]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/block_dev.c
ARM: bcm2835: dt: Add the DSI module nodes and clocks.
[mirror_ubuntu-zesty-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <linux/badblocks.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/falloc.h>
35 #include <linux/uaccess.h>
36 #include "internal.h"
37
38 struct bdev_inode {
39 struct block_device bdev;
40 struct inode vfs_inode;
41 };
42
43 static const struct address_space_operations def_blk_aops;
44
45 static inline struct bdev_inode *BDEV_I(struct inode *inode)
46 {
47 return container_of(inode, struct bdev_inode, vfs_inode);
48 }
49
50 struct block_device *I_BDEV(struct inode *inode)
51 {
52 return &BDEV_I(inode)->bdev;
53 }
54 EXPORT_SYMBOL(I_BDEV);
55
56 void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
57 {
58 struct va_format vaf;
59 va_list args;
60
61 va_start(args, fmt);
62 vaf.fmt = fmt;
63 vaf.va = &args;
64 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
65 va_end(args);
66 }
67
68 static void bdev_write_inode(struct block_device *bdev)
69 {
70 struct inode *inode = bdev->bd_inode;
71 int ret;
72
73 spin_lock(&inode->i_lock);
74 while (inode->i_state & I_DIRTY) {
75 spin_unlock(&inode->i_lock);
76 ret = write_inode_now(inode, true);
77 if (ret) {
78 char name[BDEVNAME_SIZE];
79 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
80 "for block device %s (err=%d).\n",
81 bdevname(bdev, name), ret);
82 }
83 spin_lock(&inode->i_lock);
84 }
85 spin_unlock(&inode->i_lock);
86 }
87
88 /* Kill _all_ buffers and pagecache , dirty or not.. */
89 void kill_bdev(struct block_device *bdev)
90 {
91 struct address_space *mapping = bdev->bd_inode->i_mapping;
92
93 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
94 return;
95
96 invalidate_bh_lrus();
97 truncate_inode_pages(mapping, 0);
98 }
99 EXPORT_SYMBOL(kill_bdev);
100
101 /* Invalidate clean unused buffers and pagecache. */
102 void invalidate_bdev(struct block_device *bdev)
103 {
104 struct address_space *mapping = bdev->bd_inode->i_mapping;
105
106 if (mapping->nrpages) {
107 invalidate_bh_lrus();
108 lru_add_drain_all(); /* make sure all lru add caches are flushed */
109 invalidate_mapping_pages(mapping, 0, -1);
110 }
111 /* 99% of the time, we don't need to flush the cleancache on the bdev.
112 * But, for the strange corners, lets be cautious
113 */
114 cleancache_invalidate_inode(mapping);
115 }
116 EXPORT_SYMBOL(invalidate_bdev);
117
118 int set_blocksize(struct block_device *bdev, int size)
119 {
120 /* Size must be a power of two, and between 512 and PAGE_SIZE */
121 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
122 return -EINVAL;
123
124 /* Size cannot be smaller than the size supported by the device */
125 if (size < bdev_logical_block_size(bdev))
126 return -EINVAL;
127
128 /* Don't change the size if it is same as current */
129 if (bdev->bd_block_size != size) {
130 sync_blockdev(bdev);
131 bdev->bd_block_size = size;
132 bdev->bd_inode->i_blkbits = blksize_bits(size);
133 kill_bdev(bdev);
134 }
135 return 0;
136 }
137
138 EXPORT_SYMBOL(set_blocksize);
139
140 int sb_set_blocksize(struct super_block *sb, int size)
141 {
142 if (set_blocksize(sb->s_bdev, size))
143 return 0;
144 /* If we get here, we know size is power of two
145 * and it's value is between 512 and PAGE_SIZE */
146 sb->s_blocksize = size;
147 sb->s_blocksize_bits = blksize_bits(size);
148 return sb->s_blocksize;
149 }
150
151 EXPORT_SYMBOL(sb_set_blocksize);
152
153 int sb_min_blocksize(struct super_block *sb, int size)
154 {
155 int minsize = bdev_logical_block_size(sb->s_bdev);
156 if (size < minsize)
157 size = minsize;
158 return sb_set_blocksize(sb, size);
159 }
160
161 EXPORT_SYMBOL(sb_min_blocksize);
162
163 static int
164 blkdev_get_block(struct inode *inode, sector_t iblock,
165 struct buffer_head *bh, int create)
166 {
167 bh->b_bdev = I_BDEV(inode);
168 bh->b_blocknr = iblock;
169 set_buffer_mapped(bh);
170 return 0;
171 }
172
173 static struct inode *bdev_file_inode(struct file *file)
174 {
175 return file->f_mapping->host;
176 }
177
178 static unsigned int dio_bio_write_op(struct kiocb *iocb)
179 {
180 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
181
182 /* avoid the need for a I/O completion work item */
183 if (iocb->ki_flags & IOCB_DSYNC)
184 op |= REQ_FUA;
185 return op;
186 }
187
188 #define DIO_INLINE_BIO_VECS 4
189
190 static void blkdev_bio_end_io_simple(struct bio *bio)
191 {
192 struct task_struct *waiter = bio->bi_private;
193
194 WRITE_ONCE(bio->bi_private, NULL);
195 wake_up_process(waiter);
196 }
197
198 static ssize_t
199 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
200 int nr_pages)
201 {
202 struct file *file = iocb->ki_filp;
203 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
204 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
205 loff_t pos = iocb->ki_pos;
206 bool should_dirty = false;
207 struct bio bio;
208 ssize_t ret;
209 blk_qc_t qc;
210 int i;
211
212 if ((pos | iov_iter_alignment(iter)) &
213 (bdev_logical_block_size(bdev) - 1))
214 return -EINVAL;
215
216 if (nr_pages <= DIO_INLINE_BIO_VECS)
217 vecs = inline_vecs;
218 else {
219 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL);
220 if (!vecs)
221 return -ENOMEM;
222 }
223
224 bio_init(&bio, vecs, nr_pages);
225 bio.bi_bdev = bdev;
226 bio.bi_iter.bi_sector = pos >> 9;
227 bio.bi_private = current;
228 bio.bi_end_io = blkdev_bio_end_io_simple;
229
230 ret = bio_iov_iter_get_pages(&bio, iter);
231 if (unlikely(ret))
232 return ret;
233 ret = bio.bi_iter.bi_size;
234
235 if (iov_iter_rw(iter) == READ) {
236 bio.bi_opf = REQ_OP_READ;
237 if (iter_is_iovec(iter))
238 should_dirty = true;
239 } else {
240 bio.bi_opf = dio_bio_write_op(iocb);
241 task_io_account_write(ret);
242 }
243
244 qc = submit_bio(&bio);
245 for (;;) {
246 set_current_state(TASK_UNINTERRUPTIBLE);
247 if (!READ_ONCE(bio.bi_private))
248 break;
249 if (!(iocb->ki_flags & IOCB_HIPRI) ||
250 !blk_mq_poll(bdev_get_queue(bdev), qc))
251 io_schedule();
252 }
253 __set_current_state(TASK_RUNNING);
254
255 bio_for_each_segment_all(bvec, &bio, i) {
256 if (should_dirty && !PageCompound(bvec->bv_page))
257 set_page_dirty_lock(bvec->bv_page);
258 put_page(bvec->bv_page);
259 }
260
261 if (vecs != inline_vecs)
262 kfree(vecs);
263
264 if (unlikely(bio.bi_error))
265 return bio.bi_error;
266 return ret;
267 }
268
269 struct blkdev_dio {
270 union {
271 struct kiocb *iocb;
272 struct task_struct *waiter;
273 };
274 size_t size;
275 atomic_t ref;
276 bool multi_bio : 1;
277 bool should_dirty : 1;
278 bool is_sync : 1;
279 struct bio bio;
280 };
281
282 static struct bio_set *blkdev_dio_pool __read_mostly;
283
284 static void blkdev_bio_end_io(struct bio *bio)
285 {
286 struct blkdev_dio *dio = bio->bi_private;
287 bool should_dirty = dio->should_dirty;
288
289 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) {
290 if (bio->bi_error && !dio->bio.bi_error)
291 dio->bio.bi_error = bio->bi_error;
292 } else {
293 if (!dio->is_sync) {
294 struct kiocb *iocb = dio->iocb;
295 ssize_t ret = dio->bio.bi_error;
296
297 if (likely(!ret)) {
298 ret = dio->size;
299 iocb->ki_pos += ret;
300 }
301
302 dio->iocb->ki_complete(iocb, ret, 0);
303 bio_put(&dio->bio);
304 } else {
305 struct task_struct *waiter = dio->waiter;
306
307 WRITE_ONCE(dio->waiter, NULL);
308 wake_up_process(waiter);
309 }
310 }
311
312 if (should_dirty) {
313 bio_check_pages_dirty(bio);
314 } else {
315 struct bio_vec *bvec;
316 int i;
317
318 bio_for_each_segment_all(bvec, bio, i)
319 put_page(bvec->bv_page);
320 bio_put(bio);
321 }
322 }
323
324 static ssize_t
325 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
326 {
327 struct file *file = iocb->ki_filp;
328 struct inode *inode = bdev_file_inode(file);
329 struct block_device *bdev = I_BDEV(inode);
330 struct blk_plug plug;
331 struct blkdev_dio *dio;
332 struct bio *bio;
333 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
334 loff_t pos = iocb->ki_pos;
335 blk_qc_t qc = BLK_QC_T_NONE;
336 int ret;
337
338 if ((pos | iov_iter_alignment(iter)) &
339 (bdev_logical_block_size(bdev) - 1))
340 return -EINVAL;
341
342 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool);
343 bio_get(bio); /* extra ref for the completion handler */
344
345 dio = container_of(bio, struct blkdev_dio, bio);
346 dio->is_sync = is_sync = is_sync_kiocb(iocb);
347 if (dio->is_sync)
348 dio->waiter = current;
349 else
350 dio->iocb = iocb;
351
352 dio->size = 0;
353 dio->multi_bio = false;
354 dio->should_dirty = is_read && (iter->type == ITER_IOVEC);
355
356 blk_start_plug(&plug);
357 for (;;) {
358 bio->bi_bdev = bdev;
359 bio->bi_iter.bi_sector = pos >> 9;
360 bio->bi_private = dio;
361 bio->bi_end_io = blkdev_bio_end_io;
362
363 ret = bio_iov_iter_get_pages(bio, iter);
364 if (unlikely(ret)) {
365 bio->bi_error = ret;
366 bio_endio(bio);
367 break;
368 }
369
370 if (is_read) {
371 bio->bi_opf = REQ_OP_READ;
372 if (dio->should_dirty)
373 bio_set_pages_dirty(bio);
374 } else {
375 bio->bi_opf = dio_bio_write_op(iocb);
376 task_io_account_write(bio->bi_iter.bi_size);
377 }
378
379 dio->size += bio->bi_iter.bi_size;
380 pos += bio->bi_iter.bi_size;
381
382 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
383 if (!nr_pages) {
384 qc = submit_bio(bio);
385 break;
386 }
387
388 if (!dio->multi_bio) {
389 dio->multi_bio = true;
390 atomic_set(&dio->ref, 2);
391 } else {
392 atomic_inc(&dio->ref);
393 }
394
395 submit_bio(bio);
396 bio = bio_alloc(GFP_KERNEL, nr_pages);
397 }
398 blk_finish_plug(&plug);
399
400 if (!is_sync)
401 return -EIOCBQUEUED;
402
403 for (;;) {
404 set_current_state(TASK_UNINTERRUPTIBLE);
405 if (!READ_ONCE(dio->waiter))
406 break;
407
408 if (!(iocb->ki_flags & IOCB_HIPRI) ||
409 !blk_mq_poll(bdev_get_queue(bdev), qc))
410 io_schedule();
411 }
412 __set_current_state(TASK_RUNNING);
413
414 ret = dio->bio.bi_error;
415 if (likely(!ret))
416 ret = dio->size;
417
418 bio_put(&dio->bio);
419 return ret;
420 }
421
422 static ssize_t
423 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
424 {
425 int nr_pages;
426
427 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
428 if (!nr_pages)
429 return 0;
430 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
431 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
432
433 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
434 }
435
436 static __init int blkdev_init(void)
437 {
438 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio));
439 if (!blkdev_dio_pool)
440 return -ENOMEM;
441 return 0;
442 }
443 module_init(blkdev_init);
444
445 int __sync_blockdev(struct block_device *bdev, int wait)
446 {
447 if (!bdev)
448 return 0;
449 if (!wait)
450 return filemap_flush(bdev->bd_inode->i_mapping);
451 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
452 }
453
454 /*
455 * Write out and wait upon all the dirty data associated with a block
456 * device via its mapping. Does not take the superblock lock.
457 */
458 int sync_blockdev(struct block_device *bdev)
459 {
460 return __sync_blockdev(bdev, 1);
461 }
462 EXPORT_SYMBOL(sync_blockdev);
463
464 /*
465 * Write out and wait upon all dirty data associated with this
466 * device. Filesystem data as well as the underlying block
467 * device. Takes the superblock lock.
468 */
469 int fsync_bdev(struct block_device *bdev)
470 {
471 struct super_block *sb = get_super(bdev);
472 if (sb) {
473 int res = sync_filesystem(sb);
474 drop_super(sb);
475 return res;
476 }
477 return sync_blockdev(bdev);
478 }
479 EXPORT_SYMBOL(fsync_bdev);
480
481 /**
482 * freeze_bdev -- lock a filesystem and force it into a consistent state
483 * @bdev: blockdevice to lock
484 *
485 * If a superblock is found on this device, we take the s_umount semaphore
486 * on it to make sure nobody unmounts until the snapshot creation is done.
487 * The reference counter (bd_fsfreeze_count) guarantees that only the last
488 * unfreeze process can unfreeze the frozen filesystem actually when multiple
489 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
490 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
491 * actually.
492 */
493 struct super_block *freeze_bdev(struct block_device *bdev)
494 {
495 struct super_block *sb;
496 int error = 0;
497
498 mutex_lock(&bdev->bd_fsfreeze_mutex);
499 if (++bdev->bd_fsfreeze_count > 1) {
500 /*
501 * We don't even need to grab a reference - the first call
502 * to freeze_bdev grab an active reference and only the last
503 * thaw_bdev drops it.
504 */
505 sb = get_super(bdev);
506 if (sb)
507 drop_super(sb);
508 mutex_unlock(&bdev->bd_fsfreeze_mutex);
509 return sb;
510 }
511
512 sb = get_active_super(bdev);
513 if (!sb)
514 goto out;
515 if (sb->s_op->freeze_super)
516 error = sb->s_op->freeze_super(sb);
517 else
518 error = freeze_super(sb);
519 if (error) {
520 deactivate_super(sb);
521 bdev->bd_fsfreeze_count--;
522 mutex_unlock(&bdev->bd_fsfreeze_mutex);
523 return ERR_PTR(error);
524 }
525 deactivate_super(sb);
526 out:
527 sync_blockdev(bdev);
528 mutex_unlock(&bdev->bd_fsfreeze_mutex);
529 return sb; /* thaw_bdev releases s->s_umount */
530 }
531 EXPORT_SYMBOL(freeze_bdev);
532
533 /**
534 * thaw_bdev -- unlock filesystem
535 * @bdev: blockdevice to unlock
536 * @sb: associated superblock
537 *
538 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
539 */
540 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
541 {
542 int error = -EINVAL;
543
544 mutex_lock(&bdev->bd_fsfreeze_mutex);
545 if (!bdev->bd_fsfreeze_count)
546 goto out;
547
548 error = 0;
549 if (--bdev->bd_fsfreeze_count > 0)
550 goto out;
551
552 if (!sb)
553 goto out;
554
555 if (sb->s_op->thaw_super)
556 error = sb->s_op->thaw_super(sb);
557 else
558 error = thaw_super(sb);
559 if (error)
560 bdev->bd_fsfreeze_count++;
561 out:
562 mutex_unlock(&bdev->bd_fsfreeze_mutex);
563 return error;
564 }
565 EXPORT_SYMBOL(thaw_bdev);
566
567 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
568 {
569 return block_write_full_page(page, blkdev_get_block, wbc);
570 }
571
572 static int blkdev_readpage(struct file * file, struct page * page)
573 {
574 return block_read_full_page(page, blkdev_get_block);
575 }
576
577 static int blkdev_readpages(struct file *file, struct address_space *mapping,
578 struct list_head *pages, unsigned nr_pages)
579 {
580 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
581 }
582
583 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
584 loff_t pos, unsigned len, unsigned flags,
585 struct page **pagep, void **fsdata)
586 {
587 return block_write_begin(mapping, pos, len, flags, pagep,
588 blkdev_get_block);
589 }
590
591 static int blkdev_write_end(struct file *file, struct address_space *mapping,
592 loff_t pos, unsigned len, unsigned copied,
593 struct page *page, void *fsdata)
594 {
595 int ret;
596 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
597
598 unlock_page(page);
599 put_page(page);
600
601 return ret;
602 }
603
604 /*
605 * private llseek:
606 * for a block special file file_inode(file)->i_size is zero
607 * so we compute the size by hand (just as in block_read/write above)
608 */
609 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
610 {
611 struct inode *bd_inode = bdev_file_inode(file);
612 loff_t retval;
613
614 inode_lock(bd_inode);
615 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
616 inode_unlock(bd_inode);
617 return retval;
618 }
619
620 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
621 {
622 struct inode *bd_inode = bdev_file_inode(filp);
623 struct block_device *bdev = I_BDEV(bd_inode);
624 int error;
625
626 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
627 if (error)
628 return error;
629
630 /*
631 * There is no need to serialise calls to blkdev_issue_flush with
632 * i_mutex and doing so causes performance issues with concurrent
633 * O_SYNC writers to a block device.
634 */
635 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
636 if (error == -EOPNOTSUPP)
637 error = 0;
638
639 return error;
640 }
641 EXPORT_SYMBOL(blkdev_fsync);
642
643 /**
644 * bdev_read_page() - Start reading a page from a block device
645 * @bdev: The device to read the page from
646 * @sector: The offset on the device to read the page to (need not be aligned)
647 * @page: The page to read
648 *
649 * On entry, the page should be locked. It will be unlocked when the page
650 * has been read. If the block driver implements rw_page synchronously,
651 * that will be true on exit from this function, but it need not be.
652 *
653 * Errors returned by this function are usually "soft", eg out of memory, or
654 * queue full; callers should try a different route to read this page rather
655 * than propagate an error back up the stack.
656 *
657 * Return: negative errno if an error occurs, 0 if submission was successful.
658 */
659 int bdev_read_page(struct block_device *bdev, sector_t sector,
660 struct page *page)
661 {
662 const struct block_device_operations *ops = bdev->bd_disk->fops;
663 int result = -EOPNOTSUPP;
664
665 if (!ops->rw_page || bdev_get_integrity(bdev))
666 return result;
667
668 result = blk_queue_enter(bdev->bd_queue, false);
669 if (result)
670 return result;
671 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
672 blk_queue_exit(bdev->bd_queue);
673 return result;
674 }
675 EXPORT_SYMBOL_GPL(bdev_read_page);
676
677 /**
678 * bdev_write_page() - Start writing a page to a block device
679 * @bdev: The device to write the page to
680 * @sector: The offset on the device to write the page to (need not be aligned)
681 * @page: The page to write
682 * @wbc: The writeback_control for the write
683 *
684 * On entry, the page should be locked and not currently under writeback.
685 * On exit, if the write started successfully, the page will be unlocked and
686 * under writeback. If the write failed already (eg the driver failed to
687 * queue the page to the device), the page will still be locked. If the
688 * caller is a ->writepage implementation, it will need to unlock the page.
689 *
690 * Errors returned by this function are usually "soft", eg out of memory, or
691 * queue full; callers should try a different route to write this page rather
692 * than propagate an error back up the stack.
693 *
694 * Return: negative errno if an error occurs, 0 if submission was successful.
695 */
696 int bdev_write_page(struct block_device *bdev, sector_t sector,
697 struct page *page, struct writeback_control *wbc)
698 {
699 int result;
700 const struct block_device_operations *ops = bdev->bd_disk->fops;
701
702 if (!ops->rw_page || bdev_get_integrity(bdev))
703 return -EOPNOTSUPP;
704 result = blk_queue_enter(bdev->bd_queue, false);
705 if (result)
706 return result;
707
708 set_page_writeback(page);
709 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
710 if (result)
711 end_page_writeback(page);
712 else
713 unlock_page(page);
714 blk_queue_exit(bdev->bd_queue);
715 return result;
716 }
717 EXPORT_SYMBOL_GPL(bdev_write_page);
718
719 /**
720 * bdev_direct_access() - Get the address for directly-accessibly memory
721 * @bdev: The device containing the memory
722 * @dax: control and output parameters for ->direct_access
723 *
724 * If a block device is made up of directly addressable memory, this function
725 * will tell the caller the PFN and the address of the memory. The address
726 * may be directly dereferenced within the kernel without the need to call
727 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
728 * page tables.
729 *
730 * Return: negative errno if an error occurs, otherwise the number of bytes
731 * accessible at this address.
732 */
733 long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax)
734 {
735 sector_t sector = dax->sector;
736 long avail, size = dax->size;
737 const struct block_device_operations *ops = bdev->bd_disk->fops;
738
739 /*
740 * The device driver is allowed to sleep, in order to make the
741 * memory directly accessible.
742 */
743 might_sleep();
744
745 if (size < 0)
746 return size;
747 if (!blk_queue_dax(bdev_get_queue(bdev)) || !ops->direct_access)
748 return -EOPNOTSUPP;
749 if ((sector + DIV_ROUND_UP(size, 512)) >
750 part_nr_sects_read(bdev->bd_part))
751 return -ERANGE;
752 sector += get_start_sect(bdev);
753 if (sector % (PAGE_SIZE / 512))
754 return -EINVAL;
755 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn, size);
756 if (!avail)
757 return -ERANGE;
758 if (avail > 0 && avail & ~PAGE_MASK)
759 return -ENXIO;
760 return min(avail, size);
761 }
762 EXPORT_SYMBOL_GPL(bdev_direct_access);
763
764 /**
765 * bdev_dax_supported() - Check if the device supports dax for filesystem
766 * @sb: The superblock of the device
767 * @blocksize: The block size of the device
768 *
769 * This is a library function for filesystems to check if the block device
770 * can be mounted with dax option.
771 *
772 * Return: negative errno if unsupported, 0 if supported.
773 */
774 int bdev_dax_supported(struct super_block *sb, int blocksize)
775 {
776 struct blk_dax_ctl dax = {
777 .sector = 0,
778 .size = PAGE_SIZE,
779 };
780 int err;
781
782 if (blocksize != PAGE_SIZE) {
783 vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax");
784 return -EINVAL;
785 }
786
787 err = bdev_direct_access(sb->s_bdev, &dax);
788 if (err < 0) {
789 switch (err) {
790 case -EOPNOTSUPP:
791 vfs_msg(sb, KERN_ERR,
792 "error: device does not support dax");
793 break;
794 case -EINVAL:
795 vfs_msg(sb, KERN_ERR,
796 "error: unaligned partition for dax");
797 break;
798 default:
799 vfs_msg(sb, KERN_ERR,
800 "error: dax access failed (%d)", err);
801 }
802 return err;
803 }
804
805 return 0;
806 }
807 EXPORT_SYMBOL_GPL(bdev_dax_supported);
808
809 /**
810 * bdev_dax_capable() - Return if the raw device is capable for dax
811 * @bdev: The device for raw block device access
812 */
813 bool bdev_dax_capable(struct block_device *bdev)
814 {
815 struct blk_dax_ctl dax = {
816 .size = PAGE_SIZE,
817 };
818
819 if (!IS_ENABLED(CONFIG_FS_DAX))
820 return false;
821
822 dax.sector = 0;
823 if (bdev_direct_access(bdev, &dax) < 0)
824 return false;
825
826 dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512);
827 if (bdev_direct_access(bdev, &dax) < 0)
828 return false;
829
830 return true;
831 }
832
833 /*
834 * pseudo-fs
835 */
836
837 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
838 static struct kmem_cache * bdev_cachep __read_mostly;
839
840 static struct inode *bdev_alloc_inode(struct super_block *sb)
841 {
842 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
843 if (!ei)
844 return NULL;
845 return &ei->vfs_inode;
846 }
847
848 static void bdev_i_callback(struct rcu_head *head)
849 {
850 struct inode *inode = container_of(head, struct inode, i_rcu);
851 struct bdev_inode *bdi = BDEV_I(inode);
852
853 kmem_cache_free(bdev_cachep, bdi);
854 }
855
856 static void bdev_destroy_inode(struct inode *inode)
857 {
858 call_rcu(&inode->i_rcu, bdev_i_callback);
859 }
860
861 static void init_once(void *foo)
862 {
863 struct bdev_inode *ei = (struct bdev_inode *) foo;
864 struct block_device *bdev = &ei->bdev;
865
866 memset(bdev, 0, sizeof(*bdev));
867 mutex_init(&bdev->bd_mutex);
868 INIT_LIST_HEAD(&bdev->bd_list);
869 #ifdef CONFIG_SYSFS
870 INIT_LIST_HEAD(&bdev->bd_holder_disks);
871 #endif
872 inode_init_once(&ei->vfs_inode);
873 /* Initialize mutex for freeze. */
874 mutex_init(&bdev->bd_fsfreeze_mutex);
875 }
876
877 static void bdev_evict_inode(struct inode *inode)
878 {
879 struct block_device *bdev = &BDEV_I(inode)->bdev;
880 truncate_inode_pages_final(&inode->i_data);
881 invalidate_inode_buffers(inode); /* is it needed here? */
882 clear_inode(inode);
883 spin_lock(&bdev_lock);
884 list_del_init(&bdev->bd_list);
885 spin_unlock(&bdev_lock);
886 }
887
888 static const struct super_operations bdev_sops = {
889 .statfs = simple_statfs,
890 .alloc_inode = bdev_alloc_inode,
891 .destroy_inode = bdev_destroy_inode,
892 .drop_inode = generic_delete_inode,
893 .evict_inode = bdev_evict_inode,
894 };
895
896 static struct dentry *bd_mount(struct file_system_type *fs_type,
897 int flags, const char *dev_name, void *data)
898 {
899 struct dentry *dent;
900 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
901 if (!IS_ERR(dent))
902 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
903 return dent;
904 }
905
906 static struct file_system_type bd_type = {
907 .name = "bdev",
908 .mount = bd_mount,
909 .kill_sb = kill_anon_super,
910 };
911
912 struct super_block *blockdev_superblock __read_mostly;
913 EXPORT_SYMBOL_GPL(blockdev_superblock);
914
915 void __init bdev_cache_init(void)
916 {
917 int err;
918 static struct vfsmount *bd_mnt;
919
920 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
921 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
922 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
923 init_once);
924 err = register_filesystem(&bd_type);
925 if (err)
926 panic("Cannot register bdev pseudo-fs");
927 bd_mnt = kern_mount(&bd_type);
928 if (IS_ERR(bd_mnt))
929 panic("Cannot create bdev pseudo-fs");
930 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
931 }
932
933 /*
934 * Most likely _very_ bad one - but then it's hardly critical for small
935 * /dev and can be fixed when somebody will need really large one.
936 * Keep in mind that it will be fed through icache hash function too.
937 */
938 static inline unsigned long hash(dev_t dev)
939 {
940 return MAJOR(dev)+MINOR(dev);
941 }
942
943 static int bdev_test(struct inode *inode, void *data)
944 {
945 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
946 }
947
948 static int bdev_set(struct inode *inode, void *data)
949 {
950 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
951 return 0;
952 }
953
954 static LIST_HEAD(all_bdevs);
955
956 struct block_device *bdget(dev_t dev)
957 {
958 struct block_device *bdev;
959 struct inode *inode;
960
961 inode = iget5_locked(blockdev_superblock, hash(dev),
962 bdev_test, bdev_set, &dev);
963
964 if (!inode)
965 return NULL;
966
967 bdev = &BDEV_I(inode)->bdev;
968
969 if (inode->i_state & I_NEW) {
970 bdev->bd_contains = NULL;
971 bdev->bd_super = NULL;
972 bdev->bd_inode = inode;
973 bdev->bd_block_size = (1 << inode->i_blkbits);
974 bdev->bd_part_count = 0;
975 bdev->bd_invalidated = 0;
976 inode->i_mode = S_IFBLK;
977 inode->i_rdev = dev;
978 inode->i_bdev = bdev;
979 inode->i_data.a_ops = &def_blk_aops;
980 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
981 spin_lock(&bdev_lock);
982 list_add(&bdev->bd_list, &all_bdevs);
983 spin_unlock(&bdev_lock);
984 unlock_new_inode(inode);
985 }
986 return bdev;
987 }
988
989 EXPORT_SYMBOL(bdget);
990
991 /**
992 * bdgrab -- Grab a reference to an already referenced block device
993 * @bdev: Block device to grab a reference to.
994 */
995 struct block_device *bdgrab(struct block_device *bdev)
996 {
997 ihold(bdev->bd_inode);
998 return bdev;
999 }
1000 EXPORT_SYMBOL(bdgrab);
1001
1002 long nr_blockdev_pages(void)
1003 {
1004 struct block_device *bdev;
1005 long ret = 0;
1006 spin_lock(&bdev_lock);
1007 list_for_each_entry(bdev, &all_bdevs, bd_list) {
1008 ret += bdev->bd_inode->i_mapping->nrpages;
1009 }
1010 spin_unlock(&bdev_lock);
1011 return ret;
1012 }
1013
1014 void bdput(struct block_device *bdev)
1015 {
1016 iput(bdev->bd_inode);
1017 }
1018
1019 EXPORT_SYMBOL(bdput);
1020
1021 static struct block_device *bd_acquire(struct inode *inode)
1022 {
1023 struct block_device *bdev;
1024
1025 spin_lock(&bdev_lock);
1026 bdev = inode->i_bdev;
1027 if (bdev) {
1028 bdgrab(bdev);
1029 spin_unlock(&bdev_lock);
1030 return bdev;
1031 }
1032 spin_unlock(&bdev_lock);
1033
1034 bdev = bdget(inode->i_rdev);
1035 if (bdev) {
1036 spin_lock(&bdev_lock);
1037 if (!inode->i_bdev) {
1038 /*
1039 * We take an additional reference to bd_inode,
1040 * and it's released in clear_inode() of inode.
1041 * So, we can access it via ->i_mapping always
1042 * without igrab().
1043 */
1044 bdgrab(bdev);
1045 inode->i_bdev = bdev;
1046 inode->i_mapping = bdev->bd_inode->i_mapping;
1047 }
1048 spin_unlock(&bdev_lock);
1049 }
1050 return bdev;
1051 }
1052
1053 /* Call when you free inode */
1054
1055 void bd_forget(struct inode *inode)
1056 {
1057 struct block_device *bdev = NULL;
1058
1059 spin_lock(&bdev_lock);
1060 if (!sb_is_blkdev_sb(inode->i_sb))
1061 bdev = inode->i_bdev;
1062 inode->i_bdev = NULL;
1063 inode->i_mapping = &inode->i_data;
1064 spin_unlock(&bdev_lock);
1065
1066 if (bdev)
1067 bdput(bdev);
1068 }
1069
1070 /**
1071 * bd_may_claim - test whether a block device can be claimed
1072 * @bdev: block device of interest
1073 * @whole: whole block device containing @bdev, may equal @bdev
1074 * @holder: holder trying to claim @bdev
1075 *
1076 * Test whether @bdev can be claimed by @holder.
1077 *
1078 * CONTEXT:
1079 * spin_lock(&bdev_lock).
1080 *
1081 * RETURNS:
1082 * %true if @bdev can be claimed, %false otherwise.
1083 */
1084 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1085 void *holder)
1086 {
1087 if (bdev->bd_holder == holder)
1088 return true; /* already a holder */
1089 else if (bdev->bd_holder != NULL)
1090 return false; /* held by someone else */
1091 else if (whole == bdev)
1092 return true; /* is a whole device which isn't held */
1093
1094 else if (whole->bd_holder == bd_may_claim)
1095 return true; /* is a partition of a device that is being partitioned */
1096 else if (whole->bd_holder != NULL)
1097 return false; /* is a partition of a held device */
1098 else
1099 return true; /* is a partition of an un-held device */
1100 }
1101
1102 /**
1103 * bd_prepare_to_claim - prepare to claim a block device
1104 * @bdev: block device of interest
1105 * @whole: the whole device containing @bdev, may equal @bdev
1106 * @holder: holder trying to claim @bdev
1107 *
1108 * Prepare to claim @bdev. This function fails if @bdev is already
1109 * claimed by another holder and waits if another claiming is in
1110 * progress. This function doesn't actually claim. On successful
1111 * return, the caller has ownership of bd_claiming and bd_holder[s].
1112 *
1113 * CONTEXT:
1114 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1115 * it multiple times.
1116 *
1117 * RETURNS:
1118 * 0 if @bdev can be claimed, -EBUSY otherwise.
1119 */
1120 static int bd_prepare_to_claim(struct block_device *bdev,
1121 struct block_device *whole, void *holder)
1122 {
1123 retry:
1124 /* if someone else claimed, fail */
1125 if (!bd_may_claim(bdev, whole, holder))
1126 return -EBUSY;
1127
1128 /* if claiming is already in progress, wait for it to finish */
1129 if (whole->bd_claiming) {
1130 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1131 DEFINE_WAIT(wait);
1132
1133 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1134 spin_unlock(&bdev_lock);
1135 schedule();
1136 finish_wait(wq, &wait);
1137 spin_lock(&bdev_lock);
1138 goto retry;
1139 }
1140
1141 /* yay, all mine */
1142 return 0;
1143 }
1144
1145 /**
1146 * bd_start_claiming - start claiming a block device
1147 * @bdev: block device of interest
1148 * @holder: holder trying to claim @bdev
1149 *
1150 * @bdev is about to be opened exclusively. Check @bdev can be opened
1151 * exclusively and mark that an exclusive open is in progress. Each
1152 * successful call to this function must be matched with a call to
1153 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1154 * fail).
1155 *
1156 * This function is used to gain exclusive access to the block device
1157 * without actually causing other exclusive open attempts to fail. It
1158 * should be used when the open sequence itself requires exclusive
1159 * access but may subsequently fail.
1160 *
1161 * CONTEXT:
1162 * Might sleep.
1163 *
1164 * RETURNS:
1165 * Pointer to the block device containing @bdev on success, ERR_PTR()
1166 * value on failure.
1167 */
1168 static struct block_device *bd_start_claiming(struct block_device *bdev,
1169 void *holder)
1170 {
1171 struct gendisk *disk;
1172 struct block_device *whole;
1173 int partno, err;
1174
1175 might_sleep();
1176
1177 /*
1178 * @bdev might not have been initialized properly yet, look up
1179 * and grab the outer block device the hard way.
1180 */
1181 disk = get_gendisk(bdev->bd_dev, &partno);
1182 if (!disk)
1183 return ERR_PTR(-ENXIO);
1184
1185 /*
1186 * Normally, @bdev should equal what's returned from bdget_disk()
1187 * if partno is 0; however, some drivers (floppy) use multiple
1188 * bdev's for the same physical device and @bdev may be one of the
1189 * aliases. Keep @bdev if partno is 0. This means claimer
1190 * tracking is broken for those devices but it has always been that
1191 * way.
1192 */
1193 if (partno)
1194 whole = bdget_disk(disk, 0);
1195 else
1196 whole = bdgrab(bdev);
1197
1198 module_put(disk->fops->owner);
1199 put_disk(disk);
1200 if (!whole)
1201 return ERR_PTR(-ENOMEM);
1202
1203 /* prepare to claim, if successful, mark claiming in progress */
1204 spin_lock(&bdev_lock);
1205
1206 err = bd_prepare_to_claim(bdev, whole, holder);
1207 if (err == 0) {
1208 whole->bd_claiming = holder;
1209 spin_unlock(&bdev_lock);
1210 return whole;
1211 } else {
1212 spin_unlock(&bdev_lock);
1213 bdput(whole);
1214 return ERR_PTR(err);
1215 }
1216 }
1217
1218 #ifdef CONFIG_SYSFS
1219 struct bd_holder_disk {
1220 struct list_head list;
1221 struct gendisk *disk;
1222 int refcnt;
1223 };
1224
1225 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1226 struct gendisk *disk)
1227 {
1228 struct bd_holder_disk *holder;
1229
1230 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1231 if (holder->disk == disk)
1232 return holder;
1233 return NULL;
1234 }
1235
1236 static int add_symlink(struct kobject *from, struct kobject *to)
1237 {
1238 return sysfs_create_link(from, to, kobject_name(to));
1239 }
1240
1241 static void del_symlink(struct kobject *from, struct kobject *to)
1242 {
1243 sysfs_remove_link(from, kobject_name(to));
1244 }
1245
1246 /**
1247 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1248 * @bdev: the claimed slave bdev
1249 * @disk: the holding disk
1250 *
1251 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1252 *
1253 * This functions creates the following sysfs symlinks.
1254 *
1255 * - from "slaves" directory of the holder @disk to the claimed @bdev
1256 * - from "holders" directory of the @bdev to the holder @disk
1257 *
1258 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1259 * passed to bd_link_disk_holder(), then:
1260 *
1261 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1262 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1263 *
1264 * The caller must have claimed @bdev before calling this function and
1265 * ensure that both @bdev and @disk are valid during the creation and
1266 * lifetime of these symlinks.
1267 *
1268 * CONTEXT:
1269 * Might sleep.
1270 *
1271 * RETURNS:
1272 * 0 on success, -errno on failure.
1273 */
1274 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1275 {
1276 struct bd_holder_disk *holder;
1277 int ret = 0;
1278
1279 mutex_lock(&bdev->bd_mutex);
1280
1281 WARN_ON_ONCE(!bdev->bd_holder);
1282
1283 /* FIXME: remove the following once add_disk() handles errors */
1284 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1285 goto out_unlock;
1286
1287 holder = bd_find_holder_disk(bdev, disk);
1288 if (holder) {
1289 holder->refcnt++;
1290 goto out_unlock;
1291 }
1292
1293 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1294 if (!holder) {
1295 ret = -ENOMEM;
1296 goto out_unlock;
1297 }
1298
1299 INIT_LIST_HEAD(&holder->list);
1300 holder->disk = disk;
1301 holder->refcnt = 1;
1302
1303 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1304 if (ret)
1305 goto out_free;
1306
1307 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1308 if (ret)
1309 goto out_del;
1310 /*
1311 * bdev could be deleted beneath us which would implicitly destroy
1312 * the holder directory. Hold on to it.
1313 */
1314 kobject_get(bdev->bd_part->holder_dir);
1315
1316 list_add(&holder->list, &bdev->bd_holder_disks);
1317 goto out_unlock;
1318
1319 out_del:
1320 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1321 out_free:
1322 kfree(holder);
1323 out_unlock:
1324 mutex_unlock(&bdev->bd_mutex);
1325 return ret;
1326 }
1327 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1328
1329 /**
1330 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1331 * @bdev: the calimed slave bdev
1332 * @disk: the holding disk
1333 *
1334 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1335 *
1336 * CONTEXT:
1337 * Might sleep.
1338 */
1339 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1340 {
1341 struct bd_holder_disk *holder;
1342
1343 mutex_lock(&bdev->bd_mutex);
1344
1345 holder = bd_find_holder_disk(bdev, disk);
1346
1347 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1348 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1349 del_symlink(bdev->bd_part->holder_dir,
1350 &disk_to_dev(disk)->kobj);
1351 kobject_put(bdev->bd_part->holder_dir);
1352 list_del_init(&holder->list);
1353 kfree(holder);
1354 }
1355
1356 mutex_unlock(&bdev->bd_mutex);
1357 }
1358 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1359 #endif
1360
1361 /**
1362 * flush_disk - invalidates all buffer-cache entries on a disk
1363 *
1364 * @bdev: struct block device to be flushed
1365 * @kill_dirty: flag to guide handling of dirty inodes
1366 *
1367 * Invalidates all buffer-cache entries on a disk. It should be called
1368 * when a disk has been changed -- either by a media change or online
1369 * resize.
1370 */
1371 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1372 {
1373 if (__invalidate_device(bdev, kill_dirty)) {
1374 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1375 "resized disk %s\n",
1376 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1377 }
1378
1379 if (!bdev->bd_disk)
1380 return;
1381 if (disk_part_scan_enabled(bdev->bd_disk))
1382 bdev->bd_invalidated = 1;
1383 }
1384
1385 /**
1386 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1387 * @disk: struct gendisk to check
1388 * @bdev: struct bdev to adjust.
1389 *
1390 * This routine checks to see if the bdev size does not match the disk size
1391 * and adjusts it if it differs.
1392 */
1393 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1394 {
1395 loff_t disk_size, bdev_size;
1396
1397 disk_size = (loff_t)get_capacity(disk) << 9;
1398 bdev_size = i_size_read(bdev->bd_inode);
1399 if (disk_size != bdev_size) {
1400 printk(KERN_INFO
1401 "%s: detected capacity change from %lld to %lld\n",
1402 disk->disk_name, bdev_size, disk_size);
1403 i_size_write(bdev->bd_inode, disk_size);
1404 flush_disk(bdev, false);
1405 }
1406 }
1407 EXPORT_SYMBOL(check_disk_size_change);
1408
1409 /**
1410 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1411 * @disk: struct gendisk to be revalidated
1412 *
1413 * This routine is a wrapper for lower-level driver's revalidate_disk
1414 * call-backs. It is used to do common pre and post operations needed
1415 * for all revalidate_disk operations.
1416 */
1417 int revalidate_disk(struct gendisk *disk)
1418 {
1419 struct block_device *bdev;
1420 int ret = 0;
1421
1422 if (disk->fops->revalidate_disk)
1423 ret = disk->fops->revalidate_disk(disk);
1424 bdev = bdget_disk(disk, 0);
1425 if (!bdev)
1426 return ret;
1427
1428 mutex_lock(&bdev->bd_mutex);
1429 check_disk_size_change(disk, bdev);
1430 bdev->bd_invalidated = 0;
1431 mutex_unlock(&bdev->bd_mutex);
1432 bdput(bdev);
1433 return ret;
1434 }
1435 EXPORT_SYMBOL(revalidate_disk);
1436
1437 /*
1438 * This routine checks whether a removable media has been changed,
1439 * and invalidates all buffer-cache-entries in that case. This
1440 * is a relatively slow routine, so we have to try to minimize using
1441 * it. Thus it is called only upon a 'mount' or 'open'. This
1442 * is the best way of combining speed and utility, I think.
1443 * People changing diskettes in the middle of an operation deserve
1444 * to lose :-)
1445 */
1446 int check_disk_change(struct block_device *bdev)
1447 {
1448 struct gendisk *disk = bdev->bd_disk;
1449 const struct block_device_operations *bdops = disk->fops;
1450 unsigned int events;
1451
1452 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1453 DISK_EVENT_EJECT_REQUEST);
1454 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1455 return 0;
1456
1457 flush_disk(bdev, true);
1458 if (bdops->revalidate_disk)
1459 bdops->revalidate_disk(bdev->bd_disk);
1460 return 1;
1461 }
1462
1463 EXPORT_SYMBOL(check_disk_change);
1464
1465 void bd_set_size(struct block_device *bdev, loff_t size)
1466 {
1467 unsigned bsize = bdev_logical_block_size(bdev);
1468
1469 inode_lock(bdev->bd_inode);
1470 i_size_write(bdev->bd_inode, size);
1471 inode_unlock(bdev->bd_inode);
1472 while (bsize < PAGE_SIZE) {
1473 if (size & bsize)
1474 break;
1475 bsize <<= 1;
1476 }
1477 bdev->bd_block_size = bsize;
1478 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1479 }
1480 EXPORT_SYMBOL(bd_set_size);
1481
1482 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1483
1484 /*
1485 * bd_mutex locking:
1486 *
1487 * mutex_lock(part->bd_mutex)
1488 * mutex_lock_nested(whole->bd_mutex, 1)
1489 */
1490
1491 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1492 {
1493 struct gendisk *disk;
1494 struct module *owner;
1495 int ret;
1496 int partno;
1497 int perm = 0;
1498
1499 if (mode & FMODE_READ)
1500 perm |= MAY_READ;
1501 if (mode & FMODE_WRITE)
1502 perm |= MAY_WRITE;
1503 /*
1504 * hooks: /n/, see "layering violations".
1505 */
1506 if (!for_part) {
1507 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1508 if (ret != 0) {
1509 bdput(bdev);
1510 return ret;
1511 }
1512 }
1513
1514 restart:
1515
1516 ret = -ENXIO;
1517 disk = get_gendisk(bdev->bd_dev, &partno);
1518 if (!disk)
1519 goto out;
1520 owner = disk->fops->owner;
1521
1522 disk_block_events(disk);
1523 mutex_lock_nested(&bdev->bd_mutex, for_part);
1524 if (!bdev->bd_openers) {
1525 bdev->bd_disk = disk;
1526 bdev->bd_queue = disk->queue;
1527 bdev->bd_contains = bdev;
1528
1529 if (!partno) {
1530 ret = -ENXIO;
1531 bdev->bd_part = disk_get_part(disk, partno);
1532 if (!bdev->bd_part)
1533 goto out_clear;
1534
1535 ret = 0;
1536 if (disk->fops->open) {
1537 ret = disk->fops->open(bdev, mode);
1538 if (ret == -ERESTARTSYS) {
1539 /* Lost a race with 'disk' being
1540 * deleted, try again.
1541 * See md.c
1542 */
1543 disk_put_part(bdev->bd_part);
1544 bdev->bd_part = NULL;
1545 bdev->bd_disk = NULL;
1546 bdev->bd_queue = NULL;
1547 mutex_unlock(&bdev->bd_mutex);
1548 disk_unblock_events(disk);
1549 put_disk(disk);
1550 module_put(owner);
1551 goto restart;
1552 }
1553 }
1554
1555 if (!ret)
1556 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1557
1558 /*
1559 * If the device is invalidated, rescan partition
1560 * if open succeeded or failed with -ENOMEDIUM.
1561 * The latter is necessary to prevent ghost
1562 * partitions on a removed medium.
1563 */
1564 if (bdev->bd_invalidated) {
1565 if (!ret)
1566 rescan_partitions(disk, bdev);
1567 else if (ret == -ENOMEDIUM)
1568 invalidate_partitions(disk, bdev);
1569 }
1570
1571 if (ret)
1572 goto out_clear;
1573 } else {
1574 struct block_device *whole;
1575 whole = bdget_disk(disk, 0);
1576 ret = -ENOMEM;
1577 if (!whole)
1578 goto out_clear;
1579 BUG_ON(for_part);
1580 ret = __blkdev_get(whole, mode, 1);
1581 if (ret)
1582 goto out_clear;
1583 bdev->bd_contains = whole;
1584 bdev->bd_part = disk_get_part(disk, partno);
1585 if (!(disk->flags & GENHD_FL_UP) ||
1586 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1587 ret = -ENXIO;
1588 goto out_clear;
1589 }
1590 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1591 }
1592 } else {
1593 if (bdev->bd_contains == bdev) {
1594 ret = 0;
1595 if (bdev->bd_disk->fops->open)
1596 ret = bdev->bd_disk->fops->open(bdev, mode);
1597 /* the same as first opener case, read comment there */
1598 if (bdev->bd_invalidated) {
1599 if (!ret)
1600 rescan_partitions(bdev->bd_disk, bdev);
1601 else if (ret == -ENOMEDIUM)
1602 invalidate_partitions(bdev->bd_disk, bdev);
1603 }
1604 if (ret)
1605 goto out_unlock_bdev;
1606 }
1607 /* only one opener holds refs to the module and disk */
1608 put_disk(disk);
1609 module_put(owner);
1610 }
1611 bdev->bd_openers++;
1612 if (for_part)
1613 bdev->bd_part_count++;
1614 mutex_unlock(&bdev->bd_mutex);
1615 disk_unblock_events(disk);
1616 return 0;
1617
1618 out_clear:
1619 disk_put_part(bdev->bd_part);
1620 bdev->bd_disk = NULL;
1621 bdev->bd_part = NULL;
1622 bdev->bd_queue = NULL;
1623 if (bdev != bdev->bd_contains)
1624 __blkdev_put(bdev->bd_contains, mode, 1);
1625 bdev->bd_contains = NULL;
1626 out_unlock_bdev:
1627 mutex_unlock(&bdev->bd_mutex);
1628 disk_unblock_events(disk);
1629 put_disk(disk);
1630 module_put(owner);
1631 out:
1632 bdput(bdev);
1633
1634 return ret;
1635 }
1636
1637 /**
1638 * blkdev_get - open a block device
1639 * @bdev: block_device to open
1640 * @mode: FMODE_* mask
1641 * @holder: exclusive holder identifier
1642 *
1643 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1644 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1645 * @holder is invalid. Exclusive opens may nest for the same @holder.
1646 *
1647 * On success, the reference count of @bdev is unchanged. On failure,
1648 * @bdev is put.
1649 *
1650 * CONTEXT:
1651 * Might sleep.
1652 *
1653 * RETURNS:
1654 * 0 on success, -errno on failure.
1655 */
1656 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1657 {
1658 struct block_device *whole = NULL;
1659 int res;
1660
1661 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1662
1663 if ((mode & FMODE_EXCL) && holder) {
1664 whole = bd_start_claiming(bdev, holder);
1665 if (IS_ERR(whole)) {
1666 bdput(bdev);
1667 return PTR_ERR(whole);
1668 }
1669 }
1670
1671 res = __blkdev_get(bdev, mode, 0);
1672
1673 if (whole) {
1674 struct gendisk *disk = whole->bd_disk;
1675
1676 /* finish claiming */
1677 mutex_lock(&bdev->bd_mutex);
1678 spin_lock(&bdev_lock);
1679
1680 if (!res) {
1681 BUG_ON(!bd_may_claim(bdev, whole, holder));
1682 /*
1683 * Note that for a whole device bd_holders
1684 * will be incremented twice, and bd_holder
1685 * will be set to bd_may_claim before being
1686 * set to holder
1687 */
1688 whole->bd_holders++;
1689 whole->bd_holder = bd_may_claim;
1690 bdev->bd_holders++;
1691 bdev->bd_holder = holder;
1692 }
1693
1694 /* tell others that we're done */
1695 BUG_ON(whole->bd_claiming != holder);
1696 whole->bd_claiming = NULL;
1697 wake_up_bit(&whole->bd_claiming, 0);
1698
1699 spin_unlock(&bdev_lock);
1700
1701 /*
1702 * Block event polling for write claims if requested. Any
1703 * write holder makes the write_holder state stick until
1704 * all are released. This is good enough and tracking
1705 * individual writeable reference is too fragile given the
1706 * way @mode is used in blkdev_get/put().
1707 */
1708 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1709 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1710 bdev->bd_write_holder = true;
1711 disk_block_events(disk);
1712 }
1713
1714 mutex_unlock(&bdev->bd_mutex);
1715 bdput(whole);
1716 }
1717
1718 return res;
1719 }
1720 EXPORT_SYMBOL(blkdev_get);
1721
1722 /**
1723 * blkdev_get_by_path - open a block device by name
1724 * @path: path to the block device to open
1725 * @mode: FMODE_* mask
1726 * @holder: exclusive holder identifier
1727 *
1728 * Open the blockdevice described by the device file at @path. @mode
1729 * and @holder are identical to blkdev_get().
1730 *
1731 * On success, the returned block_device has reference count of one.
1732 *
1733 * CONTEXT:
1734 * Might sleep.
1735 *
1736 * RETURNS:
1737 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1738 */
1739 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1740 void *holder)
1741 {
1742 struct block_device *bdev;
1743 int perm = 0;
1744 int err;
1745
1746 if (mode & FMODE_READ)
1747 perm |= MAY_READ;
1748 if (mode & FMODE_WRITE)
1749 perm |= MAY_WRITE;
1750 bdev = lookup_bdev(path, perm);
1751 if (IS_ERR(bdev))
1752 return bdev;
1753
1754 err = blkdev_get(bdev, mode, holder);
1755 if (err)
1756 return ERR_PTR(err);
1757
1758 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1759 blkdev_put(bdev, mode);
1760 return ERR_PTR(-EACCES);
1761 }
1762
1763 return bdev;
1764 }
1765 EXPORT_SYMBOL(blkdev_get_by_path);
1766
1767 /**
1768 * blkdev_get_by_dev - open a block device by device number
1769 * @dev: device number of block device to open
1770 * @mode: FMODE_* mask
1771 * @holder: exclusive holder identifier
1772 *
1773 * Open the blockdevice described by device number @dev. @mode and
1774 * @holder are identical to blkdev_get().
1775 *
1776 * Use it ONLY if you really do not have anything better - i.e. when
1777 * you are behind a truly sucky interface and all you are given is a
1778 * device number. _Never_ to be used for internal purposes. If you
1779 * ever need it - reconsider your API.
1780 *
1781 * On success, the returned block_device has reference count of one.
1782 *
1783 * CONTEXT:
1784 * Might sleep.
1785 *
1786 * RETURNS:
1787 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1788 */
1789 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1790 {
1791 struct block_device *bdev;
1792 int err;
1793
1794 bdev = bdget(dev);
1795 if (!bdev)
1796 return ERR_PTR(-ENOMEM);
1797
1798 err = blkdev_get(bdev, mode, holder);
1799 if (err)
1800 return ERR_PTR(err);
1801
1802 return bdev;
1803 }
1804 EXPORT_SYMBOL(blkdev_get_by_dev);
1805
1806 static int blkdev_open(struct inode * inode, struct file * filp)
1807 {
1808 struct block_device *bdev;
1809
1810 /*
1811 * Preserve backwards compatibility and allow large file access
1812 * even if userspace doesn't ask for it explicitly. Some mkfs
1813 * binary needs it. We might want to drop this workaround
1814 * during an unstable branch.
1815 */
1816 filp->f_flags |= O_LARGEFILE;
1817
1818 if (filp->f_flags & O_NDELAY)
1819 filp->f_mode |= FMODE_NDELAY;
1820 if (filp->f_flags & O_EXCL)
1821 filp->f_mode |= FMODE_EXCL;
1822 if ((filp->f_flags & O_ACCMODE) == 3)
1823 filp->f_mode |= FMODE_WRITE_IOCTL;
1824
1825 bdev = bd_acquire(inode);
1826 if (bdev == NULL)
1827 return -ENOMEM;
1828
1829 /*
1830 * A negative i_writecount for bdev->bd_inode means that the bdev
1831 * or one of its paritions is mounted in a user namespace. Deny
1832 * writing for non-root in this case, otherwise an unprivileged
1833 * user can attack the kernel by modifying the backing store of a
1834 * mounted filesystem.
1835 */
1836 if ((filp->f_mode & FMODE_WRITE) &&
1837 !file_ns_capable(filp, &init_user_ns, CAP_SYS_ADMIN) &&
1838 !atomic_inc_unless_negative(&bdev->bd_inode->i_writecount)) {
1839 bdput(bdev);
1840 return -EBUSY;
1841 }
1842
1843 filp->f_mapping = bdev->bd_inode->i_mapping;
1844
1845 return blkdev_get(bdev, filp->f_mode, filp);
1846 }
1847
1848 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1849 {
1850 struct gendisk *disk = bdev->bd_disk;
1851 struct block_device *victim = NULL;
1852
1853 mutex_lock_nested(&bdev->bd_mutex, for_part);
1854 if (for_part)
1855 bdev->bd_part_count--;
1856
1857 if (!--bdev->bd_openers) {
1858 WARN_ON_ONCE(bdev->bd_holders);
1859 sync_blockdev(bdev);
1860 kill_bdev(bdev);
1861
1862 bdev_write_inode(bdev);
1863 /*
1864 * Detaching bdev inode from its wb in __destroy_inode()
1865 * is too late: the queue which embeds its bdi (along with
1866 * root wb) can be gone as soon as we put_disk() below.
1867 */
1868 inode_detach_wb(bdev->bd_inode);
1869 }
1870 if (bdev->bd_contains == bdev) {
1871 if (disk->fops->release)
1872 disk->fops->release(disk, mode);
1873 }
1874 if (!bdev->bd_openers) {
1875 struct module *owner = disk->fops->owner;
1876
1877 disk_put_part(bdev->bd_part);
1878 bdev->bd_part = NULL;
1879 bdev->bd_disk = NULL;
1880 if (bdev != bdev->bd_contains)
1881 victim = bdev->bd_contains;
1882 bdev->bd_contains = NULL;
1883
1884 put_disk(disk);
1885 module_put(owner);
1886 }
1887 mutex_unlock(&bdev->bd_mutex);
1888 bdput(bdev);
1889 if (victim)
1890 __blkdev_put(victim, mode, 1);
1891 }
1892
1893 void blkdev_put(struct block_device *bdev, fmode_t mode)
1894 {
1895 mutex_lock(&bdev->bd_mutex);
1896
1897 if (mode & FMODE_EXCL) {
1898 bool bdev_free;
1899
1900 /*
1901 * Release a claim on the device. The holder fields
1902 * are protected with bdev_lock. bd_mutex is to
1903 * synchronize disk_holder unlinking.
1904 */
1905 spin_lock(&bdev_lock);
1906
1907 WARN_ON_ONCE(--bdev->bd_holders < 0);
1908 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1909
1910 /* bd_contains might point to self, check in a separate step */
1911 if ((bdev_free = !bdev->bd_holders))
1912 bdev->bd_holder = NULL;
1913 if (!bdev->bd_contains->bd_holders)
1914 bdev->bd_contains->bd_holder = NULL;
1915
1916 spin_unlock(&bdev_lock);
1917
1918 /*
1919 * If this was the last claim, remove holder link and
1920 * unblock evpoll if it was a write holder.
1921 */
1922 if (bdev_free && bdev->bd_write_holder) {
1923 disk_unblock_events(bdev->bd_disk);
1924 bdev->bd_write_holder = false;
1925 }
1926 }
1927
1928 /*
1929 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1930 * event. This is to ensure detection of media removal commanded
1931 * from userland - e.g. eject(1).
1932 */
1933 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1934
1935 mutex_unlock(&bdev->bd_mutex);
1936
1937 __blkdev_put(bdev, mode, 0);
1938 }
1939 EXPORT_SYMBOL(blkdev_put);
1940
1941 static int blkdev_close(struct inode * inode, struct file * filp)
1942 {
1943 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1944 if (filp->f_mode & FMODE_WRITE &&
1945 !file_ns_capable(filp, &init_user_ns, CAP_SYS_ADMIN))
1946 atomic_dec(&bdev->bd_inode->i_writecount);
1947 blkdev_put(bdev, filp->f_mode);
1948 return 0;
1949 }
1950
1951 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1952 {
1953 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1954 fmode_t mode = file->f_mode;
1955
1956 /*
1957 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1958 * to updated it before every ioctl.
1959 */
1960 if (file->f_flags & O_NDELAY)
1961 mode |= FMODE_NDELAY;
1962 else
1963 mode &= ~FMODE_NDELAY;
1964
1965 return blkdev_ioctl(bdev, mode, cmd, arg);
1966 }
1967
1968 /*
1969 * Write data to the block device. Only intended for the block device itself
1970 * and the raw driver which basically is a fake block device.
1971 *
1972 * Does not take i_mutex for the write and thus is not for general purpose
1973 * use.
1974 */
1975 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1976 {
1977 struct file *file = iocb->ki_filp;
1978 struct inode *bd_inode = bdev_file_inode(file);
1979 loff_t size = i_size_read(bd_inode);
1980 struct blk_plug plug;
1981 ssize_t ret;
1982
1983 if (bdev_read_only(I_BDEV(bd_inode)))
1984 return -EPERM;
1985
1986 if (!iov_iter_count(from))
1987 return 0;
1988
1989 if (iocb->ki_pos >= size)
1990 return -ENOSPC;
1991
1992 iov_iter_truncate(from, size - iocb->ki_pos);
1993
1994 blk_start_plug(&plug);
1995 ret = __generic_file_write_iter(iocb, from);
1996 if (ret > 0)
1997 ret = generic_write_sync(iocb, ret);
1998 blk_finish_plug(&plug);
1999 return ret;
2000 }
2001 EXPORT_SYMBOL_GPL(blkdev_write_iter);
2002
2003 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
2004 {
2005 struct file *file = iocb->ki_filp;
2006 struct inode *bd_inode = bdev_file_inode(file);
2007 loff_t size = i_size_read(bd_inode);
2008 loff_t pos = iocb->ki_pos;
2009
2010 if (pos >= size)
2011 return 0;
2012
2013 size -= pos;
2014 iov_iter_truncate(to, size);
2015 return generic_file_read_iter(iocb, to);
2016 }
2017 EXPORT_SYMBOL_GPL(blkdev_read_iter);
2018
2019 /*
2020 * Try to release a page associated with block device when the system
2021 * is under memory pressure.
2022 */
2023 static int blkdev_releasepage(struct page *page, gfp_t wait)
2024 {
2025 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
2026
2027 if (super && super->s_op->bdev_try_to_free_page)
2028 return super->s_op->bdev_try_to_free_page(super, page, wait);
2029
2030 return try_to_free_buffers(page);
2031 }
2032
2033 static int blkdev_writepages(struct address_space *mapping,
2034 struct writeback_control *wbc)
2035 {
2036 if (dax_mapping(mapping)) {
2037 struct block_device *bdev = I_BDEV(mapping->host);
2038
2039 return dax_writeback_mapping_range(mapping, bdev, wbc);
2040 }
2041 return generic_writepages(mapping, wbc);
2042 }
2043
2044 static const struct address_space_operations def_blk_aops = {
2045 .readpage = blkdev_readpage,
2046 .readpages = blkdev_readpages,
2047 .writepage = blkdev_writepage,
2048 .write_begin = blkdev_write_begin,
2049 .write_end = blkdev_write_end,
2050 .writepages = blkdev_writepages,
2051 .releasepage = blkdev_releasepage,
2052 .direct_IO = blkdev_direct_IO,
2053 .is_dirty_writeback = buffer_check_dirty_writeback,
2054 };
2055
2056 #define BLKDEV_FALLOC_FL_SUPPORTED \
2057 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2058 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2059
2060 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2061 loff_t len)
2062 {
2063 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2064 struct request_queue *q = bdev_get_queue(bdev);
2065 struct address_space *mapping;
2066 loff_t end = start + len - 1;
2067 loff_t isize;
2068 int error;
2069
2070 /* Fail if we don't recognize the flags. */
2071 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2072 return -EOPNOTSUPP;
2073
2074 /* Don't go off the end of the device. */
2075 isize = i_size_read(bdev->bd_inode);
2076 if (start >= isize)
2077 return -EINVAL;
2078 if (end >= isize) {
2079 if (mode & FALLOC_FL_KEEP_SIZE) {
2080 len = isize - start;
2081 end = start + len - 1;
2082 } else
2083 return -EINVAL;
2084 }
2085
2086 /*
2087 * Don't allow IO that isn't aligned to logical block size.
2088 */
2089 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2090 return -EINVAL;
2091
2092 /* Invalidate the page cache, including dirty pages. */
2093 mapping = bdev->bd_inode->i_mapping;
2094 truncate_inode_pages_range(mapping, start, end);
2095
2096 switch (mode) {
2097 case FALLOC_FL_ZERO_RANGE:
2098 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2099 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2100 GFP_KERNEL, false);
2101 break;
2102 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2103 /* Only punch if the device can do zeroing discard. */
2104 if (!blk_queue_discard(q) || !q->limits.discard_zeroes_data)
2105 return -EOPNOTSUPP;
2106 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2107 GFP_KERNEL, 0);
2108 break;
2109 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2110 if (!blk_queue_discard(q))
2111 return -EOPNOTSUPP;
2112 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2113 GFP_KERNEL, 0);
2114 break;
2115 default:
2116 return -EOPNOTSUPP;
2117 }
2118 if (error)
2119 return error;
2120
2121 /*
2122 * Invalidate again; if someone wandered in and dirtied a page,
2123 * the caller will be given -EBUSY. The third argument is
2124 * inclusive, so the rounding here is safe.
2125 */
2126 return invalidate_inode_pages2_range(mapping,
2127 start >> PAGE_SHIFT,
2128 end >> PAGE_SHIFT);
2129 }
2130
2131 const struct file_operations def_blk_fops = {
2132 .open = blkdev_open,
2133 .release = blkdev_close,
2134 .llseek = block_llseek,
2135 .read_iter = blkdev_read_iter,
2136 .write_iter = blkdev_write_iter,
2137 .mmap = generic_file_mmap,
2138 .fsync = blkdev_fsync,
2139 .unlocked_ioctl = block_ioctl,
2140 #ifdef CONFIG_COMPAT
2141 .compat_ioctl = compat_blkdev_ioctl,
2142 #endif
2143 .splice_read = generic_file_splice_read,
2144 .splice_write = iter_file_splice_write,
2145 .fallocate = blkdev_fallocate,
2146 };
2147
2148 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2149 {
2150 int res;
2151 mm_segment_t old_fs = get_fs();
2152 set_fs(KERNEL_DS);
2153 res = blkdev_ioctl(bdev, 0, cmd, arg);
2154 set_fs(old_fs);
2155 return res;
2156 }
2157
2158 EXPORT_SYMBOL(ioctl_by_bdev);
2159
2160 /**
2161 * lookup_bdev - lookup a struct block_device by name
2162 * @pathname: special file representing the block device
2163 * @mask: rights to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
2164 *
2165 * Get a reference to the blockdevice at @pathname in the current
2166 * namespace if possible and return it. Return ERR_PTR(error)
2167 * otherwise. If @mask is non-zero, check for access rights to the
2168 * inode at @pathname.
2169 */
2170 struct block_device *lookup_bdev(const char *pathname, int mask)
2171 {
2172 struct block_device *bdev;
2173 struct inode *inode;
2174 struct path path;
2175 int error;
2176
2177 if (!pathname || !*pathname)
2178 return ERR_PTR(-EINVAL);
2179
2180 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2181 if (error)
2182 return ERR_PTR(error);
2183
2184 inode = d_backing_inode(path.dentry);
2185 if (mask != 0 && !capable(CAP_SYS_ADMIN)) {
2186 error = __inode_permission(inode, mask);
2187 if (error)
2188 goto fail;
2189 }
2190 error = -ENOTBLK;
2191 if (!S_ISBLK(inode->i_mode))
2192 goto fail;
2193 error = -EACCES;
2194 if (!may_open_dev(&path))
2195 goto fail;
2196 error = -ENOMEM;
2197 bdev = bd_acquire(inode);
2198 if (!bdev)
2199 goto fail;
2200 out:
2201 path_put(&path);
2202 return bdev;
2203 fail:
2204 bdev = ERR_PTR(error);
2205 goto out;
2206 }
2207 EXPORT_SYMBOL(lookup_bdev);
2208
2209 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2210 {
2211 struct super_block *sb = get_super(bdev);
2212 int res = 0;
2213
2214 if (sb) {
2215 /*
2216 * no need to lock the super, get_super holds the
2217 * read mutex so the filesystem cannot go away
2218 * under us (->put_super runs with the write lock
2219 * hold).
2220 */
2221 shrink_dcache_sb(sb);
2222 res = invalidate_inodes(sb, kill_dirty);
2223 drop_super(sb);
2224 }
2225 invalidate_bdev(bdev);
2226 return res;
2227 }
2228 EXPORT_SYMBOL(__invalidate_device);
2229
2230 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2231 {
2232 struct inode *inode, *old_inode = NULL;
2233
2234 spin_lock(&blockdev_superblock->s_inode_list_lock);
2235 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2236 struct address_space *mapping = inode->i_mapping;
2237 struct block_device *bdev;
2238
2239 spin_lock(&inode->i_lock);
2240 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2241 mapping->nrpages == 0) {
2242 spin_unlock(&inode->i_lock);
2243 continue;
2244 }
2245 __iget(inode);
2246 spin_unlock(&inode->i_lock);
2247 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2248 /*
2249 * We hold a reference to 'inode' so it couldn't have been
2250 * removed from s_inodes list while we dropped the
2251 * s_inode_list_lock We cannot iput the inode now as we can
2252 * be holding the last reference and we cannot iput it under
2253 * s_inode_list_lock. So we keep the reference and iput it
2254 * later.
2255 */
2256 iput(old_inode);
2257 old_inode = inode;
2258 bdev = I_BDEV(inode);
2259
2260 mutex_lock(&bdev->bd_mutex);
2261 if (bdev->bd_openers)
2262 func(bdev, arg);
2263 mutex_unlock(&bdev->bd_mutex);
2264
2265 spin_lock(&blockdev_superblock->s_inode_list_lock);
2266 }
2267 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2268 iput(old_inode);
2269 }