]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/usb/dwc2/core.h
Revert "usb: dwc2: gadget: fix TX FIFO size and address initialization"
[mirror_ubuntu-zesty-kernel.git] / drivers / usb / dwc2 / core.h
1 /*
2 * core.h - DesignWare HS OTG Controller common declarations
3 *
4 * Copyright (C) 2004-2013 Synopsys, Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
18 *
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #ifndef __DWC2_CORE_H__
38 #define __DWC2_CORE_H__
39
40 #include <linux/phy/phy.h>
41 #include <linux/regulator/consumer.h>
42 #include <linux/usb/gadget.h>
43 #include <linux/usb/otg.h>
44 #include <linux/usb/phy.h>
45 #include "hw.h"
46
47 /*
48 * Suggested defines for tracers:
49 * - no_printk: Disable tracing
50 * - pr_info: Print this info to the console
51 * - trace_printk: Print this info to trace buffer (good for verbose logging)
52 */
53
54 #define DWC2_TRACE_SCHEDULER no_printk
55 #define DWC2_TRACE_SCHEDULER_VB no_printk
56
57 /* Detailed scheduler tracing, but won't overwhelm console */
58 #define dwc2_sch_dbg(hsotg, fmt, ...) \
59 DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt), \
60 dev_name(hsotg->dev), ##__VA_ARGS__)
61
62 /* Verbose scheduler tracing */
63 #define dwc2_sch_vdbg(hsotg, fmt, ...) \
64 DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt), \
65 dev_name(hsotg->dev), ##__VA_ARGS__)
66
67 #ifdef CONFIG_MIPS
68 /*
69 * There are some MIPS machines that can run in either big-endian
70 * or little-endian mode and that use the dwc2 register without
71 * a byteswap in both ways.
72 * Unlike other architectures, MIPS apparently does not require a
73 * barrier before the __raw_writel() to synchronize with DMA but does
74 * require the barrier after the __raw_writel() to serialize a set of
75 * writes. This set of operations was added specifically for MIPS and
76 * should only be used there.
77 */
78 static inline u32 dwc2_readl(const void __iomem *addr)
79 {
80 u32 value = __raw_readl(addr);
81
82 /* In order to preserve endianness __raw_* operation is used. Therefore
83 * a barrier is needed to ensure IO access is not re-ordered across
84 * reads or writes
85 */
86 mb();
87 return value;
88 }
89
90 static inline void dwc2_writel(u32 value, void __iomem *addr)
91 {
92 __raw_writel(value, addr);
93
94 /*
95 * In order to preserve endianness __raw_* operation is used. Therefore
96 * a barrier is needed to ensure IO access is not re-ordered across
97 * reads or writes
98 */
99 mb();
100 #ifdef DWC2_LOG_WRITES
101 pr_info("INFO:: wrote %08x to %p\n", value, addr);
102 #endif
103 }
104 #else
105 /* Normal architectures just use readl/write */
106 static inline u32 dwc2_readl(const void __iomem *addr)
107 {
108 return readl(addr);
109 }
110
111 static inline void dwc2_writel(u32 value, void __iomem *addr)
112 {
113 writel(value, addr);
114
115 #ifdef DWC2_LOG_WRITES
116 pr_info("info:: wrote %08x to %p\n", value, addr);
117 #endif
118 }
119 #endif
120
121 /* Maximum number of Endpoints/HostChannels */
122 #define MAX_EPS_CHANNELS 16
123
124 /* dwc2-hsotg declarations */
125 static const char * const dwc2_hsotg_supply_names[] = {
126 "vusb_d", /* digital USB supply, 1.2V */
127 "vusb_a", /* analog USB supply, 1.1V */
128 };
129
130 /*
131 * EP0_MPS_LIMIT
132 *
133 * Unfortunately there seems to be a limit of the amount of data that can
134 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
135 * packets (which practically means 1 packet and 63 bytes of data) when the
136 * MPS is set to 64.
137 *
138 * This means if we are wanting to move >127 bytes of data, we need to
139 * split the transactions up, but just doing one packet at a time does
140 * not work (this may be an implicit DATA0 PID on first packet of the
141 * transaction) and doing 2 packets is outside the controller's limits.
142 *
143 * If we try to lower the MPS size for EP0, then no transfers work properly
144 * for EP0, and the system will fail basic enumeration. As no cause for this
145 * has currently been found, we cannot support any large IN transfers for
146 * EP0.
147 */
148 #define EP0_MPS_LIMIT 64
149
150 struct dwc2_hsotg;
151 struct dwc2_hsotg_req;
152
153 /**
154 * struct dwc2_hsotg_ep - driver endpoint definition.
155 * @ep: The gadget layer representation of the endpoint.
156 * @name: The driver generated name for the endpoint.
157 * @queue: Queue of requests for this endpoint.
158 * @parent: Reference back to the parent device structure.
159 * @req: The current request that the endpoint is processing. This is
160 * used to indicate an request has been loaded onto the endpoint
161 * and has yet to be completed (maybe due to data move, or simply
162 * awaiting an ack from the core all the data has been completed).
163 * @debugfs: File entry for debugfs file for this endpoint.
164 * @lock: State lock to protect contents of endpoint.
165 * @dir_in: Set to true if this endpoint is of the IN direction, which
166 * means that it is sending data to the Host.
167 * @index: The index for the endpoint registers.
168 * @mc: Multi Count - number of transactions per microframe
169 * @interval - Interval for periodic endpoints, in frames or microframes.
170 * @name: The name array passed to the USB core.
171 * @halted: Set if the endpoint has been halted.
172 * @periodic: Set if this is a periodic ep, such as Interrupt
173 * @isochronous: Set if this is a isochronous ep
174 * @send_zlp: Set if we need to send a zero-length packet.
175 * @total_data: The total number of data bytes done.
176 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
177 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
178 * @last_load: The offset of data for the last start of request.
179 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
180 * @target_frame: Targeted frame num to setup next ISOC transfer
181 * @frame_overrun: Indicates SOF number overrun in DSTS
182 *
183 * This is the driver's state for each registered enpoint, allowing it
184 * to keep track of transactions that need doing. Each endpoint has a
185 * lock to protect the state, to try and avoid using an overall lock
186 * for the host controller as much as possible.
187 *
188 * For periodic IN endpoints, we have fifo_size and fifo_load to try
189 * and keep track of the amount of data in the periodic FIFO for each
190 * of these as we don't have a status register that tells us how much
191 * is in each of them. (note, this may actually be useless information
192 * as in shared-fifo mode periodic in acts like a single-frame packet
193 * buffer than a fifo)
194 */
195 struct dwc2_hsotg_ep {
196 struct usb_ep ep;
197 struct list_head queue;
198 struct dwc2_hsotg *parent;
199 struct dwc2_hsotg_req *req;
200 struct dentry *debugfs;
201
202 unsigned long total_data;
203 unsigned int size_loaded;
204 unsigned int last_load;
205 unsigned int fifo_load;
206 unsigned short fifo_size;
207 unsigned short fifo_index;
208
209 unsigned char dir_in;
210 unsigned char index;
211 unsigned char mc;
212 unsigned char interval;
213
214 unsigned int halted:1;
215 unsigned int periodic:1;
216 unsigned int isochronous:1;
217 unsigned int send_zlp:1;
218 unsigned int target_frame;
219 #define TARGET_FRAME_INITIAL 0xFFFFFFFF
220 bool frame_overrun;
221
222 char name[10];
223 };
224
225 /**
226 * struct dwc2_hsotg_req - data transfer request
227 * @req: The USB gadget request
228 * @queue: The list of requests for the endpoint this is queued for.
229 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
230 */
231 struct dwc2_hsotg_req {
232 struct usb_request req;
233 struct list_head queue;
234 void *saved_req_buf;
235 };
236
237 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
238 #define call_gadget(_hs, _entry) \
239 do { \
240 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
241 (_hs)->driver && (_hs)->driver->_entry) { \
242 spin_unlock(&_hs->lock); \
243 (_hs)->driver->_entry(&(_hs)->gadget); \
244 spin_lock(&_hs->lock); \
245 } \
246 } while (0)
247 #else
248 #define call_gadget(_hs, _entry) do {} while (0)
249 #endif
250
251 struct dwc2_hsotg;
252 struct dwc2_host_chan;
253
254 /* Device States */
255 enum dwc2_lx_state {
256 DWC2_L0, /* On state */
257 DWC2_L1, /* LPM sleep state */
258 DWC2_L2, /* USB suspend state */
259 DWC2_L3, /* Off state */
260 };
261
262 /*
263 * Gadget periodic tx fifo sizes as used by legacy driver
264 * EP0 is not included
265 */
266 #define DWC2_G_P_LEGACY_TX_FIFO_SIZE {256, 256, 256, 256, 768, 768, 768, \
267 768, 0, 0, 0, 0, 0, 0, 0}
268
269 /* Gadget ep0 states */
270 enum dwc2_ep0_state {
271 DWC2_EP0_SETUP,
272 DWC2_EP0_DATA_IN,
273 DWC2_EP0_DATA_OUT,
274 DWC2_EP0_STATUS_IN,
275 DWC2_EP0_STATUS_OUT,
276 };
277
278 /**
279 * struct dwc2_core_params - Parameters for configuring the core
280 *
281 * @otg_cap: Specifies the OTG capabilities.
282 * 0 - HNP and SRP capable
283 * 1 - SRP Only capable
284 * 2 - No HNP/SRP capable (always available)
285 * Defaults to best available option (0, 1, then 2)
286 * @otg_ver: OTG version supported
287 * 0 - 1.3 (default)
288 * 1 - 2.0
289 * @dma_enable: Specifies whether to use slave or DMA mode for accessing
290 * the data FIFOs. The driver will automatically detect the
291 * value for this parameter if none is specified.
292 * 0 - Slave (always available)
293 * 1 - DMA (default, if available)
294 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use
295 * address DMA mode or descriptor DMA mode for accessing
296 * the data FIFOs. The driver will automatically detect the
297 * value for this if none is specified.
298 * 0 - Address DMA
299 * 1 - Descriptor DMA (default, if available)
300 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
301 * address DMA mode or descriptor DMA mode for accessing
302 * the data FIFOs in Full Speed mode only. The driver
303 * will automatically detect the value for this if none is
304 * specified.
305 * 0 - Address DMA
306 * 1 - Descriptor DMA in FS (default, if available)
307 * @speed: Specifies the maximum speed of operation in host and
308 * device mode. The actual speed depends on the speed of
309 * the attached device and the value of phy_type.
310 * 0 - High Speed
311 * (default when phy_type is UTMI+ or ULPI)
312 * 1 - Full Speed
313 * (default when phy_type is Full Speed)
314 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
315 * 1 - Allow dynamic FIFO sizing (default, if available)
316 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
317 * are enabled
318 * @host_rx_fifo_size: Number of 4-byte words in the Rx FIFO in host mode when
319 * dynamic FIFO sizing is enabled
320 * 16 to 32768
321 * Actual maximum value is autodetected and also
322 * the default.
323 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
324 * in host mode when dynamic FIFO sizing is enabled
325 * 16 to 32768
326 * Actual maximum value is autodetected and also
327 * the default.
328 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
329 * host mode when dynamic FIFO sizing is enabled
330 * 16 to 32768
331 * Actual maximum value is autodetected and also
332 * the default.
333 * @max_transfer_size: The maximum transfer size supported, in bytes
334 * 2047 to 65,535
335 * Actual maximum value is autodetected and also
336 * the default.
337 * @max_packet_count: The maximum number of packets in a transfer
338 * 15 to 511
339 * Actual maximum value is autodetected and also
340 * the default.
341 * @host_channels: The number of host channel registers to use
342 * 1 to 16
343 * Actual maximum value is autodetected and also
344 * the default.
345 * @phy_type: Specifies the type of PHY interface to use. By default,
346 * the driver will automatically detect the phy_type.
347 * 0 - Full Speed Phy
348 * 1 - UTMI+ Phy
349 * 2 - ULPI Phy
350 * Defaults to best available option (2, 1, then 0)
351 * @phy_utmi_width: Specifies the UTMI+ Data Width (in bits). This parameter
352 * is applicable for a phy_type of UTMI+ or ULPI. (For a
353 * ULPI phy_type, this parameter indicates the data width
354 * between the MAC and the ULPI Wrapper.) Also, this
355 * parameter is applicable only if the OTG_HSPHY_WIDTH cC
356 * parameter was set to "8 and 16 bits", meaning that the
357 * core has been configured to work at either data path
358 * width.
359 * 8 or 16 (default 16 if available)
360 * @phy_ulpi_ddr: Specifies whether the ULPI operates at double or single
361 * data rate. This parameter is only applicable if phy_type
362 * is ULPI.
363 * 0 - single data rate ULPI interface with 8 bit wide
364 * data bus (default)
365 * 1 - double data rate ULPI interface with 4 bit wide
366 * data bus
367 * @phy_ulpi_ext_vbus: For a ULPI phy, specifies whether to use the internal or
368 * external supply to drive the VBus
369 * 0 - Internal supply (default)
370 * 1 - External supply
371 * @i2c_enable: Specifies whether to use the I2Cinterface for a full
372 * speed PHY. This parameter is only applicable if phy_type
373 * is FS.
374 * 0 - No (default)
375 * 1 - Yes
376 * @ulpi_fs_ls: Make ULPI phy operate in FS/LS mode only
377 * 0 - No (default)
378 * 1 - Yes
379 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
380 * when attached to a Full Speed or Low Speed device in
381 * host mode.
382 * 0 - Don't support low power mode (default)
383 * 1 - Support low power mode
384 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
385 * when connected to a Low Speed device in host
386 * mode. This parameter is applicable only if
387 * host_support_fs_ls_low_power is enabled.
388 * 0 - 48 MHz
389 * (default when phy_type is UTMI+ or ULPI)
390 * 1 - 6 MHz
391 * (default when phy_type is Full Speed)
392 * @ts_dline: Enable Term Select Dline pulsing
393 * 0 - No (default)
394 * 1 - Yes
395 * @reload_ctl: Allow dynamic reloading of HFIR register during runtime
396 * 0 - No (default for core < 2.92a)
397 * 1 - Yes (default for core >= 2.92a)
398 * @ahbcfg: This field allows the default value of the GAHBCFG
399 * register to be overridden
400 * -1 - GAHBCFG value will be set to 0x06
401 * (INCR4, default)
402 * all others - GAHBCFG value will be overridden with
403 * this value
404 * Not all bits can be controlled like this, the
405 * bits defined by GAHBCFG_CTRL_MASK are controlled
406 * by the driver and are ignored in this
407 * configuration value.
408 * @uframe_sched: True to enable the microframe scheduler
409 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
410 * Disable CONIDSTSCHNG controller interrupt in such
411 * case.
412 * 0 - No (default)
413 * 1 - Yes
414 * @hibernation: Specifies whether the controller support hibernation.
415 * If hibernation is enabled, the controller will enter
416 * hibernation in both peripheral and host mode when
417 * needed.
418 * 0 - No (default)
419 * 1 - Yes
420 *
421 * The following parameters may be specified when starting the module. These
422 * parameters define how the DWC_otg controller should be configured. A
423 * value of -1 (or any other out of range value) for any parameter means
424 * to read the value from hardware (if possible) or use the builtin
425 * default described above.
426 */
427 struct dwc2_core_params {
428 /*
429 * Don't add any non-int members here, this will break
430 * dwc2_set_all_params!
431 */
432 int otg_cap;
433 int otg_ver;
434 int dma_enable;
435 int dma_desc_enable;
436 int dma_desc_fs_enable;
437 int speed;
438 int enable_dynamic_fifo;
439 int en_multiple_tx_fifo;
440 int host_rx_fifo_size;
441 int host_nperio_tx_fifo_size;
442 int host_perio_tx_fifo_size;
443 int max_transfer_size;
444 int max_packet_count;
445 int host_channels;
446 int phy_type;
447 int phy_utmi_width;
448 int phy_ulpi_ddr;
449 int phy_ulpi_ext_vbus;
450 int i2c_enable;
451 int ulpi_fs_ls;
452 int host_support_fs_ls_low_power;
453 int host_ls_low_power_phy_clk;
454 int ts_dline;
455 int reload_ctl;
456 int ahbcfg;
457 int uframe_sched;
458 int external_id_pin_ctl;
459 int hibernation;
460 };
461
462 /**
463 * struct dwc2_hw_params - Autodetected parameters.
464 *
465 * These parameters are the various parameters read from hardware
466 * registers during initialization. They typically contain the best
467 * supported or maximum value that can be configured in the
468 * corresponding dwc2_core_params value.
469 *
470 * The values that are not in dwc2_core_params are documented below.
471 *
472 * @op_mode Mode of Operation
473 * 0 - HNP- and SRP-Capable OTG (Host & Device)
474 * 1 - SRP-Capable OTG (Host & Device)
475 * 2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
476 * 3 - SRP-Capable Device
477 * 4 - Non-OTG Device
478 * 5 - SRP-Capable Host
479 * 6 - Non-OTG Host
480 * @arch Architecture
481 * 0 - Slave only
482 * 1 - External DMA
483 * 2 - Internal DMA
484 * @power_optimized Are power optimizations enabled?
485 * @num_dev_ep Number of device endpoints available
486 * @num_dev_perio_in_ep Number of device periodic IN endpoints
487 * available
488 * @dev_token_q_depth Device Mode IN Token Sequence Learning Queue
489 * Depth
490 * 0 to 30
491 * @host_perio_tx_q_depth
492 * Host Mode Periodic Request Queue Depth
493 * 2, 4 or 8
494 * @nperio_tx_q_depth
495 * Non-Periodic Request Queue Depth
496 * 2, 4 or 8
497 * @hs_phy_type High-speed PHY interface type
498 * 0 - High-speed interface not supported
499 * 1 - UTMI+
500 * 2 - ULPI
501 * 3 - UTMI+ and ULPI
502 * @fs_phy_type Full-speed PHY interface type
503 * 0 - Full speed interface not supported
504 * 1 - Dedicated full speed interface
505 * 2 - FS pins shared with UTMI+ pins
506 * 3 - FS pins shared with ULPI pins
507 * @total_fifo_size: Total internal RAM for FIFOs (bytes)
508 * @utmi_phy_data_width UTMI+ PHY data width
509 * 0 - 8 bits
510 * 1 - 16 bits
511 * 2 - 8 or 16 bits
512 * @snpsid: Value from SNPSID register
513 * @dev_ep_dirs: Direction of device endpoints (GHWCFG1)
514 */
515 struct dwc2_hw_params {
516 unsigned op_mode:3;
517 unsigned arch:2;
518 unsigned dma_desc_enable:1;
519 unsigned dma_desc_fs_enable:1;
520 unsigned enable_dynamic_fifo:1;
521 unsigned en_multiple_tx_fifo:1;
522 unsigned host_rx_fifo_size:16;
523 unsigned host_nperio_tx_fifo_size:16;
524 unsigned dev_nperio_tx_fifo_size:16;
525 unsigned host_perio_tx_fifo_size:16;
526 unsigned nperio_tx_q_depth:3;
527 unsigned host_perio_tx_q_depth:3;
528 unsigned dev_token_q_depth:5;
529 unsigned max_transfer_size:26;
530 unsigned max_packet_count:11;
531 unsigned host_channels:5;
532 unsigned hs_phy_type:2;
533 unsigned fs_phy_type:2;
534 unsigned i2c_enable:1;
535 unsigned num_dev_ep:4;
536 unsigned num_dev_perio_in_ep:4;
537 unsigned total_fifo_size:16;
538 unsigned power_optimized:1;
539 unsigned utmi_phy_data_width:2;
540 u32 snpsid;
541 u32 dev_ep_dirs;
542 };
543
544 /* Size of control and EP0 buffers */
545 #define DWC2_CTRL_BUFF_SIZE 8
546
547 /**
548 * struct dwc2_gregs_backup - Holds global registers state before entering partial
549 * power down
550 * @gotgctl: Backup of GOTGCTL register
551 * @gintmsk: Backup of GINTMSK register
552 * @gahbcfg: Backup of GAHBCFG register
553 * @gusbcfg: Backup of GUSBCFG register
554 * @grxfsiz: Backup of GRXFSIZ register
555 * @gnptxfsiz: Backup of GNPTXFSIZ register
556 * @gi2cctl: Backup of GI2CCTL register
557 * @hptxfsiz: Backup of HPTXFSIZ register
558 * @gdfifocfg: Backup of GDFIFOCFG register
559 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint
560 * @gpwrdn: Backup of GPWRDN register
561 */
562 struct dwc2_gregs_backup {
563 u32 gotgctl;
564 u32 gintmsk;
565 u32 gahbcfg;
566 u32 gusbcfg;
567 u32 grxfsiz;
568 u32 gnptxfsiz;
569 u32 gi2cctl;
570 u32 hptxfsiz;
571 u32 pcgcctl;
572 u32 gdfifocfg;
573 u32 dtxfsiz[MAX_EPS_CHANNELS];
574 u32 gpwrdn;
575 bool valid;
576 };
577
578 /**
579 * struct dwc2_dregs_backup - Holds device registers state before entering partial
580 * power down
581 * @dcfg: Backup of DCFG register
582 * @dctl: Backup of DCTL register
583 * @daintmsk: Backup of DAINTMSK register
584 * @diepmsk: Backup of DIEPMSK register
585 * @doepmsk: Backup of DOEPMSK register
586 * @diepctl: Backup of DIEPCTL register
587 * @dieptsiz: Backup of DIEPTSIZ register
588 * @diepdma: Backup of DIEPDMA register
589 * @doepctl: Backup of DOEPCTL register
590 * @doeptsiz: Backup of DOEPTSIZ register
591 * @doepdma: Backup of DOEPDMA register
592 */
593 struct dwc2_dregs_backup {
594 u32 dcfg;
595 u32 dctl;
596 u32 daintmsk;
597 u32 diepmsk;
598 u32 doepmsk;
599 u32 diepctl[MAX_EPS_CHANNELS];
600 u32 dieptsiz[MAX_EPS_CHANNELS];
601 u32 diepdma[MAX_EPS_CHANNELS];
602 u32 doepctl[MAX_EPS_CHANNELS];
603 u32 doeptsiz[MAX_EPS_CHANNELS];
604 u32 doepdma[MAX_EPS_CHANNELS];
605 bool valid;
606 };
607
608 /**
609 * struct dwc2_hregs_backup - Holds host registers state before entering partial
610 * power down
611 * @hcfg: Backup of HCFG register
612 * @haintmsk: Backup of HAINTMSK register
613 * @hcintmsk: Backup of HCINTMSK register
614 * @hptr0: Backup of HPTR0 register
615 * @hfir: Backup of HFIR register
616 */
617 struct dwc2_hregs_backup {
618 u32 hcfg;
619 u32 haintmsk;
620 u32 hcintmsk[MAX_EPS_CHANNELS];
621 u32 hprt0;
622 u32 hfir;
623 bool valid;
624 };
625
626 /*
627 * Constants related to high speed periodic scheduling
628 *
629 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long. From a
630 * reservation point of view it's assumed that the schedule goes right back to
631 * the beginning after the end of the schedule.
632 *
633 * What does that mean for scheduling things with a long interval? It means
634 * we'll reserve time for them in every possible microframe that they could
635 * ever be scheduled in. ...but we'll still only actually schedule them as
636 * often as they were requested.
637 *
638 * We keep our schedule in a "bitmap" structure. This simplifies having
639 * to keep track of and merge intervals: we just let the bitmap code do most
640 * of the heavy lifting. In a way scheduling is much like memory allocation.
641 *
642 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
643 * supposed to schedule for periodic transfers). That's according to spec.
644 *
645 * Note that though we only schedule 80% of each microframe, the bitmap that we
646 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
647 * space for each uFrame).
648 *
649 * Requirements:
650 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
651 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
652 * could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
653 * be bugs). The 8 comes from the USB spec: number of microframes per frame.
654 */
655 #define DWC2_US_PER_UFRAME 125
656 #define DWC2_HS_PERIODIC_US_PER_UFRAME 100
657
658 #define DWC2_HS_SCHEDULE_UFRAMES 8
659 #define DWC2_HS_SCHEDULE_US (DWC2_HS_SCHEDULE_UFRAMES * \
660 DWC2_HS_PERIODIC_US_PER_UFRAME)
661
662 /*
663 * Constants related to low speed scheduling
664 *
665 * For high speed we schedule every 1us. For low speed that's a bit overkill,
666 * so we make up a unit called a "slice" that's worth 25us. There are 40
667 * slices in a full frame and we can schedule 36 of those (90%) for periodic
668 * transfers.
669 *
670 * Our low speed schedule can be as short as 1 frame or could be longer. When
671 * we only schedule 1 frame it means that we'll need to reserve a time every
672 * frame even for things that only transfer very rarely, so something that runs
673 * every 2048 frames will get time reserved in every frame. Our low speed
674 * schedule can be longer and we'll be able to handle more overlap, but that
675 * will come at increased memory cost and increased time to schedule.
676 *
677 * Note: one other advantage of a short low speed schedule is that if we mess
678 * up and miss scheduling we can jump in and use any of the slots that we
679 * happened to reserve.
680 *
681 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
682 * the schedule. There will be one schedule per TT.
683 *
684 * Requirements:
685 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
686 */
687 #define DWC2_US_PER_SLICE 25
688 #define DWC2_SLICES_PER_UFRAME (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
689
690 #define DWC2_ROUND_US_TO_SLICE(us) \
691 (DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
692 DWC2_US_PER_SLICE)
693
694 #define DWC2_LS_PERIODIC_US_PER_FRAME \
695 900
696 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
697 (DWC2_LS_PERIODIC_US_PER_FRAME / \
698 DWC2_US_PER_SLICE)
699
700 #define DWC2_LS_SCHEDULE_FRAMES 1
701 #define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \
702 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
703
704 /**
705 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
706 * and periodic schedules
707 *
708 * These are common for both host and peripheral modes:
709 *
710 * @dev: The struct device pointer
711 * @regs: Pointer to controller regs
712 * @hw_params: Parameters that were autodetected from the
713 * hardware registers
714 * @core_params: Parameters that define how the core should be configured
715 * @op_state: The operational State, during transitions (a_host=>
716 * a_peripheral and b_device=>b_host) this may not match
717 * the core, but allows the software to determine
718 * transitions
719 * @dr_mode: Requested mode of operation, one of following:
720 * - USB_DR_MODE_PERIPHERAL
721 * - USB_DR_MODE_HOST
722 * - USB_DR_MODE_OTG
723 * @hcd_enabled Host mode sub-driver initialization indicator.
724 * @gadget_enabled Peripheral mode sub-driver initialization indicator.
725 * @ll_hw_enabled Status of low-level hardware resources.
726 * @phy: The otg phy transceiver structure for phy control.
727 * @uphy: The otg phy transceiver structure for old USB phy control.
728 * @plat: The platform specific configuration data. This can be removed once
729 * all SoCs support usb transceiver.
730 * @supplies: Definition of USB power supplies
731 * @phyif: PHY interface width
732 * @lock: Spinlock that protects all the driver data structures
733 * @priv: Stores a pointer to the struct usb_hcd
734 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
735 * transfer are in process of being queued
736 * @srp_success: Stores status of SRP request in the case of a FS PHY
737 * with an I2C interface
738 * @wq_otg: Workqueue object used for handling of some interrupts
739 * @wf_otg: Work object for handling Connector ID Status Change
740 * interrupt
741 * @wkp_timer: Timer object for handling Wakeup Detected interrupt
742 * @lx_state: Lx state of connected device
743 * @gregs_backup: Backup of global registers during suspend
744 * @dregs_backup: Backup of device registers during suspend
745 * @hregs_backup: Backup of host registers during suspend
746 *
747 * These are for host mode:
748 *
749 * @flags: Flags for handling root port state changes
750 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
751 * Transfers associated with these QHs are not currently
752 * assigned to a host channel.
753 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
754 * Transfers associated with these QHs are currently
755 * assigned to a host channel.
756 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
757 * non-periodic schedule
758 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
759 * list of QHs for periodic transfers that are _not_
760 * scheduled for the next frame. Each QH in the list has an
761 * interval counter that determines when it needs to be
762 * scheduled for execution. This scheduling mechanism
763 * allows only a simple calculation for periodic bandwidth
764 * used (i.e. must assume that all periodic transfers may
765 * need to execute in the same frame). However, it greatly
766 * simplifies scheduling and should be sufficient for the
767 * vast majority of OTG hosts, which need to connect to a
768 * small number of peripherals at one time. Items move from
769 * this list to periodic_sched_ready when the QH interval
770 * counter is 0 at SOF.
771 * @periodic_sched_ready: List of periodic QHs that are ready for execution in
772 * the next frame, but have not yet been assigned to host
773 * channels. Items move from this list to
774 * periodic_sched_assigned as host channels become
775 * available during the current frame.
776 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
777 * frame that are assigned to host channels. Items move
778 * from this list to periodic_sched_queued as the
779 * transactions for the QH are queued to the DWC_otg
780 * controller.
781 * @periodic_sched_queued: List of periodic QHs that have been queued for
782 * execution. Items move from this list to either
783 * periodic_sched_inactive or periodic_sched_ready when the
784 * channel associated with the transfer is released. If the
785 * interval for the QH is 1, the item moves to
786 * periodic_sched_ready because it must be rescheduled for
787 * the next frame. Otherwise, the item moves to
788 * periodic_sched_inactive.
789 * @split_order: List keeping track of channels doing splits, in order.
790 * @periodic_usecs: Total bandwidth claimed so far for periodic transfers.
791 * This value is in microseconds per (micro)frame. The
792 * assumption is that all periodic transfers may occur in
793 * the same (micro)frame.
794 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
795 * host is in high speed mode; low speed schedules are
796 * stored elsewhere since we need one per TT.
797 * @frame_number: Frame number read from the core at SOF. The value ranges
798 * from 0 to HFNUM_MAX_FRNUM.
799 * @periodic_qh_count: Count of periodic QHs, if using several eps. Used for
800 * SOF enable/disable.
801 * @free_hc_list: Free host channels in the controller. This is a list of
802 * struct dwc2_host_chan items.
803 * @periodic_channels: Number of host channels assigned to periodic transfers.
804 * Currently assuming that there is a dedicated host
805 * channel for each periodic transaction and at least one
806 * host channel is available for non-periodic transactions.
807 * @non_periodic_channels: Number of host channels assigned to non-periodic
808 * transfers
809 * @available_host_channels Number of host channels available for the microframe
810 * scheduler to use
811 * @hc_ptr_array: Array of pointers to the host channel descriptors.
812 * Allows accessing a host channel descriptor given the
813 * host channel number. This is useful in interrupt
814 * handlers.
815 * @status_buf: Buffer used for data received during the status phase of
816 * a control transfer.
817 * @status_buf_dma: DMA address for status_buf
818 * @start_work: Delayed work for handling host A-cable connection
819 * @reset_work: Delayed work for handling a port reset
820 * @otg_port: OTG port number
821 * @frame_list: Frame list
822 * @frame_list_dma: Frame list DMA address
823 * @frame_list_sz: Frame list size
824 * @desc_gen_cache: Kmem cache for generic descriptors
825 * @desc_hsisoc_cache: Kmem cache for hs isochronous descriptors
826 *
827 * These are for peripheral mode:
828 *
829 * @driver: USB gadget driver
830 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
831 * @num_of_eps: Number of available EPs (excluding EP0)
832 * @debug_root: Root directrory for debugfs.
833 * @debug_file: Main status file for debugfs.
834 * @debug_testmode: Testmode status file for debugfs.
835 * @debug_fifo: FIFO status file for debugfs.
836 * @ep0_reply: Request used for ep0 reply.
837 * @ep0_buff: Buffer for EP0 reply data, if needed.
838 * @ctrl_buff: Buffer for EP0 control requests.
839 * @ctrl_req: Request for EP0 control packets.
840 * @ep0_state: EP0 control transfers state
841 * @test_mode: USB test mode requested by the host
842 * @eps: The endpoints being supplied to the gadget framework
843 * @g_using_dma: Indicate if dma usage is enabled
844 * @g_rx_fifo_sz: Contains rx fifo size value
845 * @g_np_g_tx_fifo_sz: Contains Non-Periodic tx fifo size value
846 * @g_tx_fifo_sz: Contains tx fifo size value per endpoints
847 */
848 struct dwc2_hsotg {
849 struct device *dev;
850 void __iomem *regs;
851 /** Params detected from hardware */
852 struct dwc2_hw_params hw_params;
853 /** Params to actually use */
854 struct dwc2_core_params *core_params;
855 enum usb_otg_state op_state;
856 enum usb_dr_mode dr_mode;
857 unsigned int hcd_enabled:1;
858 unsigned int gadget_enabled:1;
859 unsigned int ll_hw_enabled:1;
860
861 struct phy *phy;
862 struct usb_phy *uphy;
863 struct dwc2_hsotg_plat *plat;
864 struct regulator_bulk_data supplies[ARRAY_SIZE(dwc2_hsotg_supply_names)];
865 u32 phyif;
866
867 spinlock_t lock;
868 void *priv;
869 int irq;
870 struct clk *clk;
871 struct reset_control *reset;
872
873 unsigned int queuing_high_bandwidth:1;
874 unsigned int srp_success:1;
875
876 struct workqueue_struct *wq_otg;
877 struct work_struct wf_otg;
878 struct timer_list wkp_timer;
879 enum dwc2_lx_state lx_state;
880 struct dwc2_gregs_backup gr_backup;
881 struct dwc2_dregs_backup dr_backup;
882 struct dwc2_hregs_backup hr_backup;
883
884 struct dentry *debug_root;
885 struct debugfs_regset32 *regset;
886
887 /* DWC OTG HW Release versions */
888 #define DWC2_CORE_REV_2_71a 0x4f54271a
889 #define DWC2_CORE_REV_2_90a 0x4f54290a
890 #define DWC2_CORE_REV_2_92a 0x4f54292a
891 #define DWC2_CORE_REV_2_94a 0x4f54294a
892 #define DWC2_CORE_REV_3_00a 0x4f54300a
893 #define DWC2_CORE_REV_3_10a 0x4f54310a
894
895 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
896 union dwc2_hcd_internal_flags {
897 u32 d32;
898 struct {
899 unsigned port_connect_status_change:1;
900 unsigned port_connect_status:1;
901 unsigned port_reset_change:1;
902 unsigned port_enable_change:1;
903 unsigned port_suspend_change:1;
904 unsigned port_over_current_change:1;
905 unsigned port_l1_change:1;
906 unsigned reserved:25;
907 } b;
908 } flags;
909
910 struct list_head non_periodic_sched_inactive;
911 struct list_head non_periodic_sched_active;
912 struct list_head *non_periodic_qh_ptr;
913 struct list_head periodic_sched_inactive;
914 struct list_head periodic_sched_ready;
915 struct list_head periodic_sched_assigned;
916 struct list_head periodic_sched_queued;
917 struct list_head split_order;
918 u16 periodic_usecs;
919 unsigned long hs_periodic_bitmap[
920 DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
921 u16 frame_number;
922 u16 periodic_qh_count;
923 bool bus_suspended;
924 bool new_connection;
925
926 u16 last_frame_num;
927
928 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
929 #define FRAME_NUM_ARRAY_SIZE 1000
930 u16 *frame_num_array;
931 u16 *last_frame_num_array;
932 int frame_num_idx;
933 int dumped_frame_num_array;
934 #endif
935
936 struct list_head free_hc_list;
937 int periodic_channels;
938 int non_periodic_channels;
939 int available_host_channels;
940 struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
941 u8 *status_buf;
942 dma_addr_t status_buf_dma;
943 #define DWC2_HCD_STATUS_BUF_SIZE 64
944
945 struct delayed_work start_work;
946 struct delayed_work reset_work;
947 u8 otg_port;
948 u32 *frame_list;
949 dma_addr_t frame_list_dma;
950 u32 frame_list_sz;
951 struct kmem_cache *desc_gen_cache;
952 struct kmem_cache *desc_hsisoc_cache;
953
954 #ifdef DEBUG
955 u32 frrem_samples;
956 u64 frrem_accum;
957
958 u32 hfnum_7_samples_a;
959 u64 hfnum_7_frrem_accum_a;
960 u32 hfnum_0_samples_a;
961 u64 hfnum_0_frrem_accum_a;
962 u32 hfnum_other_samples_a;
963 u64 hfnum_other_frrem_accum_a;
964
965 u32 hfnum_7_samples_b;
966 u64 hfnum_7_frrem_accum_b;
967 u32 hfnum_0_samples_b;
968 u64 hfnum_0_frrem_accum_b;
969 u32 hfnum_other_samples_b;
970 u64 hfnum_other_frrem_accum_b;
971 #endif
972 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
973
974 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
975 /* Gadget structures */
976 struct usb_gadget_driver *driver;
977 int fifo_mem;
978 unsigned int dedicated_fifos:1;
979 unsigned char num_of_eps;
980 u32 fifo_map;
981
982 struct usb_request *ep0_reply;
983 struct usb_request *ctrl_req;
984 void *ep0_buff;
985 void *ctrl_buff;
986 enum dwc2_ep0_state ep0_state;
987 u8 test_mode;
988
989 struct usb_gadget gadget;
990 unsigned int enabled:1;
991 unsigned int connected:1;
992 struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
993 struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
994 u32 g_using_dma;
995 u32 g_rx_fifo_sz;
996 u32 g_np_g_tx_fifo_sz;
997 u32 g_tx_fifo_sz[MAX_EPS_CHANNELS];
998 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
999 };
1000
1001 /* Reasons for halting a host channel */
1002 enum dwc2_halt_status {
1003 DWC2_HC_XFER_NO_HALT_STATUS,
1004 DWC2_HC_XFER_COMPLETE,
1005 DWC2_HC_XFER_URB_COMPLETE,
1006 DWC2_HC_XFER_ACK,
1007 DWC2_HC_XFER_NAK,
1008 DWC2_HC_XFER_NYET,
1009 DWC2_HC_XFER_STALL,
1010 DWC2_HC_XFER_XACT_ERR,
1011 DWC2_HC_XFER_FRAME_OVERRUN,
1012 DWC2_HC_XFER_BABBLE_ERR,
1013 DWC2_HC_XFER_DATA_TOGGLE_ERR,
1014 DWC2_HC_XFER_AHB_ERR,
1015 DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1016 DWC2_HC_XFER_URB_DEQUEUE,
1017 };
1018
1019 /*
1020 * The following functions support initialization of the core driver component
1021 * and the DWC_otg controller
1022 */
1023 extern int dwc2_core_reset(struct dwc2_hsotg *hsotg);
1024 extern int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg);
1025 extern int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg);
1026 extern int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore);
1027
1028 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1029
1030 extern bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1031
1032 /*
1033 * Common core Functions.
1034 * The following functions support managing the DWC_otg controller in either
1035 * device or host mode.
1036 */
1037 extern void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1038 extern void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1039 extern void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1040
1041 extern void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1042 extern void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1043
1044 /* This function should be called on every hardware interrupt. */
1045 extern irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1046
1047 /* OTG Core Parameters */
1048
1049 /*
1050 * Specifies the OTG capabilities. The driver will automatically
1051 * detect the value for this parameter if none is specified.
1052 * 0 - HNP and SRP capable (default)
1053 * 1 - SRP Only capable
1054 * 2 - No HNP/SRP capable
1055 */
1056 extern void dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val);
1057 #define DWC2_CAP_PARAM_HNP_SRP_CAPABLE 0
1058 #define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE 1
1059 #define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
1060
1061 /*
1062 * Specifies whether to use slave or DMA mode for accessing the data
1063 * FIFOs. The driver will automatically detect the value for this
1064 * parameter if none is specified.
1065 * 0 - Slave
1066 * 1 - DMA (default, if available)
1067 */
1068 extern void dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val);
1069
1070 /*
1071 * When DMA mode is enabled specifies whether to use
1072 * address DMA or DMA Descritor mode for accessing the data
1073 * FIFOs in device mode. The driver will automatically detect
1074 * the value for this parameter if none is specified.
1075 * 0 - address DMA
1076 * 1 - DMA Descriptor(default, if available)
1077 */
1078 extern void dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val);
1079
1080 /*
1081 * When DMA mode is enabled specifies whether to use
1082 * address DMA or DMA Descritor mode with full speed devices
1083 * for accessing the data FIFOs in host mode.
1084 * 0 - address DMA
1085 * 1 - FS DMA Descriptor(default, if available)
1086 */
1087 extern void dwc2_set_param_dma_desc_fs_enable(struct dwc2_hsotg *hsotg,
1088 int val);
1089
1090 /*
1091 * Specifies the maximum speed of operation in host and device mode.
1092 * The actual speed depends on the speed of the attached device and
1093 * the value of phy_type. The actual speed depends on the speed of the
1094 * attached device.
1095 * 0 - High Speed (default)
1096 * 1 - Full Speed
1097 */
1098 extern void dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val);
1099 #define DWC2_SPEED_PARAM_HIGH 0
1100 #define DWC2_SPEED_PARAM_FULL 1
1101
1102 /*
1103 * Specifies whether low power mode is supported when attached
1104 * to a Full Speed or Low Speed device in host mode.
1105 *
1106 * 0 - Don't support low power mode (default)
1107 * 1 - Support low power mode
1108 */
1109 extern void dwc2_set_param_host_support_fs_ls_low_power(
1110 struct dwc2_hsotg *hsotg, int val);
1111
1112 /*
1113 * Specifies the PHY clock rate in low power mode when connected to a
1114 * Low Speed device in host mode. This parameter is applicable only if
1115 * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
1116 * then defaults to 6 MHZ otherwise 48 MHZ.
1117 *
1118 * 0 - 48 MHz
1119 * 1 - 6 MHz
1120 */
1121 extern void dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg,
1122 int val);
1123 #define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
1124 #define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
1125
1126 /*
1127 * 0 - Use cC FIFO size parameters
1128 * 1 - Allow dynamic FIFO sizing (default)
1129 */
1130 extern void dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg,
1131 int val);
1132
1133 /*
1134 * Number of 4-byte words in the Rx FIFO in host mode when dynamic
1135 * FIFO sizing is enabled.
1136 * 16 to 32768 (default 1024)
1137 */
1138 extern void dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val);
1139
1140 /*
1141 * Number of 4-byte words in the non-periodic Tx FIFO in host mode
1142 * when Dynamic FIFO sizing is enabled in the core.
1143 * 16 to 32768 (default 256)
1144 */
1145 extern void dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg,
1146 int val);
1147
1148 /*
1149 * Number of 4-byte words in the host periodic Tx FIFO when dynamic
1150 * FIFO sizing is enabled.
1151 * 16 to 32768 (default 256)
1152 */
1153 extern void dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg,
1154 int val);
1155
1156 /*
1157 * The maximum transfer size supported in bytes.
1158 * 2047 to 65,535 (default 65,535)
1159 */
1160 extern void dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val);
1161
1162 /*
1163 * The maximum number of packets in a transfer.
1164 * 15 to 511 (default 511)
1165 */
1166 extern void dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val);
1167
1168 /*
1169 * The number of host channel registers to use.
1170 * 1 to 16 (default 11)
1171 * Note: The FPGA configuration supports a maximum of 11 host channels.
1172 */
1173 extern void dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val);
1174
1175 /*
1176 * Specifies the type of PHY interface to use. By default, the driver
1177 * will automatically detect the phy_type.
1178 *
1179 * 0 - Full Speed PHY
1180 * 1 - UTMI+ (default)
1181 * 2 - ULPI
1182 */
1183 extern void dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val);
1184 #define DWC2_PHY_TYPE_PARAM_FS 0
1185 #define DWC2_PHY_TYPE_PARAM_UTMI 1
1186 #define DWC2_PHY_TYPE_PARAM_ULPI 2
1187
1188 /*
1189 * Specifies the UTMI+ Data Width. This parameter is
1190 * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
1191 * PHY_TYPE, this parameter indicates the data width between
1192 * the MAC and the ULPI Wrapper.) Also, this parameter is
1193 * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
1194 * to "8 and 16 bits", meaning that the core has been
1195 * configured to work at either data path width.
1196 *
1197 * 8 or 16 bits (default 16)
1198 */
1199 extern void dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val);
1200
1201 /*
1202 * Specifies whether the ULPI operates at double or single
1203 * data rate. This parameter is only applicable if PHY_TYPE is
1204 * ULPI.
1205 *
1206 * 0 - single data rate ULPI interface with 8 bit wide data
1207 * bus (default)
1208 * 1 - double data rate ULPI interface with 4 bit wide data
1209 * bus
1210 */
1211 extern void dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val);
1212
1213 /*
1214 * Specifies whether to use the internal or external supply to
1215 * drive the vbus with a ULPI phy.
1216 */
1217 extern void dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val);
1218 #define DWC2_PHY_ULPI_INTERNAL_VBUS 0
1219 #define DWC2_PHY_ULPI_EXTERNAL_VBUS 1
1220
1221 /*
1222 * Specifies whether to use the I2Cinterface for full speed PHY. This
1223 * parameter is only applicable if PHY_TYPE is FS.
1224 * 0 - No (default)
1225 * 1 - Yes
1226 */
1227 extern void dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val);
1228
1229 extern void dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val);
1230
1231 extern void dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val);
1232
1233 /*
1234 * Specifies whether dedicated transmit FIFOs are
1235 * enabled for non periodic IN endpoints in device mode
1236 * 0 - No
1237 * 1 - Yes
1238 */
1239 extern void dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg,
1240 int val);
1241
1242 extern void dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val);
1243
1244 extern void dwc2_set_param_ahbcfg(struct dwc2_hsotg *hsotg, int val);
1245
1246 extern void dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val);
1247
1248 extern void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
1249 const struct dwc2_core_params *params);
1250
1251 extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
1252
1253 extern int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1254
1255 extern int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1256 extern int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1257
1258 /*
1259 * The following functions check the controller's OTG operation mode
1260 * capability (GHWCFG2.OTG_MODE).
1261 *
1262 * These functions can be used before the internal hsotg->hw_params
1263 * are read in and cached so they always read directly from the
1264 * GHWCFG2 register.
1265 */
1266 unsigned dwc2_op_mode(struct dwc2_hsotg *hsotg);
1267 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1268 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1269 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1270
1271 /*
1272 * Returns the mode of operation, host or device
1273 */
1274 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1275 {
1276 return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1277 }
1278 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1279 {
1280 return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1281 }
1282
1283 /*
1284 * Dump core registers and SPRAM
1285 */
1286 extern void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1287 extern void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1288 extern void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1289
1290 /*
1291 * Return OTG version - either 1.3 or 2.0
1292 */
1293 extern u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg);
1294
1295 /* Gadget defines */
1296 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1297 extern int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1298 extern int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1299 extern int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1300 extern int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq);
1301 extern void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1302 bool reset);
1303 extern void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1304 extern void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1305 extern int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1306 #define dwc2_is_device_connected(hsotg) (hsotg->connected)
1307 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1308 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg);
1309 #else
1310 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1311 { return 0; }
1312 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1313 { return 0; }
1314 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1315 { return 0; }
1316 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
1317 { return 0; }
1318 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1319 bool reset) {}
1320 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1321 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1322 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1323 int testmode)
1324 { return 0; }
1325 #define dwc2_is_device_connected(hsotg) (0)
1326 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1327 { return 0; }
1328 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
1329 { return 0; }
1330 #endif
1331
1332 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1333 extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1334 extern int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1335 extern void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1336 extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1337 extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1338 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1339 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1340 #else
1341 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1342 { return 0; }
1343 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1344 int us)
1345 { return 0; }
1346 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1347 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1348 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1349 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1350 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
1351 { return 0; }
1352 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1353 { return 0; }
1354 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1355 { return 0; }
1356
1357 #endif
1358
1359 #endif /* __DWC2_CORE_H__ */