2759 driver_template.max_sectors = ddv->max_sectors;
2760
2761 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
2762 if (!host) {
2763 dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
2764 rc = -ENOMEM;
2765 goto out;
2766 }
2767
2768 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
2769 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
2770 host->unique_id = host->host_no;
2771 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
2772
2773 cfg = shost_priv(host);
2774 cfg->host = host;
2775 rc = alloc_mem(cfg);
2776 if (rc) {
2777 dev_err(dev, "%s: alloc_mem failed\n", __func__);
2778 rc = -ENOMEM;
2779 scsi_host_put(cfg->host);
2780 goto out;
2781 }
2782
2783 cfg->init_state = INIT_STATE_NONE;
2784 cfg->dev = pdev;
2785 cfg->cxl_fops = cxlflash_cxl_fops;
2786
2787 /*
2788 * Promoted LUNs move to the top of the LUN table. The rest stay on
2789 * the bottom half. The bottom half grows from the end (index = 255),
2790 * whereas the top half grows from the beginning (index = 0).
2791 *
2792 * Initialize the last LUN index for all possible ports.
2793 */
2794 cfg->promote_lun_index = 0;
2795
2796 for (k = 0; k < MAX_FC_PORTS; k++)
2797 cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
2798
2799 cfg->dev_id = (struct pci_device_id *)dev_id;
2800
2801 init_waitqueue_head(&cfg->tmf_waitq);
2802 init_waitqueue_head(&cfg->reset_waitq);
2803
2804 INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
2805 cfg->lr_state = LINK_RESET_INVALID;
2806 cfg->lr_port = -1;
2807 spin_lock_init(&cfg->tmf_slock);
2808 mutex_init(&cfg->ctx_tbl_list_mutex);
2809 mutex_init(&cfg->ctx_recovery_mutex);
2810 init_rwsem(&cfg->ioctl_rwsem);
2811 INIT_LIST_HEAD(&cfg->ctx_err_recovery);
2812 INIT_LIST_HEAD(&cfg->lluns);
2813
2814 pci_set_drvdata(pdev, cfg);
2815
2816 cfg->cxl_afu = cxl_pci_to_afu(pdev);
2817
2818 rc = init_pci(cfg);
2819 if (rc) {
2820 dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
2821 goto out_remove;
2822 }
2823 cfg->init_state = INIT_STATE_PCI;
2824
2825 rc = init_afu(cfg);
2826 if (rc && !wq_has_sleeper(&cfg->reset_waitq)) {
2827 dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
2828 goto out_remove;
2829 }
2830 cfg->init_state = INIT_STATE_AFU;
2831
2832 rc = init_scsi(cfg);
2833 if (rc) {
2834 dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
2835 goto out_remove;
2836 }
2837 cfg->init_state = INIT_STATE_SCSI;
2838
2839 if (wq_has_sleeper(&cfg->reset_waitq)) {
2840 cfg->state = STATE_PROBED;
2841 wake_up_all(&cfg->reset_waitq);
2842 } else
2843 cfg->state = STATE_NORMAL;
2844 out:
2845 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2846 return rc;
2847
2848 out_remove:
2849 cxlflash_remove(pdev);
2850 goto out;
2851 }
2852
2853 /**
2854 * cxlflash_pci_error_detected() - called when a PCI error is detected
2855 * @pdev: PCI device struct.
2856 * @state: PCI channel state.
2857 *
2858 * When an EEH occurs during an active reset, wait until the reset is
2859 * complete and then take action based upon the device state.
2860 *
2861 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
2862 */
2863 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
2864 pci_channel_state_t state)
2865 {
2866 int rc = 0;
2867 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2868 struct device *dev = &cfg->dev->dev;
2869
2870 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
2871
2872 switch (state) {
2873 case pci_channel_io_frozen:
2874 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
2875 cfg->state != STATE_PROBING);
2876 if (cfg->state == STATE_FAILTERM)
2877 return PCI_ERS_RESULT_DISCONNECT;
2878
2879 cfg->state = STATE_RESET;
2880 scsi_block_requests(cfg->host);
2881 drain_ioctls(cfg);
2882 rc = cxlflash_mark_contexts_error(cfg);
2883 if (unlikely(rc))
2884 dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
2885 __func__, rc);
2886 term_afu(cfg);
2887 return PCI_ERS_RESULT_NEED_RESET;
2888 case pci_channel_io_perm_failure:
2889 cfg->state = STATE_FAILTERM;
2890 wake_up_all(&cfg->reset_waitq);
2891 scsi_unblock_requests(cfg->host);
2892 return PCI_ERS_RESULT_DISCONNECT;
2893 default:
2894 break;
2895 }
2896 return PCI_ERS_RESULT_NEED_RESET;
2897 }
2898
2899 /**
2900 * cxlflash_pci_slot_reset() - called when PCI slot has been reset
2901 * @pdev: PCI device struct.
2902 *
2903 * This routine is called by the pci error recovery code after the PCI
2904 * slot has been reset, just before we should resume normal operations.
2905 *
2906 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
2907 */
2908 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
2909 {
2910 int rc = 0;
2911 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2912 struct device *dev = &cfg->dev->dev;
2913
2914 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2915
2916 rc = init_afu(cfg);
2917 if (unlikely(rc)) {
2918 dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
2919 return PCI_ERS_RESULT_DISCONNECT;
2920 }
2921
2922 return PCI_ERS_RESULT_RECOVERED;
2923 }
2924
2925 /**
2926 * cxlflash_pci_resume() - called when normal operation can resume
2927 * @pdev: PCI device struct
2928 */
2929 static void cxlflash_pci_resume(struct pci_dev *pdev)
2930 {
2931 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2932 struct device *dev = &cfg->dev->dev;
2933
2934 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2935
2936 cfg->state = STATE_NORMAL;
2937 wake_up_all(&cfg->reset_waitq);
2938 scsi_unblock_requests(cfg->host);
2939 }
2940
2941 static const struct pci_error_handlers cxlflash_err_handler = {
2942 .error_detected = cxlflash_pci_error_detected,
2943 .slot_reset = cxlflash_pci_slot_reset,
2944 .resume = cxlflash_pci_resume,
2945 };
2946
2947 /*
2948 * PCI device structure
2949 */
2950 static struct pci_driver cxlflash_driver = {
2951 .name = CXLFLASH_NAME,
2952 .id_table = cxlflash_pci_table,
2953 .probe = cxlflash_probe,
2954 .remove = cxlflash_remove,
2955 .shutdown = cxlflash_remove,
2956 .err_handler = &cxlflash_err_handler,
2957 };
2958
2959 /**
2960 * init_cxlflash() - module entry point
2961 *
2962 * Return: 0 on success, -errno on failure
2963 */
2964 static int __init init_cxlflash(void)
2965 {
2966 check_sizes();
2967 cxlflash_list_init();
2968
2969 return pci_register_driver(&cxlflash_driver);
2970 }
2971
2972 /**
2973 * exit_cxlflash() - module exit point
2974 */
2975 static void __exit exit_cxlflash(void)
2976 {
2977 cxlflash_term_global_luns();
2978 cxlflash_free_errpage();
2979
2980 pci_unregister_driver(&cxlflash_driver);
2981 }
2982
2983 module_init(init_cxlflash);
2984 module_exit(exit_cxlflash);