]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/cxlflash/main.c
scsi: cxlflash: Cancel scheduled workers before stopping AFU
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / cxlflash / main.c
1 /*
2 * CXL Flash Device Driver
3 *
4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
6 *
7 * Copyright (C) 2015 IBM Corporation
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15 #include <linux/delay.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19
20 #include <asm/unaligned.h>
21
22 #include <misc/cxl.h>
23
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_host.h>
26 #include <uapi/scsi/cxlflash_ioctl.h>
27
28 #include "main.h"
29 #include "sislite.h"
30 #include "common.h"
31
32 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
33 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
34 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
35 MODULE_LICENSE("GPL");
36
37 /**
38 * process_cmd_err() - command error handler
39 * @cmd: AFU command that experienced the error.
40 * @scp: SCSI command associated with the AFU command in error.
41 *
42 * Translates error bits from AFU command to SCSI command results.
43 */
44 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
45 {
46 struct afu *afu = cmd->parent;
47 struct cxlflash_cfg *cfg = afu->parent;
48 struct device *dev = &cfg->dev->dev;
49 struct sisl_ioarcb *ioarcb;
50 struct sisl_ioasa *ioasa;
51 u32 resid;
52
53 if (unlikely(!cmd))
54 return;
55
56 ioarcb = &(cmd->rcb);
57 ioasa = &(cmd->sa);
58
59 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
60 resid = ioasa->resid;
61 scsi_set_resid(scp, resid);
62 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
63 __func__, cmd, scp, resid);
64 }
65
66 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
67 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
68 __func__, cmd, scp);
69 scp->result = (DID_ERROR << 16);
70 }
71
72 dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
73 "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
74 ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
75 ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
76
77 if (ioasa->rc.scsi_rc) {
78 /* We have a SCSI status */
79 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
80 memcpy(scp->sense_buffer, ioasa->sense_data,
81 SISL_SENSE_DATA_LEN);
82 scp->result = ioasa->rc.scsi_rc;
83 } else
84 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
85 }
86
87 /*
88 * We encountered an error. Set scp->result based on nature
89 * of error.
90 */
91 if (ioasa->rc.fc_rc) {
92 /* We have an FC status */
93 switch (ioasa->rc.fc_rc) {
94 case SISL_FC_RC_LINKDOWN:
95 scp->result = (DID_REQUEUE << 16);
96 break;
97 case SISL_FC_RC_RESID:
98 /* This indicates an FCP resid underrun */
99 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
100 /* If the SISL_RC_FLAGS_OVERRUN flag was set,
101 * then we will handle this error else where.
102 * If not then we must handle it here.
103 * This is probably an AFU bug.
104 */
105 scp->result = (DID_ERROR << 16);
106 }
107 break;
108 case SISL_FC_RC_RESIDERR:
109 /* Resid mismatch between adapter and device */
110 case SISL_FC_RC_TGTABORT:
111 case SISL_FC_RC_ABORTOK:
112 case SISL_FC_RC_ABORTFAIL:
113 case SISL_FC_RC_NOLOGI:
114 case SISL_FC_RC_ABORTPEND:
115 case SISL_FC_RC_WRABORTPEND:
116 case SISL_FC_RC_NOEXP:
117 case SISL_FC_RC_INUSE:
118 scp->result = (DID_ERROR << 16);
119 break;
120 }
121 }
122
123 if (ioasa->rc.afu_rc) {
124 /* We have an AFU error */
125 switch (ioasa->rc.afu_rc) {
126 case SISL_AFU_RC_NO_CHANNELS:
127 scp->result = (DID_NO_CONNECT << 16);
128 break;
129 case SISL_AFU_RC_DATA_DMA_ERR:
130 switch (ioasa->afu_extra) {
131 case SISL_AFU_DMA_ERR_PAGE_IN:
132 /* Retry */
133 scp->result = (DID_IMM_RETRY << 16);
134 break;
135 case SISL_AFU_DMA_ERR_INVALID_EA:
136 default:
137 scp->result = (DID_ERROR << 16);
138 }
139 break;
140 case SISL_AFU_RC_OUT_OF_DATA_BUFS:
141 /* Retry */
142 scp->result = (DID_ALLOC_FAILURE << 16);
143 break;
144 default:
145 scp->result = (DID_ERROR << 16);
146 }
147 }
148 }
149
150 /**
151 * cmd_complete() - command completion handler
152 * @cmd: AFU command that has completed.
153 *
154 * Prepares and submits command that has either completed or timed out to
155 * the SCSI stack. Checks AFU command back into command pool for non-internal
156 * (cmd->scp populated) commands.
157 */
158 static void cmd_complete(struct afu_cmd *cmd)
159 {
160 struct scsi_cmnd *scp;
161 ulong lock_flags;
162 struct afu *afu = cmd->parent;
163 struct cxlflash_cfg *cfg = afu->parent;
164 struct device *dev = &cfg->dev->dev;
165 bool cmd_is_tmf;
166
167 if (cmd->scp) {
168 scp = cmd->scp;
169 if (unlikely(cmd->sa.ioasc))
170 process_cmd_err(cmd, scp);
171 else
172 scp->result = (DID_OK << 16);
173
174 cmd_is_tmf = cmd->cmd_tmf;
175
176 dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
177 __func__, scp, scp->result, cmd->sa.ioasc);
178
179 scsi_dma_unmap(scp);
180 scp->scsi_done(scp);
181
182 if (cmd_is_tmf) {
183 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
184 cfg->tmf_active = false;
185 wake_up_all_locked(&cfg->tmf_waitq);
186 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
187 }
188 } else
189 complete(&cmd->cevent);
190 }
191
192 /**
193 * context_reset() - reset command owner context via specified register
194 * @cmd: AFU command that timed out.
195 * @reset_reg: MMIO register to perform reset.
196 */
197 static void context_reset(struct afu_cmd *cmd, __be64 __iomem *reset_reg)
198 {
199 int nretry = 0;
200 u64 rrin = 0x1;
201 struct afu *afu = cmd->parent;
202 struct cxlflash_cfg *cfg = afu->parent;
203 struct device *dev = &cfg->dev->dev;
204
205 dev_dbg(dev, "%s: cmd=%p\n", __func__, cmd);
206
207 writeq_be(rrin, reset_reg);
208 do {
209 rrin = readq_be(reset_reg);
210 if (rrin != 0x1)
211 break;
212 /* Double delay each time */
213 udelay(1 << nretry);
214 } while (nretry++ < MC_ROOM_RETRY_CNT);
215
216 dev_dbg(dev, "%s: returning rrin=%016llx nretry=%d\n",
217 __func__, rrin, nretry);
218 }
219
220 /**
221 * context_reset_ioarrin() - reset command owner context via IOARRIN register
222 * @cmd: AFU command that timed out.
223 */
224 static void context_reset_ioarrin(struct afu_cmd *cmd)
225 {
226 struct afu *afu = cmd->parent;
227
228 context_reset(cmd, &afu->host_map->ioarrin);
229 }
230
231 /**
232 * context_reset_sq() - reset command owner context w/ SQ Context Reset register
233 * @cmd: AFU command that timed out.
234 */
235 static void context_reset_sq(struct afu_cmd *cmd)
236 {
237 struct afu *afu = cmd->parent;
238
239 context_reset(cmd, &afu->host_map->sq_ctx_reset);
240 }
241
242 /**
243 * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
244 * @afu: AFU associated with the host.
245 * @cmd: AFU command to send.
246 *
247 * Return:
248 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
249 */
250 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
251 {
252 struct cxlflash_cfg *cfg = afu->parent;
253 struct device *dev = &cfg->dev->dev;
254 int rc = 0;
255 s64 room;
256 ulong lock_flags;
257
258 /*
259 * To avoid the performance penalty of MMIO, spread the update of
260 * 'room' over multiple commands.
261 */
262 spin_lock_irqsave(&afu->rrin_slock, lock_flags);
263 if (--afu->room < 0) {
264 room = readq_be(&afu->host_map->cmd_room);
265 if (room <= 0) {
266 dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
267 "0x%02X, room=0x%016llX\n",
268 __func__, cmd->rcb.cdb[0], room);
269 afu->room = 0;
270 rc = SCSI_MLQUEUE_HOST_BUSY;
271 goto out;
272 }
273 afu->room = room - 1;
274 }
275
276 writeq_be((u64)&cmd->rcb, &afu->host_map->ioarrin);
277 out:
278 spin_unlock_irqrestore(&afu->rrin_slock, lock_flags);
279 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n", __func__,
280 cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
281 return rc;
282 }
283
284 /**
285 * send_cmd_sq() - sends an AFU command via SQ ring
286 * @afu: AFU associated with the host.
287 * @cmd: AFU command to send.
288 *
289 * Return:
290 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
291 */
292 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
293 {
294 struct cxlflash_cfg *cfg = afu->parent;
295 struct device *dev = &cfg->dev->dev;
296 int rc = 0;
297 int newval;
298 ulong lock_flags;
299
300 newval = atomic_dec_if_positive(&afu->hsq_credits);
301 if (newval <= 0) {
302 rc = SCSI_MLQUEUE_HOST_BUSY;
303 goto out;
304 }
305
306 cmd->rcb.ioasa = &cmd->sa;
307
308 spin_lock_irqsave(&afu->hsq_slock, lock_flags);
309
310 *afu->hsq_curr = cmd->rcb;
311 if (afu->hsq_curr < afu->hsq_end)
312 afu->hsq_curr++;
313 else
314 afu->hsq_curr = afu->hsq_start;
315 writeq_be((u64)afu->hsq_curr, &afu->host_map->sq_tail);
316
317 spin_unlock_irqrestore(&afu->hsq_slock, lock_flags);
318 out:
319 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
320 "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
321 cmd->rcb.data_ea, cmd->rcb.ioasa, rc, afu->hsq_curr,
322 readq_be(&afu->host_map->sq_head),
323 readq_be(&afu->host_map->sq_tail));
324 return rc;
325 }
326
327 /**
328 * wait_resp() - polls for a response or timeout to a sent AFU command
329 * @afu: AFU associated with the host.
330 * @cmd: AFU command that was sent.
331 *
332 * Return:
333 * 0 on success, -1 on timeout/error
334 */
335 static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
336 {
337 struct cxlflash_cfg *cfg = afu->parent;
338 struct device *dev = &cfg->dev->dev;
339 int rc = 0;
340 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
341
342 timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
343 if (!timeout) {
344 afu->context_reset(cmd);
345 rc = -1;
346 }
347
348 if (unlikely(cmd->sa.ioasc != 0)) {
349 dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
350 __func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
351 rc = -1;
352 }
353
354 return rc;
355 }
356
357 /**
358 * send_tmf() - sends a Task Management Function (TMF)
359 * @afu: AFU to checkout from.
360 * @scp: SCSI command from stack.
361 * @tmfcmd: TMF command to send.
362 *
363 * Return:
364 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
365 */
366 static int send_tmf(struct afu *afu, struct scsi_cmnd *scp, u64 tmfcmd)
367 {
368 u32 port_sel = scp->device->channel + 1;
369 struct cxlflash_cfg *cfg = shost_priv(scp->device->host);
370 struct afu_cmd *cmd = sc_to_afucz(scp);
371 struct device *dev = &cfg->dev->dev;
372 ulong lock_flags;
373 int rc = 0;
374 ulong to;
375
376 /* When Task Management Function is active do not send another */
377 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
378 if (cfg->tmf_active)
379 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
380 !cfg->tmf_active,
381 cfg->tmf_slock);
382 cfg->tmf_active = true;
383 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
384
385 cmd->scp = scp;
386 cmd->parent = afu;
387 cmd->cmd_tmf = true;
388
389 cmd->rcb.ctx_id = afu->ctx_hndl;
390 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
391 cmd->rcb.port_sel = port_sel;
392 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
393 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
394 SISL_REQ_FLAGS_SUP_UNDERRUN |
395 SISL_REQ_FLAGS_TMF_CMD);
396 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
397
398 rc = afu->send_cmd(afu, cmd);
399 if (unlikely(rc)) {
400 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
401 cfg->tmf_active = false;
402 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
403 goto out;
404 }
405
406 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
407 to = msecs_to_jiffies(5000);
408 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
409 !cfg->tmf_active,
410 cfg->tmf_slock,
411 to);
412 if (!to) {
413 cfg->tmf_active = false;
414 dev_err(dev, "%s: TMF timed out\n", __func__);
415 rc = -1;
416 }
417 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
418 out:
419 return rc;
420 }
421
422 /**
423 * cxlflash_driver_info() - information handler for this host driver
424 * @host: SCSI host associated with device.
425 *
426 * Return: A string describing the device.
427 */
428 static const char *cxlflash_driver_info(struct Scsi_Host *host)
429 {
430 return CXLFLASH_ADAPTER_NAME;
431 }
432
433 /**
434 * cxlflash_queuecommand() - sends a mid-layer request
435 * @host: SCSI host associated with device.
436 * @scp: SCSI command to send.
437 *
438 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
439 */
440 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
441 {
442 struct cxlflash_cfg *cfg = shost_priv(host);
443 struct afu *afu = cfg->afu;
444 struct device *dev = &cfg->dev->dev;
445 struct afu_cmd *cmd = sc_to_afucz(scp);
446 struct scatterlist *sg = scsi_sglist(scp);
447 u32 port_sel = scp->device->channel + 1;
448 u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
449 ulong lock_flags;
450 int nseg = 0;
451 int rc = 0;
452
453 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
454 "cdb=(%08x-%08x-%08x-%08x)\n",
455 __func__, scp, host->host_no, scp->device->channel,
456 scp->device->id, scp->device->lun,
457 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
458 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
459 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
460 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
461
462 /*
463 * If a Task Management Function is active, wait for it to complete
464 * before continuing with regular commands.
465 */
466 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
467 if (cfg->tmf_active) {
468 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
469 rc = SCSI_MLQUEUE_HOST_BUSY;
470 goto out;
471 }
472 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
473
474 switch (cfg->state) {
475 case STATE_RESET:
476 dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
477 rc = SCSI_MLQUEUE_HOST_BUSY;
478 goto out;
479 case STATE_FAILTERM:
480 dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
481 scp->result = (DID_NO_CONNECT << 16);
482 scp->scsi_done(scp);
483 rc = 0;
484 goto out;
485 default:
486 break;
487 }
488
489 if (likely(sg)) {
490 nseg = scsi_dma_map(scp);
491 if (unlikely(nseg < 0)) {
492 dev_err(dev, "%s: Fail DMA map\n", __func__);
493 rc = SCSI_MLQUEUE_HOST_BUSY;
494 goto out;
495 }
496
497 cmd->rcb.data_len = sg_dma_len(sg);
498 cmd->rcb.data_ea = sg_dma_address(sg);
499 }
500
501 cmd->scp = scp;
502 cmd->parent = afu;
503
504 cmd->rcb.ctx_id = afu->ctx_hndl;
505 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
506 cmd->rcb.port_sel = port_sel;
507 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
508
509 if (scp->sc_data_direction == DMA_TO_DEVICE)
510 req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
511
512 cmd->rcb.req_flags = req_flags;
513 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
514
515 rc = afu->send_cmd(afu, cmd);
516 if (unlikely(rc))
517 scsi_dma_unmap(scp);
518 out:
519 return rc;
520 }
521
522 /**
523 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
524 * @cfg: Internal structure associated with the host.
525 */
526 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
527 {
528 struct pci_dev *pdev = cfg->dev;
529
530 if (pci_channel_offline(pdev))
531 wait_event_timeout(cfg->reset_waitq,
532 !pci_channel_offline(pdev),
533 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
534 }
535
536 /**
537 * free_mem() - free memory associated with the AFU
538 * @cfg: Internal structure associated with the host.
539 */
540 static void free_mem(struct cxlflash_cfg *cfg)
541 {
542 struct afu *afu = cfg->afu;
543
544 if (cfg->afu) {
545 free_pages((ulong)afu, get_order(sizeof(struct afu)));
546 cfg->afu = NULL;
547 }
548 }
549
550 /**
551 * stop_afu() - stops the AFU command timers and unmaps the MMIO space
552 * @cfg: Internal structure associated with the host.
553 *
554 * Safe to call with AFU in a partially allocated/initialized state.
555 *
556 * Cancels scheduled worker threads, waits for any active internal AFU
557 * commands to timeout and then unmaps the MMIO space.
558 */
559 static void stop_afu(struct cxlflash_cfg *cfg)
560 {
561 struct afu *afu = cfg->afu;
562
563 cancel_work_sync(&cfg->work_q);
564
565 if (likely(afu)) {
566 while (atomic_read(&afu->cmds_active))
567 ssleep(1);
568 if (likely(afu->afu_map)) {
569 cxl_psa_unmap((void __iomem *)afu->afu_map);
570 afu->afu_map = NULL;
571 }
572 }
573 }
574
575 /**
576 * term_intr() - disables all AFU interrupts
577 * @cfg: Internal structure associated with the host.
578 * @level: Depth of allocation, where to begin waterfall tear down.
579 *
580 * Safe to call with AFU/MC in partially allocated/initialized state.
581 */
582 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level)
583 {
584 struct afu *afu = cfg->afu;
585 struct device *dev = &cfg->dev->dev;
586
587 if (!afu || !cfg->mcctx) {
588 dev_err(dev, "%s: returning with NULL afu or MC\n", __func__);
589 return;
590 }
591
592 switch (level) {
593 case UNMAP_THREE:
594 cxl_unmap_afu_irq(cfg->mcctx, 3, afu);
595 case UNMAP_TWO:
596 cxl_unmap_afu_irq(cfg->mcctx, 2, afu);
597 case UNMAP_ONE:
598 cxl_unmap_afu_irq(cfg->mcctx, 1, afu);
599 case FREE_IRQ:
600 cxl_free_afu_irqs(cfg->mcctx);
601 /* fall through */
602 case UNDO_NOOP:
603 /* No action required */
604 break;
605 }
606 }
607
608 /**
609 * term_mc() - terminates the master context
610 * @cfg: Internal structure associated with the host.
611 * @level: Depth of allocation, where to begin waterfall tear down.
612 *
613 * Safe to call with AFU/MC in partially allocated/initialized state.
614 */
615 static void term_mc(struct cxlflash_cfg *cfg)
616 {
617 int rc = 0;
618 struct afu *afu = cfg->afu;
619 struct device *dev = &cfg->dev->dev;
620
621 if (!afu || !cfg->mcctx) {
622 dev_err(dev, "%s: returning with NULL afu or MC\n", __func__);
623 return;
624 }
625
626 rc = cxl_stop_context(cfg->mcctx);
627 WARN_ON(rc);
628 cfg->mcctx = NULL;
629 }
630
631 /**
632 * term_afu() - terminates the AFU
633 * @cfg: Internal structure associated with the host.
634 *
635 * Safe to call with AFU/MC in partially allocated/initialized state.
636 */
637 static void term_afu(struct cxlflash_cfg *cfg)
638 {
639 struct device *dev = &cfg->dev->dev;
640
641 /*
642 * Tear down is carefully orchestrated to ensure
643 * no interrupts can come in when the problem state
644 * area is unmapped.
645 *
646 * 1) Disable all AFU interrupts
647 * 2) Unmap the problem state area
648 * 3) Stop the master context
649 */
650 term_intr(cfg, UNMAP_THREE);
651 if (cfg->afu)
652 stop_afu(cfg);
653
654 term_mc(cfg);
655
656 dev_dbg(dev, "%s: returning\n", __func__);
657 }
658
659 /**
660 * notify_shutdown() - notifies device of pending shutdown
661 * @cfg: Internal structure associated with the host.
662 * @wait: Whether to wait for shutdown processing to complete.
663 *
664 * This function will notify the AFU that the adapter is being shutdown
665 * and will wait for shutdown processing to complete if wait is true.
666 * This notification should flush pending I/Os to the device and halt
667 * further I/Os until the next AFU reset is issued and device restarted.
668 */
669 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
670 {
671 struct afu *afu = cfg->afu;
672 struct device *dev = &cfg->dev->dev;
673 struct sisl_global_map __iomem *global;
674 struct dev_dependent_vals *ddv;
675 u64 reg, status;
676 int i, retry_cnt = 0;
677
678 ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
679 if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
680 return;
681
682 if (!afu || !afu->afu_map) {
683 dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
684 return;
685 }
686
687 global = &afu->afu_map->global;
688
689 /* Notify AFU */
690 for (i = 0; i < NUM_FC_PORTS; i++) {
691 reg = readq_be(&global->fc_regs[i][FC_CONFIG2 / 8]);
692 reg |= SISL_FC_SHUTDOWN_NORMAL;
693 writeq_be(reg, &global->fc_regs[i][FC_CONFIG2 / 8]);
694 }
695
696 if (!wait)
697 return;
698
699 /* Wait up to 1.5 seconds for shutdown processing to complete */
700 for (i = 0; i < NUM_FC_PORTS; i++) {
701 retry_cnt = 0;
702 while (true) {
703 status = readq_be(&global->fc_regs[i][FC_STATUS / 8]);
704 if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
705 break;
706 if (++retry_cnt >= MC_RETRY_CNT) {
707 dev_dbg(dev, "%s: port %d shutdown processing "
708 "not yet completed\n", __func__, i);
709 break;
710 }
711 msleep(100 * retry_cnt);
712 }
713 }
714 }
715
716 /**
717 * cxlflash_remove() - PCI entry point to tear down host
718 * @pdev: PCI device associated with the host.
719 *
720 * Safe to use as a cleanup in partially allocated/initialized state.
721 */
722 static void cxlflash_remove(struct pci_dev *pdev)
723 {
724 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
725 struct device *dev = &pdev->dev;
726 ulong lock_flags;
727
728 if (!pci_is_enabled(pdev)) {
729 dev_dbg(dev, "%s: Device is disabled\n", __func__);
730 return;
731 }
732
733 /* If a Task Management Function is active, wait for it to complete
734 * before continuing with remove.
735 */
736 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
737 if (cfg->tmf_active)
738 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
739 !cfg->tmf_active,
740 cfg->tmf_slock);
741 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
742
743 /* Notify AFU and wait for shutdown processing to complete */
744 notify_shutdown(cfg, true);
745
746 cfg->state = STATE_FAILTERM;
747 cxlflash_stop_term_user_contexts(cfg);
748
749 switch (cfg->init_state) {
750 case INIT_STATE_SCSI:
751 cxlflash_term_local_luns(cfg);
752 scsi_remove_host(cfg->host);
753 /* fall through */
754 case INIT_STATE_AFU:
755 term_afu(cfg);
756 case INIT_STATE_PCI:
757 pci_disable_device(pdev);
758 case INIT_STATE_NONE:
759 free_mem(cfg);
760 scsi_host_put(cfg->host);
761 break;
762 }
763
764 dev_dbg(dev, "%s: returning\n", __func__);
765 }
766
767 /**
768 * alloc_mem() - allocates the AFU and its command pool
769 * @cfg: Internal structure associated with the host.
770 *
771 * A partially allocated state remains on failure.
772 *
773 * Return:
774 * 0 on success
775 * -ENOMEM on failure to allocate memory
776 */
777 static int alloc_mem(struct cxlflash_cfg *cfg)
778 {
779 int rc = 0;
780 struct device *dev = &cfg->dev->dev;
781
782 /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
783 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
784 get_order(sizeof(struct afu)));
785 if (unlikely(!cfg->afu)) {
786 dev_err(dev, "%s: cannot get %d free pages\n",
787 __func__, get_order(sizeof(struct afu)));
788 rc = -ENOMEM;
789 goto out;
790 }
791 cfg->afu->parent = cfg;
792 cfg->afu->afu_map = NULL;
793 out:
794 return rc;
795 }
796
797 /**
798 * init_pci() - initializes the host as a PCI device
799 * @cfg: Internal structure associated with the host.
800 *
801 * Return: 0 on success, -errno on failure
802 */
803 static int init_pci(struct cxlflash_cfg *cfg)
804 {
805 struct pci_dev *pdev = cfg->dev;
806 struct device *dev = &cfg->dev->dev;
807 int rc = 0;
808
809 rc = pci_enable_device(pdev);
810 if (rc || pci_channel_offline(pdev)) {
811 if (pci_channel_offline(pdev)) {
812 cxlflash_wait_for_pci_err_recovery(cfg);
813 rc = pci_enable_device(pdev);
814 }
815
816 if (rc) {
817 dev_err(dev, "%s: Cannot enable adapter\n", __func__);
818 cxlflash_wait_for_pci_err_recovery(cfg);
819 goto out;
820 }
821 }
822
823 out:
824 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
825 return rc;
826 }
827
828 /**
829 * init_scsi() - adds the host to the SCSI stack and kicks off host scan
830 * @cfg: Internal structure associated with the host.
831 *
832 * Return: 0 on success, -errno on failure
833 */
834 static int init_scsi(struct cxlflash_cfg *cfg)
835 {
836 struct pci_dev *pdev = cfg->dev;
837 struct device *dev = &cfg->dev->dev;
838 int rc = 0;
839
840 rc = scsi_add_host(cfg->host, &pdev->dev);
841 if (rc) {
842 dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
843 goto out;
844 }
845
846 scsi_scan_host(cfg->host);
847
848 out:
849 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
850 return rc;
851 }
852
853 /**
854 * set_port_online() - transitions the specified host FC port to online state
855 * @fc_regs: Top of MMIO region defined for specified port.
856 *
857 * The provided MMIO region must be mapped prior to call. Online state means
858 * that the FC link layer has synced, completed the handshaking process, and
859 * is ready for login to start.
860 */
861 static void set_port_online(__be64 __iomem *fc_regs)
862 {
863 u64 cmdcfg;
864
865 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
866 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
867 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */
868 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
869 }
870
871 /**
872 * set_port_offline() - transitions the specified host FC port to offline state
873 * @fc_regs: Top of MMIO region defined for specified port.
874 *
875 * The provided MMIO region must be mapped prior to call.
876 */
877 static void set_port_offline(__be64 __iomem *fc_regs)
878 {
879 u64 cmdcfg;
880
881 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
882 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */
883 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */
884 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
885 }
886
887 /**
888 * wait_port_online() - waits for the specified host FC port come online
889 * @fc_regs: Top of MMIO region defined for specified port.
890 * @delay_us: Number of microseconds to delay between reading port status.
891 * @nretry: Number of cycles to retry reading port status.
892 *
893 * The provided MMIO region must be mapped prior to call. This will timeout
894 * when the cable is not plugged in.
895 *
896 * Return:
897 * TRUE (1) when the specified port is online
898 * FALSE (0) when the specified port fails to come online after timeout
899 */
900 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
901 {
902 u64 status;
903
904 WARN_ON(delay_us < 1000);
905
906 do {
907 msleep(delay_us / 1000);
908 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
909 if (status == U64_MAX)
910 nretry /= 2;
911 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
912 nretry--);
913
914 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
915 }
916
917 /**
918 * wait_port_offline() - waits for the specified host FC port go offline
919 * @fc_regs: Top of MMIO region defined for specified port.
920 * @delay_us: Number of microseconds to delay between reading port status.
921 * @nretry: Number of cycles to retry reading port status.
922 *
923 * The provided MMIO region must be mapped prior to call.
924 *
925 * Return:
926 * TRUE (1) when the specified port is offline
927 * FALSE (0) when the specified port fails to go offline after timeout
928 */
929 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
930 {
931 u64 status;
932
933 WARN_ON(delay_us < 1000);
934
935 do {
936 msleep(delay_us / 1000);
937 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
938 if (status == U64_MAX)
939 nretry /= 2;
940 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
941 nretry--);
942
943 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
944 }
945
946 /**
947 * afu_set_wwpn() - configures the WWPN for the specified host FC port
948 * @afu: AFU associated with the host that owns the specified FC port.
949 * @port: Port number being configured.
950 * @fc_regs: Top of MMIO region defined for specified port.
951 * @wwpn: The world-wide-port-number previously discovered for port.
952 *
953 * The provided MMIO region must be mapped prior to call. As part of the
954 * sequence to configure the WWPN, the port is toggled offline and then back
955 * online. This toggling action can cause this routine to delay up to a few
956 * seconds. When configured to use the internal LUN feature of the AFU, a
957 * failure to come online is overridden.
958 */
959 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
960 u64 wwpn)
961 {
962 struct cxlflash_cfg *cfg = afu->parent;
963 struct device *dev = &cfg->dev->dev;
964
965 set_port_offline(fc_regs);
966 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
967 FC_PORT_STATUS_RETRY_CNT)) {
968 dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
969 __func__, port);
970 }
971
972 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
973
974 set_port_online(fc_regs);
975 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
976 FC_PORT_STATUS_RETRY_CNT)) {
977 dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
978 __func__, port);
979 }
980 }
981
982 /**
983 * afu_link_reset() - resets the specified host FC port
984 * @afu: AFU associated with the host that owns the specified FC port.
985 * @port: Port number being configured.
986 * @fc_regs: Top of MMIO region defined for specified port.
987 *
988 * The provided MMIO region must be mapped prior to call. The sequence to
989 * reset the port involves toggling it offline and then back online. This
990 * action can cause this routine to delay up to a few seconds. An effort
991 * is made to maintain link with the device by switching to host to use
992 * the alternate port exclusively while the reset takes place.
993 * failure to come online is overridden.
994 */
995 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
996 {
997 struct cxlflash_cfg *cfg = afu->parent;
998 struct device *dev = &cfg->dev->dev;
999 u64 port_sel;
1000
1001 /* first switch the AFU to the other links, if any */
1002 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1003 port_sel &= ~(1ULL << port);
1004 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1005 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1006
1007 set_port_offline(fc_regs);
1008 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1009 FC_PORT_STATUS_RETRY_CNT))
1010 dev_err(dev, "%s: wait on port %d to go offline timed out\n",
1011 __func__, port);
1012
1013 set_port_online(fc_regs);
1014 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1015 FC_PORT_STATUS_RETRY_CNT))
1016 dev_err(dev, "%s: wait on port %d to go online timed out\n",
1017 __func__, port);
1018
1019 /* switch back to include this port */
1020 port_sel |= (1ULL << port);
1021 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1022 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1023
1024 dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
1025 }
1026
1027 /*
1028 * Asynchronous interrupt information table
1029 */
1030 static const struct asyc_intr_info ainfo[] = {
1031 {SISL_ASTATUS_FC0_OTHER, "other error", 0, CLR_FC_ERROR | LINK_RESET},
1032 {SISL_ASTATUS_FC0_LOGO, "target initiated LOGO", 0, 0},
1033 {SISL_ASTATUS_FC0_CRC_T, "CRC threshold exceeded", 0, LINK_RESET},
1034 {SISL_ASTATUS_FC0_LOGI_R, "login timed out, retrying", 0, LINK_RESET},
1035 {SISL_ASTATUS_FC0_LOGI_F, "login failed", 0, CLR_FC_ERROR},
1036 {SISL_ASTATUS_FC0_LOGI_S, "login succeeded", 0, SCAN_HOST},
1037 {SISL_ASTATUS_FC0_LINK_DN, "link down", 0, 0},
1038 {SISL_ASTATUS_FC0_LINK_UP, "link up", 0, 0},
1039 {SISL_ASTATUS_FC1_OTHER, "other error", 1, CLR_FC_ERROR | LINK_RESET},
1040 {SISL_ASTATUS_FC1_LOGO, "target initiated LOGO", 1, 0},
1041 {SISL_ASTATUS_FC1_CRC_T, "CRC threshold exceeded", 1, LINK_RESET},
1042 {SISL_ASTATUS_FC1_LOGI_R, "login timed out, retrying", 1, LINK_RESET},
1043 {SISL_ASTATUS_FC1_LOGI_F, "login failed", 1, CLR_FC_ERROR},
1044 {SISL_ASTATUS_FC1_LOGI_S, "login succeeded", 1, SCAN_HOST},
1045 {SISL_ASTATUS_FC1_LINK_DN, "link down", 1, 0},
1046 {SISL_ASTATUS_FC1_LINK_UP, "link up", 1, 0},
1047 {0x0, "", 0, 0} /* terminator */
1048 };
1049
1050 /**
1051 * find_ainfo() - locates and returns asynchronous interrupt information
1052 * @status: Status code set by AFU on error.
1053 *
1054 * Return: The located information or NULL when the status code is invalid.
1055 */
1056 static const struct asyc_intr_info *find_ainfo(u64 status)
1057 {
1058 const struct asyc_intr_info *info;
1059
1060 for (info = &ainfo[0]; info->status; info++)
1061 if (info->status == status)
1062 return info;
1063
1064 return NULL;
1065 }
1066
1067 /**
1068 * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1069 * @afu: AFU associated with the host.
1070 */
1071 static void afu_err_intr_init(struct afu *afu)
1072 {
1073 int i;
1074 u64 reg;
1075
1076 /* global async interrupts: AFU clears afu_ctrl on context exit
1077 * if async interrupts were sent to that context. This prevents
1078 * the AFU form sending further async interrupts when
1079 * there is
1080 * nobody to receive them.
1081 */
1082
1083 /* mask all */
1084 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1085 /* set LISN# to send and point to master context */
1086 reg = ((u64) (((afu->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1087
1088 if (afu->internal_lun)
1089 reg |= 1; /* Bit 63 indicates local lun */
1090 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1091 /* clear all */
1092 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1093 /* unmask bits that are of interest */
1094 /* note: afu can send an interrupt after this step */
1095 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1096 /* clear again in case a bit came on after previous clear but before */
1097 /* unmask */
1098 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1099
1100 /* Clear/Set internal lun bits */
1101 reg = readq_be(&afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1102 reg &= SISL_FC_INTERNAL_MASK;
1103 if (afu->internal_lun)
1104 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1105 writeq_be(reg, &afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1106
1107 /* now clear FC errors */
1108 for (i = 0; i < NUM_FC_PORTS; i++) {
1109 writeq_be(0xFFFFFFFFU,
1110 &afu->afu_map->global.fc_regs[i][FC_ERROR / 8]);
1111 writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRCAP / 8]);
1112 }
1113
1114 /* sync interrupts for master's IOARRIN write */
1115 /* note that unlike asyncs, there can be no pending sync interrupts */
1116 /* at this time (this is a fresh context and master has not written */
1117 /* IOARRIN yet), so there is nothing to clear. */
1118
1119 /* set LISN#, it is always sent to the context that wrote IOARRIN */
1120 writeq_be(SISL_MSI_SYNC_ERROR, &afu->host_map->ctx_ctrl);
1121 writeq_be(SISL_ISTATUS_MASK, &afu->host_map->intr_mask);
1122 }
1123
1124 /**
1125 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1126 * @irq: Interrupt number.
1127 * @data: Private data provided at interrupt registration, the AFU.
1128 *
1129 * Return: Always return IRQ_HANDLED.
1130 */
1131 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1132 {
1133 struct afu *afu = (struct afu *)data;
1134 struct cxlflash_cfg *cfg = afu->parent;
1135 struct device *dev = &cfg->dev->dev;
1136 u64 reg;
1137 u64 reg_unmasked;
1138
1139 reg = readq_be(&afu->host_map->intr_status);
1140 reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1141
1142 if (reg_unmasked == 0UL) {
1143 dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
1144 __func__, reg);
1145 goto cxlflash_sync_err_irq_exit;
1146 }
1147
1148 dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
1149 __func__, reg);
1150
1151 writeq_be(reg_unmasked, &afu->host_map->intr_clear);
1152
1153 cxlflash_sync_err_irq_exit:
1154 return IRQ_HANDLED;
1155 }
1156
1157 /**
1158 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1159 * @irq: Interrupt number.
1160 * @data: Private data provided at interrupt registration, the AFU.
1161 *
1162 * Return: Always return IRQ_HANDLED.
1163 */
1164 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1165 {
1166 struct afu *afu = (struct afu *)data;
1167 struct afu_cmd *cmd;
1168 struct sisl_ioasa *ioasa;
1169 struct sisl_ioarcb *ioarcb;
1170 bool toggle = afu->toggle;
1171 u64 entry,
1172 *hrrq_start = afu->hrrq_start,
1173 *hrrq_end = afu->hrrq_end,
1174 *hrrq_curr = afu->hrrq_curr;
1175
1176 /* Process however many RRQ entries that are ready */
1177 while (true) {
1178 entry = *hrrq_curr;
1179
1180 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1181 break;
1182
1183 entry &= ~SISL_RESP_HANDLE_T_BIT;
1184
1185 if (afu_is_sq_cmd_mode(afu)) {
1186 ioasa = (struct sisl_ioasa *)entry;
1187 cmd = container_of(ioasa, struct afu_cmd, sa);
1188 } else {
1189 ioarcb = (struct sisl_ioarcb *)entry;
1190 cmd = container_of(ioarcb, struct afu_cmd, rcb);
1191 }
1192
1193 cmd_complete(cmd);
1194
1195 /* Advance to next entry or wrap and flip the toggle bit */
1196 if (hrrq_curr < hrrq_end)
1197 hrrq_curr++;
1198 else {
1199 hrrq_curr = hrrq_start;
1200 toggle ^= SISL_RESP_HANDLE_T_BIT;
1201 }
1202
1203 atomic_inc(&afu->hsq_credits);
1204 }
1205
1206 afu->hrrq_curr = hrrq_curr;
1207 afu->toggle = toggle;
1208
1209 return IRQ_HANDLED;
1210 }
1211
1212 /**
1213 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1214 * @irq: Interrupt number.
1215 * @data: Private data provided at interrupt registration, the AFU.
1216 *
1217 * Return: Always return IRQ_HANDLED.
1218 */
1219 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1220 {
1221 struct afu *afu = (struct afu *)data;
1222 struct cxlflash_cfg *cfg = afu->parent;
1223 struct device *dev = &cfg->dev->dev;
1224 u64 reg_unmasked;
1225 const struct asyc_intr_info *info;
1226 struct sisl_global_map __iomem *global = &afu->afu_map->global;
1227 u64 reg;
1228 u8 port;
1229 int i;
1230
1231 reg = readq_be(&global->regs.aintr_status);
1232 reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1233
1234 if (reg_unmasked == 0) {
1235 dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
1236 __func__, reg);
1237 goto out;
1238 }
1239
1240 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1241 writeq_be(reg_unmasked, &global->regs.aintr_clear);
1242
1243 /* Check each bit that is on */
1244 for (i = 0; reg_unmasked; i++, reg_unmasked = (reg_unmasked >> 1)) {
1245 info = find_ainfo(1ULL << i);
1246 if (((reg_unmasked & 0x1) == 0) || !info)
1247 continue;
1248
1249 port = info->port;
1250
1251 dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
1252 __func__, port, info->desc,
1253 readq_be(&global->fc_regs[port][FC_STATUS / 8]));
1254
1255 /*
1256 * Do link reset first, some OTHER errors will set FC_ERROR
1257 * again if cleared before or w/o a reset
1258 */
1259 if (info->action & LINK_RESET) {
1260 dev_err(dev, "%s: FC Port %d: resetting link\n",
1261 __func__, port);
1262 cfg->lr_state = LINK_RESET_REQUIRED;
1263 cfg->lr_port = port;
1264 schedule_work(&cfg->work_q);
1265 }
1266
1267 if (info->action & CLR_FC_ERROR) {
1268 reg = readq_be(&global->fc_regs[port][FC_ERROR / 8]);
1269
1270 /*
1271 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1272 * should be the same and tracing one is sufficient.
1273 */
1274
1275 dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
1276 __func__, port, reg);
1277
1278 writeq_be(reg, &global->fc_regs[port][FC_ERROR / 8]);
1279 writeq_be(0, &global->fc_regs[port][FC_ERRCAP / 8]);
1280 }
1281
1282 if (info->action & SCAN_HOST) {
1283 atomic_inc(&cfg->scan_host_needed);
1284 schedule_work(&cfg->work_q);
1285 }
1286 }
1287
1288 out:
1289 return IRQ_HANDLED;
1290 }
1291
1292 /**
1293 * start_context() - starts the master context
1294 * @cfg: Internal structure associated with the host.
1295 *
1296 * Return: A success or failure value from CXL services.
1297 */
1298 static int start_context(struct cxlflash_cfg *cfg)
1299 {
1300 struct device *dev = &cfg->dev->dev;
1301 int rc = 0;
1302
1303 rc = cxl_start_context(cfg->mcctx,
1304 cfg->afu->work.work_element_descriptor,
1305 NULL);
1306
1307 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1308 return rc;
1309 }
1310
1311 /**
1312 * read_vpd() - obtains the WWPNs from VPD
1313 * @cfg: Internal structure associated with the host.
1314 * @wwpn: Array of size NUM_FC_PORTS to pass back WWPNs
1315 *
1316 * Return: 0 on success, -errno on failure
1317 */
1318 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1319 {
1320 struct device *dev = &cfg->dev->dev;
1321 struct pci_dev *pdev = cfg->dev;
1322 int rc = 0;
1323 int ro_start, ro_size, i, j, k;
1324 ssize_t vpd_size;
1325 char vpd_data[CXLFLASH_VPD_LEN];
1326 char tmp_buf[WWPN_BUF_LEN] = { 0 };
1327 char *wwpn_vpd_tags[NUM_FC_PORTS] = { "V5", "V6" };
1328
1329 /* Get the VPD data from the device */
1330 vpd_size = cxl_read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
1331 if (unlikely(vpd_size <= 0)) {
1332 dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
1333 __func__, vpd_size);
1334 rc = -ENODEV;
1335 goto out;
1336 }
1337
1338 /* Get the read only section offset */
1339 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1340 PCI_VPD_LRDT_RO_DATA);
1341 if (unlikely(ro_start < 0)) {
1342 dev_err(dev, "%s: VPD Read-only data not found\n", __func__);
1343 rc = -ENODEV;
1344 goto out;
1345 }
1346
1347 /* Get the read only section size, cap when extends beyond read VPD */
1348 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1349 j = ro_size;
1350 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1351 if (unlikely((i + j) > vpd_size)) {
1352 dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n",
1353 __func__, (i + j), vpd_size);
1354 ro_size = vpd_size - i;
1355 }
1356
1357 /*
1358 * Find the offset of the WWPN tag within the read only
1359 * VPD data and validate the found field (partials are
1360 * no good to us). Convert the ASCII data to an integer
1361 * value. Note that we must copy to a temporary buffer
1362 * because the conversion service requires that the ASCII
1363 * string be terminated.
1364 */
1365 for (k = 0; k < NUM_FC_PORTS; k++) {
1366 j = ro_size;
1367 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1368
1369 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1370 if (unlikely(i < 0)) {
1371 dev_err(dev, "%s: Port %d WWPN not found in VPD\n",
1372 __func__, k);
1373 rc = -ENODEV;
1374 goto out;
1375 }
1376
1377 j = pci_vpd_info_field_size(&vpd_data[i]);
1378 i += PCI_VPD_INFO_FLD_HDR_SIZE;
1379 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
1380 dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
1381 __func__, k);
1382 rc = -ENODEV;
1383 goto out;
1384 }
1385
1386 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1387 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1388 if (unlikely(rc)) {
1389 dev_err(dev, "%s: WWPN conversion failed for port %d\n",
1390 __func__, k);
1391 rc = -ENODEV;
1392 goto out;
1393 }
1394 }
1395
1396 out:
1397 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1398 return rc;
1399 }
1400
1401 /**
1402 * init_pcr() - initialize the provisioning and control registers
1403 * @cfg: Internal structure associated with the host.
1404 *
1405 * Also sets up fast access to the mapped registers and initializes AFU
1406 * command fields that never change.
1407 */
1408 static void init_pcr(struct cxlflash_cfg *cfg)
1409 {
1410 struct afu *afu = cfg->afu;
1411 struct sisl_ctrl_map __iomem *ctrl_map;
1412 int i;
1413
1414 for (i = 0; i < MAX_CONTEXT; i++) {
1415 ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1416 /* Disrupt any clients that could be running */
1417 /* e.g. clients that survived a master restart */
1418 writeq_be(0, &ctrl_map->rht_start);
1419 writeq_be(0, &ctrl_map->rht_cnt_id);
1420 writeq_be(0, &ctrl_map->ctx_cap);
1421 }
1422
1423 /* Copy frequently used fields into afu */
1424 afu->ctx_hndl = (u16) cxl_process_element(cfg->mcctx);
1425 afu->host_map = &afu->afu_map->hosts[afu->ctx_hndl].host;
1426 afu->ctrl_map = &afu->afu_map->ctrls[afu->ctx_hndl].ctrl;
1427
1428 /* Program the Endian Control for the master context */
1429 writeq_be(SISL_ENDIAN_CTRL, &afu->host_map->endian_ctrl);
1430 }
1431
1432 /**
1433 * init_global() - initialize AFU global registers
1434 * @cfg: Internal structure associated with the host.
1435 */
1436 static int init_global(struct cxlflash_cfg *cfg)
1437 {
1438 struct afu *afu = cfg->afu;
1439 struct device *dev = &cfg->dev->dev;
1440 u64 wwpn[NUM_FC_PORTS]; /* wwpn of AFU ports */
1441 int i = 0, num_ports = 0;
1442 int rc = 0;
1443 u64 reg;
1444
1445 rc = read_vpd(cfg, &wwpn[0]);
1446 if (rc) {
1447 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1448 goto out;
1449 }
1450
1451 dev_dbg(dev, "%s: wwpn0=%016llx wwpn1=%016llx\n",
1452 __func__, wwpn[0], wwpn[1]);
1453
1454 /* Set up RRQ and SQ in AFU for master issued cmds */
1455 writeq_be((u64) afu->hrrq_start, &afu->host_map->rrq_start);
1456 writeq_be((u64) afu->hrrq_end, &afu->host_map->rrq_end);
1457
1458 if (afu_is_sq_cmd_mode(afu)) {
1459 writeq_be((u64)afu->hsq_start, &afu->host_map->sq_start);
1460 writeq_be((u64)afu->hsq_end, &afu->host_map->sq_end);
1461 }
1462
1463 /* AFU configuration */
1464 reg = readq_be(&afu->afu_map->global.regs.afu_config);
1465 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1466 /* enable all auto retry options and control endianness */
1467 /* leave others at default: */
1468 /* CTX_CAP write protected, mbox_r does not clear on read and */
1469 /* checker on if dual afu */
1470 writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1471
1472 /* Global port select: select either port */
1473 if (afu->internal_lun) {
1474 /* Only use port 0 */
1475 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1476 num_ports = NUM_FC_PORTS - 1;
1477 } else {
1478 writeq_be(BOTH_PORTS, &afu->afu_map->global.regs.afu_port_sel);
1479 num_ports = NUM_FC_PORTS;
1480 }
1481
1482 for (i = 0; i < num_ports; i++) {
1483 /* Unmask all errors (but they are still masked at AFU) */
1484 writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRMSK / 8]);
1485 /* Clear CRC error cnt & set a threshold */
1486 (void)readq_be(&afu->afu_map->global.
1487 fc_regs[i][FC_CNT_CRCERR / 8]);
1488 writeq_be(MC_CRC_THRESH, &afu->afu_map->global.fc_regs[i]
1489 [FC_CRC_THRESH / 8]);
1490
1491 /* Set WWPNs. If already programmed, wwpn[i] is 0 */
1492 if (wwpn[i] != 0)
1493 afu_set_wwpn(afu, i,
1494 &afu->afu_map->global.fc_regs[i][0],
1495 wwpn[i]);
1496 /* Programming WWPN back to back causes additional
1497 * offline/online transitions and a PLOGI
1498 */
1499 msleep(100);
1500 }
1501
1502 /* Set up master's own CTX_CAP to allow real mode, host translation */
1503 /* tables, afu cmds and read/write GSCSI cmds. */
1504 /* First, unlock ctx_cap write by reading mbox */
1505 (void)readq_be(&afu->ctrl_map->mbox_r); /* unlock ctx_cap */
1506 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1507 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1508 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1509 &afu->ctrl_map->ctx_cap);
1510 /* Initialize heartbeat */
1511 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1512 out:
1513 return rc;
1514 }
1515
1516 /**
1517 * start_afu() - initializes and starts the AFU
1518 * @cfg: Internal structure associated with the host.
1519 */
1520 static int start_afu(struct cxlflash_cfg *cfg)
1521 {
1522 struct afu *afu = cfg->afu;
1523 struct device *dev = &cfg->dev->dev;
1524 int rc = 0;
1525
1526 init_pcr(cfg);
1527
1528 /* After an AFU reset, RRQ entries are stale, clear them */
1529 memset(&afu->rrq_entry, 0, sizeof(afu->rrq_entry));
1530
1531 /* Initialize RRQ pointers */
1532 afu->hrrq_start = &afu->rrq_entry[0];
1533 afu->hrrq_end = &afu->rrq_entry[NUM_RRQ_ENTRY - 1];
1534 afu->hrrq_curr = afu->hrrq_start;
1535 afu->toggle = 1;
1536
1537 /* Initialize SQ */
1538 if (afu_is_sq_cmd_mode(afu)) {
1539 memset(&afu->sq, 0, sizeof(afu->sq));
1540 afu->hsq_start = &afu->sq[0];
1541 afu->hsq_end = &afu->sq[NUM_SQ_ENTRY - 1];
1542 afu->hsq_curr = afu->hsq_start;
1543
1544 spin_lock_init(&afu->hsq_slock);
1545 atomic_set(&afu->hsq_credits, NUM_SQ_ENTRY - 1);
1546 }
1547
1548 rc = init_global(cfg);
1549
1550 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1551 return rc;
1552 }
1553
1554 /**
1555 * init_intr() - setup interrupt handlers for the master context
1556 * @cfg: Internal structure associated with the host.
1557 *
1558 * Return: 0 on success, -errno on failure
1559 */
1560 static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1561 struct cxl_context *ctx)
1562 {
1563 struct afu *afu = cfg->afu;
1564 struct device *dev = &cfg->dev->dev;
1565 int rc = 0;
1566 enum undo_level level = UNDO_NOOP;
1567
1568 rc = cxl_allocate_afu_irqs(ctx, 3);
1569 if (unlikely(rc)) {
1570 dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
1571 __func__, rc);
1572 level = UNDO_NOOP;
1573 goto out;
1574 }
1575
1576 rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, afu,
1577 "SISL_MSI_SYNC_ERROR");
1578 if (unlikely(rc <= 0)) {
1579 dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
1580 level = FREE_IRQ;
1581 goto out;
1582 }
1583
1584 rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, afu,
1585 "SISL_MSI_RRQ_UPDATED");
1586 if (unlikely(rc <= 0)) {
1587 dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
1588 level = UNMAP_ONE;
1589 goto out;
1590 }
1591
1592 rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, afu,
1593 "SISL_MSI_ASYNC_ERROR");
1594 if (unlikely(rc <= 0)) {
1595 dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
1596 level = UNMAP_TWO;
1597 goto out;
1598 }
1599 out:
1600 return level;
1601 }
1602
1603 /**
1604 * init_mc() - create and register as the master context
1605 * @cfg: Internal structure associated with the host.
1606 *
1607 * Return: 0 on success, -errno on failure
1608 */
1609 static int init_mc(struct cxlflash_cfg *cfg)
1610 {
1611 struct cxl_context *ctx;
1612 struct device *dev = &cfg->dev->dev;
1613 int rc = 0;
1614 enum undo_level level;
1615
1616 ctx = cxl_get_context(cfg->dev);
1617 if (unlikely(!ctx)) {
1618 rc = -ENOMEM;
1619 goto ret;
1620 }
1621 cfg->mcctx = ctx;
1622
1623 /* Set it up as a master with the CXL */
1624 cxl_set_master(ctx);
1625
1626 /* During initialization reset the AFU to start from a clean slate */
1627 rc = cxl_afu_reset(cfg->mcctx);
1628 if (unlikely(rc)) {
1629 dev_err(dev, "%s: AFU reset failed rc=%d\n", __func__, rc);
1630 goto ret;
1631 }
1632
1633 level = init_intr(cfg, ctx);
1634 if (unlikely(level)) {
1635 dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
1636 goto out;
1637 }
1638
1639 /* This performs the equivalent of the CXL_IOCTL_START_WORK.
1640 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process
1641 * element (pe) that is embedded in the context (ctx)
1642 */
1643 rc = start_context(cfg);
1644 if (unlikely(rc)) {
1645 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
1646 level = UNMAP_THREE;
1647 goto out;
1648 }
1649 ret:
1650 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1651 return rc;
1652 out:
1653 term_intr(cfg, level);
1654 goto ret;
1655 }
1656
1657 /**
1658 * init_afu() - setup as master context and start AFU
1659 * @cfg: Internal structure associated with the host.
1660 *
1661 * This routine is a higher level of control for configuring the
1662 * AFU on probe and reset paths.
1663 *
1664 * Return: 0 on success, -errno on failure
1665 */
1666 static int init_afu(struct cxlflash_cfg *cfg)
1667 {
1668 u64 reg;
1669 int rc = 0;
1670 struct afu *afu = cfg->afu;
1671 struct device *dev = &cfg->dev->dev;
1672
1673 cxl_perst_reloads_same_image(cfg->cxl_afu, true);
1674
1675 rc = init_mc(cfg);
1676 if (rc) {
1677 dev_err(dev, "%s: init_mc failed rc=%d\n",
1678 __func__, rc);
1679 goto out;
1680 }
1681
1682 /* Map the entire MMIO space of the AFU */
1683 afu->afu_map = cxl_psa_map(cfg->mcctx);
1684 if (!afu->afu_map) {
1685 dev_err(dev, "%s: cxl_psa_map failed\n", __func__);
1686 rc = -ENOMEM;
1687 goto err1;
1688 }
1689
1690 /* No byte reverse on reading afu_version or string will be backwards */
1691 reg = readq(&afu->afu_map->global.regs.afu_version);
1692 memcpy(afu->version, &reg, sizeof(reg));
1693 afu->interface_version =
1694 readq_be(&afu->afu_map->global.regs.interface_version);
1695 if ((afu->interface_version + 1) == 0) {
1696 dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
1697 "interface version %016llx\n", afu->version,
1698 afu->interface_version);
1699 rc = -EINVAL;
1700 goto err1;
1701 }
1702
1703 if (afu_is_sq_cmd_mode(afu)) {
1704 afu->send_cmd = send_cmd_sq;
1705 afu->context_reset = context_reset_sq;
1706 } else {
1707 afu->send_cmd = send_cmd_ioarrin;
1708 afu->context_reset = context_reset_ioarrin;
1709 }
1710
1711 dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
1712 afu->version, afu->interface_version);
1713
1714 rc = start_afu(cfg);
1715 if (rc) {
1716 dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
1717 goto err1;
1718 }
1719
1720 afu_err_intr_init(cfg->afu);
1721 spin_lock_init(&afu->rrin_slock);
1722 afu->room = readq_be(&afu->host_map->cmd_room);
1723
1724 /* Restore the LUN mappings */
1725 cxlflash_restore_luntable(cfg);
1726 out:
1727 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1728 return rc;
1729
1730 err1:
1731 term_intr(cfg, UNMAP_THREE);
1732 term_mc(cfg);
1733 goto out;
1734 }
1735
1736 /**
1737 * cxlflash_afu_sync() - builds and sends an AFU sync command
1738 * @afu: AFU associated with the host.
1739 * @ctx_hndl_u: Identifies context requesting sync.
1740 * @res_hndl_u: Identifies resource requesting sync.
1741 * @mode: Type of sync to issue (lightweight, heavyweight, global).
1742 *
1743 * The AFU can only take 1 sync command at a time. This routine enforces this
1744 * limitation by using a mutex to provide exclusive access to the AFU during
1745 * the sync. This design point requires calling threads to not be on interrupt
1746 * context due to the possibility of sleeping during concurrent sync operations.
1747 *
1748 * AFU sync operations are only necessary and allowed when the device is
1749 * operating normally. When not operating normally, sync requests can occur as
1750 * part of cleaning up resources associated with an adapter prior to removal.
1751 * In this scenario, these requests are simply ignored (safe due to the AFU
1752 * going away).
1753 *
1754 * Return:
1755 * 0 on success
1756 * -1 on failure
1757 */
1758 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx_hndl_u,
1759 res_hndl_t res_hndl_u, u8 mode)
1760 {
1761 struct cxlflash_cfg *cfg = afu->parent;
1762 struct device *dev = &cfg->dev->dev;
1763 struct afu_cmd *cmd = NULL;
1764 char *buf = NULL;
1765 int rc = 0;
1766 static DEFINE_MUTEX(sync_active);
1767
1768 if (cfg->state != STATE_NORMAL) {
1769 dev_dbg(dev, "%s: Sync not required state=%u\n",
1770 __func__, cfg->state);
1771 return 0;
1772 }
1773
1774 mutex_lock(&sync_active);
1775 atomic_inc(&afu->cmds_active);
1776 buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
1777 if (unlikely(!buf)) {
1778 dev_err(dev, "%s: no memory for command\n", __func__);
1779 rc = -1;
1780 goto out;
1781 }
1782
1783 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
1784 init_completion(&cmd->cevent);
1785 cmd->parent = afu;
1786
1787 dev_dbg(dev, "%s: afu=%p cmd=%p %d\n", __func__, afu, cmd, ctx_hndl_u);
1788
1789 cmd->rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
1790 cmd->rcb.ctx_id = afu->ctx_hndl;
1791 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
1792 cmd->rcb.timeout = MC_AFU_SYNC_TIMEOUT;
1793
1794 cmd->rcb.cdb[0] = 0xC0; /* AFU Sync */
1795 cmd->rcb.cdb[1] = mode;
1796
1797 /* The cdb is aligned, no unaligned accessors required */
1798 *((__be16 *)&cmd->rcb.cdb[2]) = cpu_to_be16(ctx_hndl_u);
1799 *((__be32 *)&cmd->rcb.cdb[4]) = cpu_to_be32(res_hndl_u);
1800
1801 rc = afu->send_cmd(afu, cmd);
1802 if (unlikely(rc))
1803 goto out;
1804
1805 rc = wait_resp(afu, cmd);
1806 if (unlikely(rc))
1807 rc = -1;
1808 out:
1809 atomic_dec(&afu->cmds_active);
1810 mutex_unlock(&sync_active);
1811 kfree(buf);
1812 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1813 return rc;
1814 }
1815
1816 /**
1817 * afu_reset() - resets the AFU
1818 * @cfg: Internal structure associated with the host.
1819 *
1820 * Return: 0 on success, -errno on failure
1821 */
1822 static int afu_reset(struct cxlflash_cfg *cfg)
1823 {
1824 struct device *dev = &cfg->dev->dev;
1825 int rc = 0;
1826
1827 /* Stop the context before the reset. Since the context is
1828 * no longer available restart it after the reset is complete
1829 */
1830 term_afu(cfg);
1831
1832 rc = init_afu(cfg);
1833
1834 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1835 return rc;
1836 }
1837
1838 /**
1839 * drain_ioctls() - wait until all currently executing ioctls have completed
1840 * @cfg: Internal structure associated with the host.
1841 *
1842 * Obtain write access to read/write semaphore that wraps ioctl
1843 * handling to 'drain' ioctls currently executing.
1844 */
1845 static void drain_ioctls(struct cxlflash_cfg *cfg)
1846 {
1847 down_write(&cfg->ioctl_rwsem);
1848 up_write(&cfg->ioctl_rwsem);
1849 }
1850
1851 /**
1852 * cxlflash_eh_device_reset_handler() - reset a single LUN
1853 * @scp: SCSI command to send.
1854 *
1855 * Return:
1856 * SUCCESS as defined in scsi/scsi.h
1857 * FAILED as defined in scsi/scsi.h
1858 */
1859 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
1860 {
1861 int rc = SUCCESS;
1862 struct Scsi_Host *host = scp->device->host;
1863 struct cxlflash_cfg *cfg = shost_priv(host);
1864 struct device *dev = &cfg->dev->dev;
1865 struct afu *afu = cfg->afu;
1866 int rcr = 0;
1867
1868 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
1869 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
1870 scp->device->channel, scp->device->id, scp->device->lun,
1871 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1872 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1873 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1874 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1875
1876 retry:
1877 switch (cfg->state) {
1878 case STATE_NORMAL:
1879 rcr = send_tmf(afu, scp, TMF_LUN_RESET);
1880 if (unlikely(rcr))
1881 rc = FAILED;
1882 break;
1883 case STATE_RESET:
1884 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
1885 goto retry;
1886 default:
1887 rc = FAILED;
1888 break;
1889 }
1890
1891 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1892 return rc;
1893 }
1894
1895 /**
1896 * cxlflash_eh_host_reset_handler() - reset the host adapter
1897 * @scp: SCSI command from stack identifying host.
1898 *
1899 * Following a reset, the state is evaluated again in case an EEH occurred
1900 * during the reset. In such a scenario, the host reset will either yield
1901 * until the EEH recovery is complete or return success or failure based
1902 * upon the current device state.
1903 *
1904 * Return:
1905 * SUCCESS as defined in scsi/scsi.h
1906 * FAILED as defined in scsi/scsi.h
1907 */
1908 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
1909 {
1910 int rc = SUCCESS;
1911 int rcr = 0;
1912 struct Scsi_Host *host = scp->device->host;
1913 struct cxlflash_cfg *cfg = shost_priv(host);
1914 struct device *dev = &cfg->dev->dev;
1915
1916 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
1917 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
1918 scp->device->channel, scp->device->id, scp->device->lun,
1919 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1920 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1921 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1922 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1923
1924 switch (cfg->state) {
1925 case STATE_NORMAL:
1926 cfg->state = STATE_RESET;
1927 drain_ioctls(cfg);
1928 cxlflash_mark_contexts_error(cfg);
1929 rcr = afu_reset(cfg);
1930 if (rcr) {
1931 rc = FAILED;
1932 cfg->state = STATE_FAILTERM;
1933 } else
1934 cfg->state = STATE_NORMAL;
1935 wake_up_all(&cfg->reset_waitq);
1936 ssleep(1);
1937 /* fall through */
1938 case STATE_RESET:
1939 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
1940 if (cfg->state == STATE_NORMAL)
1941 break;
1942 /* fall through */
1943 default:
1944 rc = FAILED;
1945 break;
1946 }
1947
1948 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1949 return rc;
1950 }
1951
1952 /**
1953 * cxlflash_change_queue_depth() - change the queue depth for the device
1954 * @sdev: SCSI device destined for queue depth change.
1955 * @qdepth: Requested queue depth value to set.
1956 *
1957 * The requested queue depth is capped to the maximum supported value.
1958 *
1959 * Return: The actual queue depth set.
1960 */
1961 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
1962 {
1963
1964 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
1965 qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
1966
1967 scsi_change_queue_depth(sdev, qdepth);
1968 return sdev->queue_depth;
1969 }
1970
1971 /**
1972 * cxlflash_show_port_status() - queries and presents the current port status
1973 * @port: Desired port for status reporting.
1974 * @afu: AFU owning the specified port.
1975 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
1976 *
1977 * Return: The size of the ASCII string returned in @buf.
1978 */
1979 static ssize_t cxlflash_show_port_status(u32 port, struct afu *afu, char *buf)
1980 {
1981 char *disp_status;
1982 u64 status;
1983 __be64 __iomem *fc_regs;
1984
1985 if (port >= NUM_FC_PORTS)
1986 return 0;
1987
1988 fc_regs = &afu->afu_map->global.fc_regs[port][0];
1989 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1990 status &= FC_MTIP_STATUS_MASK;
1991
1992 if (status == FC_MTIP_STATUS_ONLINE)
1993 disp_status = "online";
1994 else if (status == FC_MTIP_STATUS_OFFLINE)
1995 disp_status = "offline";
1996 else
1997 disp_status = "unknown";
1998
1999 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2000 }
2001
2002 /**
2003 * port0_show() - queries and presents the current status of port 0
2004 * @dev: Generic device associated with the host owning the port.
2005 * @attr: Device attribute representing the port.
2006 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2007 *
2008 * Return: The size of the ASCII string returned in @buf.
2009 */
2010 static ssize_t port0_show(struct device *dev,
2011 struct device_attribute *attr,
2012 char *buf)
2013 {
2014 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2015 struct afu *afu = cfg->afu;
2016
2017 return cxlflash_show_port_status(0, afu, buf);
2018 }
2019
2020 /**
2021 * port1_show() - queries and presents the current status of port 1
2022 * @dev: Generic device associated with the host owning the port.
2023 * @attr: Device attribute representing the port.
2024 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2025 *
2026 * Return: The size of the ASCII string returned in @buf.
2027 */
2028 static ssize_t port1_show(struct device *dev,
2029 struct device_attribute *attr,
2030 char *buf)
2031 {
2032 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2033 struct afu *afu = cfg->afu;
2034
2035 return cxlflash_show_port_status(1, afu, buf);
2036 }
2037
2038 /**
2039 * lun_mode_show() - presents the current LUN mode of the host
2040 * @dev: Generic device associated with the host.
2041 * @attr: Device attribute representing the LUN mode.
2042 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2043 *
2044 * Return: The size of the ASCII string returned in @buf.
2045 */
2046 static ssize_t lun_mode_show(struct device *dev,
2047 struct device_attribute *attr, char *buf)
2048 {
2049 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2050 struct afu *afu = cfg->afu;
2051
2052 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2053 }
2054
2055 /**
2056 * lun_mode_store() - sets the LUN mode of the host
2057 * @dev: Generic device associated with the host.
2058 * @attr: Device attribute representing the LUN mode.
2059 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2060 * @count: Length of data resizing in @buf.
2061 *
2062 * The CXL Flash AFU supports a dummy LUN mode where the external
2063 * links and storage are not required. Space on the FPGA is used
2064 * to create 1 or 2 small LUNs which are presented to the system
2065 * as if they were a normal storage device. This feature is useful
2066 * during development and also provides manufacturing with a way
2067 * to test the AFU without an actual device.
2068 *
2069 * 0 = external LUN[s] (default)
2070 * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2071 * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2072 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2073 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2074 *
2075 * Return: The size of the ASCII string returned in @buf.
2076 */
2077 static ssize_t lun_mode_store(struct device *dev,
2078 struct device_attribute *attr,
2079 const char *buf, size_t count)
2080 {
2081 struct Scsi_Host *shost = class_to_shost(dev);
2082 struct cxlflash_cfg *cfg = shost_priv(shost);
2083 struct afu *afu = cfg->afu;
2084 int rc;
2085 u32 lun_mode;
2086
2087 rc = kstrtouint(buf, 10, &lun_mode);
2088 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2089 afu->internal_lun = lun_mode;
2090
2091 /*
2092 * When configured for internal LUN, there is only one channel,
2093 * channel number 0, else there will be 2 (default).
2094 */
2095 if (afu->internal_lun)
2096 shost->max_channel = 0;
2097 else
2098 shost->max_channel = NUM_FC_PORTS - 1;
2099
2100 afu_reset(cfg);
2101 scsi_scan_host(cfg->host);
2102 }
2103
2104 return count;
2105 }
2106
2107 /**
2108 * ioctl_version_show() - presents the current ioctl version of the host
2109 * @dev: Generic device associated with the host.
2110 * @attr: Device attribute representing the ioctl version.
2111 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version.
2112 *
2113 * Return: The size of the ASCII string returned in @buf.
2114 */
2115 static ssize_t ioctl_version_show(struct device *dev,
2116 struct device_attribute *attr, char *buf)
2117 {
2118 return scnprintf(buf, PAGE_SIZE, "%u\n", DK_CXLFLASH_VERSION_0);
2119 }
2120
2121 /**
2122 * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2123 * @port: Desired port for status reporting.
2124 * @afu: AFU owning the specified port.
2125 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2126 *
2127 * Return: The size of the ASCII string returned in @buf.
2128 */
2129 static ssize_t cxlflash_show_port_lun_table(u32 port,
2130 struct afu *afu,
2131 char *buf)
2132 {
2133 int i;
2134 ssize_t bytes = 0;
2135 __be64 __iomem *fc_port;
2136
2137 if (port >= NUM_FC_PORTS)
2138 return 0;
2139
2140 fc_port = &afu->afu_map->global.fc_port[port][0];
2141
2142 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2143 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2144 "%03d: %016llx\n", i, readq_be(&fc_port[i]));
2145 return bytes;
2146 }
2147
2148 /**
2149 * port0_lun_table_show() - presents the current LUN table of port 0
2150 * @dev: Generic device associated with the host owning the port.
2151 * @attr: Device attribute representing the port.
2152 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2153 *
2154 * Return: The size of the ASCII string returned in @buf.
2155 */
2156 static ssize_t port0_lun_table_show(struct device *dev,
2157 struct device_attribute *attr,
2158 char *buf)
2159 {
2160 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2161 struct afu *afu = cfg->afu;
2162
2163 return cxlflash_show_port_lun_table(0, afu, buf);
2164 }
2165
2166 /**
2167 * port1_lun_table_show() - presents the current LUN table of port 1
2168 * @dev: Generic device associated with the host owning the port.
2169 * @attr: Device attribute representing the port.
2170 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2171 *
2172 * Return: The size of the ASCII string returned in @buf.
2173 */
2174 static ssize_t port1_lun_table_show(struct device *dev,
2175 struct device_attribute *attr,
2176 char *buf)
2177 {
2178 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2179 struct afu *afu = cfg->afu;
2180
2181 return cxlflash_show_port_lun_table(1, afu, buf);
2182 }
2183
2184 /**
2185 * mode_show() - presents the current mode of the device
2186 * @dev: Generic device associated with the device.
2187 * @attr: Device attribute representing the device mode.
2188 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
2189 *
2190 * Return: The size of the ASCII string returned in @buf.
2191 */
2192 static ssize_t mode_show(struct device *dev,
2193 struct device_attribute *attr, char *buf)
2194 {
2195 struct scsi_device *sdev = to_scsi_device(dev);
2196
2197 return scnprintf(buf, PAGE_SIZE, "%s\n",
2198 sdev->hostdata ? "superpipe" : "legacy");
2199 }
2200
2201 /*
2202 * Host attributes
2203 */
2204 static DEVICE_ATTR_RO(port0);
2205 static DEVICE_ATTR_RO(port1);
2206 static DEVICE_ATTR_RW(lun_mode);
2207 static DEVICE_ATTR_RO(ioctl_version);
2208 static DEVICE_ATTR_RO(port0_lun_table);
2209 static DEVICE_ATTR_RO(port1_lun_table);
2210
2211 static struct device_attribute *cxlflash_host_attrs[] = {
2212 &dev_attr_port0,
2213 &dev_attr_port1,
2214 &dev_attr_lun_mode,
2215 &dev_attr_ioctl_version,
2216 &dev_attr_port0_lun_table,
2217 &dev_attr_port1_lun_table,
2218 NULL
2219 };
2220
2221 /*
2222 * Device attributes
2223 */
2224 static DEVICE_ATTR_RO(mode);
2225
2226 static struct device_attribute *cxlflash_dev_attrs[] = {
2227 &dev_attr_mode,
2228 NULL
2229 };
2230
2231 /*
2232 * Host template
2233 */
2234 static struct scsi_host_template driver_template = {
2235 .module = THIS_MODULE,
2236 .name = CXLFLASH_ADAPTER_NAME,
2237 .info = cxlflash_driver_info,
2238 .ioctl = cxlflash_ioctl,
2239 .proc_name = CXLFLASH_NAME,
2240 .queuecommand = cxlflash_queuecommand,
2241 .eh_device_reset_handler = cxlflash_eh_device_reset_handler,
2242 .eh_host_reset_handler = cxlflash_eh_host_reset_handler,
2243 .change_queue_depth = cxlflash_change_queue_depth,
2244 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
2245 .can_queue = CXLFLASH_MAX_CMDS,
2246 .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
2247 .this_id = -1,
2248 .sg_tablesize = 1, /* No scatter gather support */
2249 .max_sectors = CXLFLASH_MAX_SECTORS,
2250 .use_clustering = ENABLE_CLUSTERING,
2251 .shost_attrs = cxlflash_host_attrs,
2252 .sdev_attrs = cxlflash_dev_attrs,
2253 };
2254
2255 /*
2256 * Device dependent values
2257 */
2258 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
2259 0ULL };
2260 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
2261 CXLFLASH_NOTIFY_SHUTDOWN };
2262
2263 /*
2264 * PCI device binding table
2265 */
2266 static struct pci_device_id cxlflash_pci_table[] = {
2267 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
2268 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
2269 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
2270 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
2271 {}
2272 };
2273
2274 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
2275
2276 /**
2277 * cxlflash_worker_thread() - work thread handler for the AFU
2278 * @work: Work structure contained within cxlflash associated with host.
2279 *
2280 * Handles the following events:
2281 * - Link reset which cannot be performed on interrupt context due to
2282 * blocking up to a few seconds
2283 * - Rescan the host
2284 */
2285 static void cxlflash_worker_thread(struct work_struct *work)
2286 {
2287 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
2288 work_q);
2289 struct afu *afu = cfg->afu;
2290 struct device *dev = &cfg->dev->dev;
2291 int port;
2292 ulong lock_flags;
2293
2294 /* Avoid MMIO if the device has failed */
2295
2296 if (cfg->state != STATE_NORMAL)
2297 return;
2298
2299 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2300
2301 if (cfg->lr_state == LINK_RESET_REQUIRED) {
2302 port = cfg->lr_port;
2303 if (port < 0)
2304 dev_err(dev, "%s: invalid port index %d\n",
2305 __func__, port);
2306 else {
2307 spin_unlock_irqrestore(cfg->host->host_lock,
2308 lock_flags);
2309
2310 /* The reset can block... */
2311 afu_link_reset(afu, port,
2312 &afu->afu_map->global.fc_regs[port][0]);
2313 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2314 }
2315
2316 cfg->lr_state = LINK_RESET_COMPLETE;
2317 }
2318
2319 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
2320
2321 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
2322 scsi_scan_host(cfg->host);
2323 }
2324
2325 /**
2326 * cxlflash_probe() - PCI entry point to add host
2327 * @pdev: PCI device associated with the host.
2328 * @dev_id: PCI device id associated with device.
2329 *
2330 * Return: 0 on success, -errno on failure
2331 */
2332 static int cxlflash_probe(struct pci_dev *pdev,
2333 const struct pci_device_id *dev_id)
2334 {
2335 struct Scsi_Host *host;
2336 struct cxlflash_cfg *cfg = NULL;
2337 struct device *dev = &pdev->dev;
2338 struct dev_dependent_vals *ddv;
2339 int rc = 0;
2340
2341 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
2342 __func__, pdev->irq);
2343
2344 ddv = (struct dev_dependent_vals *)dev_id->driver_data;
2345 driver_template.max_sectors = ddv->max_sectors;
2346
2347 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
2348 if (!host) {
2349 dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
2350 rc = -ENOMEM;
2351 goto out;
2352 }
2353
2354 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
2355 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
2356 host->max_channel = NUM_FC_PORTS - 1;
2357 host->unique_id = host->host_no;
2358 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
2359
2360 cfg = shost_priv(host);
2361 cfg->host = host;
2362 rc = alloc_mem(cfg);
2363 if (rc) {
2364 dev_err(dev, "%s: alloc_mem failed\n", __func__);
2365 rc = -ENOMEM;
2366 scsi_host_put(cfg->host);
2367 goto out;
2368 }
2369
2370 cfg->init_state = INIT_STATE_NONE;
2371 cfg->dev = pdev;
2372 cfg->cxl_fops = cxlflash_cxl_fops;
2373
2374 /*
2375 * The promoted LUNs move to the top of the LUN table. The rest stay
2376 * on the bottom half. The bottom half grows from the end
2377 * (index = 255), whereas the top half grows from the beginning
2378 * (index = 0).
2379 */
2380 cfg->promote_lun_index = 0;
2381 cfg->last_lun_index[0] = CXLFLASH_NUM_VLUNS/2 - 1;
2382 cfg->last_lun_index[1] = CXLFLASH_NUM_VLUNS/2 - 1;
2383
2384 cfg->dev_id = (struct pci_device_id *)dev_id;
2385
2386 init_waitqueue_head(&cfg->tmf_waitq);
2387 init_waitqueue_head(&cfg->reset_waitq);
2388
2389 INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
2390 cfg->lr_state = LINK_RESET_INVALID;
2391 cfg->lr_port = -1;
2392 spin_lock_init(&cfg->tmf_slock);
2393 mutex_init(&cfg->ctx_tbl_list_mutex);
2394 mutex_init(&cfg->ctx_recovery_mutex);
2395 init_rwsem(&cfg->ioctl_rwsem);
2396 INIT_LIST_HEAD(&cfg->ctx_err_recovery);
2397 INIT_LIST_HEAD(&cfg->lluns);
2398
2399 pci_set_drvdata(pdev, cfg);
2400
2401 cfg->cxl_afu = cxl_pci_to_afu(pdev);
2402
2403 rc = init_pci(cfg);
2404 if (rc) {
2405 dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
2406 goto out_remove;
2407 }
2408 cfg->init_state = INIT_STATE_PCI;
2409
2410 rc = init_afu(cfg);
2411 if (rc) {
2412 dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
2413 goto out_remove;
2414 }
2415 cfg->init_state = INIT_STATE_AFU;
2416
2417 rc = init_scsi(cfg);
2418 if (rc) {
2419 dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
2420 goto out_remove;
2421 }
2422 cfg->init_state = INIT_STATE_SCSI;
2423
2424 out:
2425 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2426 return rc;
2427
2428 out_remove:
2429 cxlflash_remove(pdev);
2430 goto out;
2431 }
2432
2433 /**
2434 * cxlflash_pci_error_detected() - called when a PCI error is detected
2435 * @pdev: PCI device struct.
2436 * @state: PCI channel state.
2437 *
2438 * When an EEH occurs during an active reset, wait until the reset is
2439 * complete and then take action based upon the device state.
2440 *
2441 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
2442 */
2443 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
2444 pci_channel_state_t state)
2445 {
2446 int rc = 0;
2447 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2448 struct device *dev = &cfg->dev->dev;
2449
2450 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
2451
2452 switch (state) {
2453 case pci_channel_io_frozen:
2454 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2455 if (cfg->state == STATE_FAILTERM)
2456 return PCI_ERS_RESULT_DISCONNECT;
2457
2458 cfg->state = STATE_RESET;
2459 scsi_block_requests(cfg->host);
2460 drain_ioctls(cfg);
2461 rc = cxlflash_mark_contexts_error(cfg);
2462 if (unlikely(rc))
2463 dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
2464 __func__, rc);
2465 term_afu(cfg);
2466 return PCI_ERS_RESULT_NEED_RESET;
2467 case pci_channel_io_perm_failure:
2468 cfg->state = STATE_FAILTERM;
2469 wake_up_all(&cfg->reset_waitq);
2470 scsi_unblock_requests(cfg->host);
2471 return PCI_ERS_RESULT_DISCONNECT;
2472 default:
2473 break;
2474 }
2475 return PCI_ERS_RESULT_NEED_RESET;
2476 }
2477
2478 /**
2479 * cxlflash_pci_slot_reset() - called when PCI slot has been reset
2480 * @pdev: PCI device struct.
2481 *
2482 * This routine is called by the pci error recovery code after the PCI
2483 * slot has been reset, just before we should resume normal operations.
2484 *
2485 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
2486 */
2487 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
2488 {
2489 int rc = 0;
2490 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2491 struct device *dev = &cfg->dev->dev;
2492
2493 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2494
2495 rc = init_afu(cfg);
2496 if (unlikely(rc)) {
2497 dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
2498 return PCI_ERS_RESULT_DISCONNECT;
2499 }
2500
2501 return PCI_ERS_RESULT_RECOVERED;
2502 }
2503
2504 /**
2505 * cxlflash_pci_resume() - called when normal operation can resume
2506 * @pdev: PCI device struct
2507 */
2508 static void cxlflash_pci_resume(struct pci_dev *pdev)
2509 {
2510 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2511 struct device *dev = &cfg->dev->dev;
2512
2513 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2514
2515 cfg->state = STATE_NORMAL;
2516 wake_up_all(&cfg->reset_waitq);
2517 scsi_unblock_requests(cfg->host);
2518 }
2519
2520 static const struct pci_error_handlers cxlflash_err_handler = {
2521 .error_detected = cxlflash_pci_error_detected,
2522 .slot_reset = cxlflash_pci_slot_reset,
2523 .resume = cxlflash_pci_resume,
2524 };
2525
2526 /*
2527 * PCI device structure
2528 */
2529 static struct pci_driver cxlflash_driver = {
2530 .name = CXLFLASH_NAME,
2531 .id_table = cxlflash_pci_table,
2532 .probe = cxlflash_probe,
2533 .remove = cxlflash_remove,
2534 .shutdown = cxlflash_remove,
2535 .err_handler = &cxlflash_err_handler,
2536 };
2537
2538 /**
2539 * init_cxlflash() - module entry point
2540 *
2541 * Return: 0 on success, -errno on failure
2542 */
2543 static int __init init_cxlflash(void)
2544 {
2545 cxlflash_list_init();
2546
2547 return pci_register_driver(&cxlflash_driver);
2548 }
2549
2550 /**
2551 * exit_cxlflash() - module exit point
2552 */
2553 static void __exit exit_cxlflash(void)
2554 {
2555 cxlflash_term_global_luns();
2556 cxlflash_free_errpage();
2557
2558 pci_unregister_driver(&cxlflash_driver);
2559 }
2560
2561 module_init(init_cxlflash);
2562 module_exit(exit_cxlflash);