]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/cxlflash/main.c
scsi: cxlflash: Combine the send queue locks
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / cxlflash / main.c
1 /*
2 * CXL Flash Device Driver
3 *
4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
6 *
7 * Copyright (C) 2015 IBM Corporation
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15 #include <linux/delay.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19
20 #include <asm/unaligned.h>
21
22 #include <misc/cxl.h>
23
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_host.h>
26 #include <uapi/scsi/cxlflash_ioctl.h>
27
28 #include "main.h"
29 #include "sislite.h"
30 #include "common.h"
31
32 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
33 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
34 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
35 MODULE_LICENSE("GPL");
36
37 /**
38 * process_cmd_err() - command error handler
39 * @cmd: AFU command that experienced the error.
40 * @scp: SCSI command associated with the AFU command in error.
41 *
42 * Translates error bits from AFU command to SCSI command results.
43 */
44 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
45 {
46 struct afu *afu = cmd->parent;
47 struct cxlflash_cfg *cfg = afu->parent;
48 struct device *dev = &cfg->dev->dev;
49 struct sisl_ioarcb *ioarcb;
50 struct sisl_ioasa *ioasa;
51 u32 resid;
52
53 if (unlikely(!cmd))
54 return;
55
56 ioarcb = &(cmd->rcb);
57 ioasa = &(cmd->sa);
58
59 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
60 resid = ioasa->resid;
61 scsi_set_resid(scp, resid);
62 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
63 __func__, cmd, scp, resid);
64 }
65
66 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
67 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
68 __func__, cmd, scp);
69 scp->result = (DID_ERROR << 16);
70 }
71
72 dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
73 "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
74 ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
75 ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
76
77 if (ioasa->rc.scsi_rc) {
78 /* We have a SCSI status */
79 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
80 memcpy(scp->sense_buffer, ioasa->sense_data,
81 SISL_SENSE_DATA_LEN);
82 scp->result = ioasa->rc.scsi_rc;
83 } else
84 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
85 }
86
87 /*
88 * We encountered an error. Set scp->result based on nature
89 * of error.
90 */
91 if (ioasa->rc.fc_rc) {
92 /* We have an FC status */
93 switch (ioasa->rc.fc_rc) {
94 case SISL_FC_RC_LINKDOWN:
95 scp->result = (DID_REQUEUE << 16);
96 break;
97 case SISL_FC_RC_RESID:
98 /* This indicates an FCP resid underrun */
99 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
100 /* If the SISL_RC_FLAGS_OVERRUN flag was set,
101 * then we will handle this error else where.
102 * If not then we must handle it here.
103 * This is probably an AFU bug.
104 */
105 scp->result = (DID_ERROR << 16);
106 }
107 break;
108 case SISL_FC_RC_RESIDERR:
109 /* Resid mismatch between adapter and device */
110 case SISL_FC_RC_TGTABORT:
111 case SISL_FC_RC_ABORTOK:
112 case SISL_FC_RC_ABORTFAIL:
113 case SISL_FC_RC_NOLOGI:
114 case SISL_FC_RC_ABORTPEND:
115 case SISL_FC_RC_WRABORTPEND:
116 case SISL_FC_RC_NOEXP:
117 case SISL_FC_RC_INUSE:
118 scp->result = (DID_ERROR << 16);
119 break;
120 }
121 }
122
123 if (ioasa->rc.afu_rc) {
124 /* We have an AFU error */
125 switch (ioasa->rc.afu_rc) {
126 case SISL_AFU_RC_NO_CHANNELS:
127 scp->result = (DID_NO_CONNECT << 16);
128 break;
129 case SISL_AFU_RC_DATA_DMA_ERR:
130 switch (ioasa->afu_extra) {
131 case SISL_AFU_DMA_ERR_PAGE_IN:
132 /* Retry */
133 scp->result = (DID_IMM_RETRY << 16);
134 break;
135 case SISL_AFU_DMA_ERR_INVALID_EA:
136 default:
137 scp->result = (DID_ERROR << 16);
138 }
139 break;
140 case SISL_AFU_RC_OUT_OF_DATA_BUFS:
141 /* Retry */
142 scp->result = (DID_ALLOC_FAILURE << 16);
143 break;
144 default:
145 scp->result = (DID_ERROR << 16);
146 }
147 }
148 }
149
150 /**
151 * cmd_complete() - command completion handler
152 * @cmd: AFU command that has completed.
153 *
154 * Prepares and submits command that has either completed or timed out to
155 * the SCSI stack. Checks AFU command back into command pool for non-internal
156 * (cmd->scp populated) commands.
157 */
158 static void cmd_complete(struct afu_cmd *cmd)
159 {
160 struct scsi_cmnd *scp;
161 ulong lock_flags;
162 struct afu *afu = cmd->parent;
163 struct cxlflash_cfg *cfg = afu->parent;
164 struct device *dev = &cfg->dev->dev;
165 bool cmd_is_tmf;
166
167 if (cmd->scp) {
168 scp = cmd->scp;
169 if (unlikely(cmd->sa.ioasc))
170 process_cmd_err(cmd, scp);
171 else
172 scp->result = (DID_OK << 16);
173
174 cmd_is_tmf = cmd->cmd_tmf;
175
176 dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
177 __func__, scp, scp->result, cmd->sa.ioasc);
178
179 scp->scsi_done(scp);
180
181 if (cmd_is_tmf) {
182 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
183 cfg->tmf_active = false;
184 wake_up_all_locked(&cfg->tmf_waitq);
185 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
186 }
187 } else
188 complete(&cmd->cevent);
189 }
190
191 /**
192 * context_reset() - reset command owner context via specified register
193 * @cmd: AFU command that timed out.
194 * @reset_reg: MMIO register to perform reset.
195 */
196 static void context_reset(struct afu_cmd *cmd, __be64 __iomem *reset_reg)
197 {
198 int nretry = 0;
199 u64 rrin = 0x1;
200 struct afu *afu = cmd->parent;
201 struct cxlflash_cfg *cfg = afu->parent;
202 struct device *dev = &cfg->dev->dev;
203
204 dev_dbg(dev, "%s: cmd=%p\n", __func__, cmd);
205
206 writeq_be(rrin, reset_reg);
207 do {
208 rrin = readq_be(reset_reg);
209 if (rrin != 0x1)
210 break;
211 /* Double delay each time */
212 udelay(1 << nretry);
213 } while (nretry++ < MC_ROOM_RETRY_CNT);
214
215 dev_dbg(dev, "%s: returning rrin=%016llx nretry=%d\n",
216 __func__, rrin, nretry);
217 }
218
219 /**
220 * context_reset_ioarrin() - reset command owner context via IOARRIN register
221 * @cmd: AFU command that timed out.
222 */
223 static void context_reset_ioarrin(struct afu_cmd *cmd)
224 {
225 struct afu *afu = cmd->parent;
226 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
227
228 context_reset(cmd, &hwq->host_map->ioarrin);
229 }
230
231 /**
232 * context_reset_sq() - reset command owner context w/ SQ Context Reset register
233 * @cmd: AFU command that timed out.
234 */
235 static void context_reset_sq(struct afu_cmd *cmd)
236 {
237 struct afu *afu = cmd->parent;
238 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
239
240 context_reset(cmd, &hwq->host_map->sq_ctx_reset);
241 }
242
243 /**
244 * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
245 * @afu: AFU associated with the host.
246 * @cmd: AFU command to send.
247 *
248 * Return:
249 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
250 */
251 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
252 {
253 struct cxlflash_cfg *cfg = afu->parent;
254 struct device *dev = &cfg->dev->dev;
255 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
256 int rc = 0;
257 s64 room;
258 ulong lock_flags;
259
260 /*
261 * To avoid the performance penalty of MMIO, spread the update of
262 * 'room' over multiple commands.
263 */
264 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
265 if (--hwq->room < 0) {
266 room = readq_be(&hwq->host_map->cmd_room);
267 if (room <= 0) {
268 dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
269 "0x%02X, room=0x%016llX\n",
270 __func__, cmd->rcb.cdb[0], room);
271 hwq->room = 0;
272 rc = SCSI_MLQUEUE_HOST_BUSY;
273 goto out;
274 }
275 hwq->room = room - 1;
276 }
277
278 writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin);
279 out:
280 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
281 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n", __func__,
282 cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
283 return rc;
284 }
285
286 /**
287 * send_cmd_sq() - sends an AFU command via SQ ring
288 * @afu: AFU associated with the host.
289 * @cmd: AFU command to send.
290 *
291 * Return:
292 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
293 */
294 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
295 {
296 struct cxlflash_cfg *cfg = afu->parent;
297 struct device *dev = &cfg->dev->dev;
298 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
299 int rc = 0;
300 int newval;
301 ulong lock_flags;
302
303 newval = atomic_dec_if_positive(&hwq->hsq_credits);
304 if (newval <= 0) {
305 rc = SCSI_MLQUEUE_HOST_BUSY;
306 goto out;
307 }
308
309 cmd->rcb.ioasa = &cmd->sa;
310
311 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
312
313 *hwq->hsq_curr = cmd->rcb;
314 if (hwq->hsq_curr < hwq->hsq_end)
315 hwq->hsq_curr++;
316 else
317 hwq->hsq_curr = hwq->hsq_start;
318 writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail);
319
320 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
321 out:
322 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
323 "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
324 cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr,
325 readq_be(&hwq->host_map->sq_head),
326 readq_be(&hwq->host_map->sq_tail));
327 return rc;
328 }
329
330 /**
331 * wait_resp() - polls for a response or timeout to a sent AFU command
332 * @afu: AFU associated with the host.
333 * @cmd: AFU command that was sent.
334 *
335 * Return:
336 * 0 on success, -1 on timeout/error
337 */
338 static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
339 {
340 struct cxlflash_cfg *cfg = afu->parent;
341 struct device *dev = &cfg->dev->dev;
342 int rc = 0;
343 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
344
345 timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
346 if (!timeout) {
347 afu->context_reset(cmd);
348 rc = -1;
349 }
350
351 if (unlikely(cmd->sa.ioasc != 0)) {
352 dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
353 __func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
354 rc = -1;
355 }
356
357 return rc;
358 }
359
360 /**
361 * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command
362 * @host: SCSI host associated with device.
363 * @scp: SCSI command to send.
364 * @afu: SCSI command to send.
365 *
366 * Hashes a command based upon the hardware queue mode.
367 *
368 * Return: Trusted index of target hardware queue
369 */
370 static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp,
371 struct afu *afu)
372 {
373 u32 tag;
374 u32 hwq = 0;
375
376 if (afu->num_hwqs == 1)
377 return 0;
378
379 switch (afu->hwq_mode) {
380 case HWQ_MODE_RR:
381 hwq = afu->hwq_rr_count++ % afu->num_hwqs;
382 break;
383 case HWQ_MODE_TAG:
384 tag = blk_mq_unique_tag(scp->request);
385 hwq = blk_mq_unique_tag_to_hwq(tag);
386 break;
387 case HWQ_MODE_CPU:
388 hwq = smp_processor_id() % afu->num_hwqs;
389 break;
390 default:
391 WARN_ON_ONCE(1);
392 }
393
394 return hwq;
395 }
396
397 /**
398 * send_tmf() - sends a Task Management Function (TMF)
399 * @afu: AFU to checkout from.
400 * @scp: SCSI command from stack.
401 * @tmfcmd: TMF command to send.
402 *
403 * Return:
404 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
405 */
406 static int send_tmf(struct afu *afu, struct scsi_cmnd *scp, u64 tmfcmd)
407 {
408 struct Scsi_Host *host = scp->device->host;
409 struct cxlflash_cfg *cfg = shost_priv(host);
410 struct afu_cmd *cmd = sc_to_afucz(scp);
411 struct device *dev = &cfg->dev->dev;
412 int hwq_index = cmd_to_target_hwq(host, scp, afu);
413 struct hwq *hwq = get_hwq(afu, hwq_index);
414 ulong lock_flags;
415 int rc = 0;
416 ulong to;
417
418 /* When Task Management Function is active do not send another */
419 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
420 if (cfg->tmf_active)
421 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
422 !cfg->tmf_active,
423 cfg->tmf_slock);
424 cfg->tmf_active = true;
425 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
426
427 cmd->scp = scp;
428 cmd->parent = afu;
429 cmd->cmd_tmf = true;
430 cmd->hwq_index = hwq_index;
431
432 cmd->rcb.ctx_id = hwq->ctx_hndl;
433 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
434 cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
435 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
436 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
437 SISL_REQ_FLAGS_SUP_UNDERRUN |
438 SISL_REQ_FLAGS_TMF_CMD);
439 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
440
441 rc = afu->send_cmd(afu, cmd);
442 if (unlikely(rc)) {
443 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
444 cfg->tmf_active = false;
445 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
446 goto out;
447 }
448
449 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
450 to = msecs_to_jiffies(5000);
451 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
452 !cfg->tmf_active,
453 cfg->tmf_slock,
454 to);
455 if (!to) {
456 cfg->tmf_active = false;
457 dev_err(dev, "%s: TMF timed out\n", __func__);
458 rc = -1;
459 }
460 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
461 out:
462 return rc;
463 }
464
465 /**
466 * cxlflash_driver_info() - information handler for this host driver
467 * @host: SCSI host associated with device.
468 *
469 * Return: A string describing the device.
470 */
471 static const char *cxlflash_driver_info(struct Scsi_Host *host)
472 {
473 return CXLFLASH_ADAPTER_NAME;
474 }
475
476 /**
477 * cxlflash_queuecommand() - sends a mid-layer request
478 * @host: SCSI host associated with device.
479 * @scp: SCSI command to send.
480 *
481 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
482 */
483 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
484 {
485 struct cxlflash_cfg *cfg = shost_priv(host);
486 struct afu *afu = cfg->afu;
487 struct device *dev = &cfg->dev->dev;
488 struct afu_cmd *cmd = sc_to_afucz(scp);
489 struct scatterlist *sg = scsi_sglist(scp);
490 int hwq_index = cmd_to_target_hwq(host, scp, afu);
491 struct hwq *hwq = get_hwq(afu, hwq_index);
492 u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
493 ulong lock_flags;
494 int rc = 0;
495
496 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
497 "cdb=(%08x-%08x-%08x-%08x)\n",
498 __func__, scp, host->host_no, scp->device->channel,
499 scp->device->id, scp->device->lun,
500 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
501 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
502 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
503 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
504
505 /*
506 * If a Task Management Function is active, wait for it to complete
507 * before continuing with regular commands.
508 */
509 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
510 if (cfg->tmf_active) {
511 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
512 rc = SCSI_MLQUEUE_HOST_BUSY;
513 goto out;
514 }
515 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
516
517 switch (cfg->state) {
518 case STATE_PROBING:
519 case STATE_PROBED:
520 case STATE_RESET:
521 dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
522 rc = SCSI_MLQUEUE_HOST_BUSY;
523 goto out;
524 case STATE_FAILTERM:
525 dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
526 scp->result = (DID_NO_CONNECT << 16);
527 scp->scsi_done(scp);
528 rc = 0;
529 goto out;
530 default:
531 break;
532 }
533
534 if (likely(sg)) {
535 cmd->rcb.data_len = sg->length;
536 cmd->rcb.data_ea = (uintptr_t)sg_virt(sg);
537 }
538
539 cmd->scp = scp;
540 cmd->parent = afu;
541 cmd->hwq_index = hwq_index;
542
543 cmd->rcb.ctx_id = hwq->ctx_hndl;
544 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
545 cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
546 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
547
548 if (scp->sc_data_direction == DMA_TO_DEVICE)
549 req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
550
551 cmd->rcb.req_flags = req_flags;
552 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
553
554 rc = afu->send_cmd(afu, cmd);
555 out:
556 return rc;
557 }
558
559 /**
560 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
561 * @cfg: Internal structure associated with the host.
562 */
563 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
564 {
565 struct pci_dev *pdev = cfg->dev;
566
567 if (pci_channel_offline(pdev))
568 wait_event_timeout(cfg->reset_waitq,
569 !pci_channel_offline(pdev),
570 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
571 }
572
573 /**
574 * free_mem() - free memory associated with the AFU
575 * @cfg: Internal structure associated with the host.
576 */
577 static void free_mem(struct cxlflash_cfg *cfg)
578 {
579 struct afu *afu = cfg->afu;
580
581 if (cfg->afu) {
582 free_pages((ulong)afu, get_order(sizeof(struct afu)));
583 cfg->afu = NULL;
584 }
585 }
586
587 /**
588 * stop_afu() - stops the AFU command timers and unmaps the MMIO space
589 * @cfg: Internal structure associated with the host.
590 *
591 * Safe to call with AFU in a partially allocated/initialized state.
592 *
593 * Cancels scheduled worker threads, waits for any active internal AFU
594 * commands to timeout, disables IRQ polling and then unmaps the MMIO space.
595 */
596 static void stop_afu(struct cxlflash_cfg *cfg)
597 {
598 struct afu *afu = cfg->afu;
599 struct hwq *hwq;
600 int i;
601
602 cancel_work_sync(&cfg->work_q);
603
604 if (likely(afu)) {
605 while (atomic_read(&afu->cmds_active))
606 ssleep(1);
607
608 if (afu_is_irqpoll_enabled(afu)) {
609 for (i = 0; i < afu->num_hwqs; i++) {
610 hwq = get_hwq(afu, i);
611
612 irq_poll_disable(&hwq->irqpoll);
613 }
614 }
615
616 if (likely(afu->afu_map)) {
617 cxl_psa_unmap((void __iomem *)afu->afu_map);
618 afu->afu_map = NULL;
619 }
620 }
621 }
622
623 /**
624 * term_intr() - disables all AFU interrupts
625 * @cfg: Internal structure associated with the host.
626 * @level: Depth of allocation, where to begin waterfall tear down.
627 * @index: Index of the hardware queue.
628 *
629 * Safe to call with AFU/MC in partially allocated/initialized state.
630 */
631 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level,
632 u32 index)
633 {
634 struct afu *afu = cfg->afu;
635 struct device *dev = &cfg->dev->dev;
636 struct hwq *hwq;
637
638 if (!afu) {
639 dev_err(dev, "%s: returning with NULL afu\n", __func__);
640 return;
641 }
642
643 hwq = get_hwq(afu, index);
644
645 if (!hwq->ctx) {
646 dev_err(dev, "%s: returning with NULL MC\n", __func__);
647 return;
648 }
649
650 switch (level) {
651 case UNMAP_THREE:
652 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
653 if (index == PRIMARY_HWQ)
654 cxl_unmap_afu_irq(hwq->ctx, 3, hwq);
655 case UNMAP_TWO:
656 cxl_unmap_afu_irq(hwq->ctx, 2, hwq);
657 case UNMAP_ONE:
658 cxl_unmap_afu_irq(hwq->ctx, 1, hwq);
659 case FREE_IRQ:
660 cxl_free_afu_irqs(hwq->ctx);
661 /* fall through */
662 case UNDO_NOOP:
663 /* No action required */
664 break;
665 }
666 }
667
668 /**
669 * term_mc() - terminates the master context
670 * @cfg: Internal structure associated with the host.
671 * @index: Index of the hardware queue.
672 *
673 * Safe to call with AFU/MC in partially allocated/initialized state.
674 */
675 static void term_mc(struct cxlflash_cfg *cfg, u32 index)
676 {
677 struct afu *afu = cfg->afu;
678 struct device *dev = &cfg->dev->dev;
679 struct hwq *hwq;
680
681 if (!afu) {
682 dev_err(dev, "%s: returning with NULL afu\n", __func__);
683 return;
684 }
685
686 hwq = get_hwq(afu, index);
687
688 if (!hwq->ctx) {
689 dev_err(dev, "%s: returning with NULL MC\n", __func__);
690 return;
691 }
692
693 WARN_ON(cxl_stop_context(hwq->ctx));
694 if (index != PRIMARY_HWQ)
695 WARN_ON(cxl_release_context(hwq->ctx));
696 hwq->ctx = NULL;
697 }
698
699 /**
700 * term_afu() - terminates the AFU
701 * @cfg: Internal structure associated with the host.
702 *
703 * Safe to call with AFU/MC in partially allocated/initialized state.
704 */
705 static void term_afu(struct cxlflash_cfg *cfg)
706 {
707 struct device *dev = &cfg->dev->dev;
708 int k;
709
710 /*
711 * Tear down is carefully orchestrated to ensure
712 * no interrupts can come in when the problem state
713 * area is unmapped.
714 *
715 * 1) Disable all AFU interrupts for each master
716 * 2) Unmap the problem state area
717 * 3) Stop each master context
718 */
719 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
720 term_intr(cfg, UNMAP_THREE, k);
721
722 if (cfg->afu)
723 stop_afu(cfg);
724
725 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
726 term_mc(cfg, k);
727
728 dev_dbg(dev, "%s: returning\n", __func__);
729 }
730
731 /**
732 * notify_shutdown() - notifies device of pending shutdown
733 * @cfg: Internal structure associated with the host.
734 * @wait: Whether to wait for shutdown processing to complete.
735 *
736 * This function will notify the AFU that the adapter is being shutdown
737 * and will wait for shutdown processing to complete if wait is true.
738 * This notification should flush pending I/Os to the device and halt
739 * further I/Os until the next AFU reset is issued and device restarted.
740 */
741 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
742 {
743 struct afu *afu = cfg->afu;
744 struct device *dev = &cfg->dev->dev;
745 struct dev_dependent_vals *ddv;
746 __be64 __iomem *fc_port_regs;
747 u64 reg, status;
748 int i, retry_cnt = 0;
749
750 ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
751 if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
752 return;
753
754 if (!afu || !afu->afu_map) {
755 dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
756 return;
757 }
758
759 /* Notify AFU */
760 for (i = 0; i < cfg->num_fc_ports; i++) {
761 fc_port_regs = get_fc_port_regs(cfg, i);
762
763 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
764 reg |= SISL_FC_SHUTDOWN_NORMAL;
765 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
766 }
767
768 if (!wait)
769 return;
770
771 /* Wait up to 1.5 seconds for shutdown processing to complete */
772 for (i = 0; i < cfg->num_fc_ports; i++) {
773 fc_port_regs = get_fc_port_regs(cfg, i);
774 retry_cnt = 0;
775
776 while (true) {
777 status = readq_be(&fc_port_regs[FC_STATUS / 8]);
778 if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
779 break;
780 if (++retry_cnt >= MC_RETRY_CNT) {
781 dev_dbg(dev, "%s: port %d shutdown processing "
782 "not yet completed\n", __func__, i);
783 break;
784 }
785 msleep(100 * retry_cnt);
786 }
787 }
788 }
789
790 /**
791 * cxlflash_remove() - PCI entry point to tear down host
792 * @pdev: PCI device associated with the host.
793 *
794 * Safe to use as a cleanup in partially allocated/initialized state. Note that
795 * the reset_waitq is flushed as part of the stop/termination of user contexts.
796 */
797 static void cxlflash_remove(struct pci_dev *pdev)
798 {
799 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
800 struct device *dev = &pdev->dev;
801 ulong lock_flags;
802
803 if (!pci_is_enabled(pdev)) {
804 dev_dbg(dev, "%s: Device is disabled\n", __func__);
805 return;
806 }
807
808 /* If a Task Management Function is active, wait for it to complete
809 * before continuing with remove.
810 */
811 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
812 if (cfg->tmf_active)
813 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
814 !cfg->tmf_active,
815 cfg->tmf_slock);
816 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
817
818 /* Notify AFU and wait for shutdown processing to complete */
819 notify_shutdown(cfg, true);
820
821 cfg->state = STATE_FAILTERM;
822 cxlflash_stop_term_user_contexts(cfg);
823
824 switch (cfg->init_state) {
825 case INIT_STATE_SCSI:
826 cxlflash_term_local_luns(cfg);
827 scsi_remove_host(cfg->host);
828 case INIT_STATE_AFU:
829 term_afu(cfg);
830 case INIT_STATE_PCI:
831 pci_disable_device(pdev);
832 case INIT_STATE_NONE:
833 free_mem(cfg);
834 scsi_host_put(cfg->host);
835 break;
836 }
837
838 dev_dbg(dev, "%s: returning\n", __func__);
839 }
840
841 /**
842 * alloc_mem() - allocates the AFU and its command pool
843 * @cfg: Internal structure associated with the host.
844 *
845 * A partially allocated state remains on failure.
846 *
847 * Return:
848 * 0 on success
849 * -ENOMEM on failure to allocate memory
850 */
851 static int alloc_mem(struct cxlflash_cfg *cfg)
852 {
853 int rc = 0;
854 struct device *dev = &cfg->dev->dev;
855
856 /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
857 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
858 get_order(sizeof(struct afu)));
859 if (unlikely(!cfg->afu)) {
860 dev_err(dev, "%s: cannot get %d free pages\n",
861 __func__, get_order(sizeof(struct afu)));
862 rc = -ENOMEM;
863 goto out;
864 }
865 cfg->afu->parent = cfg;
866 cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS;
867 cfg->afu->afu_map = NULL;
868 out:
869 return rc;
870 }
871
872 /**
873 * init_pci() - initializes the host as a PCI device
874 * @cfg: Internal structure associated with the host.
875 *
876 * Return: 0 on success, -errno on failure
877 */
878 static int init_pci(struct cxlflash_cfg *cfg)
879 {
880 struct pci_dev *pdev = cfg->dev;
881 struct device *dev = &cfg->dev->dev;
882 int rc = 0;
883
884 rc = pci_enable_device(pdev);
885 if (rc || pci_channel_offline(pdev)) {
886 if (pci_channel_offline(pdev)) {
887 cxlflash_wait_for_pci_err_recovery(cfg);
888 rc = pci_enable_device(pdev);
889 }
890
891 if (rc) {
892 dev_err(dev, "%s: Cannot enable adapter\n", __func__);
893 cxlflash_wait_for_pci_err_recovery(cfg);
894 goto out;
895 }
896 }
897
898 out:
899 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
900 return rc;
901 }
902
903 /**
904 * init_scsi() - adds the host to the SCSI stack and kicks off host scan
905 * @cfg: Internal structure associated with the host.
906 *
907 * Return: 0 on success, -errno on failure
908 */
909 static int init_scsi(struct cxlflash_cfg *cfg)
910 {
911 struct pci_dev *pdev = cfg->dev;
912 struct device *dev = &cfg->dev->dev;
913 int rc = 0;
914
915 rc = scsi_add_host(cfg->host, &pdev->dev);
916 if (rc) {
917 dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
918 goto out;
919 }
920
921 scsi_scan_host(cfg->host);
922
923 out:
924 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
925 return rc;
926 }
927
928 /**
929 * set_port_online() - transitions the specified host FC port to online state
930 * @fc_regs: Top of MMIO region defined for specified port.
931 *
932 * The provided MMIO region must be mapped prior to call. Online state means
933 * that the FC link layer has synced, completed the handshaking process, and
934 * is ready for login to start.
935 */
936 static void set_port_online(__be64 __iomem *fc_regs)
937 {
938 u64 cmdcfg;
939
940 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
941 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
942 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */
943 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
944 }
945
946 /**
947 * set_port_offline() - transitions the specified host FC port to offline state
948 * @fc_regs: Top of MMIO region defined for specified port.
949 *
950 * The provided MMIO region must be mapped prior to call.
951 */
952 static void set_port_offline(__be64 __iomem *fc_regs)
953 {
954 u64 cmdcfg;
955
956 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
957 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */
958 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */
959 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
960 }
961
962 /**
963 * wait_port_online() - waits for the specified host FC port come online
964 * @fc_regs: Top of MMIO region defined for specified port.
965 * @delay_us: Number of microseconds to delay between reading port status.
966 * @nretry: Number of cycles to retry reading port status.
967 *
968 * The provided MMIO region must be mapped prior to call. This will timeout
969 * when the cable is not plugged in.
970 *
971 * Return:
972 * TRUE (1) when the specified port is online
973 * FALSE (0) when the specified port fails to come online after timeout
974 */
975 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
976 {
977 u64 status;
978
979 WARN_ON(delay_us < 1000);
980
981 do {
982 msleep(delay_us / 1000);
983 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
984 if (status == U64_MAX)
985 nretry /= 2;
986 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
987 nretry--);
988
989 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
990 }
991
992 /**
993 * wait_port_offline() - waits for the specified host FC port go offline
994 * @fc_regs: Top of MMIO region defined for specified port.
995 * @delay_us: Number of microseconds to delay between reading port status.
996 * @nretry: Number of cycles to retry reading port status.
997 *
998 * The provided MMIO region must be mapped prior to call.
999 *
1000 * Return:
1001 * TRUE (1) when the specified port is offline
1002 * FALSE (0) when the specified port fails to go offline after timeout
1003 */
1004 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1005 {
1006 u64 status;
1007
1008 WARN_ON(delay_us < 1000);
1009
1010 do {
1011 msleep(delay_us / 1000);
1012 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1013 if (status == U64_MAX)
1014 nretry /= 2;
1015 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
1016 nretry--);
1017
1018 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1019 }
1020
1021 /**
1022 * afu_set_wwpn() - configures the WWPN for the specified host FC port
1023 * @afu: AFU associated with the host that owns the specified FC port.
1024 * @port: Port number being configured.
1025 * @fc_regs: Top of MMIO region defined for specified port.
1026 * @wwpn: The world-wide-port-number previously discovered for port.
1027 *
1028 * The provided MMIO region must be mapped prior to call. As part of the
1029 * sequence to configure the WWPN, the port is toggled offline and then back
1030 * online. This toggling action can cause this routine to delay up to a few
1031 * seconds. When configured to use the internal LUN feature of the AFU, a
1032 * failure to come online is overridden.
1033 */
1034 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
1035 u64 wwpn)
1036 {
1037 struct cxlflash_cfg *cfg = afu->parent;
1038 struct device *dev = &cfg->dev->dev;
1039
1040 set_port_offline(fc_regs);
1041 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1042 FC_PORT_STATUS_RETRY_CNT)) {
1043 dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
1044 __func__, port);
1045 }
1046
1047 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1048
1049 set_port_online(fc_regs);
1050 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1051 FC_PORT_STATUS_RETRY_CNT)) {
1052 dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
1053 __func__, port);
1054 }
1055 }
1056
1057 /**
1058 * afu_link_reset() - resets the specified host FC port
1059 * @afu: AFU associated with the host that owns the specified FC port.
1060 * @port: Port number being configured.
1061 * @fc_regs: Top of MMIO region defined for specified port.
1062 *
1063 * The provided MMIO region must be mapped prior to call. The sequence to
1064 * reset the port involves toggling it offline and then back online. This
1065 * action can cause this routine to delay up to a few seconds. An effort
1066 * is made to maintain link with the device by switching to host to use
1067 * the alternate port exclusively while the reset takes place.
1068 * failure to come online is overridden.
1069 */
1070 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
1071 {
1072 struct cxlflash_cfg *cfg = afu->parent;
1073 struct device *dev = &cfg->dev->dev;
1074 u64 port_sel;
1075
1076 /* first switch the AFU to the other links, if any */
1077 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1078 port_sel &= ~(1ULL << port);
1079 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1080 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1081
1082 set_port_offline(fc_regs);
1083 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1084 FC_PORT_STATUS_RETRY_CNT))
1085 dev_err(dev, "%s: wait on port %d to go offline timed out\n",
1086 __func__, port);
1087
1088 set_port_online(fc_regs);
1089 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1090 FC_PORT_STATUS_RETRY_CNT))
1091 dev_err(dev, "%s: wait on port %d to go online timed out\n",
1092 __func__, port);
1093
1094 /* switch back to include this port */
1095 port_sel |= (1ULL << port);
1096 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1097 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1098
1099 dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
1100 }
1101
1102 /**
1103 * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1104 * @afu: AFU associated with the host.
1105 */
1106 static void afu_err_intr_init(struct afu *afu)
1107 {
1108 struct cxlflash_cfg *cfg = afu->parent;
1109 __be64 __iomem *fc_port_regs;
1110 int i;
1111 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
1112 u64 reg;
1113
1114 /* global async interrupts: AFU clears afu_ctrl on context exit
1115 * if async interrupts were sent to that context. This prevents
1116 * the AFU form sending further async interrupts when
1117 * there is
1118 * nobody to receive them.
1119 */
1120
1121 /* mask all */
1122 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1123 /* set LISN# to send and point to primary master context */
1124 reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1125
1126 if (afu->internal_lun)
1127 reg |= 1; /* Bit 63 indicates local lun */
1128 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1129 /* clear all */
1130 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1131 /* unmask bits that are of interest */
1132 /* note: afu can send an interrupt after this step */
1133 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1134 /* clear again in case a bit came on after previous clear but before */
1135 /* unmask */
1136 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1137
1138 /* Clear/Set internal lun bits */
1139 fc_port_regs = get_fc_port_regs(cfg, 0);
1140 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
1141 reg &= SISL_FC_INTERNAL_MASK;
1142 if (afu->internal_lun)
1143 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1144 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
1145
1146 /* now clear FC errors */
1147 for (i = 0; i < cfg->num_fc_ports; i++) {
1148 fc_port_regs = get_fc_port_regs(cfg, i);
1149
1150 writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]);
1151 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1152 }
1153
1154 /* sync interrupts for master's IOARRIN write */
1155 /* note that unlike asyncs, there can be no pending sync interrupts */
1156 /* at this time (this is a fresh context and master has not written */
1157 /* IOARRIN yet), so there is nothing to clear. */
1158
1159 /* set LISN#, it is always sent to the context that wrote IOARRIN */
1160 for (i = 0; i < afu->num_hwqs; i++) {
1161 hwq = get_hwq(afu, i);
1162
1163 writeq_be(SISL_MSI_SYNC_ERROR, &hwq->host_map->ctx_ctrl);
1164 writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask);
1165 }
1166 }
1167
1168 /**
1169 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1170 * @irq: Interrupt number.
1171 * @data: Private data provided at interrupt registration, the AFU.
1172 *
1173 * Return: Always return IRQ_HANDLED.
1174 */
1175 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1176 {
1177 struct hwq *hwq = (struct hwq *)data;
1178 struct cxlflash_cfg *cfg = hwq->afu->parent;
1179 struct device *dev = &cfg->dev->dev;
1180 u64 reg;
1181 u64 reg_unmasked;
1182
1183 reg = readq_be(&hwq->host_map->intr_status);
1184 reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1185
1186 if (reg_unmasked == 0UL) {
1187 dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
1188 __func__, reg);
1189 goto cxlflash_sync_err_irq_exit;
1190 }
1191
1192 dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
1193 __func__, reg);
1194
1195 writeq_be(reg_unmasked, &hwq->host_map->intr_clear);
1196
1197 cxlflash_sync_err_irq_exit:
1198 return IRQ_HANDLED;
1199 }
1200
1201 /**
1202 * process_hrrq() - process the read-response queue
1203 * @afu: AFU associated with the host.
1204 * @doneq: Queue of commands harvested from the RRQ.
1205 * @budget: Threshold of RRQ entries to process.
1206 *
1207 * This routine must be called holding the disabled RRQ spin lock.
1208 *
1209 * Return: The number of entries processed.
1210 */
1211 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget)
1212 {
1213 struct afu *afu = hwq->afu;
1214 struct afu_cmd *cmd;
1215 struct sisl_ioasa *ioasa;
1216 struct sisl_ioarcb *ioarcb;
1217 bool toggle = hwq->toggle;
1218 int num_hrrq = 0;
1219 u64 entry,
1220 *hrrq_start = hwq->hrrq_start,
1221 *hrrq_end = hwq->hrrq_end,
1222 *hrrq_curr = hwq->hrrq_curr;
1223
1224 /* Process ready RRQ entries up to the specified budget (if any) */
1225 while (true) {
1226 entry = *hrrq_curr;
1227
1228 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1229 break;
1230
1231 entry &= ~SISL_RESP_HANDLE_T_BIT;
1232
1233 if (afu_is_sq_cmd_mode(afu)) {
1234 ioasa = (struct sisl_ioasa *)entry;
1235 cmd = container_of(ioasa, struct afu_cmd, sa);
1236 } else {
1237 ioarcb = (struct sisl_ioarcb *)entry;
1238 cmd = container_of(ioarcb, struct afu_cmd, rcb);
1239 }
1240
1241 list_add_tail(&cmd->queue, doneq);
1242
1243 /* Advance to next entry or wrap and flip the toggle bit */
1244 if (hrrq_curr < hrrq_end)
1245 hrrq_curr++;
1246 else {
1247 hrrq_curr = hrrq_start;
1248 toggle ^= SISL_RESP_HANDLE_T_BIT;
1249 }
1250
1251 atomic_inc(&hwq->hsq_credits);
1252 num_hrrq++;
1253
1254 if (budget > 0 && num_hrrq >= budget)
1255 break;
1256 }
1257
1258 hwq->hrrq_curr = hrrq_curr;
1259 hwq->toggle = toggle;
1260
1261 return num_hrrq;
1262 }
1263
1264 /**
1265 * process_cmd_doneq() - process a queue of harvested RRQ commands
1266 * @doneq: Queue of completed commands.
1267 *
1268 * Note that upon return the queue can no longer be trusted.
1269 */
1270 static void process_cmd_doneq(struct list_head *doneq)
1271 {
1272 struct afu_cmd *cmd, *tmp;
1273
1274 WARN_ON(list_empty(doneq));
1275
1276 list_for_each_entry_safe(cmd, tmp, doneq, queue)
1277 cmd_complete(cmd);
1278 }
1279
1280 /**
1281 * cxlflash_irqpoll() - process a queue of harvested RRQ commands
1282 * @irqpoll: IRQ poll structure associated with queue to poll.
1283 * @budget: Threshold of RRQ entries to process per poll.
1284 *
1285 * Return: The number of entries processed.
1286 */
1287 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
1288 {
1289 struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll);
1290 unsigned long hrrq_flags;
1291 LIST_HEAD(doneq);
1292 int num_entries = 0;
1293
1294 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1295
1296 num_entries = process_hrrq(hwq, &doneq, budget);
1297 if (num_entries < budget)
1298 irq_poll_complete(irqpoll);
1299
1300 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1301
1302 process_cmd_doneq(&doneq);
1303 return num_entries;
1304 }
1305
1306 /**
1307 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1308 * @irq: Interrupt number.
1309 * @data: Private data provided at interrupt registration, the AFU.
1310 *
1311 * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
1312 */
1313 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1314 {
1315 struct hwq *hwq = (struct hwq *)data;
1316 struct afu *afu = hwq->afu;
1317 unsigned long hrrq_flags;
1318 LIST_HEAD(doneq);
1319 int num_entries = 0;
1320
1321 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1322
1323 if (afu_is_irqpoll_enabled(afu)) {
1324 irq_poll_sched(&hwq->irqpoll);
1325 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1326 return IRQ_HANDLED;
1327 }
1328
1329 num_entries = process_hrrq(hwq, &doneq, -1);
1330 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1331
1332 if (num_entries == 0)
1333 return IRQ_NONE;
1334
1335 process_cmd_doneq(&doneq);
1336 return IRQ_HANDLED;
1337 }
1338
1339 /*
1340 * Asynchronous interrupt information table
1341 *
1342 * NOTE:
1343 * - Order matters here as this array is indexed by bit position.
1344 *
1345 * - The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro
1346 * as complex and complains due to a lack of parentheses/braces.
1347 */
1348 #define ASTATUS_FC(_a, _b, _c, _d) \
1349 { SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) }
1350
1351 #define BUILD_SISL_ASTATUS_FC_PORT(_a) \
1352 ASTATUS_FC(_a, LINK_UP, "link up", 0), \
1353 ASTATUS_FC(_a, LINK_DN, "link down", 0), \
1354 ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST), \
1355 ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR), \
1356 ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \
1357 ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET), \
1358 ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0), \
1359 ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET)
1360
1361 static const struct asyc_intr_info ainfo[] = {
1362 BUILD_SISL_ASTATUS_FC_PORT(1),
1363 BUILD_SISL_ASTATUS_FC_PORT(0),
1364 BUILD_SISL_ASTATUS_FC_PORT(3),
1365 BUILD_SISL_ASTATUS_FC_PORT(2)
1366 };
1367
1368 /**
1369 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1370 * @irq: Interrupt number.
1371 * @data: Private data provided at interrupt registration, the AFU.
1372 *
1373 * Return: Always return IRQ_HANDLED.
1374 */
1375 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1376 {
1377 struct hwq *hwq = (struct hwq *)data;
1378 struct afu *afu = hwq->afu;
1379 struct cxlflash_cfg *cfg = afu->parent;
1380 struct device *dev = &cfg->dev->dev;
1381 const struct asyc_intr_info *info;
1382 struct sisl_global_map __iomem *global = &afu->afu_map->global;
1383 __be64 __iomem *fc_port_regs;
1384 u64 reg_unmasked;
1385 u64 reg;
1386 u64 bit;
1387 u8 port;
1388
1389 reg = readq_be(&global->regs.aintr_status);
1390 reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1391
1392 if (unlikely(reg_unmasked == 0)) {
1393 dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
1394 __func__, reg);
1395 goto out;
1396 }
1397
1398 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1399 writeq_be(reg_unmasked, &global->regs.aintr_clear);
1400
1401 /* Check each bit that is on */
1402 for_each_set_bit(bit, (ulong *)&reg_unmasked, BITS_PER_LONG) {
1403 if (unlikely(bit >= ARRAY_SIZE(ainfo))) {
1404 WARN_ON_ONCE(1);
1405 continue;
1406 }
1407
1408 info = &ainfo[bit];
1409 if (unlikely(info->status != 1ULL << bit)) {
1410 WARN_ON_ONCE(1);
1411 continue;
1412 }
1413
1414 port = info->port;
1415 fc_port_regs = get_fc_port_regs(cfg, port);
1416
1417 dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
1418 __func__, port, info->desc,
1419 readq_be(&fc_port_regs[FC_STATUS / 8]));
1420
1421 /*
1422 * Do link reset first, some OTHER errors will set FC_ERROR
1423 * again if cleared before or w/o a reset
1424 */
1425 if (info->action & LINK_RESET) {
1426 dev_err(dev, "%s: FC Port %d: resetting link\n",
1427 __func__, port);
1428 cfg->lr_state = LINK_RESET_REQUIRED;
1429 cfg->lr_port = port;
1430 schedule_work(&cfg->work_q);
1431 }
1432
1433 if (info->action & CLR_FC_ERROR) {
1434 reg = readq_be(&fc_port_regs[FC_ERROR / 8]);
1435
1436 /*
1437 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1438 * should be the same and tracing one is sufficient.
1439 */
1440
1441 dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
1442 __func__, port, reg);
1443
1444 writeq_be(reg, &fc_port_regs[FC_ERROR / 8]);
1445 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1446 }
1447
1448 if (info->action & SCAN_HOST) {
1449 atomic_inc(&cfg->scan_host_needed);
1450 schedule_work(&cfg->work_q);
1451 }
1452 }
1453
1454 out:
1455 return IRQ_HANDLED;
1456 }
1457
1458 /**
1459 * start_context() - starts the master context
1460 * @cfg: Internal structure associated with the host.
1461 * @index: Index of the hardware queue.
1462 *
1463 * Return: A success or failure value from CXL services.
1464 */
1465 static int start_context(struct cxlflash_cfg *cfg, u32 index)
1466 {
1467 struct device *dev = &cfg->dev->dev;
1468 struct hwq *hwq = get_hwq(cfg->afu, index);
1469 int rc = 0;
1470
1471 rc = cxl_start_context(hwq->ctx,
1472 hwq->work.work_element_descriptor,
1473 NULL);
1474
1475 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1476 return rc;
1477 }
1478
1479 /**
1480 * read_vpd() - obtains the WWPNs from VPD
1481 * @cfg: Internal structure associated with the host.
1482 * @wwpn: Array of size MAX_FC_PORTS to pass back WWPNs
1483 *
1484 * Return: 0 on success, -errno on failure
1485 */
1486 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1487 {
1488 struct device *dev = &cfg->dev->dev;
1489 struct pci_dev *pdev = cfg->dev;
1490 int rc = 0;
1491 int ro_start, ro_size, i, j, k;
1492 ssize_t vpd_size;
1493 char vpd_data[CXLFLASH_VPD_LEN];
1494 char tmp_buf[WWPN_BUF_LEN] = { 0 };
1495 char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" };
1496
1497 /* Get the VPD data from the device */
1498 vpd_size = cxl_read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
1499 if (unlikely(vpd_size <= 0)) {
1500 dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
1501 __func__, vpd_size);
1502 rc = -ENODEV;
1503 goto out;
1504 }
1505
1506 /* Get the read only section offset */
1507 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1508 PCI_VPD_LRDT_RO_DATA);
1509 if (unlikely(ro_start < 0)) {
1510 dev_err(dev, "%s: VPD Read-only data not found\n", __func__);
1511 rc = -ENODEV;
1512 goto out;
1513 }
1514
1515 /* Get the read only section size, cap when extends beyond read VPD */
1516 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1517 j = ro_size;
1518 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1519 if (unlikely((i + j) > vpd_size)) {
1520 dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n",
1521 __func__, (i + j), vpd_size);
1522 ro_size = vpd_size - i;
1523 }
1524
1525 /*
1526 * Find the offset of the WWPN tag within the read only
1527 * VPD data and validate the found field (partials are
1528 * no good to us). Convert the ASCII data to an integer
1529 * value. Note that we must copy to a temporary buffer
1530 * because the conversion service requires that the ASCII
1531 * string be terminated.
1532 */
1533 for (k = 0; k < cfg->num_fc_ports; k++) {
1534 j = ro_size;
1535 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1536
1537 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1538 if (unlikely(i < 0)) {
1539 dev_err(dev, "%s: Port %d WWPN not found in VPD\n",
1540 __func__, k);
1541 rc = -ENODEV;
1542 goto out;
1543 }
1544
1545 j = pci_vpd_info_field_size(&vpd_data[i]);
1546 i += PCI_VPD_INFO_FLD_HDR_SIZE;
1547 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
1548 dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
1549 __func__, k);
1550 rc = -ENODEV;
1551 goto out;
1552 }
1553
1554 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1555 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1556 if (unlikely(rc)) {
1557 dev_err(dev, "%s: WWPN conversion failed for port %d\n",
1558 __func__, k);
1559 rc = -ENODEV;
1560 goto out;
1561 }
1562
1563 dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
1564 }
1565
1566 out:
1567 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1568 return rc;
1569 }
1570
1571 /**
1572 * init_pcr() - initialize the provisioning and control registers
1573 * @cfg: Internal structure associated with the host.
1574 *
1575 * Also sets up fast access to the mapped registers and initializes AFU
1576 * command fields that never change.
1577 */
1578 static void init_pcr(struct cxlflash_cfg *cfg)
1579 {
1580 struct afu *afu = cfg->afu;
1581 struct sisl_ctrl_map __iomem *ctrl_map;
1582 struct hwq *hwq;
1583 int i;
1584
1585 for (i = 0; i < MAX_CONTEXT; i++) {
1586 ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1587 /* Disrupt any clients that could be running */
1588 /* e.g. clients that survived a master restart */
1589 writeq_be(0, &ctrl_map->rht_start);
1590 writeq_be(0, &ctrl_map->rht_cnt_id);
1591 writeq_be(0, &ctrl_map->ctx_cap);
1592 }
1593
1594 /* Copy frequently used fields into hwq */
1595 for (i = 0; i < afu->num_hwqs; i++) {
1596 hwq = get_hwq(afu, i);
1597
1598 hwq->ctx_hndl = (u16) cxl_process_element(hwq->ctx);
1599 hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host;
1600 hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl;
1601
1602 /* Program the Endian Control for the master context */
1603 writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl);
1604 }
1605 }
1606
1607 /**
1608 * init_global() - initialize AFU global registers
1609 * @cfg: Internal structure associated with the host.
1610 */
1611 static int init_global(struct cxlflash_cfg *cfg)
1612 {
1613 struct afu *afu = cfg->afu;
1614 struct device *dev = &cfg->dev->dev;
1615 struct hwq *hwq;
1616 struct sisl_host_map __iomem *hmap;
1617 __be64 __iomem *fc_port_regs;
1618 u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */
1619 int i = 0, num_ports = 0;
1620 int rc = 0;
1621 u64 reg;
1622
1623 rc = read_vpd(cfg, &wwpn[0]);
1624 if (rc) {
1625 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1626 goto out;
1627 }
1628
1629 /* Set up RRQ and SQ in HWQ for master issued cmds */
1630 for (i = 0; i < afu->num_hwqs; i++) {
1631 hwq = get_hwq(afu, i);
1632 hmap = hwq->host_map;
1633
1634 writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start);
1635 writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end);
1636
1637 if (afu_is_sq_cmd_mode(afu)) {
1638 writeq_be((u64)hwq->hsq_start, &hmap->sq_start);
1639 writeq_be((u64)hwq->hsq_end, &hmap->sq_end);
1640 }
1641 }
1642
1643 /* AFU configuration */
1644 reg = readq_be(&afu->afu_map->global.regs.afu_config);
1645 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1646 /* enable all auto retry options and control endianness */
1647 /* leave others at default: */
1648 /* CTX_CAP write protected, mbox_r does not clear on read and */
1649 /* checker on if dual afu */
1650 writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1651
1652 /* Global port select: select either port */
1653 if (afu->internal_lun) {
1654 /* Only use port 0 */
1655 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1656 num_ports = 0;
1657 } else {
1658 writeq_be(PORT_MASK(cfg->num_fc_ports),
1659 &afu->afu_map->global.regs.afu_port_sel);
1660 num_ports = cfg->num_fc_ports;
1661 }
1662
1663 for (i = 0; i < num_ports; i++) {
1664 fc_port_regs = get_fc_port_regs(cfg, i);
1665
1666 /* Unmask all errors (but they are still masked at AFU) */
1667 writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]);
1668 /* Clear CRC error cnt & set a threshold */
1669 (void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]);
1670 writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]);
1671
1672 /* Set WWPNs. If already programmed, wwpn[i] is 0 */
1673 if (wwpn[i] != 0)
1674 afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]);
1675 /* Programming WWPN back to back causes additional
1676 * offline/online transitions and a PLOGI
1677 */
1678 msleep(100);
1679 }
1680
1681 /* Set up master's own CTX_CAP to allow real mode, host translation */
1682 /* tables, afu cmds and read/write GSCSI cmds. */
1683 /* First, unlock ctx_cap write by reading mbox */
1684 for (i = 0; i < afu->num_hwqs; i++) {
1685 hwq = get_hwq(afu, i);
1686
1687 (void)readq_be(&hwq->ctrl_map->mbox_r); /* unlock ctx_cap */
1688 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1689 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1690 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1691 &hwq->ctrl_map->ctx_cap);
1692 }
1693 /* Initialize heartbeat */
1694 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1695 out:
1696 return rc;
1697 }
1698
1699 /**
1700 * start_afu() - initializes and starts the AFU
1701 * @cfg: Internal structure associated with the host.
1702 */
1703 static int start_afu(struct cxlflash_cfg *cfg)
1704 {
1705 struct afu *afu = cfg->afu;
1706 struct device *dev = &cfg->dev->dev;
1707 struct hwq *hwq;
1708 int rc = 0;
1709 int i;
1710
1711 init_pcr(cfg);
1712
1713 /* Initialize each HWQ */
1714 for (i = 0; i < afu->num_hwqs; i++) {
1715 hwq = get_hwq(afu, i);
1716
1717 /* After an AFU reset, RRQ entries are stale, clear them */
1718 memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry));
1719
1720 /* Initialize RRQ pointers */
1721 hwq->hrrq_start = &hwq->rrq_entry[0];
1722 hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1];
1723 hwq->hrrq_curr = hwq->hrrq_start;
1724 hwq->toggle = 1;
1725
1726 /* Initialize spin locks */
1727 spin_lock_init(&hwq->hrrq_slock);
1728 spin_lock_init(&hwq->hsq_slock);
1729
1730 /* Initialize SQ */
1731 if (afu_is_sq_cmd_mode(afu)) {
1732 memset(&hwq->sq, 0, sizeof(hwq->sq));
1733 hwq->hsq_start = &hwq->sq[0];
1734 hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1];
1735 hwq->hsq_curr = hwq->hsq_start;
1736
1737 atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1);
1738 }
1739
1740 /* Initialize IRQ poll */
1741 if (afu_is_irqpoll_enabled(afu))
1742 irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight,
1743 cxlflash_irqpoll);
1744
1745 }
1746
1747 rc = init_global(cfg);
1748
1749 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1750 return rc;
1751 }
1752
1753 /**
1754 * init_intr() - setup interrupt handlers for the master context
1755 * @cfg: Internal structure associated with the host.
1756 * @hwq: Hardware queue to initialize.
1757 *
1758 * Return: 0 on success, -errno on failure
1759 */
1760 static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1761 struct hwq *hwq)
1762 {
1763 struct device *dev = &cfg->dev->dev;
1764 struct cxl_context *ctx = hwq->ctx;
1765 int rc = 0;
1766 enum undo_level level = UNDO_NOOP;
1767 bool is_primary_hwq = (hwq->index == PRIMARY_HWQ);
1768 int num_irqs = is_primary_hwq ? 3 : 2;
1769
1770 rc = cxl_allocate_afu_irqs(ctx, num_irqs);
1771 if (unlikely(rc)) {
1772 dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
1773 __func__, rc);
1774 level = UNDO_NOOP;
1775 goto out;
1776 }
1777
1778 rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq,
1779 "SISL_MSI_SYNC_ERROR");
1780 if (unlikely(rc <= 0)) {
1781 dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
1782 level = FREE_IRQ;
1783 goto out;
1784 }
1785
1786 rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq,
1787 "SISL_MSI_RRQ_UPDATED");
1788 if (unlikely(rc <= 0)) {
1789 dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
1790 level = UNMAP_ONE;
1791 goto out;
1792 }
1793
1794 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
1795 if (!is_primary_hwq)
1796 goto out;
1797
1798 rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq,
1799 "SISL_MSI_ASYNC_ERROR");
1800 if (unlikely(rc <= 0)) {
1801 dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
1802 level = UNMAP_TWO;
1803 goto out;
1804 }
1805 out:
1806 return level;
1807 }
1808
1809 /**
1810 * init_mc() - create and register as the master context
1811 * @cfg: Internal structure associated with the host.
1812 * index: HWQ Index of the master context.
1813 *
1814 * Return: 0 on success, -errno on failure
1815 */
1816 static int init_mc(struct cxlflash_cfg *cfg, u32 index)
1817 {
1818 struct cxl_context *ctx;
1819 struct device *dev = &cfg->dev->dev;
1820 struct hwq *hwq = get_hwq(cfg->afu, index);
1821 int rc = 0;
1822 enum undo_level level;
1823
1824 hwq->afu = cfg->afu;
1825 hwq->index = index;
1826
1827 if (index == PRIMARY_HWQ)
1828 ctx = cxl_get_context(cfg->dev);
1829 else
1830 ctx = cxl_dev_context_init(cfg->dev);
1831 if (unlikely(!ctx)) {
1832 rc = -ENOMEM;
1833 goto err1;
1834 }
1835
1836 WARN_ON(hwq->ctx);
1837 hwq->ctx = ctx;
1838
1839 /* Set it up as a master with the CXL */
1840 cxl_set_master(ctx);
1841
1842 /* Reset AFU when initializing primary context */
1843 if (index == PRIMARY_HWQ) {
1844 rc = cxl_afu_reset(ctx);
1845 if (unlikely(rc)) {
1846 dev_err(dev, "%s: AFU reset failed rc=%d\n",
1847 __func__, rc);
1848 goto err1;
1849 }
1850 }
1851
1852 level = init_intr(cfg, hwq);
1853 if (unlikely(level)) {
1854 dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
1855 goto err2;
1856 }
1857
1858 /* This performs the equivalent of the CXL_IOCTL_START_WORK.
1859 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process
1860 * element (pe) that is embedded in the context (ctx)
1861 */
1862 rc = start_context(cfg, index);
1863 if (unlikely(rc)) {
1864 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
1865 level = UNMAP_THREE;
1866 goto err2;
1867 }
1868
1869 out:
1870 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1871 return rc;
1872 err2:
1873 term_intr(cfg, level, index);
1874 if (index != PRIMARY_HWQ)
1875 cxl_release_context(ctx);
1876 err1:
1877 hwq->ctx = NULL;
1878 goto out;
1879 }
1880
1881 /**
1882 * get_num_afu_ports() - determines and configures the number of AFU ports
1883 * @cfg: Internal structure associated with the host.
1884 *
1885 * This routine determines the number of AFU ports by converting the global
1886 * port selection mask. The converted value is only valid following an AFU
1887 * reset (explicit or power-on). This routine must be invoked shortly after
1888 * mapping as other routines are dependent on the number of ports during the
1889 * initialization sequence.
1890 *
1891 * To support legacy AFUs that might not have reflected an initial global
1892 * port mask (value read is 0), default to the number of ports originally
1893 * supported by the cxlflash driver (2) before hardware with other port
1894 * offerings was introduced.
1895 */
1896 static void get_num_afu_ports(struct cxlflash_cfg *cfg)
1897 {
1898 struct afu *afu = cfg->afu;
1899 struct device *dev = &cfg->dev->dev;
1900 u64 port_mask;
1901 int num_fc_ports = LEGACY_FC_PORTS;
1902
1903 port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1904 if (port_mask != 0ULL)
1905 num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS);
1906
1907 dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n",
1908 __func__, port_mask, num_fc_ports);
1909
1910 cfg->num_fc_ports = num_fc_ports;
1911 cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports);
1912 }
1913
1914 /**
1915 * init_afu() - setup as master context and start AFU
1916 * @cfg: Internal structure associated with the host.
1917 *
1918 * This routine is a higher level of control for configuring the
1919 * AFU on probe and reset paths.
1920 *
1921 * Return: 0 on success, -errno on failure
1922 */
1923 static int init_afu(struct cxlflash_cfg *cfg)
1924 {
1925 u64 reg;
1926 int rc = 0;
1927 struct afu *afu = cfg->afu;
1928 struct device *dev = &cfg->dev->dev;
1929 struct hwq *hwq;
1930 int i;
1931
1932 cxl_perst_reloads_same_image(cfg->cxl_afu, true);
1933
1934 afu->num_hwqs = afu->desired_hwqs;
1935 for (i = 0; i < afu->num_hwqs; i++) {
1936 rc = init_mc(cfg, i);
1937 if (rc) {
1938 dev_err(dev, "%s: init_mc failed rc=%d index=%d\n",
1939 __func__, rc, i);
1940 goto err1;
1941 }
1942 }
1943
1944 /* Map the entire MMIO space of the AFU using the first context */
1945 hwq = get_hwq(afu, PRIMARY_HWQ);
1946 afu->afu_map = cxl_psa_map(hwq->ctx);
1947 if (!afu->afu_map) {
1948 dev_err(dev, "%s: cxl_psa_map failed\n", __func__);
1949 rc = -ENOMEM;
1950 goto err1;
1951 }
1952
1953 /* No byte reverse on reading afu_version or string will be backwards */
1954 reg = readq(&afu->afu_map->global.regs.afu_version);
1955 memcpy(afu->version, &reg, sizeof(reg));
1956 afu->interface_version =
1957 readq_be(&afu->afu_map->global.regs.interface_version);
1958 if ((afu->interface_version + 1) == 0) {
1959 dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
1960 "interface version %016llx\n", afu->version,
1961 afu->interface_version);
1962 rc = -EINVAL;
1963 goto err1;
1964 }
1965
1966 if (afu_is_sq_cmd_mode(afu)) {
1967 afu->send_cmd = send_cmd_sq;
1968 afu->context_reset = context_reset_sq;
1969 } else {
1970 afu->send_cmd = send_cmd_ioarrin;
1971 afu->context_reset = context_reset_ioarrin;
1972 }
1973
1974 dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
1975 afu->version, afu->interface_version);
1976
1977 get_num_afu_ports(cfg);
1978
1979 rc = start_afu(cfg);
1980 if (rc) {
1981 dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
1982 goto err1;
1983 }
1984
1985 afu_err_intr_init(cfg->afu);
1986 for (i = 0; i < afu->num_hwqs; i++) {
1987 hwq = get_hwq(afu, i);
1988
1989 hwq->room = readq_be(&hwq->host_map->cmd_room);
1990 }
1991
1992 /* Restore the LUN mappings */
1993 cxlflash_restore_luntable(cfg);
1994 out:
1995 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1996 return rc;
1997
1998 err1:
1999 for (i = afu->num_hwqs - 1; i >= 0; i--) {
2000 term_intr(cfg, UNMAP_THREE, i);
2001 term_mc(cfg, i);
2002 }
2003 goto out;
2004 }
2005
2006 /**
2007 * cxlflash_afu_sync() - builds and sends an AFU sync command
2008 * @afu: AFU associated with the host.
2009 * @ctx_hndl_u: Identifies context requesting sync.
2010 * @res_hndl_u: Identifies resource requesting sync.
2011 * @mode: Type of sync to issue (lightweight, heavyweight, global).
2012 *
2013 * The AFU can only take 1 sync command at a time. This routine enforces this
2014 * limitation by using a mutex to provide exclusive access to the AFU during
2015 * the sync. This design point requires calling threads to not be on interrupt
2016 * context due to the possibility of sleeping during concurrent sync operations.
2017 *
2018 * AFU sync operations are only necessary and allowed when the device is
2019 * operating normally. When not operating normally, sync requests can occur as
2020 * part of cleaning up resources associated with an adapter prior to removal.
2021 * In this scenario, these requests are simply ignored (safe due to the AFU
2022 * going away).
2023 *
2024 * Return:
2025 * 0 on success
2026 * -1 on failure
2027 */
2028 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx_hndl_u,
2029 res_hndl_t res_hndl_u, u8 mode)
2030 {
2031 struct cxlflash_cfg *cfg = afu->parent;
2032 struct device *dev = &cfg->dev->dev;
2033 struct afu_cmd *cmd = NULL;
2034 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
2035 char *buf = NULL;
2036 int rc = 0;
2037 static DEFINE_MUTEX(sync_active);
2038
2039 if (cfg->state != STATE_NORMAL) {
2040 dev_dbg(dev, "%s: Sync not required state=%u\n",
2041 __func__, cfg->state);
2042 return 0;
2043 }
2044
2045 mutex_lock(&sync_active);
2046 atomic_inc(&afu->cmds_active);
2047 buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
2048 if (unlikely(!buf)) {
2049 dev_err(dev, "%s: no memory for command\n", __func__);
2050 rc = -1;
2051 goto out;
2052 }
2053
2054 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
2055 init_completion(&cmd->cevent);
2056 cmd->parent = afu;
2057 cmd->hwq_index = hwq->index;
2058
2059 dev_dbg(dev, "%s: afu=%p cmd=%p %d\n", __func__, afu, cmd, ctx_hndl_u);
2060
2061 cmd->rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
2062 cmd->rcb.ctx_id = hwq->ctx_hndl;
2063 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
2064 cmd->rcb.timeout = MC_AFU_SYNC_TIMEOUT;
2065
2066 cmd->rcb.cdb[0] = 0xC0; /* AFU Sync */
2067 cmd->rcb.cdb[1] = mode;
2068
2069 /* The cdb is aligned, no unaligned accessors required */
2070 *((__be16 *)&cmd->rcb.cdb[2]) = cpu_to_be16(ctx_hndl_u);
2071 *((__be32 *)&cmd->rcb.cdb[4]) = cpu_to_be32(res_hndl_u);
2072
2073 rc = afu->send_cmd(afu, cmd);
2074 if (unlikely(rc))
2075 goto out;
2076
2077 rc = wait_resp(afu, cmd);
2078 if (unlikely(rc))
2079 rc = -1;
2080 out:
2081 atomic_dec(&afu->cmds_active);
2082 mutex_unlock(&sync_active);
2083 kfree(buf);
2084 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2085 return rc;
2086 }
2087
2088 /**
2089 * afu_reset() - resets the AFU
2090 * @cfg: Internal structure associated with the host.
2091 *
2092 * Return: 0 on success, -errno on failure
2093 */
2094 static int afu_reset(struct cxlflash_cfg *cfg)
2095 {
2096 struct device *dev = &cfg->dev->dev;
2097 int rc = 0;
2098
2099 /* Stop the context before the reset. Since the context is
2100 * no longer available restart it after the reset is complete
2101 */
2102 term_afu(cfg);
2103
2104 rc = init_afu(cfg);
2105
2106 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2107 return rc;
2108 }
2109
2110 /**
2111 * drain_ioctls() - wait until all currently executing ioctls have completed
2112 * @cfg: Internal structure associated with the host.
2113 *
2114 * Obtain write access to read/write semaphore that wraps ioctl
2115 * handling to 'drain' ioctls currently executing.
2116 */
2117 static void drain_ioctls(struct cxlflash_cfg *cfg)
2118 {
2119 down_write(&cfg->ioctl_rwsem);
2120 up_write(&cfg->ioctl_rwsem);
2121 }
2122
2123 /**
2124 * cxlflash_eh_device_reset_handler() - reset a single LUN
2125 * @scp: SCSI command to send.
2126 *
2127 * Return:
2128 * SUCCESS as defined in scsi/scsi.h
2129 * FAILED as defined in scsi/scsi.h
2130 */
2131 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
2132 {
2133 int rc = SUCCESS;
2134 struct Scsi_Host *host = scp->device->host;
2135 struct cxlflash_cfg *cfg = shost_priv(host);
2136 struct device *dev = &cfg->dev->dev;
2137 struct afu *afu = cfg->afu;
2138 int rcr = 0;
2139
2140 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2141 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2142 scp->device->channel, scp->device->id, scp->device->lun,
2143 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2144 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2145 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2146 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2147
2148 retry:
2149 switch (cfg->state) {
2150 case STATE_NORMAL:
2151 rcr = send_tmf(afu, scp, TMF_LUN_RESET);
2152 if (unlikely(rcr))
2153 rc = FAILED;
2154 break;
2155 case STATE_RESET:
2156 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2157 goto retry;
2158 default:
2159 rc = FAILED;
2160 break;
2161 }
2162
2163 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2164 return rc;
2165 }
2166
2167 /**
2168 * cxlflash_eh_host_reset_handler() - reset the host adapter
2169 * @scp: SCSI command from stack identifying host.
2170 *
2171 * Following a reset, the state is evaluated again in case an EEH occurred
2172 * during the reset. In such a scenario, the host reset will either yield
2173 * until the EEH recovery is complete or return success or failure based
2174 * upon the current device state.
2175 *
2176 * Return:
2177 * SUCCESS as defined in scsi/scsi.h
2178 * FAILED as defined in scsi/scsi.h
2179 */
2180 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
2181 {
2182 int rc = SUCCESS;
2183 int rcr = 0;
2184 struct Scsi_Host *host = scp->device->host;
2185 struct cxlflash_cfg *cfg = shost_priv(host);
2186 struct device *dev = &cfg->dev->dev;
2187
2188 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2189 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2190 scp->device->channel, scp->device->id, scp->device->lun,
2191 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2192 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2193 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2194 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2195
2196 switch (cfg->state) {
2197 case STATE_NORMAL:
2198 cfg->state = STATE_RESET;
2199 drain_ioctls(cfg);
2200 cxlflash_mark_contexts_error(cfg);
2201 rcr = afu_reset(cfg);
2202 if (rcr) {
2203 rc = FAILED;
2204 cfg->state = STATE_FAILTERM;
2205 } else
2206 cfg->state = STATE_NORMAL;
2207 wake_up_all(&cfg->reset_waitq);
2208 ssleep(1);
2209 /* fall through */
2210 case STATE_RESET:
2211 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2212 if (cfg->state == STATE_NORMAL)
2213 break;
2214 /* fall through */
2215 default:
2216 rc = FAILED;
2217 break;
2218 }
2219
2220 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2221 return rc;
2222 }
2223
2224 /**
2225 * cxlflash_change_queue_depth() - change the queue depth for the device
2226 * @sdev: SCSI device destined for queue depth change.
2227 * @qdepth: Requested queue depth value to set.
2228 *
2229 * The requested queue depth is capped to the maximum supported value.
2230 *
2231 * Return: The actual queue depth set.
2232 */
2233 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2234 {
2235
2236 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2237 qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2238
2239 scsi_change_queue_depth(sdev, qdepth);
2240 return sdev->queue_depth;
2241 }
2242
2243 /**
2244 * cxlflash_show_port_status() - queries and presents the current port status
2245 * @port: Desired port for status reporting.
2246 * @cfg: Internal structure associated with the host.
2247 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2248 *
2249 * Return: The size of the ASCII string returned in @buf or -EINVAL.
2250 */
2251 static ssize_t cxlflash_show_port_status(u32 port,
2252 struct cxlflash_cfg *cfg,
2253 char *buf)
2254 {
2255 struct device *dev = &cfg->dev->dev;
2256 char *disp_status;
2257 u64 status;
2258 __be64 __iomem *fc_port_regs;
2259
2260 WARN_ON(port >= MAX_FC_PORTS);
2261
2262 if (port >= cfg->num_fc_ports) {
2263 dev_info(dev, "%s: Port %d not supported on this card.\n",
2264 __func__, port);
2265 return -EINVAL;
2266 }
2267
2268 fc_port_regs = get_fc_port_regs(cfg, port);
2269 status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]);
2270 status &= FC_MTIP_STATUS_MASK;
2271
2272 if (status == FC_MTIP_STATUS_ONLINE)
2273 disp_status = "online";
2274 else if (status == FC_MTIP_STATUS_OFFLINE)
2275 disp_status = "offline";
2276 else
2277 disp_status = "unknown";
2278
2279 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2280 }
2281
2282 /**
2283 * port0_show() - queries and presents the current status of port 0
2284 * @dev: Generic device associated with the host owning the port.
2285 * @attr: Device attribute representing the port.
2286 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2287 *
2288 * Return: The size of the ASCII string returned in @buf.
2289 */
2290 static ssize_t port0_show(struct device *dev,
2291 struct device_attribute *attr,
2292 char *buf)
2293 {
2294 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2295
2296 return cxlflash_show_port_status(0, cfg, buf);
2297 }
2298
2299 /**
2300 * port1_show() - queries and presents the current status of port 1
2301 * @dev: Generic device associated with the host owning the port.
2302 * @attr: Device attribute representing the port.
2303 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2304 *
2305 * Return: The size of the ASCII string returned in @buf.
2306 */
2307 static ssize_t port1_show(struct device *dev,
2308 struct device_attribute *attr,
2309 char *buf)
2310 {
2311 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2312
2313 return cxlflash_show_port_status(1, cfg, buf);
2314 }
2315
2316 /**
2317 * port2_show() - queries and presents the current status of port 2
2318 * @dev: Generic device associated with the host owning the port.
2319 * @attr: Device attribute representing the port.
2320 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2321 *
2322 * Return: The size of the ASCII string returned in @buf.
2323 */
2324 static ssize_t port2_show(struct device *dev,
2325 struct device_attribute *attr,
2326 char *buf)
2327 {
2328 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2329
2330 return cxlflash_show_port_status(2, cfg, buf);
2331 }
2332
2333 /**
2334 * port3_show() - queries and presents the current status of port 3
2335 * @dev: Generic device associated with the host owning the port.
2336 * @attr: Device attribute representing the port.
2337 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2338 *
2339 * Return: The size of the ASCII string returned in @buf.
2340 */
2341 static ssize_t port3_show(struct device *dev,
2342 struct device_attribute *attr,
2343 char *buf)
2344 {
2345 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2346
2347 return cxlflash_show_port_status(3, cfg, buf);
2348 }
2349
2350 /**
2351 * lun_mode_show() - presents the current LUN mode of the host
2352 * @dev: Generic device associated with the host.
2353 * @attr: Device attribute representing the LUN mode.
2354 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2355 *
2356 * Return: The size of the ASCII string returned in @buf.
2357 */
2358 static ssize_t lun_mode_show(struct device *dev,
2359 struct device_attribute *attr, char *buf)
2360 {
2361 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2362 struct afu *afu = cfg->afu;
2363
2364 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2365 }
2366
2367 /**
2368 * lun_mode_store() - sets the LUN mode of the host
2369 * @dev: Generic device associated with the host.
2370 * @attr: Device attribute representing the LUN mode.
2371 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2372 * @count: Length of data resizing in @buf.
2373 *
2374 * The CXL Flash AFU supports a dummy LUN mode where the external
2375 * links and storage are not required. Space on the FPGA is used
2376 * to create 1 or 2 small LUNs which are presented to the system
2377 * as if they were a normal storage device. This feature is useful
2378 * during development and also provides manufacturing with a way
2379 * to test the AFU without an actual device.
2380 *
2381 * 0 = external LUN[s] (default)
2382 * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2383 * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2384 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2385 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2386 *
2387 * Return: The size of the ASCII string returned in @buf.
2388 */
2389 static ssize_t lun_mode_store(struct device *dev,
2390 struct device_attribute *attr,
2391 const char *buf, size_t count)
2392 {
2393 struct Scsi_Host *shost = class_to_shost(dev);
2394 struct cxlflash_cfg *cfg = shost_priv(shost);
2395 struct afu *afu = cfg->afu;
2396 int rc;
2397 u32 lun_mode;
2398
2399 rc = kstrtouint(buf, 10, &lun_mode);
2400 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2401 afu->internal_lun = lun_mode;
2402
2403 /*
2404 * When configured for internal LUN, there is only one channel,
2405 * channel number 0, else there will be one less than the number
2406 * of fc ports for this card.
2407 */
2408 if (afu->internal_lun)
2409 shost->max_channel = 0;
2410 else
2411 shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports);
2412
2413 afu_reset(cfg);
2414 scsi_scan_host(cfg->host);
2415 }
2416
2417 return count;
2418 }
2419
2420 /**
2421 * ioctl_version_show() - presents the current ioctl version of the host
2422 * @dev: Generic device associated with the host.
2423 * @attr: Device attribute representing the ioctl version.
2424 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version.
2425 *
2426 * Return: The size of the ASCII string returned in @buf.
2427 */
2428 static ssize_t ioctl_version_show(struct device *dev,
2429 struct device_attribute *attr, char *buf)
2430 {
2431 return scnprintf(buf, PAGE_SIZE, "%u\n", DK_CXLFLASH_VERSION_0);
2432 }
2433
2434 /**
2435 * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2436 * @port: Desired port for status reporting.
2437 * @cfg: Internal structure associated with the host.
2438 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2439 *
2440 * Return: The size of the ASCII string returned in @buf or -EINVAL.
2441 */
2442 static ssize_t cxlflash_show_port_lun_table(u32 port,
2443 struct cxlflash_cfg *cfg,
2444 char *buf)
2445 {
2446 struct device *dev = &cfg->dev->dev;
2447 __be64 __iomem *fc_port_luns;
2448 int i;
2449 ssize_t bytes = 0;
2450
2451 WARN_ON(port >= MAX_FC_PORTS);
2452
2453 if (port >= cfg->num_fc_ports) {
2454 dev_info(dev, "%s: Port %d not supported on this card.\n",
2455 __func__, port);
2456 return -EINVAL;
2457 }
2458
2459 fc_port_luns = get_fc_port_luns(cfg, port);
2460
2461 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2462 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2463 "%03d: %016llx\n",
2464 i, readq_be(&fc_port_luns[i]));
2465 return bytes;
2466 }
2467
2468 /**
2469 * port0_lun_table_show() - presents the current LUN table of port 0
2470 * @dev: Generic device associated with the host owning the port.
2471 * @attr: Device attribute representing the port.
2472 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2473 *
2474 * Return: The size of the ASCII string returned in @buf.
2475 */
2476 static ssize_t port0_lun_table_show(struct device *dev,
2477 struct device_attribute *attr,
2478 char *buf)
2479 {
2480 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2481
2482 return cxlflash_show_port_lun_table(0, cfg, buf);
2483 }
2484
2485 /**
2486 * port1_lun_table_show() - presents the current LUN table of port 1
2487 * @dev: Generic device associated with the host owning the port.
2488 * @attr: Device attribute representing the port.
2489 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2490 *
2491 * Return: The size of the ASCII string returned in @buf.
2492 */
2493 static ssize_t port1_lun_table_show(struct device *dev,
2494 struct device_attribute *attr,
2495 char *buf)
2496 {
2497 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2498
2499 return cxlflash_show_port_lun_table(1, cfg, buf);
2500 }
2501
2502 /**
2503 * port2_lun_table_show() - presents the current LUN table of port 2
2504 * @dev: Generic device associated with the host owning the port.
2505 * @attr: Device attribute representing the port.
2506 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2507 *
2508 * Return: The size of the ASCII string returned in @buf.
2509 */
2510 static ssize_t port2_lun_table_show(struct device *dev,
2511 struct device_attribute *attr,
2512 char *buf)
2513 {
2514 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2515
2516 return cxlflash_show_port_lun_table(2, cfg, buf);
2517 }
2518
2519 /**
2520 * port3_lun_table_show() - presents the current LUN table of port 3
2521 * @dev: Generic device associated with the host owning the port.
2522 * @attr: Device attribute representing the port.
2523 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2524 *
2525 * Return: The size of the ASCII string returned in @buf.
2526 */
2527 static ssize_t port3_lun_table_show(struct device *dev,
2528 struct device_attribute *attr,
2529 char *buf)
2530 {
2531 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2532
2533 return cxlflash_show_port_lun_table(3, cfg, buf);
2534 }
2535
2536 /**
2537 * irqpoll_weight_show() - presents the current IRQ poll weight for the host
2538 * @dev: Generic device associated with the host.
2539 * @attr: Device attribute representing the IRQ poll weight.
2540 * @buf: Buffer of length PAGE_SIZE to report back the current IRQ poll
2541 * weight in ASCII.
2542 *
2543 * An IRQ poll weight of 0 indicates polling is disabled.
2544 *
2545 * Return: The size of the ASCII string returned in @buf.
2546 */
2547 static ssize_t irqpoll_weight_show(struct device *dev,
2548 struct device_attribute *attr, char *buf)
2549 {
2550 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2551 struct afu *afu = cfg->afu;
2552
2553 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
2554 }
2555
2556 /**
2557 * irqpoll_weight_store() - sets the current IRQ poll weight for the host
2558 * @dev: Generic device associated with the host.
2559 * @attr: Device attribute representing the IRQ poll weight.
2560 * @buf: Buffer of length PAGE_SIZE containing the desired IRQ poll
2561 * weight in ASCII.
2562 * @count: Length of data resizing in @buf.
2563 *
2564 * An IRQ poll weight of 0 indicates polling is disabled.
2565 *
2566 * Return: The size of the ASCII string returned in @buf.
2567 */
2568 static ssize_t irqpoll_weight_store(struct device *dev,
2569 struct device_attribute *attr,
2570 const char *buf, size_t count)
2571 {
2572 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2573 struct device *cfgdev = &cfg->dev->dev;
2574 struct afu *afu = cfg->afu;
2575 struct hwq *hwq;
2576 u32 weight;
2577 int rc, i;
2578
2579 rc = kstrtouint(buf, 10, &weight);
2580 if (rc)
2581 return -EINVAL;
2582
2583 if (weight > 256) {
2584 dev_info(cfgdev,
2585 "Invalid IRQ poll weight. It must be 256 or less.\n");
2586 return -EINVAL;
2587 }
2588
2589 if (weight == afu->irqpoll_weight) {
2590 dev_info(cfgdev,
2591 "Current IRQ poll weight has the same weight.\n");
2592 return -EINVAL;
2593 }
2594
2595 if (afu_is_irqpoll_enabled(afu)) {
2596 for (i = 0; i < afu->num_hwqs; i++) {
2597 hwq = get_hwq(afu, i);
2598
2599 irq_poll_disable(&hwq->irqpoll);
2600 }
2601 }
2602
2603 afu->irqpoll_weight = weight;
2604
2605 if (weight > 0) {
2606 for (i = 0; i < afu->num_hwqs; i++) {
2607 hwq = get_hwq(afu, i);
2608
2609 irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll);
2610 }
2611 }
2612
2613 return count;
2614 }
2615
2616 /**
2617 * num_hwqs_show() - presents the number of hardware queues for the host
2618 * @dev: Generic device associated with the host.
2619 * @attr: Device attribute representing the number of hardware queues.
2620 * @buf: Buffer of length PAGE_SIZE to report back the number of hardware
2621 * queues in ASCII.
2622 *
2623 * Return: The size of the ASCII string returned in @buf.
2624 */
2625 static ssize_t num_hwqs_show(struct device *dev,
2626 struct device_attribute *attr, char *buf)
2627 {
2628 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2629 struct afu *afu = cfg->afu;
2630
2631 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs);
2632 }
2633
2634 /**
2635 * num_hwqs_store() - sets the number of hardware queues for the host
2636 * @dev: Generic device associated with the host.
2637 * @attr: Device attribute representing the number of hardware queues.
2638 * @buf: Buffer of length PAGE_SIZE containing the number of hardware
2639 * queues in ASCII.
2640 * @count: Length of data resizing in @buf.
2641 *
2642 * n > 0: num_hwqs = n
2643 * n = 0: num_hwqs = num_online_cpus()
2644 * n < 0: num_online_cpus() / abs(n)
2645 *
2646 * Return: The size of the ASCII string returned in @buf.
2647 */
2648 static ssize_t num_hwqs_store(struct device *dev,
2649 struct device_attribute *attr,
2650 const char *buf, size_t count)
2651 {
2652 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2653 struct afu *afu = cfg->afu;
2654 int rc;
2655 int nhwqs, num_hwqs;
2656
2657 rc = kstrtoint(buf, 10, &nhwqs);
2658 if (rc)
2659 return -EINVAL;
2660
2661 if (nhwqs >= 1)
2662 num_hwqs = nhwqs;
2663 else if (nhwqs == 0)
2664 num_hwqs = num_online_cpus();
2665 else
2666 num_hwqs = num_online_cpus() / abs(nhwqs);
2667
2668 afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS);
2669 WARN_ON_ONCE(afu->desired_hwqs == 0);
2670
2671 retry:
2672 switch (cfg->state) {
2673 case STATE_NORMAL:
2674 cfg->state = STATE_RESET;
2675 drain_ioctls(cfg);
2676 cxlflash_mark_contexts_error(cfg);
2677 rc = afu_reset(cfg);
2678 if (rc)
2679 cfg->state = STATE_FAILTERM;
2680 else
2681 cfg->state = STATE_NORMAL;
2682 wake_up_all(&cfg->reset_waitq);
2683 break;
2684 case STATE_RESET:
2685 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2686 if (cfg->state == STATE_NORMAL)
2687 goto retry;
2688 default:
2689 /* Ideally should not happen */
2690 dev_err(dev, "%s: Device is not ready, state=%d\n",
2691 __func__, cfg->state);
2692 break;
2693 }
2694
2695 return count;
2696 }
2697
2698 static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" };
2699
2700 /**
2701 * hwq_mode_show() - presents the HWQ steering mode for the host
2702 * @dev: Generic device associated with the host.
2703 * @attr: Device attribute representing the HWQ steering mode.
2704 * @buf: Buffer of length PAGE_SIZE to report back the HWQ steering mode
2705 * as a character string.
2706 *
2707 * Return: The size of the ASCII string returned in @buf.
2708 */
2709 static ssize_t hwq_mode_show(struct device *dev,
2710 struct device_attribute *attr, char *buf)
2711 {
2712 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2713 struct afu *afu = cfg->afu;
2714
2715 return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]);
2716 }
2717
2718 /**
2719 * hwq_mode_store() - sets the HWQ steering mode for the host
2720 * @dev: Generic device associated with the host.
2721 * @attr: Device attribute representing the HWQ steering mode.
2722 * @buf: Buffer of length PAGE_SIZE containing the HWQ steering mode
2723 * as a character string.
2724 * @count: Length of data resizing in @buf.
2725 *
2726 * rr = Round-Robin
2727 * tag = Block MQ Tagging
2728 * cpu = CPU Affinity
2729 *
2730 * Return: The size of the ASCII string returned in @buf.
2731 */
2732 static ssize_t hwq_mode_store(struct device *dev,
2733 struct device_attribute *attr,
2734 const char *buf, size_t count)
2735 {
2736 struct Scsi_Host *shost = class_to_shost(dev);
2737 struct cxlflash_cfg *cfg = shost_priv(shost);
2738 struct device *cfgdev = &cfg->dev->dev;
2739 struct afu *afu = cfg->afu;
2740 int i;
2741 u32 mode = MAX_HWQ_MODE;
2742
2743 for (i = 0; i < MAX_HWQ_MODE; i++) {
2744 if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) {
2745 mode = i;
2746 break;
2747 }
2748 }
2749
2750 if (mode >= MAX_HWQ_MODE) {
2751 dev_info(cfgdev, "Invalid HWQ steering mode.\n");
2752 return -EINVAL;
2753 }
2754
2755 if ((mode == HWQ_MODE_TAG) && !shost_use_blk_mq(shost)) {
2756 dev_info(cfgdev, "SCSI-MQ is not enabled, use a different "
2757 "HWQ steering mode.\n");
2758 return -EINVAL;
2759 }
2760
2761 afu->hwq_mode = mode;
2762
2763 return count;
2764 }
2765
2766 /**
2767 * mode_show() - presents the current mode of the device
2768 * @dev: Generic device associated with the device.
2769 * @attr: Device attribute representing the device mode.
2770 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
2771 *
2772 * Return: The size of the ASCII string returned in @buf.
2773 */
2774 static ssize_t mode_show(struct device *dev,
2775 struct device_attribute *attr, char *buf)
2776 {
2777 struct scsi_device *sdev = to_scsi_device(dev);
2778
2779 return scnprintf(buf, PAGE_SIZE, "%s\n",
2780 sdev->hostdata ? "superpipe" : "legacy");
2781 }
2782
2783 /*
2784 * Host attributes
2785 */
2786 static DEVICE_ATTR_RO(port0);
2787 static DEVICE_ATTR_RO(port1);
2788 static DEVICE_ATTR_RO(port2);
2789 static DEVICE_ATTR_RO(port3);
2790 static DEVICE_ATTR_RW(lun_mode);
2791 static DEVICE_ATTR_RO(ioctl_version);
2792 static DEVICE_ATTR_RO(port0_lun_table);
2793 static DEVICE_ATTR_RO(port1_lun_table);
2794 static DEVICE_ATTR_RO(port2_lun_table);
2795 static DEVICE_ATTR_RO(port3_lun_table);
2796 static DEVICE_ATTR_RW(irqpoll_weight);
2797 static DEVICE_ATTR_RW(num_hwqs);
2798 static DEVICE_ATTR_RW(hwq_mode);
2799
2800 static struct device_attribute *cxlflash_host_attrs[] = {
2801 &dev_attr_port0,
2802 &dev_attr_port1,
2803 &dev_attr_port2,
2804 &dev_attr_port3,
2805 &dev_attr_lun_mode,
2806 &dev_attr_ioctl_version,
2807 &dev_attr_port0_lun_table,
2808 &dev_attr_port1_lun_table,
2809 &dev_attr_port2_lun_table,
2810 &dev_attr_port3_lun_table,
2811 &dev_attr_irqpoll_weight,
2812 &dev_attr_num_hwqs,
2813 &dev_attr_hwq_mode,
2814 NULL
2815 };
2816
2817 /*
2818 * Device attributes
2819 */
2820 static DEVICE_ATTR_RO(mode);
2821
2822 static struct device_attribute *cxlflash_dev_attrs[] = {
2823 &dev_attr_mode,
2824 NULL
2825 };
2826
2827 /*
2828 * Host template
2829 */
2830 static struct scsi_host_template driver_template = {
2831 .module = THIS_MODULE,
2832 .name = CXLFLASH_ADAPTER_NAME,
2833 .info = cxlflash_driver_info,
2834 .ioctl = cxlflash_ioctl,
2835 .proc_name = CXLFLASH_NAME,
2836 .queuecommand = cxlflash_queuecommand,
2837 .eh_device_reset_handler = cxlflash_eh_device_reset_handler,
2838 .eh_host_reset_handler = cxlflash_eh_host_reset_handler,
2839 .change_queue_depth = cxlflash_change_queue_depth,
2840 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
2841 .can_queue = CXLFLASH_MAX_CMDS,
2842 .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
2843 .this_id = -1,
2844 .sg_tablesize = 1, /* No scatter gather support */
2845 .max_sectors = CXLFLASH_MAX_SECTORS,
2846 .use_clustering = ENABLE_CLUSTERING,
2847 .shost_attrs = cxlflash_host_attrs,
2848 .sdev_attrs = cxlflash_dev_attrs,
2849 };
2850
2851 /*
2852 * Device dependent values
2853 */
2854 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
2855 0ULL };
2856 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
2857 CXLFLASH_NOTIFY_SHUTDOWN };
2858 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
2859 CXLFLASH_NOTIFY_SHUTDOWN };
2860
2861 /*
2862 * PCI device binding table
2863 */
2864 static struct pci_device_id cxlflash_pci_table[] = {
2865 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
2866 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
2867 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
2868 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
2869 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
2870 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
2871 {}
2872 };
2873
2874 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
2875
2876 /**
2877 * cxlflash_worker_thread() - work thread handler for the AFU
2878 * @work: Work structure contained within cxlflash associated with host.
2879 *
2880 * Handles the following events:
2881 * - Link reset which cannot be performed on interrupt context due to
2882 * blocking up to a few seconds
2883 * - Rescan the host
2884 */
2885 static void cxlflash_worker_thread(struct work_struct *work)
2886 {
2887 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
2888 work_q);
2889 struct afu *afu = cfg->afu;
2890 struct device *dev = &cfg->dev->dev;
2891 __be64 __iomem *fc_port_regs;
2892 int port;
2893 ulong lock_flags;
2894
2895 /* Avoid MMIO if the device has failed */
2896
2897 if (cfg->state != STATE_NORMAL)
2898 return;
2899
2900 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2901
2902 if (cfg->lr_state == LINK_RESET_REQUIRED) {
2903 port = cfg->lr_port;
2904 if (port < 0)
2905 dev_err(dev, "%s: invalid port index %d\n",
2906 __func__, port);
2907 else {
2908 spin_unlock_irqrestore(cfg->host->host_lock,
2909 lock_flags);
2910
2911 /* The reset can block... */
2912 fc_port_regs = get_fc_port_regs(cfg, port);
2913 afu_link_reset(afu, port, fc_port_regs);
2914 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2915 }
2916
2917 cfg->lr_state = LINK_RESET_COMPLETE;
2918 }
2919
2920 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
2921
2922 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
2923 scsi_scan_host(cfg->host);
2924 }
2925
2926 /**
2927 * cxlflash_probe() - PCI entry point to add host
2928 * @pdev: PCI device associated with the host.
2929 * @dev_id: PCI device id associated with device.
2930 *
2931 * The device will initially start out in a 'probing' state and
2932 * transition to the 'normal' state at the end of a successful
2933 * probe. Should an EEH event occur during probe, the notification
2934 * thread (error_detected()) will wait until the probe handler
2935 * is nearly complete. At that time, the device will be moved to
2936 * a 'probed' state and the EEH thread woken up to drive the slot
2937 * reset and recovery (device moves to 'normal' state). Meanwhile,
2938 * the probe will be allowed to exit successfully.
2939 *
2940 * Return: 0 on success, -errno on failure
2941 */
2942 static int cxlflash_probe(struct pci_dev *pdev,
2943 const struct pci_device_id *dev_id)
2944 {
2945 struct Scsi_Host *host;
2946 struct cxlflash_cfg *cfg = NULL;
2947 struct device *dev = &pdev->dev;
2948 struct dev_dependent_vals *ddv;
2949 int rc = 0;
2950 int k;
2951
2952 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
2953 __func__, pdev->irq);
2954
2955 ddv = (struct dev_dependent_vals *)dev_id->driver_data;
2956 driver_template.max_sectors = ddv->max_sectors;
2957
2958 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
2959 if (!host) {
2960 dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
2961 rc = -ENOMEM;
2962 goto out;
2963 }
2964
2965 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
2966 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
2967 host->unique_id = host->host_no;
2968 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
2969
2970 cfg = shost_priv(host);
2971 cfg->host = host;
2972 rc = alloc_mem(cfg);
2973 if (rc) {
2974 dev_err(dev, "%s: alloc_mem failed\n", __func__);
2975 rc = -ENOMEM;
2976 scsi_host_put(cfg->host);
2977 goto out;
2978 }
2979
2980 cfg->init_state = INIT_STATE_NONE;
2981 cfg->dev = pdev;
2982 cfg->cxl_fops = cxlflash_cxl_fops;
2983
2984 /*
2985 * Promoted LUNs move to the top of the LUN table. The rest stay on
2986 * the bottom half. The bottom half grows from the end (index = 255),
2987 * whereas the top half grows from the beginning (index = 0).
2988 *
2989 * Initialize the last LUN index for all possible ports.
2990 */
2991 cfg->promote_lun_index = 0;
2992
2993 for (k = 0; k < MAX_FC_PORTS; k++)
2994 cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
2995
2996 cfg->dev_id = (struct pci_device_id *)dev_id;
2997
2998 init_waitqueue_head(&cfg->tmf_waitq);
2999 init_waitqueue_head(&cfg->reset_waitq);
3000
3001 INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
3002 cfg->lr_state = LINK_RESET_INVALID;
3003 cfg->lr_port = -1;
3004 spin_lock_init(&cfg->tmf_slock);
3005 mutex_init(&cfg->ctx_tbl_list_mutex);
3006 mutex_init(&cfg->ctx_recovery_mutex);
3007 init_rwsem(&cfg->ioctl_rwsem);
3008 INIT_LIST_HEAD(&cfg->ctx_err_recovery);
3009 INIT_LIST_HEAD(&cfg->lluns);
3010
3011 pci_set_drvdata(pdev, cfg);
3012
3013 cfg->cxl_afu = cxl_pci_to_afu(pdev);
3014
3015 rc = init_pci(cfg);
3016 if (rc) {
3017 dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
3018 goto out_remove;
3019 }
3020 cfg->init_state = INIT_STATE_PCI;
3021
3022 rc = init_afu(cfg);
3023 if (rc && !wq_has_sleeper(&cfg->reset_waitq)) {
3024 dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
3025 goto out_remove;
3026 }
3027 cfg->init_state = INIT_STATE_AFU;
3028
3029 rc = init_scsi(cfg);
3030 if (rc) {
3031 dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
3032 goto out_remove;
3033 }
3034 cfg->init_state = INIT_STATE_SCSI;
3035
3036 if (wq_has_sleeper(&cfg->reset_waitq)) {
3037 cfg->state = STATE_PROBED;
3038 wake_up_all(&cfg->reset_waitq);
3039 } else
3040 cfg->state = STATE_NORMAL;
3041 out:
3042 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3043 return rc;
3044
3045 out_remove:
3046 cxlflash_remove(pdev);
3047 goto out;
3048 }
3049
3050 /**
3051 * cxlflash_pci_error_detected() - called when a PCI error is detected
3052 * @pdev: PCI device struct.
3053 * @state: PCI channel state.
3054 *
3055 * When an EEH occurs during an active reset, wait until the reset is
3056 * complete and then take action based upon the device state.
3057 *
3058 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
3059 */
3060 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
3061 pci_channel_state_t state)
3062 {
3063 int rc = 0;
3064 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3065 struct device *dev = &cfg->dev->dev;
3066
3067 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
3068
3069 switch (state) {
3070 case pci_channel_io_frozen:
3071 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
3072 cfg->state != STATE_PROBING);
3073 if (cfg->state == STATE_FAILTERM)
3074 return PCI_ERS_RESULT_DISCONNECT;
3075
3076 cfg->state = STATE_RESET;
3077 scsi_block_requests(cfg->host);
3078 drain_ioctls(cfg);
3079 rc = cxlflash_mark_contexts_error(cfg);
3080 if (unlikely(rc))
3081 dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
3082 __func__, rc);
3083 term_afu(cfg);
3084 return PCI_ERS_RESULT_NEED_RESET;
3085 case pci_channel_io_perm_failure:
3086 cfg->state = STATE_FAILTERM;
3087 wake_up_all(&cfg->reset_waitq);
3088 scsi_unblock_requests(cfg->host);
3089 return PCI_ERS_RESULT_DISCONNECT;
3090 default:
3091 break;
3092 }
3093 return PCI_ERS_RESULT_NEED_RESET;
3094 }
3095
3096 /**
3097 * cxlflash_pci_slot_reset() - called when PCI slot has been reset
3098 * @pdev: PCI device struct.
3099 *
3100 * This routine is called by the pci error recovery code after the PCI
3101 * slot has been reset, just before we should resume normal operations.
3102 *
3103 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
3104 */
3105 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
3106 {
3107 int rc = 0;
3108 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3109 struct device *dev = &cfg->dev->dev;
3110
3111 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3112
3113 rc = init_afu(cfg);
3114 if (unlikely(rc)) {
3115 dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
3116 return PCI_ERS_RESULT_DISCONNECT;
3117 }
3118
3119 return PCI_ERS_RESULT_RECOVERED;
3120 }
3121
3122 /**
3123 * cxlflash_pci_resume() - called when normal operation can resume
3124 * @pdev: PCI device struct
3125 */
3126 static void cxlflash_pci_resume(struct pci_dev *pdev)
3127 {
3128 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3129 struct device *dev = &cfg->dev->dev;
3130
3131 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3132
3133 cfg->state = STATE_NORMAL;
3134 wake_up_all(&cfg->reset_waitq);
3135 scsi_unblock_requests(cfg->host);
3136 }
3137
3138 static const struct pci_error_handlers cxlflash_err_handler = {
3139 .error_detected = cxlflash_pci_error_detected,
3140 .slot_reset = cxlflash_pci_slot_reset,
3141 .resume = cxlflash_pci_resume,
3142 };
3143
3144 /*
3145 * PCI device structure
3146 */
3147 static struct pci_driver cxlflash_driver = {
3148 .name = CXLFLASH_NAME,
3149 .id_table = cxlflash_pci_table,
3150 .probe = cxlflash_probe,
3151 .remove = cxlflash_remove,
3152 .shutdown = cxlflash_remove,
3153 .err_handler = &cxlflash_err_handler,
3154 };
3155
3156 /**
3157 * init_cxlflash() - module entry point
3158 *
3159 * Return: 0 on success, -errno on failure
3160 */
3161 static int __init init_cxlflash(void)
3162 {
3163 check_sizes();
3164 cxlflash_list_init();
3165
3166 return pci_register_driver(&cxlflash_driver);
3167 }
3168
3169 /**
3170 * exit_cxlflash() - module exit point
3171 */
3172 static void __exit exit_cxlflash(void)
3173 {
3174 cxlflash_term_global_luns();
3175 cxlflash_free_errpage();
3176
3177 pci_unregister_driver(&cxlflash_driver);
3178 }
3179
3180 module_init(init_cxlflash);
3181 module_exit(exit_cxlflash);