]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/cxlflash/main.c
scsi: cxlflash: Support AFU debug
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / cxlflash / main.c
1 /*
2 * CXL Flash Device Driver
3 *
4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
6 *
7 * Copyright (C) 2015 IBM Corporation
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15 #include <linux/delay.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19
20 #include <asm/unaligned.h>
21
22 #include <misc/cxl.h>
23
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_host.h>
26 #include <uapi/scsi/cxlflash_ioctl.h>
27
28 #include "main.h"
29 #include "sislite.h"
30 #include "common.h"
31
32 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
33 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
34 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
35 MODULE_LICENSE("GPL");
36
37 static struct class *cxlflash_class;
38 static u32 cxlflash_major;
39 static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
40
41 /**
42 * process_cmd_err() - command error handler
43 * @cmd: AFU command that experienced the error.
44 * @scp: SCSI command associated with the AFU command in error.
45 *
46 * Translates error bits from AFU command to SCSI command results.
47 */
48 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
49 {
50 struct afu *afu = cmd->parent;
51 struct cxlflash_cfg *cfg = afu->parent;
52 struct device *dev = &cfg->dev->dev;
53 struct sisl_ioarcb *ioarcb;
54 struct sisl_ioasa *ioasa;
55 u32 resid;
56
57 if (unlikely(!cmd))
58 return;
59
60 ioarcb = &(cmd->rcb);
61 ioasa = &(cmd->sa);
62
63 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
64 resid = ioasa->resid;
65 scsi_set_resid(scp, resid);
66 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
67 __func__, cmd, scp, resid);
68 }
69
70 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
71 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
72 __func__, cmd, scp);
73 scp->result = (DID_ERROR << 16);
74 }
75
76 dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
77 "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
78 ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
79 ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
80
81 if (ioasa->rc.scsi_rc) {
82 /* We have a SCSI status */
83 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
84 memcpy(scp->sense_buffer, ioasa->sense_data,
85 SISL_SENSE_DATA_LEN);
86 scp->result = ioasa->rc.scsi_rc;
87 } else
88 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
89 }
90
91 /*
92 * We encountered an error. Set scp->result based on nature
93 * of error.
94 */
95 if (ioasa->rc.fc_rc) {
96 /* We have an FC status */
97 switch (ioasa->rc.fc_rc) {
98 case SISL_FC_RC_LINKDOWN:
99 scp->result = (DID_REQUEUE << 16);
100 break;
101 case SISL_FC_RC_RESID:
102 /* This indicates an FCP resid underrun */
103 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
104 /* If the SISL_RC_FLAGS_OVERRUN flag was set,
105 * then we will handle this error else where.
106 * If not then we must handle it here.
107 * This is probably an AFU bug.
108 */
109 scp->result = (DID_ERROR << 16);
110 }
111 break;
112 case SISL_FC_RC_RESIDERR:
113 /* Resid mismatch between adapter and device */
114 case SISL_FC_RC_TGTABORT:
115 case SISL_FC_RC_ABORTOK:
116 case SISL_FC_RC_ABORTFAIL:
117 case SISL_FC_RC_NOLOGI:
118 case SISL_FC_RC_ABORTPEND:
119 case SISL_FC_RC_WRABORTPEND:
120 case SISL_FC_RC_NOEXP:
121 case SISL_FC_RC_INUSE:
122 scp->result = (DID_ERROR << 16);
123 break;
124 }
125 }
126
127 if (ioasa->rc.afu_rc) {
128 /* We have an AFU error */
129 switch (ioasa->rc.afu_rc) {
130 case SISL_AFU_RC_NO_CHANNELS:
131 scp->result = (DID_NO_CONNECT << 16);
132 break;
133 case SISL_AFU_RC_DATA_DMA_ERR:
134 switch (ioasa->afu_extra) {
135 case SISL_AFU_DMA_ERR_PAGE_IN:
136 /* Retry */
137 scp->result = (DID_IMM_RETRY << 16);
138 break;
139 case SISL_AFU_DMA_ERR_INVALID_EA:
140 default:
141 scp->result = (DID_ERROR << 16);
142 }
143 break;
144 case SISL_AFU_RC_OUT_OF_DATA_BUFS:
145 /* Retry */
146 scp->result = (DID_ALLOC_FAILURE << 16);
147 break;
148 default:
149 scp->result = (DID_ERROR << 16);
150 }
151 }
152 }
153
154 /**
155 * cmd_complete() - command completion handler
156 * @cmd: AFU command that has completed.
157 *
158 * Prepares and submits command that has either completed or timed out to
159 * the SCSI stack. Checks AFU command back into command pool for non-internal
160 * (cmd->scp populated) commands.
161 */
162 static void cmd_complete(struct afu_cmd *cmd)
163 {
164 struct scsi_cmnd *scp;
165 ulong lock_flags;
166 struct afu *afu = cmd->parent;
167 struct cxlflash_cfg *cfg = afu->parent;
168 struct device *dev = &cfg->dev->dev;
169 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
170 bool cmd_is_tmf;
171
172 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
173 list_del(&cmd->list);
174 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
175
176 if (cmd->scp) {
177 scp = cmd->scp;
178 if (unlikely(cmd->sa.ioasc))
179 process_cmd_err(cmd, scp);
180 else
181 scp->result = (DID_OK << 16);
182
183 cmd_is_tmf = cmd->cmd_tmf;
184
185 dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
186 __func__, scp, scp->result, cmd->sa.ioasc);
187
188 scp->scsi_done(scp);
189
190 if (cmd_is_tmf) {
191 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
192 cfg->tmf_active = false;
193 wake_up_all_locked(&cfg->tmf_waitq);
194 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
195 }
196 } else
197 complete(&cmd->cevent);
198 }
199
200 /**
201 * flush_pending_cmds() - flush all pending commands on this hardware queue
202 * @hwq: Hardware queue to flush.
203 *
204 * The hardware send queue lock associated with this hardware queue must be
205 * held when calling this routine.
206 */
207 static void flush_pending_cmds(struct hwq *hwq)
208 {
209 struct afu_cmd *cmd, *tmp;
210 struct scsi_cmnd *scp;
211
212 list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) {
213 /* Bypass command when on a doneq, cmd_complete() will handle */
214 if (!list_empty(&cmd->queue))
215 continue;
216
217 list_del(&cmd->list);
218
219 if (cmd->scp) {
220 scp = cmd->scp;
221 scp->result = (DID_IMM_RETRY << 16);
222 scp->scsi_done(scp);
223 } else {
224 cmd->cmd_aborted = true;
225 complete(&cmd->cevent);
226 }
227 }
228 }
229
230 /**
231 * context_reset() - reset context via specified register
232 * @hwq: Hardware queue owning the context to be reset.
233 * @reset_reg: MMIO register to perform reset.
234 *
235 * When the reset is successful, the SISLite specification guarantees that
236 * the AFU has aborted all currently pending I/O. Accordingly, these commands
237 * must be flushed.
238 *
239 * Return: 0 on success, -errno on failure
240 */
241 static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg)
242 {
243 struct cxlflash_cfg *cfg = hwq->afu->parent;
244 struct device *dev = &cfg->dev->dev;
245 int rc = -ETIMEDOUT;
246 int nretry = 0;
247 u64 val = 0x1;
248 ulong lock_flags;
249
250 dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq);
251
252 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
253
254 writeq_be(val, reset_reg);
255 do {
256 val = readq_be(reset_reg);
257 if ((val & 0x1) == 0x0) {
258 rc = 0;
259 break;
260 }
261
262 /* Double delay each time */
263 udelay(1 << nretry);
264 } while (nretry++ < MC_ROOM_RETRY_CNT);
265
266 if (!rc)
267 flush_pending_cmds(hwq);
268
269 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
270
271 dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n",
272 __func__, rc, val, nretry);
273 return rc;
274 }
275
276 /**
277 * context_reset_ioarrin() - reset context via IOARRIN register
278 * @hwq: Hardware queue owning the context to be reset.
279 *
280 * Return: 0 on success, -errno on failure
281 */
282 static int context_reset_ioarrin(struct hwq *hwq)
283 {
284 return context_reset(hwq, &hwq->host_map->ioarrin);
285 }
286
287 /**
288 * context_reset_sq() - reset context via SQ_CONTEXT_RESET register
289 * @hwq: Hardware queue owning the context to be reset.
290 *
291 * Return: 0 on success, -errno on failure
292 */
293 static int context_reset_sq(struct hwq *hwq)
294 {
295 return context_reset(hwq, &hwq->host_map->sq_ctx_reset);
296 }
297
298 /**
299 * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
300 * @afu: AFU associated with the host.
301 * @cmd: AFU command to send.
302 *
303 * Return:
304 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
305 */
306 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
307 {
308 struct cxlflash_cfg *cfg = afu->parent;
309 struct device *dev = &cfg->dev->dev;
310 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
311 int rc = 0;
312 s64 room;
313 ulong lock_flags;
314
315 /*
316 * To avoid the performance penalty of MMIO, spread the update of
317 * 'room' over multiple commands.
318 */
319 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
320 if (--hwq->room < 0) {
321 room = readq_be(&hwq->host_map->cmd_room);
322 if (room <= 0) {
323 dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
324 "0x%02X, room=0x%016llX\n",
325 __func__, cmd->rcb.cdb[0], room);
326 hwq->room = 0;
327 rc = SCSI_MLQUEUE_HOST_BUSY;
328 goto out;
329 }
330 hwq->room = room - 1;
331 }
332
333 list_add(&cmd->list, &hwq->pending_cmds);
334 writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin);
335 out:
336 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
337 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n", __func__,
338 cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
339 return rc;
340 }
341
342 /**
343 * send_cmd_sq() - sends an AFU command via SQ ring
344 * @afu: AFU associated with the host.
345 * @cmd: AFU command to send.
346 *
347 * Return:
348 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
349 */
350 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
351 {
352 struct cxlflash_cfg *cfg = afu->parent;
353 struct device *dev = &cfg->dev->dev;
354 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
355 int rc = 0;
356 int newval;
357 ulong lock_flags;
358
359 newval = atomic_dec_if_positive(&hwq->hsq_credits);
360 if (newval <= 0) {
361 rc = SCSI_MLQUEUE_HOST_BUSY;
362 goto out;
363 }
364
365 cmd->rcb.ioasa = &cmd->sa;
366
367 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
368
369 *hwq->hsq_curr = cmd->rcb;
370 if (hwq->hsq_curr < hwq->hsq_end)
371 hwq->hsq_curr++;
372 else
373 hwq->hsq_curr = hwq->hsq_start;
374
375 list_add(&cmd->list, &hwq->pending_cmds);
376 writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail);
377
378 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
379 out:
380 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
381 "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
382 cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr,
383 readq_be(&hwq->host_map->sq_head),
384 readq_be(&hwq->host_map->sq_tail));
385 return rc;
386 }
387
388 /**
389 * wait_resp() - polls for a response or timeout to a sent AFU command
390 * @afu: AFU associated with the host.
391 * @cmd: AFU command that was sent.
392 *
393 * Return: 0 on success, -errno on failure
394 */
395 static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
396 {
397 struct cxlflash_cfg *cfg = afu->parent;
398 struct device *dev = &cfg->dev->dev;
399 int rc = 0;
400 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
401
402 timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
403 if (!timeout)
404 rc = -ETIMEDOUT;
405
406 if (cmd->cmd_aborted)
407 rc = -EAGAIN;
408
409 if (unlikely(cmd->sa.ioasc != 0)) {
410 dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
411 __func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
412 rc = -EIO;
413 }
414
415 return rc;
416 }
417
418 /**
419 * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command
420 * @host: SCSI host associated with device.
421 * @scp: SCSI command to send.
422 * @afu: SCSI command to send.
423 *
424 * Hashes a command based upon the hardware queue mode.
425 *
426 * Return: Trusted index of target hardware queue
427 */
428 static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp,
429 struct afu *afu)
430 {
431 u32 tag;
432 u32 hwq = 0;
433
434 if (afu->num_hwqs == 1)
435 return 0;
436
437 switch (afu->hwq_mode) {
438 case HWQ_MODE_RR:
439 hwq = afu->hwq_rr_count++ % afu->num_hwqs;
440 break;
441 case HWQ_MODE_TAG:
442 tag = blk_mq_unique_tag(scp->request);
443 hwq = blk_mq_unique_tag_to_hwq(tag);
444 break;
445 case HWQ_MODE_CPU:
446 hwq = smp_processor_id() % afu->num_hwqs;
447 break;
448 default:
449 WARN_ON_ONCE(1);
450 }
451
452 return hwq;
453 }
454
455 /**
456 * send_tmf() - sends a Task Management Function (TMF)
457 * @afu: AFU to checkout from.
458 * @scp: SCSI command from stack.
459 * @tmfcmd: TMF command to send.
460 *
461 * Return:
462 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
463 */
464 static int send_tmf(struct afu *afu, struct scsi_cmnd *scp, u64 tmfcmd)
465 {
466 struct Scsi_Host *host = scp->device->host;
467 struct cxlflash_cfg *cfg = shost_priv(host);
468 struct afu_cmd *cmd = sc_to_afucz(scp);
469 struct device *dev = &cfg->dev->dev;
470 int hwq_index = cmd_to_target_hwq(host, scp, afu);
471 struct hwq *hwq = get_hwq(afu, hwq_index);
472 ulong lock_flags;
473 int rc = 0;
474 ulong to;
475
476 /* When Task Management Function is active do not send another */
477 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
478 if (cfg->tmf_active)
479 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
480 !cfg->tmf_active,
481 cfg->tmf_slock);
482 cfg->tmf_active = true;
483 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
484
485 cmd->scp = scp;
486 cmd->parent = afu;
487 cmd->cmd_tmf = true;
488 cmd->hwq_index = hwq_index;
489
490 cmd->rcb.ctx_id = hwq->ctx_hndl;
491 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
492 cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
493 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
494 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
495 SISL_REQ_FLAGS_SUP_UNDERRUN |
496 SISL_REQ_FLAGS_TMF_CMD);
497 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
498
499 rc = afu->send_cmd(afu, cmd);
500 if (unlikely(rc)) {
501 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
502 cfg->tmf_active = false;
503 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
504 goto out;
505 }
506
507 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
508 to = msecs_to_jiffies(5000);
509 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
510 !cfg->tmf_active,
511 cfg->tmf_slock,
512 to);
513 if (!to) {
514 cfg->tmf_active = false;
515 dev_err(dev, "%s: TMF timed out\n", __func__);
516 rc = -1;
517 }
518 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
519 out:
520 return rc;
521 }
522
523 /**
524 * cxlflash_driver_info() - information handler for this host driver
525 * @host: SCSI host associated with device.
526 *
527 * Return: A string describing the device.
528 */
529 static const char *cxlflash_driver_info(struct Scsi_Host *host)
530 {
531 return CXLFLASH_ADAPTER_NAME;
532 }
533
534 /**
535 * cxlflash_queuecommand() - sends a mid-layer request
536 * @host: SCSI host associated with device.
537 * @scp: SCSI command to send.
538 *
539 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
540 */
541 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
542 {
543 struct cxlflash_cfg *cfg = shost_priv(host);
544 struct afu *afu = cfg->afu;
545 struct device *dev = &cfg->dev->dev;
546 struct afu_cmd *cmd = sc_to_afucz(scp);
547 struct scatterlist *sg = scsi_sglist(scp);
548 int hwq_index = cmd_to_target_hwq(host, scp, afu);
549 struct hwq *hwq = get_hwq(afu, hwq_index);
550 u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
551 ulong lock_flags;
552 int rc = 0;
553
554 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
555 "cdb=(%08x-%08x-%08x-%08x)\n",
556 __func__, scp, host->host_no, scp->device->channel,
557 scp->device->id, scp->device->lun,
558 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
559 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
560 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
561 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
562
563 /*
564 * If a Task Management Function is active, wait for it to complete
565 * before continuing with regular commands.
566 */
567 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
568 if (cfg->tmf_active) {
569 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
570 rc = SCSI_MLQUEUE_HOST_BUSY;
571 goto out;
572 }
573 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
574
575 switch (cfg->state) {
576 case STATE_PROBING:
577 case STATE_PROBED:
578 case STATE_RESET:
579 dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
580 rc = SCSI_MLQUEUE_HOST_BUSY;
581 goto out;
582 case STATE_FAILTERM:
583 dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
584 scp->result = (DID_NO_CONNECT << 16);
585 scp->scsi_done(scp);
586 rc = 0;
587 goto out;
588 default:
589 break;
590 }
591
592 if (likely(sg)) {
593 cmd->rcb.data_len = sg->length;
594 cmd->rcb.data_ea = (uintptr_t)sg_virt(sg);
595 }
596
597 cmd->scp = scp;
598 cmd->parent = afu;
599 cmd->hwq_index = hwq_index;
600
601 cmd->rcb.ctx_id = hwq->ctx_hndl;
602 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
603 cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
604 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
605
606 if (scp->sc_data_direction == DMA_TO_DEVICE)
607 req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
608
609 cmd->rcb.req_flags = req_flags;
610 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
611
612 rc = afu->send_cmd(afu, cmd);
613 out:
614 return rc;
615 }
616
617 /**
618 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
619 * @cfg: Internal structure associated with the host.
620 */
621 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
622 {
623 struct pci_dev *pdev = cfg->dev;
624
625 if (pci_channel_offline(pdev))
626 wait_event_timeout(cfg->reset_waitq,
627 !pci_channel_offline(pdev),
628 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
629 }
630
631 /**
632 * free_mem() - free memory associated with the AFU
633 * @cfg: Internal structure associated with the host.
634 */
635 static void free_mem(struct cxlflash_cfg *cfg)
636 {
637 struct afu *afu = cfg->afu;
638
639 if (cfg->afu) {
640 free_pages((ulong)afu, get_order(sizeof(struct afu)));
641 cfg->afu = NULL;
642 }
643 }
644
645 /**
646 * cxlflash_reset_sync() - synchronizing point for asynchronous resets
647 * @cfg: Internal structure associated with the host.
648 */
649 static void cxlflash_reset_sync(struct cxlflash_cfg *cfg)
650 {
651 if (cfg->async_reset_cookie == 0)
652 return;
653
654 /* Wait until all async calls prior to this cookie have completed */
655 async_synchronize_cookie(cfg->async_reset_cookie + 1);
656 cfg->async_reset_cookie = 0;
657 }
658
659 /**
660 * stop_afu() - stops the AFU command timers and unmaps the MMIO space
661 * @cfg: Internal structure associated with the host.
662 *
663 * Safe to call with AFU in a partially allocated/initialized state.
664 *
665 * Cancels scheduled worker threads, waits for any active internal AFU
666 * commands to timeout, disables IRQ polling and then unmaps the MMIO space.
667 */
668 static void stop_afu(struct cxlflash_cfg *cfg)
669 {
670 struct afu *afu = cfg->afu;
671 struct hwq *hwq;
672 int i;
673
674 cancel_work_sync(&cfg->work_q);
675 if (!current_is_async())
676 cxlflash_reset_sync(cfg);
677
678 if (likely(afu)) {
679 while (atomic_read(&afu->cmds_active))
680 ssleep(1);
681
682 if (afu_is_irqpoll_enabled(afu)) {
683 for (i = 0; i < afu->num_hwqs; i++) {
684 hwq = get_hwq(afu, i);
685
686 irq_poll_disable(&hwq->irqpoll);
687 }
688 }
689
690 if (likely(afu->afu_map)) {
691 cxl_psa_unmap((void __iomem *)afu->afu_map);
692 afu->afu_map = NULL;
693 }
694 }
695 }
696
697 /**
698 * term_intr() - disables all AFU interrupts
699 * @cfg: Internal structure associated with the host.
700 * @level: Depth of allocation, where to begin waterfall tear down.
701 * @index: Index of the hardware queue.
702 *
703 * Safe to call with AFU/MC in partially allocated/initialized state.
704 */
705 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level,
706 u32 index)
707 {
708 struct afu *afu = cfg->afu;
709 struct device *dev = &cfg->dev->dev;
710 struct hwq *hwq;
711
712 if (!afu) {
713 dev_err(dev, "%s: returning with NULL afu\n", __func__);
714 return;
715 }
716
717 hwq = get_hwq(afu, index);
718
719 if (!hwq->ctx) {
720 dev_err(dev, "%s: returning with NULL MC\n", __func__);
721 return;
722 }
723
724 switch (level) {
725 case UNMAP_THREE:
726 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
727 if (index == PRIMARY_HWQ)
728 cxl_unmap_afu_irq(hwq->ctx, 3, hwq);
729 case UNMAP_TWO:
730 cxl_unmap_afu_irq(hwq->ctx, 2, hwq);
731 case UNMAP_ONE:
732 cxl_unmap_afu_irq(hwq->ctx, 1, hwq);
733 case FREE_IRQ:
734 cxl_free_afu_irqs(hwq->ctx);
735 /* fall through */
736 case UNDO_NOOP:
737 /* No action required */
738 break;
739 }
740 }
741
742 /**
743 * term_mc() - terminates the master context
744 * @cfg: Internal structure associated with the host.
745 * @index: Index of the hardware queue.
746 *
747 * Safe to call with AFU/MC in partially allocated/initialized state.
748 */
749 static void term_mc(struct cxlflash_cfg *cfg, u32 index)
750 {
751 struct afu *afu = cfg->afu;
752 struct device *dev = &cfg->dev->dev;
753 struct hwq *hwq;
754 ulong lock_flags;
755
756 if (!afu) {
757 dev_err(dev, "%s: returning with NULL afu\n", __func__);
758 return;
759 }
760
761 hwq = get_hwq(afu, index);
762
763 if (!hwq->ctx) {
764 dev_err(dev, "%s: returning with NULL MC\n", __func__);
765 return;
766 }
767
768 WARN_ON(cxl_stop_context(hwq->ctx));
769 if (index != PRIMARY_HWQ)
770 WARN_ON(cxl_release_context(hwq->ctx));
771 hwq->ctx = NULL;
772
773 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
774 flush_pending_cmds(hwq);
775 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
776 }
777
778 /**
779 * term_afu() - terminates the AFU
780 * @cfg: Internal structure associated with the host.
781 *
782 * Safe to call with AFU/MC in partially allocated/initialized state.
783 */
784 static void term_afu(struct cxlflash_cfg *cfg)
785 {
786 struct device *dev = &cfg->dev->dev;
787 int k;
788
789 /*
790 * Tear down is carefully orchestrated to ensure
791 * no interrupts can come in when the problem state
792 * area is unmapped.
793 *
794 * 1) Disable all AFU interrupts for each master
795 * 2) Unmap the problem state area
796 * 3) Stop each master context
797 */
798 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
799 term_intr(cfg, UNMAP_THREE, k);
800
801 if (cfg->afu)
802 stop_afu(cfg);
803
804 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
805 term_mc(cfg, k);
806
807 dev_dbg(dev, "%s: returning\n", __func__);
808 }
809
810 /**
811 * notify_shutdown() - notifies device of pending shutdown
812 * @cfg: Internal structure associated with the host.
813 * @wait: Whether to wait for shutdown processing to complete.
814 *
815 * This function will notify the AFU that the adapter is being shutdown
816 * and will wait for shutdown processing to complete if wait is true.
817 * This notification should flush pending I/Os to the device and halt
818 * further I/Os until the next AFU reset is issued and device restarted.
819 */
820 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
821 {
822 struct afu *afu = cfg->afu;
823 struct device *dev = &cfg->dev->dev;
824 struct dev_dependent_vals *ddv;
825 __be64 __iomem *fc_port_regs;
826 u64 reg, status;
827 int i, retry_cnt = 0;
828
829 ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
830 if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
831 return;
832
833 if (!afu || !afu->afu_map) {
834 dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
835 return;
836 }
837
838 /* Notify AFU */
839 for (i = 0; i < cfg->num_fc_ports; i++) {
840 fc_port_regs = get_fc_port_regs(cfg, i);
841
842 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
843 reg |= SISL_FC_SHUTDOWN_NORMAL;
844 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
845 }
846
847 if (!wait)
848 return;
849
850 /* Wait up to 1.5 seconds for shutdown processing to complete */
851 for (i = 0; i < cfg->num_fc_ports; i++) {
852 fc_port_regs = get_fc_port_regs(cfg, i);
853 retry_cnt = 0;
854
855 while (true) {
856 status = readq_be(&fc_port_regs[FC_STATUS / 8]);
857 if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
858 break;
859 if (++retry_cnt >= MC_RETRY_CNT) {
860 dev_dbg(dev, "%s: port %d shutdown processing "
861 "not yet completed\n", __func__, i);
862 break;
863 }
864 msleep(100 * retry_cnt);
865 }
866 }
867 }
868
869 /**
870 * cxlflash_get_minor() - gets the first available minor number
871 *
872 * Return: Unique minor number that can be used to create the character device.
873 */
874 static int cxlflash_get_minor(void)
875 {
876 int minor;
877 long bit;
878
879 bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
880 if (bit >= CXLFLASH_MAX_ADAPTERS)
881 return -1;
882
883 minor = bit & MINORMASK;
884 set_bit(minor, cxlflash_minor);
885 return minor;
886 }
887
888 /**
889 * cxlflash_put_minor() - releases the minor number
890 * @minor: Minor number that is no longer needed.
891 */
892 static void cxlflash_put_minor(int minor)
893 {
894 clear_bit(minor, cxlflash_minor);
895 }
896
897 /**
898 * cxlflash_release_chrdev() - release the character device for the host
899 * @cfg: Internal structure associated with the host.
900 */
901 static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg)
902 {
903 put_device(cfg->chardev);
904 device_unregister(cfg->chardev);
905 cfg->chardev = NULL;
906 cdev_del(&cfg->cdev);
907 cxlflash_put_minor(MINOR(cfg->cdev.dev));
908 }
909
910 /**
911 * cxlflash_remove() - PCI entry point to tear down host
912 * @pdev: PCI device associated with the host.
913 *
914 * Safe to use as a cleanup in partially allocated/initialized state. Note that
915 * the reset_waitq is flushed as part of the stop/termination of user contexts.
916 */
917 static void cxlflash_remove(struct pci_dev *pdev)
918 {
919 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
920 struct device *dev = &pdev->dev;
921 ulong lock_flags;
922
923 if (!pci_is_enabled(pdev)) {
924 dev_dbg(dev, "%s: Device is disabled\n", __func__);
925 return;
926 }
927
928 /* If a Task Management Function is active, wait for it to complete
929 * before continuing with remove.
930 */
931 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
932 if (cfg->tmf_active)
933 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
934 !cfg->tmf_active,
935 cfg->tmf_slock);
936 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
937
938 /* Notify AFU and wait for shutdown processing to complete */
939 notify_shutdown(cfg, true);
940
941 cfg->state = STATE_FAILTERM;
942 cxlflash_stop_term_user_contexts(cfg);
943
944 switch (cfg->init_state) {
945 case INIT_STATE_CDEV:
946 cxlflash_release_chrdev(cfg);
947 case INIT_STATE_SCSI:
948 cxlflash_term_local_luns(cfg);
949 scsi_remove_host(cfg->host);
950 case INIT_STATE_AFU:
951 term_afu(cfg);
952 case INIT_STATE_PCI:
953 pci_disable_device(pdev);
954 case INIT_STATE_NONE:
955 free_mem(cfg);
956 scsi_host_put(cfg->host);
957 break;
958 }
959
960 dev_dbg(dev, "%s: returning\n", __func__);
961 }
962
963 /**
964 * alloc_mem() - allocates the AFU and its command pool
965 * @cfg: Internal structure associated with the host.
966 *
967 * A partially allocated state remains on failure.
968 *
969 * Return:
970 * 0 on success
971 * -ENOMEM on failure to allocate memory
972 */
973 static int alloc_mem(struct cxlflash_cfg *cfg)
974 {
975 int rc = 0;
976 struct device *dev = &cfg->dev->dev;
977
978 /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
979 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
980 get_order(sizeof(struct afu)));
981 if (unlikely(!cfg->afu)) {
982 dev_err(dev, "%s: cannot get %d free pages\n",
983 __func__, get_order(sizeof(struct afu)));
984 rc = -ENOMEM;
985 goto out;
986 }
987 cfg->afu->parent = cfg;
988 cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS;
989 cfg->afu->afu_map = NULL;
990 out:
991 return rc;
992 }
993
994 /**
995 * init_pci() - initializes the host as a PCI device
996 * @cfg: Internal structure associated with the host.
997 *
998 * Return: 0 on success, -errno on failure
999 */
1000 static int init_pci(struct cxlflash_cfg *cfg)
1001 {
1002 struct pci_dev *pdev = cfg->dev;
1003 struct device *dev = &cfg->dev->dev;
1004 int rc = 0;
1005
1006 rc = pci_enable_device(pdev);
1007 if (rc || pci_channel_offline(pdev)) {
1008 if (pci_channel_offline(pdev)) {
1009 cxlflash_wait_for_pci_err_recovery(cfg);
1010 rc = pci_enable_device(pdev);
1011 }
1012
1013 if (rc) {
1014 dev_err(dev, "%s: Cannot enable adapter\n", __func__);
1015 cxlflash_wait_for_pci_err_recovery(cfg);
1016 goto out;
1017 }
1018 }
1019
1020 out:
1021 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1022 return rc;
1023 }
1024
1025 /**
1026 * init_scsi() - adds the host to the SCSI stack and kicks off host scan
1027 * @cfg: Internal structure associated with the host.
1028 *
1029 * Return: 0 on success, -errno on failure
1030 */
1031 static int init_scsi(struct cxlflash_cfg *cfg)
1032 {
1033 struct pci_dev *pdev = cfg->dev;
1034 struct device *dev = &cfg->dev->dev;
1035 int rc = 0;
1036
1037 rc = scsi_add_host(cfg->host, &pdev->dev);
1038 if (rc) {
1039 dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
1040 goto out;
1041 }
1042
1043 scsi_scan_host(cfg->host);
1044
1045 out:
1046 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1047 return rc;
1048 }
1049
1050 /**
1051 * set_port_online() - transitions the specified host FC port to online state
1052 * @fc_regs: Top of MMIO region defined for specified port.
1053 *
1054 * The provided MMIO region must be mapped prior to call. Online state means
1055 * that the FC link layer has synced, completed the handshaking process, and
1056 * is ready for login to start.
1057 */
1058 static void set_port_online(__be64 __iomem *fc_regs)
1059 {
1060 u64 cmdcfg;
1061
1062 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1063 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
1064 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */
1065 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1066 }
1067
1068 /**
1069 * set_port_offline() - transitions the specified host FC port to offline state
1070 * @fc_regs: Top of MMIO region defined for specified port.
1071 *
1072 * The provided MMIO region must be mapped prior to call.
1073 */
1074 static void set_port_offline(__be64 __iomem *fc_regs)
1075 {
1076 u64 cmdcfg;
1077
1078 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1079 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */
1080 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */
1081 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1082 }
1083
1084 /**
1085 * wait_port_online() - waits for the specified host FC port come online
1086 * @fc_regs: Top of MMIO region defined for specified port.
1087 * @delay_us: Number of microseconds to delay between reading port status.
1088 * @nretry: Number of cycles to retry reading port status.
1089 *
1090 * The provided MMIO region must be mapped prior to call. This will timeout
1091 * when the cable is not plugged in.
1092 *
1093 * Return:
1094 * TRUE (1) when the specified port is online
1095 * FALSE (0) when the specified port fails to come online after timeout
1096 */
1097 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1098 {
1099 u64 status;
1100
1101 WARN_ON(delay_us < 1000);
1102
1103 do {
1104 msleep(delay_us / 1000);
1105 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1106 if (status == U64_MAX)
1107 nretry /= 2;
1108 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
1109 nretry--);
1110
1111 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
1112 }
1113
1114 /**
1115 * wait_port_offline() - waits for the specified host FC port go offline
1116 * @fc_regs: Top of MMIO region defined for specified port.
1117 * @delay_us: Number of microseconds to delay between reading port status.
1118 * @nretry: Number of cycles to retry reading port status.
1119 *
1120 * The provided MMIO region must be mapped prior to call.
1121 *
1122 * Return:
1123 * TRUE (1) when the specified port is offline
1124 * FALSE (0) when the specified port fails to go offline after timeout
1125 */
1126 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1127 {
1128 u64 status;
1129
1130 WARN_ON(delay_us < 1000);
1131
1132 do {
1133 msleep(delay_us / 1000);
1134 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1135 if (status == U64_MAX)
1136 nretry /= 2;
1137 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
1138 nretry--);
1139
1140 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1141 }
1142
1143 /**
1144 * afu_set_wwpn() - configures the WWPN for the specified host FC port
1145 * @afu: AFU associated with the host that owns the specified FC port.
1146 * @port: Port number being configured.
1147 * @fc_regs: Top of MMIO region defined for specified port.
1148 * @wwpn: The world-wide-port-number previously discovered for port.
1149 *
1150 * The provided MMIO region must be mapped prior to call. As part of the
1151 * sequence to configure the WWPN, the port is toggled offline and then back
1152 * online. This toggling action can cause this routine to delay up to a few
1153 * seconds. When configured to use the internal LUN feature of the AFU, a
1154 * failure to come online is overridden.
1155 */
1156 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
1157 u64 wwpn)
1158 {
1159 struct cxlflash_cfg *cfg = afu->parent;
1160 struct device *dev = &cfg->dev->dev;
1161
1162 set_port_offline(fc_regs);
1163 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1164 FC_PORT_STATUS_RETRY_CNT)) {
1165 dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
1166 __func__, port);
1167 }
1168
1169 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1170
1171 set_port_online(fc_regs);
1172 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1173 FC_PORT_STATUS_RETRY_CNT)) {
1174 dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
1175 __func__, port);
1176 }
1177 }
1178
1179 /**
1180 * afu_link_reset() - resets the specified host FC port
1181 * @afu: AFU associated with the host that owns the specified FC port.
1182 * @port: Port number being configured.
1183 * @fc_regs: Top of MMIO region defined for specified port.
1184 *
1185 * The provided MMIO region must be mapped prior to call. The sequence to
1186 * reset the port involves toggling it offline and then back online. This
1187 * action can cause this routine to delay up to a few seconds. An effort
1188 * is made to maintain link with the device by switching to host to use
1189 * the alternate port exclusively while the reset takes place.
1190 * failure to come online is overridden.
1191 */
1192 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
1193 {
1194 struct cxlflash_cfg *cfg = afu->parent;
1195 struct device *dev = &cfg->dev->dev;
1196 u64 port_sel;
1197
1198 /* first switch the AFU to the other links, if any */
1199 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1200 port_sel &= ~(1ULL << port);
1201 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1202 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1203
1204 set_port_offline(fc_regs);
1205 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1206 FC_PORT_STATUS_RETRY_CNT))
1207 dev_err(dev, "%s: wait on port %d to go offline timed out\n",
1208 __func__, port);
1209
1210 set_port_online(fc_regs);
1211 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1212 FC_PORT_STATUS_RETRY_CNT))
1213 dev_err(dev, "%s: wait on port %d to go online timed out\n",
1214 __func__, port);
1215
1216 /* switch back to include this port */
1217 port_sel |= (1ULL << port);
1218 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1219 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1220
1221 dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
1222 }
1223
1224 /**
1225 * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1226 * @afu: AFU associated with the host.
1227 */
1228 static void afu_err_intr_init(struct afu *afu)
1229 {
1230 struct cxlflash_cfg *cfg = afu->parent;
1231 __be64 __iomem *fc_port_regs;
1232 int i;
1233 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
1234 u64 reg;
1235
1236 /* global async interrupts: AFU clears afu_ctrl on context exit
1237 * if async interrupts were sent to that context. This prevents
1238 * the AFU form sending further async interrupts when
1239 * there is
1240 * nobody to receive them.
1241 */
1242
1243 /* mask all */
1244 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1245 /* set LISN# to send and point to primary master context */
1246 reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1247
1248 if (afu->internal_lun)
1249 reg |= 1; /* Bit 63 indicates local lun */
1250 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1251 /* clear all */
1252 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1253 /* unmask bits that are of interest */
1254 /* note: afu can send an interrupt after this step */
1255 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1256 /* clear again in case a bit came on after previous clear but before */
1257 /* unmask */
1258 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1259
1260 /* Clear/Set internal lun bits */
1261 fc_port_regs = get_fc_port_regs(cfg, 0);
1262 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
1263 reg &= SISL_FC_INTERNAL_MASK;
1264 if (afu->internal_lun)
1265 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1266 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
1267
1268 /* now clear FC errors */
1269 for (i = 0; i < cfg->num_fc_ports; i++) {
1270 fc_port_regs = get_fc_port_regs(cfg, i);
1271
1272 writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]);
1273 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1274 }
1275
1276 /* sync interrupts for master's IOARRIN write */
1277 /* note that unlike asyncs, there can be no pending sync interrupts */
1278 /* at this time (this is a fresh context and master has not written */
1279 /* IOARRIN yet), so there is nothing to clear. */
1280
1281 /* set LISN#, it is always sent to the context that wrote IOARRIN */
1282 for (i = 0; i < afu->num_hwqs; i++) {
1283 hwq = get_hwq(afu, i);
1284
1285 writeq_be(SISL_MSI_SYNC_ERROR, &hwq->host_map->ctx_ctrl);
1286 writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask);
1287 }
1288 }
1289
1290 /**
1291 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1292 * @irq: Interrupt number.
1293 * @data: Private data provided at interrupt registration, the AFU.
1294 *
1295 * Return: Always return IRQ_HANDLED.
1296 */
1297 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1298 {
1299 struct hwq *hwq = (struct hwq *)data;
1300 struct cxlflash_cfg *cfg = hwq->afu->parent;
1301 struct device *dev = &cfg->dev->dev;
1302 u64 reg;
1303 u64 reg_unmasked;
1304
1305 reg = readq_be(&hwq->host_map->intr_status);
1306 reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1307
1308 if (reg_unmasked == 0UL) {
1309 dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
1310 __func__, reg);
1311 goto cxlflash_sync_err_irq_exit;
1312 }
1313
1314 dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
1315 __func__, reg);
1316
1317 writeq_be(reg_unmasked, &hwq->host_map->intr_clear);
1318
1319 cxlflash_sync_err_irq_exit:
1320 return IRQ_HANDLED;
1321 }
1322
1323 /**
1324 * process_hrrq() - process the read-response queue
1325 * @afu: AFU associated with the host.
1326 * @doneq: Queue of commands harvested from the RRQ.
1327 * @budget: Threshold of RRQ entries to process.
1328 *
1329 * This routine must be called holding the disabled RRQ spin lock.
1330 *
1331 * Return: The number of entries processed.
1332 */
1333 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget)
1334 {
1335 struct afu *afu = hwq->afu;
1336 struct afu_cmd *cmd;
1337 struct sisl_ioasa *ioasa;
1338 struct sisl_ioarcb *ioarcb;
1339 bool toggle = hwq->toggle;
1340 int num_hrrq = 0;
1341 u64 entry,
1342 *hrrq_start = hwq->hrrq_start,
1343 *hrrq_end = hwq->hrrq_end,
1344 *hrrq_curr = hwq->hrrq_curr;
1345
1346 /* Process ready RRQ entries up to the specified budget (if any) */
1347 while (true) {
1348 entry = *hrrq_curr;
1349
1350 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1351 break;
1352
1353 entry &= ~SISL_RESP_HANDLE_T_BIT;
1354
1355 if (afu_is_sq_cmd_mode(afu)) {
1356 ioasa = (struct sisl_ioasa *)entry;
1357 cmd = container_of(ioasa, struct afu_cmd, sa);
1358 } else {
1359 ioarcb = (struct sisl_ioarcb *)entry;
1360 cmd = container_of(ioarcb, struct afu_cmd, rcb);
1361 }
1362
1363 list_add_tail(&cmd->queue, doneq);
1364
1365 /* Advance to next entry or wrap and flip the toggle bit */
1366 if (hrrq_curr < hrrq_end)
1367 hrrq_curr++;
1368 else {
1369 hrrq_curr = hrrq_start;
1370 toggle ^= SISL_RESP_HANDLE_T_BIT;
1371 }
1372
1373 atomic_inc(&hwq->hsq_credits);
1374 num_hrrq++;
1375
1376 if (budget > 0 && num_hrrq >= budget)
1377 break;
1378 }
1379
1380 hwq->hrrq_curr = hrrq_curr;
1381 hwq->toggle = toggle;
1382
1383 return num_hrrq;
1384 }
1385
1386 /**
1387 * process_cmd_doneq() - process a queue of harvested RRQ commands
1388 * @doneq: Queue of completed commands.
1389 *
1390 * Note that upon return the queue can no longer be trusted.
1391 */
1392 static void process_cmd_doneq(struct list_head *doneq)
1393 {
1394 struct afu_cmd *cmd, *tmp;
1395
1396 WARN_ON(list_empty(doneq));
1397
1398 list_for_each_entry_safe(cmd, tmp, doneq, queue)
1399 cmd_complete(cmd);
1400 }
1401
1402 /**
1403 * cxlflash_irqpoll() - process a queue of harvested RRQ commands
1404 * @irqpoll: IRQ poll structure associated with queue to poll.
1405 * @budget: Threshold of RRQ entries to process per poll.
1406 *
1407 * Return: The number of entries processed.
1408 */
1409 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
1410 {
1411 struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll);
1412 unsigned long hrrq_flags;
1413 LIST_HEAD(doneq);
1414 int num_entries = 0;
1415
1416 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1417
1418 num_entries = process_hrrq(hwq, &doneq, budget);
1419 if (num_entries < budget)
1420 irq_poll_complete(irqpoll);
1421
1422 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1423
1424 process_cmd_doneq(&doneq);
1425 return num_entries;
1426 }
1427
1428 /**
1429 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1430 * @irq: Interrupt number.
1431 * @data: Private data provided at interrupt registration, the AFU.
1432 *
1433 * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
1434 */
1435 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1436 {
1437 struct hwq *hwq = (struct hwq *)data;
1438 struct afu *afu = hwq->afu;
1439 unsigned long hrrq_flags;
1440 LIST_HEAD(doneq);
1441 int num_entries = 0;
1442
1443 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1444
1445 if (afu_is_irqpoll_enabled(afu)) {
1446 irq_poll_sched(&hwq->irqpoll);
1447 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1448 return IRQ_HANDLED;
1449 }
1450
1451 num_entries = process_hrrq(hwq, &doneq, -1);
1452 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1453
1454 if (num_entries == 0)
1455 return IRQ_NONE;
1456
1457 process_cmd_doneq(&doneq);
1458 return IRQ_HANDLED;
1459 }
1460
1461 /*
1462 * Asynchronous interrupt information table
1463 *
1464 * NOTE:
1465 * - Order matters here as this array is indexed by bit position.
1466 *
1467 * - The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro
1468 * as complex and complains due to a lack of parentheses/braces.
1469 */
1470 #define ASTATUS_FC(_a, _b, _c, _d) \
1471 { SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) }
1472
1473 #define BUILD_SISL_ASTATUS_FC_PORT(_a) \
1474 ASTATUS_FC(_a, LINK_UP, "link up", 0), \
1475 ASTATUS_FC(_a, LINK_DN, "link down", 0), \
1476 ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST), \
1477 ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR), \
1478 ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \
1479 ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET), \
1480 ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0), \
1481 ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET)
1482
1483 static const struct asyc_intr_info ainfo[] = {
1484 BUILD_SISL_ASTATUS_FC_PORT(1),
1485 BUILD_SISL_ASTATUS_FC_PORT(0),
1486 BUILD_SISL_ASTATUS_FC_PORT(3),
1487 BUILD_SISL_ASTATUS_FC_PORT(2)
1488 };
1489
1490 /**
1491 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1492 * @irq: Interrupt number.
1493 * @data: Private data provided at interrupt registration, the AFU.
1494 *
1495 * Return: Always return IRQ_HANDLED.
1496 */
1497 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1498 {
1499 struct hwq *hwq = (struct hwq *)data;
1500 struct afu *afu = hwq->afu;
1501 struct cxlflash_cfg *cfg = afu->parent;
1502 struct device *dev = &cfg->dev->dev;
1503 const struct asyc_intr_info *info;
1504 struct sisl_global_map __iomem *global = &afu->afu_map->global;
1505 __be64 __iomem *fc_port_regs;
1506 u64 reg_unmasked;
1507 u64 reg;
1508 u64 bit;
1509 u8 port;
1510
1511 reg = readq_be(&global->regs.aintr_status);
1512 reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1513
1514 if (unlikely(reg_unmasked == 0)) {
1515 dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
1516 __func__, reg);
1517 goto out;
1518 }
1519
1520 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1521 writeq_be(reg_unmasked, &global->regs.aintr_clear);
1522
1523 /* Check each bit that is on */
1524 for_each_set_bit(bit, (ulong *)&reg_unmasked, BITS_PER_LONG) {
1525 if (unlikely(bit >= ARRAY_SIZE(ainfo))) {
1526 WARN_ON_ONCE(1);
1527 continue;
1528 }
1529
1530 info = &ainfo[bit];
1531 if (unlikely(info->status != 1ULL << bit)) {
1532 WARN_ON_ONCE(1);
1533 continue;
1534 }
1535
1536 port = info->port;
1537 fc_port_regs = get_fc_port_regs(cfg, port);
1538
1539 dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
1540 __func__, port, info->desc,
1541 readq_be(&fc_port_regs[FC_STATUS / 8]));
1542
1543 /*
1544 * Do link reset first, some OTHER errors will set FC_ERROR
1545 * again if cleared before or w/o a reset
1546 */
1547 if (info->action & LINK_RESET) {
1548 dev_err(dev, "%s: FC Port %d: resetting link\n",
1549 __func__, port);
1550 cfg->lr_state = LINK_RESET_REQUIRED;
1551 cfg->lr_port = port;
1552 schedule_work(&cfg->work_q);
1553 }
1554
1555 if (info->action & CLR_FC_ERROR) {
1556 reg = readq_be(&fc_port_regs[FC_ERROR / 8]);
1557
1558 /*
1559 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1560 * should be the same and tracing one is sufficient.
1561 */
1562
1563 dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
1564 __func__, port, reg);
1565
1566 writeq_be(reg, &fc_port_regs[FC_ERROR / 8]);
1567 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1568 }
1569
1570 if (info->action & SCAN_HOST) {
1571 atomic_inc(&cfg->scan_host_needed);
1572 schedule_work(&cfg->work_q);
1573 }
1574 }
1575
1576 out:
1577 return IRQ_HANDLED;
1578 }
1579
1580 /**
1581 * start_context() - starts the master context
1582 * @cfg: Internal structure associated with the host.
1583 * @index: Index of the hardware queue.
1584 *
1585 * Return: A success or failure value from CXL services.
1586 */
1587 static int start_context(struct cxlflash_cfg *cfg, u32 index)
1588 {
1589 struct device *dev = &cfg->dev->dev;
1590 struct hwq *hwq = get_hwq(cfg->afu, index);
1591 int rc = 0;
1592
1593 rc = cxl_start_context(hwq->ctx,
1594 hwq->work.work_element_descriptor,
1595 NULL);
1596
1597 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1598 return rc;
1599 }
1600
1601 /**
1602 * read_vpd() - obtains the WWPNs from VPD
1603 * @cfg: Internal structure associated with the host.
1604 * @wwpn: Array of size MAX_FC_PORTS to pass back WWPNs
1605 *
1606 * Return: 0 on success, -errno on failure
1607 */
1608 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1609 {
1610 struct device *dev = &cfg->dev->dev;
1611 struct pci_dev *pdev = cfg->dev;
1612 int rc = 0;
1613 int ro_start, ro_size, i, j, k;
1614 ssize_t vpd_size;
1615 char vpd_data[CXLFLASH_VPD_LEN];
1616 char tmp_buf[WWPN_BUF_LEN] = { 0 };
1617 char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" };
1618
1619 /* Get the VPD data from the device */
1620 vpd_size = cxl_read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
1621 if (unlikely(vpd_size <= 0)) {
1622 dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
1623 __func__, vpd_size);
1624 rc = -ENODEV;
1625 goto out;
1626 }
1627
1628 /* Get the read only section offset */
1629 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1630 PCI_VPD_LRDT_RO_DATA);
1631 if (unlikely(ro_start < 0)) {
1632 dev_err(dev, "%s: VPD Read-only data not found\n", __func__);
1633 rc = -ENODEV;
1634 goto out;
1635 }
1636
1637 /* Get the read only section size, cap when extends beyond read VPD */
1638 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1639 j = ro_size;
1640 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1641 if (unlikely((i + j) > vpd_size)) {
1642 dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n",
1643 __func__, (i + j), vpd_size);
1644 ro_size = vpd_size - i;
1645 }
1646
1647 /*
1648 * Find the offset of the WWPN tag within the read only
1649 * VPD data and validate the found field (partials are
1650 * no good to us). Convert the ASCII data to an integer
1651 * value. Note that we must copy to a temporary buffer
1652 * because the conversion service requires that the ASCII
1653 * string be terminated.
1654 */
1655 for (k = 0; k < cfg->num_fc_ports; k++) {
1656 j = ro_size;
1657 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1658
1659 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1660 if (unlikely(i < 0)) {
1661 dev_err(dev, "%s: Port %d WWPN not found in VPD\n",
1662 __func__, k);
1663 rc = -ENODEV;
1664 goto out;
1665 }
1666
1667 j = pci_vpd_info_field_size(&vpd_data[i]);
1668 i += PCI_VPD_INFO_FLD_HDR_SIZE;
1669 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
1670 dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
1671 __func__, k);
1672 rc = -ENODEV;
1673 goto out;
1674 }
1675
1676 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1677 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1678 if (unlikely(rc)) {
1679 dev_err(dev, "%s: WWPN conversion failed for port %d\n",
1680 __func__, k);
1681 rc = -ENODEV;
1682 goto out;
1683 }
1684
1685 dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
1686 }
1687
1688 out:
1689 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1690 return rc;
1691 }
1692
1693 /**
1694 * init_pcr() - initialize the provisioning and control registers
1695 * @cfg: Internal structure associated with the host.
1696 *
1697 * Also sets up fast access to the mapped registers and initializes AFU
1698 * command fields that never change.
1699 */
1700 static void init_pcr(struct cxlflash_cfg *cfg)
1701 {
1702 struct afu *afu = cfg->afu;
1703 struct sisl_ctrl_map __iomem *ctrl_map;
1704 struct hwq *hwq;
1705 int i;
1706
1707 for (i = 0; i < MAX_CONTEXT; i++) {
1708 ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1709 /* Disrupt any clients that could be running */
1710 /* e.g. clients that survived a master restart */
1711 writeq_be(0, &ctrl_map->rht_start);
1712 writeq_be(0, &ctrl_map->rht_cnt_id);
1713 writeq_be(0, &ctrl_map->ctx_cap);
1714 }
1715
1716 /* Copy frequently used fields into hwq */
1717 for (i = 0; i < afu->num_hwqs; i++) {
1718 hwq = get_hwq(afu, i);
1719
1720 hwq->ctx_hndl = (u16) cxl_process_element(hwq->ctx);
1721 hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host;
1722 hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl;
1723
1724 /* Program the Endian Control for the master context */
1725 writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl);
1726 }
1727 }
1728
1729 /**
1730 * init_global() - initialize AFU global registers
1731 * @cfg: Internal structure associated with the host.
1732 */
1733 static int init_global(struct cxlflash_cfg *cfg)
1734 {
1735 struct afu *afu = cfg->afu;
1736 struct device *dev = &cfg->dev->dev;
1737 struct hwq *hwq;
1738 struct sisl_host_map __iomem *hmap;
1739 __be64 __iomem *fc_port_regs;
1740 u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */
1741 int i = 0, num_ports = 0;
1742 int rc = 0;
1743 u64 reg;
1744
1745 rc = read_vpd(cfg, &wwpn[0]);
1746 if (rc) {
1747 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1748 goto out;
1749 }
1750
1751 /* Set up RRQ and SQ in HWQ for master issued cmds */
1752 for (i = 0; i < afu->num_hwqs; i++) {
1753 hwq = get_hwq(afu, i);
1754 hmap = hwq->host_map;
1755
1756 writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start);
1757 writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end);
1758
1759 if (afu_is_sq_cmd_mode(afu)) {
1760 writeq_be((u64)hwq->hsq_start, &hmap->sq_start);
1761 writeq_be((u64)hwq->hsq_end, &hmap->sq_end);
1762 }
1763 }
1764
1765 /* AFU configuration */
1766 reg = readq_be(&afu->afu_map->global.regs.afu_config);
1767 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1768 /* enable all auto retry options and control endianness */
1769 /* leave others at default: */
1770 /* CTX_CAP write protected, mbox_r does not clear on read and */
1771 /* checker on if dual afu */
1772 writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1773
1774 /* Global port select: select either port */
1775 if (afu->internal_lun) {
1776 /* Only use port 0 */
1777 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1778 num_ports = 0;
1779 } else {
1780 writeq_be(PORT_MASK(cfg->num_fc_ports),
1781 &afu->afu_map->global.regs.afu_port_sel);
1782 num_ports = cfg->num_fc_ports;
1783 }
1784
1785 for (i = 0; i < num_ports; i++) {
1786 fc_port_regs = get_fc_port_regs(cfg, i);
1787
1788 /* Unmask all errors (but they are still masked at AFU) */
1789 writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]);
1790 /* Clear CRC error cnt & set a threshold */
1791 (void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]);
1792 writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]);
1793
1794 /* Set WWPNs. If already programmed, wwpn[i] is 0 */
1795 if (wwpn[i] != 0)
1796 afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]);
1797 /* Programming WWPN back to back causes additional
1798 * offline/online transitions and a PLOGI
1799 */
1800 msleep(100);
1801 }
1802
1803 /* Set up master's own CTX_CAP to allow real mode, host translation */
1804 /* tables, afu cmds and read/write GSCSI cmds. */
1805 /* First, unlock ctx_cap write by reading mbox */
1806 for (i = 0; i < afu->num_hwqs; i++) {
1807 hwq = get_hwq(afu, i);
1808
1809 (void)readq_be(&hwq->ctrl_map->mbox_r); /* unlock ctx_cap */
1810 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1811 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1812 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1813 &hwq->ctrl_map->ctx_cap);
1814 }
1815 /* Initialize heartbeat */
1816 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1817 out:
1818 return rc;
1819 }
1820
1821 /**
1822 * start_afu() - initializes and starts the AFU
1823 * @cfg: Internal structure associated with the host.
1824 */
1825 static int start_afu(struct cxlflash_cfg *cfg)
1826 {
1827 struct afu *afu = cfg->afu;
1828 struct device *dev = &cfg->dev->dev;
1829 struct hwq *hwq;
1830 int rc = 0;
1831 int i;
1832
1833 init_pcr(cfg);
1834
1835 /* Initialize each HWQ */
1836 for (i = 0; i < afu->num_hwqs; i++) {
1837 hwq = get_hwq(afu, i);
1838
1839 /* After an AFU reset, RRQ entries are stale, clear them */
1840 memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry));
1841
1842 /* Initialize RRQ pointers */
1843 hwq->hrrq_start = &hwq->rrq_entry[0];
1844 hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1];
1845 hwq->hrrq_curr = hwq->hrrq_start;
1846 hwq->toggle = 1;
1847
1848 /* Initialize spin locks */
1849 spin_lock_init(&hwq->hrrq_slock);
1850 spin_lock_init(&hwq->hsq_slock);
1851
1852 /* Initialize SQ */
1853 if (afu_is_sq_cmd_mode(afu)) {
1854 memset(&hwq->sq, 0, sizeof(hwq->sq));
1855 hwq->hsq_start = &hwq->sq[0];
1856 hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1];
1857 hwq->hsq_curr = hwq->hsq_start;
1858
1859 atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1);
1860 }
1861
1862 /* Initialize IRQ poll */
1863 if (afu_is_irqpoll_enabled(afu))
1864 irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight,
1865 cxlflash_irqpoll);
1866
1867 }
1868
1869 rc = init_global(cfg);
1870
1871 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1872 return rc;
1873 }
1874
1875 /**
1876 * init_intr() - setup interrupt handlers for the master context
1877 * @cfg: Internal structure associated with the host.
1878 * @hwq: Hardware queue to initialize.
1879 *
1880 * Return: 0 on success, -errno on failure
1881 */
1882 static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1883 struct hwq *hwq)
1884 {
1885 struct device *dev = &cfg->dev->dev;
1886 struct cxl_context *ctx = hwq->ctx;
1887 int rc = 0;
1888 enum undo_level level = UNDO_NOOP;
1889 bool is_primary_hwq = (hwq->index == PRIMARY_HWQ);
1890 int num_irqs = is_primary_hwq ? 3 : 2;
1891
1892 rc = cxl_allocate_afu_irqs(ctx, num_irqs);
1893 if (unlikely(rc)) {
1894 dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
1895 __func__, rc);
1896 level = UNDO_NOOP;
1897 goto out;
1898 }
1899
1900 rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq,
1901 "SISL_MSI_SYNC_ERROR");
1902 if (unlikely(rc <= 0)) {
1903 dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
1904 level = FREE_IRQ;
1905 goto out;
1906 }
1907
1908 rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq,
1909 "SISL_MSI_RRQ_UPDATED");
1910 if (unlikely(rc <= 0)) {
1911 dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
1912 level = UNMAP_ONE;
1913 goto out;
1914 }
1915
1916 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
1917 if (!is_primary_hwq)
1918 goto out;
1919
1920 rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq,
1921 "SISL_MSI_ASYNC_ERROR");
1922 if (unlikely(rc <= 0)) {
1923 dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
1924 level = UNMAP_TWO;
1925 goto out;
1926 }
1927 out:
1928 return level;
1929 }
1930
1931 /**
1932 * init_mc() - create and register as the master context
1933 * @cfg: Internal structure associated with the host.
1934 * index: HWQ Index of the master context.
1935 *
1936 * Return: 0 on success, -errno on failure
1937 */
1938 static int init_mc(struct cxlflash_cfg *cfg, u32 index)
1939 {
1940 struct cxl_context *ctx;
1941 struct device *dev = &cfg->dev->dev;
1942 struct hwq *hwq = get_hwq(cfg->afu, index);
1943 int rc = 0;
1944 enum undo_level level;
1945
1946 hwq->afu = cfg->afu;
1947 hwq->index = index;
1948 INIT_LIST_HEAD(&hwq->pending_cmds);
1949
1950 if (index == PRIMARY_HWQ)
1951 ctx = cxl_get_context(cfg->dev);
1952 else
1953 ctx = cxl_dev_context_init(cfg->dev);
1954 if (unlikely(!ctx)) {
1955 rc = -ENOMEM;
1956 goto err1;
1957 }
1958
1959 WARN_ON(hwq->ctx);
1960 hwq->ctx = ctx;
1961
1962 /* Set it up as a master with the CXL */
1963 cxl_set_master(ctx);
1964
1965 /* Reset AFU when initializing primary context */
1966 if (index == PRIMARY_HWQ) {
1967 rc = cxl_afu_reset(ctx);
1968 if (unlikely(rc)) {
1969 dev_err(dev, "%s: AFU reset failed rc=%d\n",
1970 __func__, rc);
1971 goto err1;
1972 }
1973 }
1974
1975 level = init_intr(cfg, hwq);
1976 if (unlikely(level)) {
1977 dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
1978 goto err2;
1979 }
1980
1981 /* This performs the equivalent of the CXL_IOCTL_START_WORK.
1982 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process
1983 * element (pe) that is embedded in the context (ctx)
1984 */
1985 rc = start_context(cfg, index);
1986 if (unlikely(rc)) {
1987 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
1988 level = UNMAP_THREE;
1989 goto err2;
1990 }
1991
1992 out:
1993 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1994 return rc;
1995 err2:
1996 term_intr(cfg, level, index);
1997 if (index != PRIMARY_HWQ)
1998 cxl_release_context(ctx);
1999 err1:
2000 hwq->ctx = NULL;
2001 goto out;
2002 }
2003
2004 /**
2005 * get_num_afu_ports() - determines and configures the number of AFU ports
2006 * @cfg: Internal structure associated with the host.
2007 *
2008 * This routine determines the number of AFU ports by converting the global
2009 * port selection mask. The converted value is only valid following an AFU
2010 * reset (explicit or power-on). This routine must be invoked shortly after
2011 * mapping as other routines are dependent on the number of ports during the
2012 * initialization sequence.
2013 *
2014 * To support legacy AFUs that might not have reflected an initial global
2015 * port mask (value read is 0), default to the number of ports originally
2016 * supported by the cxlflash driver (2) before hardware with other port
2017 * offerings was introduced.
2018 */
2019 static void get_num_afu_ports(struct cxlflash_cfg *cfg)
2020 {
2021 struct afu *afu = cfg->afu;
2022 struct device *dev = &cfg->dev->dev;
2023 u64 port_mask;
2024 int num_fc_ports = LEGACY_FC_PORTS;
2025
2026 port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel);
2027 if (port_mask != 0ULL)
2028 num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS);
2029
2030 dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n",
2031 __func__, port_mask, num_fc_ports);
2032
2033 cfg->num_fc_ports = num_fc_ports;
2034 cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports);
2035 }
2036
2037 /**
2038 * init_afu() - setup as master context and start AFU
2039 * @cfg: Internal structure associated with the host.
2040 *
2041 * This routine is a higher level of control for configuring the
2042 * AFU on probe and reset paths.
2043 *
2044 * Return: 0 on success, -errno on failure
2045 */
2046 static int init_afu(struct cxlflash_cfg *cfg)
2047 {
2048 u64 reg;
2049 int rc = 0;
2050 struct afu *afu = cfg->afu;
2051 struct device *dev = &cfg->dev->dev;
2052 struct hwq *hwq;
2053 int i;
2054
2055 cxl_perst_reloads_same_image(cfg->cxl_afu, true);
2056
2057 afu->num_hwqs = afu->desired_hwqs;
2058 for (i = 0; i < afu->num_hwqs; i++) {
2059 rc = init_mc(cfg, i);
2060 if (rc) {
2061 dev_err(dev, "%s: init_mc failed rc=%d index=%d\n",
2062 __func__, rc, i);
2063 goto err1;
2064 }
2065 }
2066
2067 /* Map the entire MMIO space of the AFU using the first context */
2068 hwq = get_hwq(afu, PRIMARY_HWQ);
2069 afu->afu_map = cxl_psa_map(hwq->ctx);
2070 if (!afu->afu_map) {
2071 dev_err(dev, "%s: cxl_psa_map failed\n", __func__);
2072 rc = -ENOMEM;
2073 goto err1;
2074 }
2075
2076 /* No byte reverse on reading afu_version or string will be backwards */
2077 reg = readq(&afu->afu_map->global.regs.afu_version);
2078 memcpy(afu->version, &reg, sizeof(reg));
2079 afu->interface_version =
2080 readq_be(&afu->afu_map->global.regs.interface_version);
2081 if ((afu->interface_version + 1) == 0) {
2082 dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
2083 "interface version %016llx\n", afu->version,
2084 afu->interface_version);
2085 rc = -EINVAL;
2086 goto err1;
2087 }
2088
2089 if (afu_is_sq_cmd_mode(afu)) {
2090 afu->send_cmd = send_cmd_sq;
2091 afu->context_reset = context_reset_sq;
2092 } else {
2093 afu->send_cmd = send_cmd_ioarrin;
2094 afu->context_reset = context_reset_ioarrin;
2095 }
2096
2097 dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
2098 afu->version, afu->interface_version);
2099
2100 get_num_afu_ports(cfg);
2101
2102 rc = start_afu(cfg);
2103 if (rc) {
2104 dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
2105 goto err1;
2106 }
2107
2108 afu_err_intr_init(cfg->afu);
2109 for (i = 0; i < afu->num_hwqs; i++) {
2110 hwq = get_hwq(afu, i);
2111
2112 hwq->room = readq_be(&hwq->host_map->cmd_room);
2113 }
2114
2115 /* Restore the LUN mappings */
2116 cxlflash_restore_luntable(cfg);
2117 out:
2118 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2119 return rc;
2120
2121 err1:
2122 for (i = afu->num_hwqs - 1; i >= 0; i--) {
2123 term_intr(cfg, UNMAP_THREE, i);
2124 term_mc(cfg, i);
2125 }
2126 goto out;
2127 }
2128
2129 /**
2130 * afu_reset() - resets the AFU
2131 * @cfg: Internal structure associated with the host.
2132 *
2133 * Return: 0 on success, -errno on failure
2134 */
2135 static int afu_reset(struct cxlflash_cfg *cfg)
2136 {
2137 struct device *dev = &cfg->dev->dev;
2138 int rc = 0;
2139
2140 /* Stop the context before the reset. Since the context is
2141 * no longer available restart it after the reset is complete
2142 */
2143 term_afu(cfg);
2144
2145 rc = init_afu(cfg);
2146
2147 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2148 return rc;
2149 }
2150
2151 /**
2152 * drain_ioctls() - wait until all currently executing ioctls have completed
2153 * @cfg: Internal structure associated with the host.
2154 *
2155 * Obtain write access to read/write semaphore that wraps ioctl
2156 * handling to 'drain' ioctls currently executing.
2157 */
2158 static void drain_ioctls(struct cxlflash_cfg *cfg)
2159 {
2160 down_write(&cfg->ioctl_rwsem);
2161 up_write(&cfg->ioctl_rwsem);
2162 }
2163
2164 /**
2165 * cxlflash_async_reset_host() - asynchronous host reset handler
2166 * @data: Private data provided while scheduling reset.
2167 * @cookie: Cookie that can be used for checkpointing.
2168 */
2169 static void cxlflash_async_reset_host(void *data, async_cookie_t cookie)
2170 {
2171 struct cxlflash_cfg *cfg = data;
2172 struct device *dev = &cfg->dev->dev;
2173 int rc = 0;
2174
2175 if (cfg->state != STATE_RESET) {
2176 dev_dbg(dev, "%s: Not performing a reset, state=%d\n",
2177 __func__, cfg->state);
2178 goto out;
2179 }
2180
2181 drain_ioctls(cfg);
2182 cxlflash_mark_contexts_error(cfg);
2183 rc = afu_reset(cfg);
2184 if (rc)
2185 cfg->state = STATE_FAILTERM;
2186 else
2187 cfg->state = STATE_NORMAL;
2188 wake_up_all(&cfg->reset_waitq);
2189
2190 out:
2191 scsi_unblock_requests(cfg->host);
2192 }
2193
2194 /**
2195 * cxlflash_schedule_async_reset() - schedule an asynchronous host reset
2196 * @cfg: Internal structure associated with the host.
2197 */
2198 static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg)
2199 {
2200 struct device *dev = &cfg->dev->dev;
2201
2202 if (cfg->state != STATE_NORMAL) {
2203 dev_dbg(dev, "%s: Not performing reset state=%d\n",
2204 __func__, cfg->state);
2205 return;
2206 }
2207
2208 cfg->state = STATE_RESET;
2209 scsi_block_requests(cfg->host);
2210 cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host,
2211 cfg);
2212 }
2213
2214 /**
2215 * send_afu_cmd() - builds and sends an internal AFU command
2216 * @afu: AFU associated with the host.
2217 * @rcb: Pre-populated IOARCB describing command to send.
2218 *
2219 * The AFU can only take one internal AFU command at a time. This limitation is
2220 * enforced by using a mutex to provide exclusive access to the AFU during the
2221 * operation. This design point requires calling threads to not be on interrupt
2222 * context due to the possibility of sleeping during concurrent AFU operations.
2223 *
2224 * The command status is optionally passed back to the caller when the caller
2225 * populates the IOASA field of the IOARCB with a pointer to an IOASA structure.
2226 *
2227 * Return:
2228 * 0 on success, -errno on failure
2229 */
2230 static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb)
2231 {
2232 struct cxlflash_cfg *cfg = afu->parent;
2233 struct device *dev = &cfg->dev->dev;
2234 struct afu_cmd *cmd = NULL;
2235 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
2236 char *buf = NULL;
2237 int rc = 0;
2238 int nretry = 0;
2239 static DEFINE_MUTEX(sync_active);
2240
2241 if (cfg->state != STATE_NORMAL) {
2242 dev_dbg(dev, "%s: Sync not required state=%u\n",
2243 __func__, cfg->state);
2244 return 0;
2245 }
2246
2247 mutex_lock(&sync_active);
2248 atomic_inc(&afu->cmds_active);
2249 buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
2250 if (unlikely(!buf)) {
2251 dev_err(dev, "%s: no memory for command\n", __func__);
2252 rc = -ENOMEM;
2253 goto out;
2254 }
2255
2256 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
2257
2258 retry:
2259 memset(cmd, 0, sizeof(*cmd));
2260 memcpy(&cmd->rcb, rcb, sizeof(*rcb));
2261 INIT_LIST_HEAD(&cmd->queue);
2262 init_completion(&cmd->cevent);
2263 cmd->parent = afu;
2264 cmd->hwq_index = hwq->index;
2265 cmd->rcb.ctx_id = hwq->ctx_hndl;
2266
2267 dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n",
2268 __func__, afu, cmd, cmd->rcb.cdb[0], nretry);
2269
2270 rc = afu->send_cmd(afu, cmd);
2271 if (unlikely(rc)) {
2272 rc = -ENOBUFS;
2273 goto out;
2274 }
2275
2276 rc = wait_resp(afu, cmd);
2277 switch (rc) {
2278 case -ETIMEDOUT:
2279 rc = afu->context_reset(hwq);
2280 if (rc) {
2281 cxlflash_schedule_async_reset(cfg);
2282 break;
2283 }
2284 /* fall through to retry */
2285 case -EAGAIN:
2286 if (++nretry < 2)
2287 goto retry;
2288 /* fall through to exit */
2289 default:
2290 break;
2291 }
2292
2293 if (rcb->ioasa)
2294 *rcb->ioasa = cmd->sa;
2295 out:
2296 atomic_dec(&afu->cmds_active);
2297 mutex_unlock(&sync_active);
2298 kfree(buf);
2299 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2300 return rc;
2301 }
2302
2303 /**
2304 * cxlflash_afu_sync() - builds and sends an AFU sync command
2305 * @afu: AFU associated with the host.
2306 * @ctx: Identifies context requesting sync.
2307 * @res: Identifies resource requesting sync.
2308 * @mode: Type of sync to issue (lightweight, heavyweight, global).
2309 *
2310 * AFU sync operations are only necessary and allowed when the device is
2311 * operating normally. When not operating normally, sync requests can occur as
2312 * part of cleaning up resources associated with an adapter prior to removal.
2313 * In this scenario, these requests are simply ignored (safe due to the AFU
2314 * going away).
2315 *
2316 * Return:
2317 * 0 on success, -errno on failure
2318 */
2319 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode)
2320 {
2321 struct cxlflash_cfg *cfg = afu->parent;
2322 struct device *dev = &cfg->dev->dev;
2323 struct sisl_ioarcb rcb = { 0 };
2324
2325 dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n",
2326 __func__, afu, ctx, res, mode);
2327
2328 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
2329 rcb.msi = SISL_MSI_RRQ_UPDATED;
2330 rcb.timeout = MC_AFU_SYNC_TIMEOUT;
2331
2332 rcb.cdb[0] = SISL_AFU_CMD_SYNC;
2333 rcb.cdb[1] = mode;
2334 put_unaligned_be16(ctx, &rcb.cdb[2]);
2335 put_unaligned_be32(res, &rcb.cdb[4]);
2336
2337 return send_afu_cmd(afu, &rcb);
2338 }
2339
2340 /**
2341 * cxlflash_eh_abort_handler() - abort a SCSI command
2342 * @scp: SCSI command to abort.
2343 *
2344 * CXL Flash devices do not support a single command abort. Reset the context
2345 * as per SISLite specification. Flush any pending commands in the hardware
2346 * queue before the reset.
2347 *
2348 * Return: SUCCESS/FAILED as defined in scsi/scsi.h
2349 */
2350 static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp)
2351 {
2352 int rc = FAILED;
2353 struct Scsi_Host *host = scp->device->host;
2354 struct cxlflash_cfg *cfg = shost_priv(host);
2355 struct afu_cmd *cmd = sc_to_afuc(scp);
2356 struct device *dev = &cfg->dev->dev;
2357 struct afu *afu = cfg->afu;
2358 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
2359
2360 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2361 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2362 scp->device->channel, scp->device->id, scp->device->lun,
2363 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2364 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2365 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2366 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2367
2368 /* When the state is not normal, another reset/reload is in progress.
2369 * Return failed and the mid-layer will invoke host reset handler.
2370 */
2371 if (cfg->state != STATE_NORMAL) {
2372 dev_dbg(dev, "%s: Invalid state for abort, state=%d\n",
2373 __func__, cfg->state);
2374 goto out;
2375 }
2376
2377 rc = afu->context_reset(hwq);
2378 if (unlikely(rc))
2379 goto out;
2380
2381 rc = SUCCESS;
2382
2383 out:
2384 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2385 return rc;
2386 }
2387
2388 /**
2389 * cxlflash_eh_device_reset_handler() - reset a single LUN
2390 * @scp: SCSI command to send.
2391 *
2392 * Return:
2393 * SUCCESS as defined in scsi/scsi.h
2394 * FAILED as defined in scsi/scsi.h
2395 */
2396 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
2397 {
2398 int rc = SUCCESS;
2399 struct Scsi_Host *host = scp->device->host;
2400 struct cxlflash_cfg *cfg = shost_priv(host);
2401 struct device *dev = &cfg->dev->dev;
2402 struct afu *afu = cfg->afu;
2403 int rcr = 0;
2404
2405 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2406 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2407 scp->device->channel, scp->device->id, scp->device->lun,
2408 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2409 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2410 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2411 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2412
2413 retry:
2414 switch (cfg->state) {
2415 case STATE_NORMAL:
2416 rcr = send_tmf(afu, scp, TMF_LUN_RESET);
2417 if (unlikely(rcr))
2418 rc = FAILED;
2419 break;
2420 case STATE_RESET:
2421 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2422 goto retry;
2423 default:
2424 rc = FAILED;
2425 break;
2426 }
2427
2428 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2429 return rc;
2430 }
2431
2432 /**
2433 * cxlflash_eh_host_reset_handler() - reset the host adapter
2434 * @scp: SCSI command from stack identifying host.
2435 *
2436 * Following a reset, the state is evaluated again in case an EEH occurred
2437 * during the reset. In such a scenario, the host reset will either yield
2438 * until the EEH recovery is complete or return success or failure based
2439 * upon the current device state.
2440 *
2441 * Return:
2442 * SUCCESS as defined in scsi/scsi.h
2443 * FAILED as defined in scsi/scsi.h
2444 */
2445 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
2446 {
2447 int rc = SUCCESS;
2448 int rcr = 0;
2449 struct Scsi_Host *host = scp->device->host;
2450 struct cxlflash_cfg *cfg = shost_priv(host);
2451 struct device *dev = &cfg->dev->dev;
2452
2453 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2454 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2455 scp->device->channel, scp->device->id, scp->device->lun,
2456 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2457 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2458 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2459 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2460
2461 switch (cfg->state) {
2462 case STATE_NORMAL:
2463 cfg->state = STATE_RESET;
2464 drain_ioctls(cfg);
2465 cxlflash_mark_contexts_error(cfg);
2466 rcr = afu_reset(cfg);
2467 if (rcr) {
2468 rc = FAILED;
2469 cfg->state = STATE_FAILTERM;
2470 } else
2471 cfg->state = STATE_NORMAL;
2472 wake_up_all(&cfg->reset_waitq);
2473 ssleep(1);
2474 /* fall through */
2475 case STATE_RESET:
2476 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2477 if (cfg->state == STATE_NORMAL)
2478 break;
2479 /* fall through */
2480 default:
2481 rc = FAILED;
2482 break;
2483 }
2484
2485 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2486 return rc;
2487 }
2488
2489 /**
2490 * cxlflash_change_queue_depth() - change the queue depth for the device
2491 * @sdev: SCSI device destined for queue depth change.
2492 * @qdepth: Requested queue depth value to set.
2493 *
2494 * The requested queue depth is capped to the maximum supported value.
2495 *
2496 * Return: The actual queue depth set.
2497 */
2498 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2499 {
2500
2501 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2502 qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2503
2504 scsi_change_queue_depth(sdev, qdepth);
2505 return sdev->queue_depth;
2506 }
2507
2508 /**
2509 * cxlflash_show_port_status() - queries and presents the current port status
2510 * @port: Desired port for status reporting.
2511 * @cfg: Internal structure associated with the host.
2512 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2513 *
2514 * Return: The size of the ASCII string returned in @buf or -EINVAL.
2515 */
2516 static ssize_t cxlflash_show_port_status(u32 port,
2517 struct cxlflash_cfg *cfg,
2518 char *buf)
2519 {
2520 struct device *dev = &cfg->dev->dev;
2521 char *disp_status;
2522 u64 status;
2523 __be64 __iomem *fc_port_regs;
2524
2525 WARN_ON(port >= MAX_FC_PORTS);
2526
2527 if (port >= cfg->num_fc_ports) {
2528 dev_info(dev, "%s: Port %d not supported on this card.\n",
2529 __func__, port);
2530 return -EINVAL;
2531 }
2532
2533 fc_port_regs = get_fc_port_regs(cfg, port);
2534 status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]);
2535 status &= FC_MTIP_STATUS_MASK;
2536
2537 if (status == FC_MTIP_STATUS_ONLINE)
2538 disp_status = "online";
2539 else if (status == FC_MTIP_STATUS_OFFLINE)
2540 disp_status = "offline";
2541 else
2542 disp_status = "unknown";
2543
2544 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2545 }
2546
2547 /**
2548 * port0_show() - queries and presents the current status of port 0
2549 * @dev: Generic device associated with the host owning the port.
2550 * @attr: Device attribute representing the port.
2551 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2552 *
2553 * Return: The size of the ASCII string returned in @buf.
2554 */
2555 static ssize_t port0_show(struct device *dev,
2556 struct device_attribute *attr,
2557 char *buf)
2558 {
2559 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2560
2561 return cxlflash_show_port_status(0, cfg, buf);
2562 }
2563
2564 /**
2565 * port1_show() - queries and presents the current status of port 1
2566 * @dev: Generic device associated with the host owning the port.
2567 * @attr: Device attribute representing the port.
2568 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2569 *
2570 * Return: The size of the ASCII string returned in @buf.
2571 */
2572 static ssize_t port1_show(struct device *dev,
2573 struct device_attribute *attr,
2574 char *buf)
2575 {
2576 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2577
2578 return cxlflash_show_port_status(1, cfg, buf);
2579 }
2580
2581 /**
2582 * port2_show() - queries and presents the current status of port 2
2583 * @dev: Generic device associated with the host owning the port.
2584 * @attr: Device attribute representing the port.
2585 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2586 *
2587 * Return: The size of the ASCII string returned in @buf.
2588 */
2589 static ssize_t port2_show(struct device *dev,
2590 struct device_attribute *attr,
2591 char *buf)
2592 {
2593 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2594
2595 return cxlflash_show_port_status(2, cfg, buf);
2596 }
2597
2598 /**
2599 * port3_show() - queries and presents the current status of port 3
2600 * @dev: Generic device associated with the host owning the port.
2601 * @attr: Device attribute representing the port.
2602 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2603 *
2604 * Return: The size of the ASCII string returned in @buf.
2605 */
2606 static ssize_t port3_show(struct device *dev,
2607 struct device_attribute *attr,
2608 char *buf)
2609 {
2610 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2611
2612 return cxlflash_show_port_status(3, cfg, buf);
2613 }
2614
2615 /**
2616 * lun_mode_show() - presents the current LUN mode of the host
2617 * @dev: Generic device associated with the host.
2618 * @attr: Device attribute representing the LUN mode.
2619 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2620 *
2621 * Return: The size of the ASCII string returned in @buf.
2622 */
2623 static ssize_t lun_mode_show(struct device *dev,
2624 struct device_attribute *attr, char *buf)
2625 {
2626 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2627 struct afu *afu = cfg->afu;
2628
2629 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2630 }
2631
2632 /**
2633 * lun_mode_store() - sets the LUN mode of the host
2634 * @dev: Generic device associated with the host.
2635 * @attr: Device attribute representing the LUN mode.
2636 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2637 * @count: Length of data resizing in @buf.
2638 *
2639 * The CXL Flash AFU supports a dummy LUN mode where the external
2640 * links and storage are not required. Space on the FPGA is used
2641 * to create 1 or 2 small LUNs which are presented to the system
2642 * as if they were a normal storage device. This feature is useful
2643 * during development and also provides manufacturing with a way
2644 * to test the AFU without an actual device.
2645 *
2646 * 0 = external LUN[s] (default)
2647 * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2648 * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2649 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2650 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2651 *
2652 * Return: The size of the ASCII string returned in @buf.
2653 */
2654 static ssize_t lun_mode_store(struct device *dev,
2655 struct device_attribute *attr,
2656 const char *buf, size_t count)
2657 {
2658 struct Scsi_Host *shost = class_to_shost(dev);
2659 struct cxlflash_cfg *cfg = shost_priv(shost);
2660 struct afu *afu = cfg->afu;
2661 int rc;
2662 u32 lun_mode;
2663
2664 rc = kstrtouint(buf, 10, &lun_mode);
2665 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2666 afu->internal_lun = lun_mode;
2667
2668 /*
2669 * When configured for internal LUN, there is only one channel,
2670 * channel number 0, else there will be one less than the number
2671 * of fc ports for this card.
2672 */
2673 if (afu->internal_lun)
2674 shost->max_channel = 0;
2675 else
2676 shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports);
2677
2678 afu_reset(cfg);
2679 scsi_scan_host(cfg->host);
2680 }
2681
2682 return count;
2683 }
2684
2685 /**
2686 * ioctl_version_show() - presents the current ioctl version of the host
2687 * @dev: Generic device associated with the host.
2688 * @attr: Device attribute representing the ioctl version.
2689 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version.
2690 *
2691 * Return: The size of the ASCII string returned in @buf.
2692 */
2693 static ssize_t ioctl_version_show(struct device *dev,
2694 struct device_attribute *attr, char *buf)
2695 {
2696 ssize_t bytes = 0;
2697
2698 bytes = scnprintf(buf, PAGE_SIZE,
2699 "disk: %u\n", DK_CXLFLASH_VERSION_0);
2700 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2701 "host: %u\n", HT_CXLFLASH_VERSION_0);
2702
2703 return bytes;
2704 }
2705
2706 /**
2707 * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2708 * @port: Desired port for status reporting.
2709 * @cfg: Internal structure associated with the host.
2710 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2711 *
2712 * Return: The size of the ASCII string returned in @buf or -EINVAL.
2713 */
2714 static ssize_t cxlflash_show_port_lun_table(u32 port,
2715 struct cxlflash_cfg *cfg,
2716 char *buf)
2717 {
2718 struct device *dev = &cfg->dev->dev;
2719 __be64 __iomem *fc_port_luns;
2720 int i;
2721 ssize_t bytes = 0;
2722
2723 WARN_ON(port >= MAX_FC_PORTS);
2724
2725 if (port >= cfg->num_fc_ports) {
2726 dev_info(dev, "%s: Port %d not supported on this card.\n",
2727 __func__, port);
2728 return -EINVAL;
2729 }
2730
2731 fc_port_luns = get_fc_port_luns(cfg, port);
2732
2733 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2734 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2735 "%03d: %016llx\n",
2736 i, readq_be(&fc_port_luns[i]));
2737 return bytes;
2738 }
2739
2740 /**
2741 * port0_lun_table_show() - presents the current LUN table of port 0
2742 * @dev: Generic device associated with the host owning the port.
2743 * @attr: Device attribute representing the port.
2744 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2745 *
2746 * Return: The size of the ASCII string returned in @buf.
2747 */
2748 static ssize_t port0_lun_table_show(struct device *dev,
2749 struct device_attribute *attr,
2750 char *buf)
2751 {
2752 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2753
2754 return cxlflash_show_port_lun_table(0, cfg, buf);
2755 }
2756
2757 /**
2758 * port1_lun_table_show() - presents the current LUN table of port 1
2759 * @dev: Generic device associated with the host owning the port.
2760 * @attr: Device attribute representing the port.
2761 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2762 *
2763 * Return: The size of the ASCII string returned in @buf.
2764 */
2765 static ssize_t port1_lun_table_show(struct device *dev,
2766 struct device_attribute *attr,
2767 char *buf)
2768 {
2769 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2770
2771 return cxlflash_show_port_lun_table(1, cfg, buf);
2772 }
2773
2774 /**
2775 * port2_lun_table_show() - presents the current LUN table of port 2
2776 * @dev: Generic device associated with the host owning the port.
2777 * @attr: Device attribute representing the port.
2778 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2779 *
2780 * Return: The size of the ASCII string returned in @buf.
2781 */
2782 static ssize_t port2_lun_table_show(struct device *dev,
2783 struct device_attribute *attr,
2784 char *buf)
2785 {
2786 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2787
2788 return cxlflash_show_port_lun_table(2, cfg, buf);
2789 }
2790
2791 /**
2792 * port3_lun_table_show() - presents the current LUN table of port 3
2793 * @dev: Generic device associated with the host owning the port.
2794 * @attr: Device attribute representing the port.
2795 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2796 *
2797 * Return: The size of the ASCII string returned in @buf.
2798 */
2799 static ssize_t port3_lun_table_show(struct device *dev,
2800 struct device_attribute *attr,
2801 char *buf)
2802 {
2803 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2804
2805 return cxlflash_show_port_lun_table(3, cfg, buf);
2806 }
2807
2808 /**
2809 * irqpoll_weight_show() - presents the current IRQ poll weight for the host
2810 * @dev: Generic device associated with the host.
2811 * @attr: Device attribute representing the IRQ poll weight.
2812 * @buf: Buffer of length PAGE_SIZE to report back the current IRQ poll
2813 * weight in ASCII.
2814 *
2815 * An IRQ poll weight of 0 indicates polling is disabled.
2816 *
2817 * Return: The size of the ASCII string returned in @buf.
2818 */
2819 static ssize_t irqpoll_weight_show(struct device *dev,
2820 struct device_attribute *attr, char *buf)
2821 {
2822 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2823 struct afu *afu = cfg->afu;
2824
2825 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
2826 }
2827
2828 /**
2829 * irqpoll_weight_store() - sets the current IRQ poll weight for the host
2830 * @dev: Generic device associated with the host.
2831 * @attr: Device attribute representing the IRQ poll weight.
2832 * @buf: Buffer of length PAGE_SIZE containing the desired IRQ poll
2833 * weight in ASCII.
2834 * @count: Length of data resizing in @buf.
2835 *
2836 * An IRQ poll weight of 0 indicates polling is disabled.
2837 *
2838 * Return: The size of the ASCII string returned in @buf.
2839 */
2840 static ssize_t irqpoll_weight_store(struct device *dev,
2841 struct device_attribute *attr,
2842 const char *buf, size_t count)
2843 {
2844 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2845 struct device *cfgdev = &cfg->dev->dev;
2846 struct afu *afu = cfg->afu;
2847 struct hwq *hwq;
2848 u32 weight;
2849 int rc, i;
2850
2851 rc = kstrtouint(buf, 10, &weight);
2852 if (rc)
2853 return -EINVAL;
2854
2855 if (weight > 256) {
2856 dev_info(cfgdev,
2857 "Invalid IRQ poll weight. It must be 256 or less.\n");
2858 return -EINVAL;
2859 }
2860
2861 if (weight == afu->irqpoll_weight) {
2862 dev_info(cfgdev,
2863 "Current IRQ poll weight has the same weight.\n");
2864 return -EINVAL;
2865 }
2866
2867 if (afu_is_irqpoll_enabled(afu)) {
2868 for (i = 0; i < afu->num_hwqs; i++) {
2869 hwq = get_hwq(afu, i);
2870
2871 irq_poll_disable(&hwq->irqpoll);
2872 }
2873 }
2874
2875 afu->irqpoll_weight = weight;
2876
2877 if (weight > 0) {
2878 for (i = 0; i < afu->num_hwqs; i++) {
2879 hwq = get_hwq(afu, i);
2880
2881 irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll);
2882 }
2883 }
2884
2885 return count;
2886 }
2887
2888 /**
2889 * num_hwqs_show() - presents the number of hardware queues for the host
2890 * @dev: Generic device associated with the host.
2891 * @attr: Device attribute representing the number of hardware queues.
2892 * @buf: Buffer of length PAGE_SIZE to report back the number of hardware
2893 * queues in ASCII.
2894 *
2895 * Return: The size of the ASCII string returned in @buf.
2896 */
2897 static ssize_t num_hwqs_show(struct device *dev,
2898 struct device_attribute *attr, char *buf)
2899 {
2900 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2901 struct afu *afu = cfg->afu;
2902
2903 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs);
2904 }
2905
2906 /**
2907 * num_hwqs_store() - sets the number of hardware queues for the host
2908 * @dev: Generic device associated with the host.
2909 * @attr: Device attribute representing the number of hardware queues.
2910 * @buf: Buffer of length PAGE_SIZE containing the number of hardware
2911 * queues in ASCII.
2912 * @count: Length of data resizing in @buf.
2913 *
2914 * n > 0: num_hwqs = n
2915 * n = 0: num_hwqs = num_online_cpus()
2916 * n < 0: num_online_cpus() / abs(n)
2917 *
2918 * Return: The size of the ASCII string returned in @buf.
2919 */
2920 static ssize_t num_hwqs_store(struct device *dev,
2921 struct device_attribute *attr,
2922 const char *buf, size_t count)
2923 {
2924 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2925 struct afu *afu = cfg->afu;
2926 int rc;
2927 int nhwqs, num_hwqs;
2928
2929 rc = kstrtoint(buf, 10, &nhwqs);
2930 if (rc)
2931 return -EINVAL;
2932
2933 if (nhwqs >= 1)
2934 num_hwqs = nhwqs;
2935 else if (nhwqs == 0)
2936 num_hwqs = num_online_cpus();
2937 else
2938 num_hwqs = num_online_cpus() / abs(nhwqs);
2939
2940 afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS);
2941 WARN_ON_ONCE(afu->desired_hwqs == 0);
2942
2943 retry:
2944 switch (cfg->state) {
2945 case STATE_NORMAL:
2946 cfg->state = STATE_RESET;
2947 drain_ioctls(cfg);
2948 cxlflash_mark_contexts_error(cfg);
2949 rc = afu_reset(cfg);
2950 if (rc)
2951 cfg->state = STATE_FAILTERM;
2952 else
2953 cfg->state = STATE_NORMAL;
2954 wake_up_all(&cfg->reset_waitq);
2955 break;
2956 case STATE_RESET:
2957 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2958 if (cfg->state == STATE_NORMAL)
2959 goto retry;
2960 default:
2961 /* Ideally should not happen */
2962 dev_err(dev, "%s: Device is not ready, state=%d\n",
2963 __func__, cfg->state);
2964 break;
2965 }
2966
2967 return count;
2968 }
2969
2970 static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" };
2971
2972 /**
2973 * hwq_mode_show() - presents the HWQ steering mode for the host
2974 * @dev: Generic device associated with the host.
2975 * @attr: Device attribute representing the HWQ steering mode.
2976 * @buf: Buffer of length PAGE_SIZE to report back the HWQ steering mode
2977 * as a character string.
2978 *
2979 * Return: The size of the ASCII string returned in @buf.
2980 */
2981 static ssize_t hwq_mode_show(struct device *dev,
2982 struct device_attribute *attr, char *buf)
2983 {
2984 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2985 struct afu *afu = cfg->afu;
2986
2987 return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]);
2988 }
2989
2990 /**
2991 * hwq_mode_store() - sets the HWQ steering mode for the host
2992 * @dev: Generic device associated with the host.
2993 * @attr: Device attribute representing the HWQ steering mode.
2994 * @buf: Buffer of length PAGE_SIZE containing the HWQ steering mode
2995 * as a character string.
2996 * @count: Length of data resizing in @buf.
2997 *
2998 * rr = Round-Robin
2999 * tag = Block MQ Tagging
3000 * cpu = CPU Affinity
3001 *
3002 * Return: The size of the ASCII string returned in @buf.
3003 */
3004 static ssize_t hwq_mode_store(struct device *dev,
3005 struct device_attribute *attr,
3006 const char *buf, size_t count)
3007 {
3008 struct Scsi_Host *shost = class_to_shost(dev);
3009 struct cxlflash_cfg *cfg = shost_priv(shost);
3010 struct device *cfgdev = &cfg->dev->dev;
3011 struct afu *afu = cfg->afu;
3012 int i;
3013 u32 mode = MAX_HWQ_MODE;
3014
3015 for (i = 0; i < MAX_HWQ_MODE; i++) {
3016 if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) {
3017 mode = i;
3018 break;
3019 }
3020 }
3021
3022 if (mode >= MAX_HWQ_MODE) {
3023 dev_info(cfgdev, "Invalid HWQ steering mode.\n");
3024 return -EINVAL;
3025 }
3026
3027 if ((mode == HWQ_MODE_TAG) && !shost_use_blk_mq(shost)) {
3028 dev_info(cfgdev, "SCSI-MQ is not enabled, use a different "
3029 "HWQ steering mode.\n");
3030 return -EINVAL;
3031 }
3032
3033 afu->hwq_mode = mode;
3034
3035 return count;
3036 }
3037
3038 /**
3039 * mode_show() - presents the current mode of the device
3040 * @dev: Generic device associated with the device.
3041 * @attr: Device attribute representing the device mode.
3042 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
3043 *
3044 * Return: The size of the ASCII string returned in @buf.
3045 */
3046 static ssize_t mode_show(struct device *dev,
3047 struct device_attribute *attr, char *buf)
3048 {
3049 struct scsi_device *sdev = to_scsi_device(dev);
3050
3051 return scnprintf(buf, PAGE_SIZE, "%s\n",
3052 sdev->hostdata ? "superpipe" : "legacy");
3053 }
3054
3055 /*
3056 * Host attributes
3057 */
3058 static DEVICE_ATTR_RO(port0);
3059 static DEVICE_ATTR_RO(port1);
3060 static DEVICE_ATTR_RO(port2);
3061 static DEVICE_ATTR_RO(port3);
3062 static DEVICE_ATTR_RW(lun_mode);
3063 static DEVICE_ATTR_RO(ioctl_version);
3064 static DEVICE_ATTR_RO(port0_lun_table);
3065 static DEVICE_ATTR_RO(port1_lun_table);
3066 static DEVICE_ATTR_RO(port2_lun_table);
3067 static DEVICE_ATTR_RO(port3_lun_table);
3068 static DEVICE_ATTR_RW(irqpoll_weight);
3069 static DEVICE_ATTR_RW(num_hwqs);
3070 static DEVICE_ATTR_RW(hwq_mode);
3071
3072 static struct device_attribute *cxlflash_host_attrs[] = {
3073 &dev_attr_port0,
3074 &dev_attr_port1,
3075 &dev_attr_port2,
3076 &dev_attr_port3,
3077 &dev_attr_lun_mode,
3078 &dev_attr_ioctl_version,
3079 &dev_attr_port0_lun_table,
3080 &dev_attr_port1_lun_table,
3081 &dev_attr_port2_lun_table,
3082 &dev_attr_port3_lun_table,
3083 &dev_attr_irqpoll_weight,
3084 &dev_attr_num_hwqs,
3085 &dev_attr_hwq_mode,
3086 NULL
3087 };
3088
3089 /*
3090 * Device attributes
3091 */
3092 static DEVICE_ATTR_RO(mode);
3093
3094 static struct device_attribute *cxlflash_dev_attrs[] = {
3095 &dev_attr_mode,
3096 NULL
3097 };
3098
3099 /*
3100 * Host template
3101 */
3102 static struct scsi_host_template driver_template = {
3103 .module = THIS_MODULE,
3104 .name = CXLFLASH_ADAPTER_NAME,
3105 .info = cxlflash_driver_info,
3106 .ioctl = cxlflash_ioctl,
3107 .proc_name = CXLFLASH_NAME,
3108 .queuecommand = cxlflash_queuecommand,
3109 .eh_abort_handler = cxlflash_eh_abort_handler,
3110 .eh_device_reset_handler = cxlflash_eh_device_reset_handler,
3111 .eh_host_reset_handler = cxlflash_eh_host_reset_handler,
3112 .change_queue_depth = cxlflash_change_queue_depth,
3113 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
3114 .can_queue = CXLFLASH_MAX_CMDS,
3115 .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
3116 .this_id = -1,
3117 .sg_tablesize = 1, /* No scatter gather support */
3118 .max_sectors = CXLFLASH_MAX_SECTORS,
3119 .use_clustering = ENABLE_CLUSTERING,
3120 .shost_attrs = cxlflash_host_attrs,
3121 .sdev_attrs = cxlflash_dev_attrs,
3122 };
3123
3124 /*
3125 * Device dependent values
3126 */
3127 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
3128 0ULL };
3129 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
3130 CXLFLASH_NOTIFY_SHUTDOWN };
3131 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
3132 CXLFLASH_NOTIFY_SHUTDOWN };
3133
3134 /*
3135 * PCI device binding table
3136 */
3137 static struct pci_device_id cxlflash_pci_table[] = {
3138 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
3139 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
3140 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
3141 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
3142 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
3143 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
3144 {}
3145 };
3146
3147 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
3148
3149 /**
3150 * cxlflash_worker_thread() - work thread handler for the AFU
3151 * @work: Work structure contained within cxlflash associated with host.
3152 *
3153 * Handles the following events:
3154 * - Link reset which cannot be performed on interrupt context due to
3155 * blocking up to a few seconds
3156 * - Rescan the host
3157 */
3158 static void cxlflash_worker_thread(struct work_struct *work)
3159 {
3160 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
3161 work_q);
3162 struct afu *afu = cfg->afu;
3163 struct device *dev = &cfg->dev->dev;
3164 __be64 __iomem *fc_port_regs;
3165 int port;
3166 ulong lock_flags;
3167
3168 /* Avoid MMIO if the device has failed */
3169
3170 if (cfg->state != STATE_NORMAL)
3171 return;
3172
3173 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3174
3175 if (cfg->lr_state == LINK_RESET_REQUIRED) {
3176 port = cfg->lr_port;
3177 if (port < 0)
3178 dev_err(dev, "%s: invalid port index %d\n",
3179 __func__, port);
3180 else {
3181 spin_unlock_irqrestore(cfg->host->host_lock,
3182 lock_flags);
3183
3184 /* The reset can block... */
3185 fc_port_regs = get_fc_port_regs(cfg, port);
3186 afu_link_reset(afu, port, fc_port_regs);
3187 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3188 }
3189
3190 cfg->lr_state = LINK_RESET_COMPLETE;
3191 }
3192
3193 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
3194
3195 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
3196 scsi_scan_host(cfg->host);
3197 }
3198
3199 /**
3200 * cxlflash_chr_open() - character device open handler
3201 * @inode: Device inode associated with this character device.
3202 * @file: File pointer for this device.
3203 *
3204 * Only users with admin privileges are allowed to open the character device.
3205 *
3206 * Return: 0 on success, -errno on failure
3207 */
3208 static int cxlflash_chr_open(struct inode *inode, struct file *file)
3209 {
3210 struct cxlflash_cfg *cfg;
3211
3212 if (!capable(CAP_SYS_ADMIN))
3213 return -EACCES;
3214
3215 cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev);
3216 file->private_data = cfg;
3217
3218 return 0;
3219 }
3220
3221 /**
3222 * decode_hioctl() - translates encoded host ioctl to easily identifiable string
3223 * @cmd: The host ioctl command to decode.
3224 *
3225 * Return: A string identifying the decoded host ioctl.
3226 */
3227 static char *decode_hioctl(int cmd)
3228 {
3229 switch (cmd) {
3230 case HT_CXLFLASH_LUN_PROVISION:
3231 return __stringify_1(HT_CXLFLASH_LUN_PROVISION);
3232 }
3233
3234 return "UNKNOWN";
3235 }
3236
3237 /**
3238 * cxlflash_lun_provision() - host LUN provisioning handler
3239 * @cfg: Internal structure associated with the host.
3240 * @arg: Kernel copy of userspace ioctl data structure.
3241 *
3242 * Return: 0 on success, -errno on failure
3243 */
3244 static int cxlflash_lun_provision(struct cxlflash_cfg *cfg,
3245 struct ht_cxlflash_lun_provision *lunprov)
3246 {
3247 struct afu *afu = cfg->afu;
3248 struct device *dev = &cfg->dev->dev;
3249 struct sisl_ioarcb rcb;
3250 struct sisl_ioasa asa;
3251 __be64 __iomem *fc_port_regs;
3252 u16 port = lunprov->port;
3253 u16 scmd = lunprov->hdr.subcmd;
3254 u16 type;
3255 u64 reg;
3256 u64 size;
3257 u64 lun_id;
3258 int rc = 0;
3259
3260 if (!afu_is_lun_provision(afu)) {
3261 rc = -ENOTSUPP;
3262 goto out;
3263 }
3264
3265 if (port >= cfg->num_fc_ports) {
3266 rc = -EINVAL;
3267 goto out;
3268 }
3269
3270 switch (scmd) {
3271 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN:
3272 type = SISL_AFU_LUN_PROVISION_CREATE;
3273 size = lunprov->size;
3274 lun_id = 0;
3275 break;
3276 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN:
3277 type = SISL_AFU_LUN_PROVISION_DELETE;
3278 size = 0;
3279 lun_id = lunprov->lun_id;
3280 break;
3281 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT:
3282 fc_port_regs = get_fc_port_regs(cfg, port);
3283
3284 reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]);
3285 lunprov->max_num_luns = reg;
3286 reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]);
3287 lunprov->cur_num_luns = reg;
3288 reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]);
3289 lunprov->max_cap_port = reg;
3290 reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]);
3291 lunprov->cur_cap_port = reg;
3292
3293 goto out;
3294 default:
3295 rc = -EINVAL;
3296 goto out;
3297 }
3298
3299 memset(&rcb, 0, sizeof(rcb));
3300 memset(&asa, 0, sizeof(asa));
3301 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
3302 rcb.lun_id = lun_id;
3303 rcb.msi = SISL_MSI_RRQ_UPDATED;
3304 rcb.timeout = MC_LUN_PROV_TIMEOUT;
3305 rcb.ioasa = &asa;
3306
3307 rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION;
3308 rcb.cdb[1] = type;
3309 rcb.cdb[2] = port;
3310 put_unaligned_be64(size, &rcb.cdb[8]);
3311
3312 rc = send_afu_cmd(afu, &rcb);
3313 if (rc) {
3314 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3315 __func__, rc, asa.ioasc, asa.afu_extra);
3316 goto out;
3317 }
3318
3319 if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) {
3320 lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo;
3321 memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid));
3322 }
3323 out:
3324 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3325 return rc;
3326 }
3327
3328 /**
3329 * cxlflash_afu_debug() - host AFU debug handler
3330 * @cfg: Internal structure associated with the host.
3331 * @arg: Kernel copy of userspace ioctl data structure.
3332 *
3333 * For debug requests requiring a data buffer, always provide an aligned
3334 * (cache line) buffer to the AFU to appease any alignment requirements.
3335 *
3336 * Return: 0 on success, -errno on failure
3337 */
3338 static int cxlflash_afu_debug(struct cxlflash_cfg *cfg,
3339 struct ht_cxlflash_afu_debug *afu_dbg)
3340 {
3341 struct afu *afu = cfg->afu;
3342 struct device *dev = &cfg->dev->dev;
3343 struct sisl_ioarcb rcb;
3344 struct sisl_ioasa asa;
3345 char *buf = NULL;
3346 char *kbuf = NULL;
3347 void __user *ubuf = (__force void __user *)afu_dbg->data_ea;
3348 u16 req_flags = SISL_REQ_FLAGS_AFU_CMD;
3349 u32 ulen = afu_dbg->data_len;
3350 bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE;
3351 int rc = 0;
3352
3353 if (!afu_is_afu_debug(afu)) {
3354 rc = -ENOTSUPP;
3355 goto out;
3356 }
3357
3358 if (ulen) {
3359 req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN;
3360
3361 if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) {
3362 rc = -EINVAL;
3363 goto out;
3364 }
3365
3366 if (unlikely(!access_ok(is_write ? VERIFY_READ : VERIFY_WRITE,
3367 ubuf, ulen))) {
3368 rc = -EFAULT;
3369 goto out;
3370 }
3371
3372 buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL);
3373 if (unlikely(!buf)) {
3374 rc = -ENOMEM;
3375 goto out;
3376 }
3377
3378 kbuf = PTR_ALIGN(buf, cache_line_size());
3379
3380 if (is_write) {
3381 req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
3382
3383 rc = copy_from_user(kbuf, ubuf, ulen);
3384 if (unlikely(rc))
3385 goto out;
3386 }
3387 }
3388
3389 memset(&rcb, 0, sizeof(rcb));
3390 memset(&asa, 0, sizeof(asa));
3391
3392 rcb.req_flags = req_flags;
3393 rcb.msi = SISL_MSI_RRQ_UPDATED;
3394 rcb.timeout = MC_AFU_DEBUG_TIMEOUT;
3395 rcb.ioasa = &asa;
3396
3397 if (ulen) {
3398 rcb.data_len = ulen;
3399 rcb.data_ea = (uintptr_t)kbuf;
3400 }
3401
3402 rcb.cdb[0] = SISL_AFU_CMD_DEBUG;
3403 memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd,
3404 HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN);
3405
3406 rc = send_afu_cmd(afu, &rcb);
3407 if (rc) {
3408 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3409 __func__, rc, asa.ioasc, asa.afu_extra);
3410 goto out;
3411 }
3412
3413 if (ulen && !is_write)
3414 rc = copy_to_user(ubuf, kbuf, ulen);
3415 out:
3416 kfree(buf);
3417 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3418 return rc;
3419 }
3420
3421 /**
3422 * cxlflash_chr_ioctl() - character device IOCTL handler
3423 * @file: File pointer for this device.
3424 * @cmd: IOCTL command.
3425 * @arg: Userspace ioctl data structure.
3426 *
3427 * A read/write semaphore is used to implement a 'drain' of currently
3428 * running ioctls. The read semaphore is taken at the beginning of each
3429 * ioctl thread and released upon concluding execution. Additionally the
3430 * semaphore should be released and then reacquired in any ioctl execution
3431 * path which will wait for an event to occur that is outside the scope of
3432 * the ioctl (i.e. an adapter reset). To drain the ioctls currently running,
3433 * a thread simply needs to acquire the write semaphore.
3434 *
3435 * Return: 0 on success, -errno on failure
3436 */
3437 static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd,
3438 unsigned long arg)
3439 {
3440 typedef int (*hioctl) (struct cxlflash_cfg *, void *);
3441
3442 struct cxlflash_cfg *cfg = file->private_data;
3443 struct device *dev = &cfg->dev->dev;
3444 char buf[sizeof(union cxlflash_ht_ioctls)];
3445 void __user *uarg = (void __user *)arg;
3446 struct ht_cxlflash_hdr *hdr;
3447 size_t size = 0;
3448 bool known_ioctl = false;
3449 int idx = 0;
3450 int rc = 0;
3451 hioctl do_ioctl = NULL;
3452
3453 static const struct {
3454 size_t size;
3455 hioctl ioctl;
3456 } ioctl_tbl[] = { /* NOTE: order matters here */
3457 { sizeof(struct ht_cxlflash_lun_provision),
3458 (hioctl)cxlflash_lun_provision },
3459 { sizeof(struct ht_cxlflash_afu_debug),
3460 (hioctl)cxlflash_afu_debug },
3461 };
3462
3463 /* Hold read semaphore so we can drain if needed */
3464 down_read(&cfg->ioctl_rwsem);
3465
3466 dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n",
3467 __func__, cmd, idx, sizeof(ioctl_tbl));
3468
3469 switch (cmd) {
3470 case HT_CXLFLASH_LUN_PROVISION:
3471 case HT_CXLFLASH_AFU_DEBUG:
3472 known_ioctl = true;
3473 idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd);
3474 size = ioctl_tbl[idx].size;
3475 do_ioctl = ioctl_tbl[idx].ioctl;
3476
3477 if (likely(do_ioctl))
3478 break;
3479
3480 /* fall through */
3481 default:
3482 rc = -EINVAL;
3483 goto out;
3484 }
3485
3486 if (unlikely(copy_from_user(&buf, uarg, size))) {
3487 dev_err(dev, "%s: copy_from_user() fail "
3488 "size=%lu cmd=%d (%s) uarg=%p\n",
3489 __func__, size, cmd, decode_hioctl(cmd), uarg);
3490 rc = -EFAULT;
3491 goto out;
3492 }
3493
3494 hdr = (struct ht_cxlflash_hdr *)&buf;
3495 if (hdr->version != HT_CXLFLASH_VERSION_0) {
3496 dev_dbg(dev, "%s: Version %u not supported for %s\n",
3497 __func__, hdr->version, decode_hioctl(cmd));
3498 rc = -EINVAL;
3499 goto out;
3500 }
3501
3502 if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) {
3503 dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__);
3504 rc = -EINVAL;
3505 goto out;
3506 }
3507
3508 rc = do_ioctl(cfg, (void *)&buf);
3509 if (likely(!rc))
3510 if (unlikely(copy_to_user(uarg, &buf, size))) {
3511 dev_err(dev, "%s: copy_to_user() fail "
3512 "size=%lu cmd=%d (%s) uarg=%p\n",
3513 __func__, size, cmd, decode_hioctl(cmd), uarg);
3514 rc = -EFAULT;
3515 }
3516
3517 /* fall through to exit */
3518
3519 out:
3520 up_read(&cfg->ioctl_rwsem);
3521 if (unlikely(rc && known_ioctl))
3522 dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3523 __func__, decode_hioctl(cmd), cmd, rc);
3524 else
3525 dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3526 __func__, decode_hioctl(cmd), cmd, rc);
3527 return rc;
3528 }
3529
3530 /*
3531 * Character device file operations
3532 */
3533 static const struct file_operations cxlflash_chr_fops = {
3534 .owner = THIS_MODULE,
3535 .open = cxlflash_chr_open,
3536 .unlocked_ioctl = cxlflash_chr_ioctl,
3537 .compat_ioctl = cxlflash_chr_ioctl,
3538 };
3539
3540 /**
3541 * init_chrdev() - initialize the character device for the host
3542 * @cfg: Internal structure associated with the host.
3543 *
3544 * Return: 0 on success, -errno on failure
3545 */
3546 static int init_chrdev(struct cxlflash_cfg *cfg)
3547 {
3548 struct device *dev = &cfg->dev->dev;
3549 struct device *char_dev;
3550 dev_t devno;
3551 int minor;
3552 int rc = 0;
3553
3554 minor = cxlflash_get_minor();
3555 if (unlikely(minor < 0)) {
3556 dev_err(dev, "%s: Exhausted allowed adapters\n", __func__);
3557 rc = -ENOSPC;
3558 goto out;
3559 }
3560
3561 devno = MKDEV(cxlflash_major, minor);
3562 cdev_init(&cfg->cdev, &cxlflash_chr_fops);
3563
3564 rc = cdev_add(&cfg->cdev, devno, 1);
3565 if (rc) {
3566 dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc);
3567 goto err1;
3568 }
3569
3570 char_dev = device_create(cxlflash_class, NULL, devno,
3571 NULL, "cxlflash%d", minor);
3572 if (IS_ERR(char_dev)) {
3573 rc = PTR_ERR(char_dev);
3574 dev_err(dev, "%s: device_create failed rc=%d\n",
3575 __func__, rc);
3576 goto err2;
3577 }
3578
3579 cfg->chardev = char_dev;
3580 out:
3581 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3582 return rc;
3583 err2:
3584 cdev_del(&cfg->cdev);
3585 err1:
3586 cxlflash_put_minor(minor);
3587 goto out;
3588 }
3589
3590 /**
3591 * cxlflash_probe() - PCI entry point to add host
3592 * @pdev: PCI device associated with the host.
3593 * @dev_id: PCI device id associated with device.
3594 *
3595 * The device will initially start out in a 'probing' state and
3596 * transition to the 'normal' state at the end of a successful
3597 * probe. Should an EEH event occur during probe, the notification
3598 * thread (error_detected()) will wait until the probe handler
3599 * is nearly complete. At that time, the device will be moved to
3600 * a 'probed' state and the EEH thread woken up to drive the slot
3601 * reset and recovery (device moves to 'normal' state). Meanwhile,
3602 * the probe will be allowed to exit successfully.
3603 *
3604 * Return: 0 on success, -errno on failure
3605 */
3606 static int cxlflash_probe(struct pci_dev *pdev,
3607 const struct pci_device_id *dev_id)
3608 {
3609 struct Scsi_Host *host;
3610 struct cxlflash_cfg *cfg = NULL;
3611 struct device *dev = &pdev->dev;
3612 struct dev_dependent_vals *ddv;
3613 int rc = 0;
3614 int k;
3615
3616 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
3617 __func__, pdev->irq);
3618
3619 ddv = (struct dev_dependent_vals *)dev_id->driver_data;
3620 driver_template.max_sectors = ddv->max_sectors;
3621
3622 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
3623 if (!host) {
3624 dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
3625 rc = -ENOMEM;
3626 goto out;
3627 }
3628
3629 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
3630 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
3631 host->unique_id = host->host_no;
3632 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
3633
3634 cfg = shost_priv(host);
3635 cfg->host = host;
3636 rc = alloc_mem(cfg);
3637 if (rc) {
3638 dev_err(dev, "%s: alloc_mem failed\n", __func__);
3639 rc = -ENOMEM;
3640 scsi_host_put(cfg->host);
3641 goto out;
3642 }
3643
3644 cfg->init_state = INIT_STATE_NONE;
3645 cfg->dev = pdev;
3646 cfg->cxl_fops = cxlflash_cxl_fops;
3647
3648 /*
3649 * Promoted LUNs move to the top of the LUN table. The rest stay on
3650 * the bottom half. The bottom half grows from the end (index = 255),
3651 * whereas the top half grows from the beginning (index = 0).
3652 *
3653 * Initialize the last LUN index for all possible ports.
3654 */
3655 cfg->promote_lun_index = 0;
3656
3657 for (k = 0; k < MAX_FC_PORTS; k++)
3658 cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
3659
3660 cfg->dev_id = (struct pci_device_id *)dev_id;
3661
3662 init_waitqueue_head(&cfg->tmf_waitq);
3663 init_waitqueue_head(&cfg->reset_waitq);
3664
3665 INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
3666 cfg->lr_state = LINK_RESET_INVALID;
3667 cfg->lr_port = -1;
3668 spin_lock_init(&cfg->tmf_slock);
3669 mutex_init(&cfg->ctx_tbl_list_mutex);
3670 mutex_init(&cfg->ctx_recovery_mutex);
3671 init_rwsem(&cfg->ioctl_rwsem);
3672 INIT_LIST_HEAD(&cfg->ctx_err_recovery);
3673 INIT_LIST_HEAD(&cfg->lluns);
3674
3675 pci_set_drvdata(pdev, cfg);
3676
3677 cfg->cxl_afu = cxl_pci_to_afu(pdev);
3678
3679 rc = init_pci(cfg);
3680 if (rc) {
3681 dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
3682 goto out_remove;
3683 }
3684 cfg->init_state = INIT_STATE_PCI;
3685
3686 rc = init_afu(cfg);
3687 if (rc && !wq_has_sleeper(&cfg->reset_waitq)) {
3688 dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
3689 goto out_remove;
3690 }
3691 cfg->init_state = INIT_STATE_AFU;
3692
3693 rc = init_scsi(cfg);
3694 if (rc) {
3695 dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
3696 goto out_remove;
3697 }
3698 cfg->init_state = INIT_STATE_SCSI;
3699
3700 rc = init_chrdev(cfg);
3701 if (rc) {
3702 dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc);
3703 goto out_remove;
3704 }
3705 cfg->init_state = INIT_STATE_CDEV;
3706
3707 if (wq_has_sleeper(&cfg->reset_waitq)) {
3708 cfg->state = STATE_PROBED;
3709 wake_up_all(&cfg->reset_waitq);
3710 } else
3711 cfg->state = STATE_NORMAL;
3712 out:
3713 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3714 return rc;
3715
3716 out_remove:
3717 cxlflash_remove(pdev);
3718 goto out;
3719 }
3720
3721 /**
3722 * cxlflash_pci_error_detected() - called when a PCI error is detected
3723 * @pdev: PCI device struct.
3724 * @state: PCI channel state.
3725 *
3726 * When an EEH occurs during an active reset, wait until the reset is
3727 * complete and then take action based upon the device state.
3728 *
3729 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
3730 */
3731 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
3732 pci_channel_state_t state)
3733 {
3734 int rc = 0;
3735 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3736 struct device *dev = &cfg->dev->dev;
3737
3738 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
3739
3740 switch (state) {
3741 case pci_channel_io_frozen:
3742 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
3743 cfg->state != STATE_PROBING);
3744 if (cfg->state == STATE_FAILTERM)
3745 return PCI_ERS_RESULT_DISCONNECT;
3746
3747 cfg->state = STATE_RESET;
3748 scsi_block_requests(cfg->host);
3749 drain_ioctls(cfg);
3750 rc = cxlflash_mark_contexts_error(cfg);
3751 if (unlikely(rc))
3752 dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
3753 __func__, rc);
3754 term_afu(cfg);
3755 return PCI_ERS_RESULT_NEED_RESET;
3756 case pci_channel_io_perm_failure:
3757 cfg->state = STATE_FAILTERM;
3758 wake_up_all(&cfg->reset_waitq);
3759 scsi_unblock_requests(cfg->host);
3760 return PCI_ERS_RESULT_DISCONNECT;
3761 default:
3762 break;
3763 }
3764 return PCI_ERS_RESULT_NEED_RESET;
3765 }
3766
3767 /**
3768 * cxlflash_pci_slot_reset() - called when PCI slot has been reset
3769 * @pdev: PCI device struct.
3770 *
3771 * This routine is called by the pci error recovery code after the PCI
3772 * slot has been reset, just before we should resume normal operations.
3773 *
3774 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
3775 */
3776 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
3777 {
3778 int rc = 0;
3779 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3780 struct device *dev = &cfg->dev->dev;
3781
3782 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3783
3784 rc = init_afu(cfg);
3785 if (unlikely(rc)) {
3786 dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
3787 return PCI_ERS_RESULT_DISCONNECT;
3788 }
3789
3790 return PCI_ERS_RESULT_RECOVERED;
3791 }
3792
3793 /**
3794 * cxlflash_pci_resume() - called when normal operation can resume
3795 * @pdev: PCI device struct
3796 */
3797 static void cxlflash_pci_resume(struct pci_dev *pdev)
3798 {
3799 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3800 struct device *dev = &cfg->dev->dev;
3801
3802 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3803
3804 cfg->state = STATE_NORMAL;
3805 wake_up_all(&cfg->reset_waitq);
3806 scsi_unblock_requests(cfg->host);
3807 }
3808
3809 /**
3810 * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class
3811 * @dev: Character device.
3812 * @mode: Mode that can be used to verify access.
3813 *
3814 * Return: Allocated string describing the devtmpfs structure.
3815 */
3816 static char *cxlflash_devnode(struct device *dev, umode_t *mode)
3817 {
3818 return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev));
3819 }
3820
3821 /**
3822 * cxlflash_class_init() - create character device class
3823 *
3824 * Return: 0 on success, -errno on failure
3825 */
3826 static int cxlflash_class_init(void)
3827 {
3828 dev_t devno;
3829 int rc = 0;
3830
3831 rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash");
3832 if (unlikely(rc)) {
3833 pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc);
3834 goto out;
3835 }
3836
3837 cxlflash_major = MAJOR(devno);
3838
3839 cxlflash_class = class_create(THIS_MODULE, "cxlflash");
3840 if (IS_ERR(cxlflash_class)) {
3841 rc = PTR_ERR(cxlflash_class);
3842 pr_err("%s: class_create failed rc=%d\n", __func__, rc);
3843 goto err;
3844 }
3845
3846 cxlflash_class->devnode = cxlflash_devnode;
3847 out:
3848 pr_debug("%s: returning rc=%d\n", __func__, rc);
3849 return rc;
3850 err:
3851 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3852 goto out;
3853 }
3854
3855 /**
3856 * cxlflash_class_exit() - destroy character device class
3857 */
3858 static void cxlflash_class_exit(void)
3859 {
3860 dev_t devno = MKDEV(cxlflash_major, 0);
3861
3862 class_destroy(cxlflash_class);
3863 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3864 }
3865
3866 static const struct pci_error_handlers cxlflash_err_handler = {
3867 .error_detected = cxlflash_pci_error_detected,
3868 .slot_reset = cxlflash_pci_slot_reset,
3869 .resume = cxlflash_pci_resume,
3870 };
3871
3872 /*
3873 * PCI device structure
3874 */
3875 static struct pci_driver cxlflash_driver = {
3876 .name = CXLFLASH_NAME,
3877 .id_table = cxlflash_pci_table,
3878 .probe = cxlflash_probe,
3879 .remove = cxlflash_remove,
3880 .shutdown = cxlflash_remove,
3881 .err_handler = &cxlflash_err_handler,
3882 };
3883
3884 /**
3885 * init_cxlflash() - module entry point
3886 *
3887 * Return: 0 on success, -errno on failure
3888 */
3889 static int __init init_cxlflash(void)
3890 {
3891 int rc;
3892
3893 check_sizes();
3894 cxlflash_list_init();
3895 rc = cxlflash_class_init();
3896 if (unlikely(rc))
3897 goto out;
3898
3899 rc = pci_register_driver(&cxlflash_driver);
3900 if (unlikely(rc))
3901 goto err;
3902 out:
3903 pr_debug("%s: returning rc=%d\n", __func__, rc);
3904 return rc;
3905 err:
3906 cxlflash_class_exit();
3907 goto out;
3908 }
3909
3910 /**
3911 * exit_cxlflash() - module exit point
3912 */
3913 static void __exit exit_cxlflash(void)
3914 {
3915 cxlflash_term_global_luns();
3916 cxlflash_free_errpage();
3917
3918 pci_unregister_driver(&cxlflash_driver);
3919 cxlflash_class_exit();
3920 }
3921
3922 module_init(init_cxlflash);
3923 module_exit(exit_cxlflash);