]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/dcache.c
UBUNTU: rebase to v4.10-rc2
[mirror_ubuntu-zesty-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89 EXPORT_SYMBOL(rename_lock);
90
91 static struct kmem_cache *dentry_cache __read_mostly;
92
93 /*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107 static inline struct hlist_bl_head *d_hash(unsigned int hash)
108 {
109 return dentry_hashtable + (hash >> (32 - d_hash_shift));
110 }
111
112 #define IN_LOOKUP_SHIFT 10
113 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
114
115 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
116 unsigned int hash)
117 {
118 hash += (unsigned long) parent / L1_CACHE_BYTES;
119 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
120 }
121
122
123 /* Statistics gathering. */
124 struct dentry_stat_t dentry_stat = {
125 .age_limit = 45,
126 };
127
128 static DEFINE_PER_CPU(long, nr_dentry);
129 static DEFINE_PER_CPU(long, nr_dentry_unused);
130
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132
133 /*
134 * Here we resort to our own counters instead of using generic per-cpu counters
135 * for consistency with what the vfs inode code does. We are expected to harvest
136 * better code and performance by having our own specialized counters.
137 *
138 * Please note that the loop is done over all possible CPUs, not over all online
139 * CPUs. The reason for this is that we don't want to play games with CPUs going
140 * on and off. If one of them goes off, we will just keep their counters.
141 *
142 * glommer: See cffbc8a for details, and if you ever intend to change this,
143 * please update all vfs counters to match.
144 */
145 static long get_nr_dentry(void)
146 {
147 int i;
148 long sum = 0;
149 for_each_possible_cpu(i)
150 sum += per_cpu(nr_dentry, i);
151 return sum < 0 ? 0 : sum;
152 }
153
154 static long get_nr_dentry_unused(void)
155 {
156 int i;
157 long sum = 0;
158 for_each_possible_cpu(i)
159 sum += per_cpu(nr_dentry_unused, i);
160 return sum < 0 ? 0 : sum;
161 }
162
163 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
164 size_t *lenp, loff_t *ppos)
165 {
166 dentry_stat.nr_dentry = get_nr_dentry();
167 dentry_stat.nr_unused = get_nr_dentry_unused();
168 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
169 }
170 #endif
171
172 /*
173 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
174 * The strings are both count bytes long, and count is non-zero.
175 */
176 #ifdef CONFIG_DCACHE_WORD_ACCESS
177
178 #include <asm/word-at-a-time.h>
179 /*
180 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
181 * aligned allocation for this particular component. We don't
182 * strictly need the load_unaligned_zeropad() safety, but it
183 * doesn't hurt either.
184 *
185 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
186 * need the careful unaligned handling.
187 */
188 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
189 {
190 unsigned long a,b,mask;
191
192 for (;;) {
193 a = *(unsigned long *)cs;
194 b = load_unaligned_zeropad(ct);
195 if (tcount < sizeof(unsigned long))
196 break;
197 if (unlikely(a != b))
198 return 1;
199 cs += sizeof(unsigned long);
200 ct += sizeof(unsigned long);
201 tcount -= sizeof(unsigned long);
202 if (!tcount)
203 return 0;
204 }
205 mask = bytemask_from_count(tcount);
206 return unlikely(!!((a ^ b) & mask));
207 }
208
209 #else
210
211 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
212 {
213 do {
214 if (*cs != *ct)
215 return 1;
216 cs++;
217 ct++;
218 tcount--;
219 } while (tcount);
220 return 0;
221 }
222
223 #endif
224
225 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
226 {
227 /*
228 * Be careful about RCU walk racing with rename:
229 * use 'lockless_dereference' to fetch the name pointer.
230 *
231 * NOTE! Even if a rename will mean that the length
232 * was not loaded atomically, we don't care. The
233 * RCU walk will check the sequence count eventually,
234 * and catch it. And we won't overrun the buffer,
235 * because we're reading the name pointer atomically,
236 * and a dentry name is guaranteed to be properly
237 * terminated with a NUL byte.
238 *
239 * End result: even if 'len' is wrong, we'll exit
240 * early because the data cannot match (there can
241 * be no NUL in the ct/tcount data)
242 */
243 const unsigned char *cs = lockless_dereference(dentry->d_name.name);
244
245 return dentry_string_cmp(cs, ct, tcount);
246 }
247
248 struct external_name {
249 union {
250 atomic_t count;
251 struct rcu_head head;
252 } u;
253 unsigned char name[];
254 };
255
256 static inline struct external_name *external_name(struct dentry *dentry)
257 {
258 return container_of(dentry->d_name.name, struct external_name, name[0]);
259 }
260
261 static void __d_free(struct rcu_head *head)
262 {
263 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
264
265 kmem_cache_free(dentry_cache, dentry);
266 }
267
268 static void __d_free_external(struct rcu_head *head)
269 {
270 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
271 kfree(external_name(dentry));
272 kmem_cache_free(dentry_cache, dentry);
273 }
274
275 static inline int dname_external(const struct dentry *dentry)
276 {
277 return dentry->d_name.name != dentry->d_iname;
278 }
279
280 static inline void __d_set_inode_and_type(struct dentry *dentry,
281 struct inode *inode,
282 unsigned type_flags)
283 {
284 unsigned flags;
285
286 dentry->d_inode = inode;
287 flags = READ_ONCE(dentry->d_flags);
288 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
289 flags |= type_flags;
290 WRITE_ONCE(dentry->d_flags, flags);
291 }
292
293 static inline void __d_clear_type_and_inode(struct dentry *dentry)
294 {
295 unsigned flags = READ_ONCE(dentry->d_flags);
296
297 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
298 WRITE_ONCE(dentry->d_flags, flags);
299 dentry->d_inode = NULL;
300 }
301
302 static void dentry_free(struct dentry *dentry)
303 {
304 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
305 if (unlikely(dname_external(dentry))) {
306 struct external_name *p = external_name(dentry);
307 if (likely(atomic_dec_and_test(&p->u.count))) {
308 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
309 return;
310 }
311 }
312 /* if dentry was never visible to RCU, immediate free is OK */
313 if (!(dentry->d_flags & DCACHE_RCUACCESS))
314 __d_free(&dentry->d_u.d_rcu);
315 else
316 call_rcu(&dentry->d_u.d_rcu, __d_free);
317 }
318
319 /*
320 * Release the dentry's inode, using the filesystem
321 * d_iput() operation if defined.
322 */
323 static void dentry_unlink_inode(struct dentry * dentry)
324 __releases(dentry->d_lock)
325 __releases(dentry->d_inode->i_lock)
326 {
327 struct inode *inode = dentry->d_inode;
328 bool hashed = !d_unhashed(dentry);
329
330 if (hashed)
331 raw_write_seqcount_begin(&dentry->d_seq);
332 __d_clear_type_and_inode(dentry);
333 hlist_del_init(&dentry->d_u.d_alias);
334 if (hashed)
335 raw_write_seqcount_end(&dentry->d_seq);
336 spin_unlock(&dentry->d_lock);
337 spin_unlock(&inode->i_lock);
338 if (!inode->i_nlink)
339 fsnotify_inoderemove(inode);
340 if (dentry->d_op && dentry->d_op->d_iput)
341 dentry->d_op->d_iput(dentry, inode);
342 else
343 iput(inode);
344 }
345
346 /*
347 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
348 * is in use - which includes both the "real" per-superblock
349 * LRU list _and_ the DCACHE_SHRINK_LIST use.
350 *
351 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
352 * on the shrink list (ie not on the superblock LRU list).
353 *
354 * The per-cpu "nr_dentry_unused" counters are updated with
355 * the DCACHE_LRU_LIST bit.
356 *
357 * These helper functions make sure we always follow the
358 * rules. d_lock must be held by the caller.
359 */
360 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
361 static void d_lru_add(struct dentry *dentry)
362 {
363 D_FLAG_VERIFY(dentry, 0);
364 dentry->d_flags |= DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
366 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
367 }
368
369 static void d_lru_del(struct dentry *dentry)
370 {
371 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
372 dentry->d_flags &= ~DCACHE_LRU_LIST;
373 this_cpu_dec(nr_dentry_unused);
374 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
375 }
376
377 static void d_shrink_del(struct dentry *dentry)
378 {
379 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
380 list_del_init(&dentry->d_lru);
381 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
382 this_cpu_dec(nr_dentry_unused);
383 }
384
385 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
386 {
387 D_FLAG_VERIFY(dentry, 0);
388 list_add(&dentry->d_lru, list);
389 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
390 this_cpu_inc(nr_dentry_unused);
391 }
392
393 /*
394 * These can only be called under the global LRU lock, ie during the
395 * callback for freeing the LRU list. "isolate" removes it from the
396 * LRU lists entirely, while shrink_move moves it to the indicated
397 * private list.
398 */
399 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
400 {
401 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402 dentry->d_flags &= ~DCACHE_LRU_LIST;
403 this_cpu_dec(nr_dentry_unused);
404 list_lru_isolate(lru, &dentry->d_lru);
405 }
406
407 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
408 struct list_head *list)
409 {
410 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
411 dentry->d_flags |= DCACHE_SHRINK_LIST;
412 list_lru_isolate_move(lru, &dentry->d_lru, list);
413 }
414
415 /*
416 * dentry_lru_(add|del)_list) must be called with d_lock held.
417 */
418 static void dentry_lru_add(struct dentry *dentry)
419 {
420 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
421 d_lru_add(dentry);
422 }
423
424 /**
425 * d_drop - drop a dentry
426 * @dentry: dentry to drop
427 *
428 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
429 * be found through a VFS lookup any more. Note that this is different from
430 * deleting the dentry - d_delete will try to mark the dentry negative if
431 * possible, giving a successful _negative_ lookup, while d_drop will
432 * just make the cache lookup fail.
433 *
434 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
435 * reason (NFS timeouts or autofs deletes).
436 *
437 * __d_drop requires dentry->d_lock.
438 */
439 void __d_drop(struct dentry *dentry)
440 {
441 if (!d_unhashed(dentry)) {
442 struct hlist_bl_head *b;
443 /*
444 * Hashed dentries are normally on the dentry hashtable,
445 * with the exception of those newly allocated by
446 * d_obtain_alias, which are always IS_ROOT:
447 */
448 if (unlikely(IS_ROOT(dentry)))
449 b = &dentry->d_sb->s_anon;
450 else
451 b = d_hash(dentry->d_name.hash);
452
453 hlist_bl_lock(b);
454 __hlist_bl_del(&dentry->d_hash);
455 dentry->d_hash.pprev = NULL;
456 hlist_bl_unlock(b);
457 /* After this call, in-progress rcu-walk path lookup will fail. */
458 write_seqcount_invalidate(&dentry->d_seq);
459 }
460 }
461 EXPORT_SYMBOL(__d_drop);
462
463 void d_drop(struct dentry *dentry)
464 {
465 spin_lock(&dentry->d_lock);
466 __d_drop(dentry);
467 spin_unlock(&dentry->d_lock);
468 }
469 EXPORT_SYMBOL(d_drop);
470
471 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
472 {
473 struct dentry *next;
474 /*
475 * Inform d_walk() and shrink_dentry_list() that we are no longer
476 * attached to the dentry tree
477 */
478 dentry->d_flags |= DCACHE_DENTRY_KILLED;
479 if (unlikely(list_empty(&dentry->d_child)))
480 return;
481 __list_del_entry(&dentry->d_child);
482 /*
483 * Cursors can move around the list of children. While we'd been
484 * a normal list member, it didn't matter - ->d_child.next would've
485 * been updated. However, from now on it won't be and for the
486 * things like d_walk() it might end up with a nasty surprise.
487 * Normally d_walk() doesn't care about cursors moving around -
488 * ->d_lock on parent prevents that and since a cursor has no children
489 * of its own, we get through it without ever unlocking the parent.
490 * There is one exception, though - if we ascend from a child that
491 * gets killed as soon as we unlock it, the next sibling is found
492 * using the value left in its ->d_child.next. And if _that_
493 * pointed to a cursor, and cursor got moved (e.g. by lseek())
494 * before d_walk() regains parent->d_lock, we'll end up skipping
495 * everything the cursor had been moved past.
496 *
497 * Solution: make sure that the pointer left behind in ->d_child.next
498 * points to something that won't be moving around. I.e. skip the
499 * cursors.
500 */
501 while (dentry->d_child.next != &parent->d_subdirs) {
502 next = list_entry(dentry->d_child.next, struct dentry, d_child);
503 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
504 break;
505 dentry->d_child.next = next->d_child.next;
506 }
507 }
508
509 static void __dentry_kill(struct dentry *dentry)
510 {
511 struct dentry *parent = NULL;
512 bool can_free = true;
513 if (!IS_ROOT(dentry))
514 parent = dentry->d_parent;
515
516 /*
517 * The dentry is now unrecoverably dead to the world.
518 */
519 lockref_mark_dead(&dentry->d_lockref);
520
521 /*
522 * inform the fs via d_prune that this dentry is about to be
523 * unhashed and destroyed.
524 */
525 if (dentry->d_flags & DCACHE_OP_PRUNE)
526 dentry->d_op->d_prune(dentry);
527
528 if (dentry->d_flags & DCACHE_LRU_LIST) {
529 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
530 d_lru_del(dentry);
531 }
532 /* if it was on the hash then remove it */
533 __d_drop(dentry);
534 dentry_unlist(dentry, parent);
535 if (parent)
536 spin_unlock(&parent->d_lock);
537 if (dentry->d_inode)
538 dentry_unlink_inode(dentry);
539 else
540 spin_unlock(&dentry->d_lock);
541 this_cpu_dec(nr_dentry);
542 if (dentry->d_op && dentry->d_op->d_release)
543 dentry->d_op->d_release(dentry);
544
545 spin_lock(&dentry->d_lock);
546 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
547 dentry->d_flags |= DCACHE_MAY_FREE;
548 can_free = false;
549 }
550 spin_unlock(&dentry->d_lock);
551 if (likely(can_free))
552 dentry_free(dentry);
553 }
554
555 /*
556 * Finish off a dentry we've decided to kill.
557 * dentry->d_lock must be held, returns with it unlocked.
558 * If ref is non-zero, then decrement the refcount too.
559 * Returns dentry requiring refcount drop, or NULL if we're done.
560 */
561 static struct dentry *dentry_kill(struct dentry *dentry)
562 __releases(dentry->d_lock)
563 {
564 struct inode *inode = dentry->d_inode;
565 struct dentry *parent = NULL;
566
567 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
568 goto failed;
569
570 if (!IS_ROOT(dentry)) {
571 parent = dentry->d_parent;
572 if (unlikely(!spin_trylock(&parent->d_lock))) {
573 if (inode)
574 spin_unlock(&inode->i_lock);
575 goto failed;
576 }
577 }
578
579 __dentry_kill(dentry);
580 return parent;
581
582 failed:
583 spin_unlock(&dentry->d_lock);
584 return dentry; /* try again with same dentry */
585 }
586
587 static inline struct dentry *lock_parent(struct dentry *dentry)
588 {
589 struct dentry *parent = dentry->d_parent;
590 if (IS_ROOT(dentry))
591 return NULL;
592 if (unlikely(dentry->d_lockref.count < 0))
593 return NULL;
594 if (likely(spin_trylock(&parent->d_lock)))
595 return parent;
596 rcu_read_lock();
597 spin_unlock(&dentry->d_lock);
598 again:
599 parent = ACCESS_ONCE(dentry->d_parent);
600 spin_lock(&parent->d_lock);
601 /*
602 * We can't blindly lock dentry until we are sure
603 * that we won't violate the locking order.
604 * Any changes of dentry->d_parent must have
605 * been done with parent->d_lock held, so
606 * spin_lock() above is enough of a barrier
607 * for checking if it's still our child.
608 */
609 if (unlikely(parent != dentry->d_parent)) {
610 spin_unlock(&parent->d_lock);
611 goto again;
612 }
613 rcu_read_unlock();
614 if (parent != dentry)
615 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
616 else
617 parent = NULL;
618 return parent;
619 }
620
621 /*
622 * Try to do a lockless dput(), and return whether that was successful.
623 *
624 * If unsuccessful, we return false, having already taken the dentry lock.
625 *
626 * The caller needs to hold the RCU read lock, so that the dentry is
627 * guaranteed to stay around even if the refcount goes down to zero!
628 */
629 static inline bool fast_dput(struct dentry *dentry)
630 {
631 int ret;
632 unsigned int d_flags;
633
634 /*
635 * If we have a d_op->d_delete() operation, we sould not
636 * let the dentry count go to zero, so use "put_or_lock".
637 */
638 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
639 return lockref_put_or_lock(&dentry->d_lockref);
640
641 /*
642 * .. otherwise, we can try to just decrement the
643 * lockref optimistically.
644 */
645 ret = lockref_put_return(&dentry->d_lockref);
646
647 /*
648 * If the lockref_put_return() failed due to the lock being held
649 * by somebody else, the fast path has failed. We will need to
650 * get the lock, and then check the count again.
651 */
652 if (unlikely(ret < 0)) {
653 spin_lock(&dentry->d_lock);
654 if (dentry->d_lockref.count > 1) {
655 dentry->d_lockref.count--;
656 spin_unlock(&dentry->d_lock);
657 return 1;
658 }
659 return 0;
660 }
661
662 /*
663 * If we weren't the last ref, we're done.
664 */
665 if (ret)
666 return 1;
667
668 /*
669 * Careful, careful. The reference count went down
670 * to zero, but we don't hold the dentry lock, so
671 * somebody else could get it again, and do another
672 * dput(), and we need to not race with that.
673 *
674 * However, there is a very special and common case
675 * where we don't care, because there is nothing to
676 * do: the dentry is still hashed, it does not have
677 * a 'delete' op, and it's referenced and already on
678 * the LRU list.
679 *
680 * NOTE! Since we aren't locked, these values are
681 * not "stable". However, it is sufficient that at
682 * some point after we dropped the reference the
683 * dentry was hashed and the flags had the proper
684 * value. Other dentry users may have re-gotten
685 * a reference to the dentry and change that, but
686 * our work is done - we can leave the dentry
687 * around with a zero refcount.
688 */
689 smp_rmb();
690 d_flags = ACCESS_ONCE(dentry->d_flags);
691 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
692
693 /* Nothing to do? Dropping the reference was all we needed? */
694 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
695 return 1;
696
697 /*
698 * Not the fast normal case? Get the lock. We've already decremented
699 * the refcount, but we'll need to re-check the situation after
700 * getting the lock.
701 */
702 spin_lock(&dentry->d_lock);
703
704 /*
705 * Did somebody else grab a reference to it in the meantime, and
706 * we're no longer the last user after all? Alternatively, somebody
707 * else could have killed it and marked it dead. Either way, we
708 * don't need to do anything else.
709 */
710 if (dentry->d_lockref.count) {
711 spin_unlock(&dentry->d_lock);
712 return 1;
713 }
714
715 /*
716 * Re-get the reference we optimistically dropped. We hold the
717 * lock, and we just tested that it was zero, so we can just
718 * set it to 1.
719 */
720 dentry->d_lockref.count = 1;
721 return 0;
722 }
723
724
725 /*
726 * This is dput
727 *
728 * This is complicated by the fact that we do not want to put
729 * dentries that are no longer on any hash chain on the unused
730 * list: we'd much rather just get rid of them immediately.
731 *
732 * However, that implies that we have to traverse the dentry
733 * tree upwards to the parents which might _also_ now be
734 * scheduled for deletion (it may have been only waiting for
735 * its last child to go away).
736 *
737 * This tail recursion is done by hand as we don't want to depend
738 * on the compiler to always get this right (gcc generally doesn't).
739 * Real recursion would eat up our stack space.
740 */
741
742 /*
743 * dput - release a dentry
744 * @dentry: dentry to release
745 *
746 * Release a dentry. This will drop the usage count and if appropriate
747 * call the dentry unlink method as well as removing it from the queues and
748 * releasing its resources. If the parent dentries were scheduled for release
749 * they too may now get deleted.
750 */
751 void dput(struct dentry *dentry)
752 {
753 if (unlikely(!dentry))
754 return;
755
756 repeat:
757 might_sleep();
758
759 rcu_read_lock();
760 if (likely(fast_dput(dentry))) {
761 rcu_read_unlock();
762 return;
763 }
764
765 /* Slow case: now with the dentry lock held */
766 rcu_read_unlock();
767
768 WARN_ON(d_in_lookup(dentry));
769
770 /* Unreachable? Get rid of it */
771 if (unlikely(d_unhashed(dentry)))
772 goto kill_it;
773
774 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
775 goto kill_it;
776
777 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
778 if (dentry->d_op->d_delete(dentry))
779 goto kill_it;
780 }
781
782 if (!(dentry->d_flags & DCACHE_REFERENCED))
783 dentry->d_flags |= DCACHE_REFERENCED;
784 dentry_lru_add(dentry);
785
786 dentry->d_lockref.count--;
787 spin_unlock(&dentry->d_lock);
788 return;
789
790 kill_it:
791 dentry = dentry_kill(dentry);
792 if (dentry) {
793 cond_resched();
794 goto repeat;
795 }
796 }
797 EXPORT_SYMBOL(dput);
798
799
800 /* This must be called with d_lock held */
801 static inline void __dget_dlock(struct dentry *dentry)
802 {
803 dentry->d_lockref.count++;
804 }
805
806 static inline void __dget(struct dentry *dentry)
807 {
808 lockref_get(&dentry->d_lockref);
809 }
810
811 struct dentry *dget_parent(struct dentry *dentry)
812 {
813 int gotref;
814 struct dentry *ret;
815
816 /*
817 * Do optimistic parent lookup without any
818 * locking.
819 */
820 rcu_read_lock();
821 ret = ACCESS_ONCE(dentry->d_parent);
822 gotref = lockref_get_not_zero(&ret->d_lockref);
823 rcu_read_unlock();
824 if (likely(gotref)) {
825 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
826 return ret;
827 dput(ret);
828 }
829
830 repeat:
831 /*
832 * Don't need rcu_dereference because we re-check it was correct under
833 * the lock.
834 */
835 rcu_read_lock();
836 ret = dentry->d_parent;
837 spin_lock(&ret->d_lock);
838 if (unlikely(ret != dentry->d_parent)) {
839 spin_unlock(&ret->d_lock);
840 rcu_read_unlock();
841 goto repeat;
842 }
843 rcu_read_unlock();
844 BUG_ON(!ret->d_lockref.count);
845 ret->d_lockref.count++;
846 spin_unlock(&ret->d_lock);
847 return ret;
848 }
849 EXPORT_SYMBOL(dget_parent);
850
851 /**
852 * d_find_alias - grab a hashed alias of inode
853 * @inode: inode in question
854 *
855 * If inode has a hashed alias, or is a directory and has any alias,
856 * acquire the reference to alias and return it. Otherwise return NULL.
857 * Notice that if inode is a directory there can be only one alias and
858 * it can be unhashed only if it has no children, or if it is the root
859 * of a filesystem, or if the directory was renamed and d_revalidate
860 * was the first vfs operation to notice.
861 *
862 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
863 * any other hashed alias over that one.
864 */
865 static struct dentry *__d_find_alias(struct inode *inode)
866 {
867 struct dentry *alias, *discon_alias;
868
869 again:
870 discon_alias = NULL;
871 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
872 spin_lock(&alias->d_lock);
873 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
874 if (IS_ROOT(alias) &&
875 (alias->d_flags & DCACHE_DISCONNECTED)) {
876 discon_alias = alias;
877 } else {
878 __dget_dlock(alias);
879 spin_unlock(&alias->d_lock);
880 return alias;
881 }
882 }
883 spin_unlock(&alias->d_lock);
884 }
885 if (discon_alias) {
886 alias = discon_alias;
887 spin_lock(&alias->d_lock);
888 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
889 __dget_dlock(alias);
890 spin_unlock(&alias->d_lock);
891 return alias;
892 }
893 spin_unlock(&alias->d_lock);
894 goto again;
895 }
896 return NULL;
897 }
898
899 struct dentry *d_find_alias(struct inode *inode)
900 {
901 struct dentry *de = NULL;
902
903 if (!hlist_empty(&inode->i_dentry)) {
904 spin_lock(&inode->i_lock);
905 de = __d_find_alias(inode);
906 spin_unlock(&inode->i_lock);
907 }
908 return de;
909 }
910 EXPORT_SYMBOL(d_find_alias);
911
912 /*
913 * Try to kill dentries associated with this inode.
914 * WARNING: you must own a reference to inode.
915 */
916 void d_prune_aliases(struct inode *inode)
917 {
918 struct dentry *dentry;
919 restart:
920 spin_lock(&inode->i_lock);
921 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
922 spin_lock(&dentry->d_lock);
923 if (!dentry->d_lockref.count) {
924 struct dentry *parent = lock_parent(dentry);
925 if (likely(!dentry->d_lockref.count)) {
926 __dentry_kill(dentry);
927 dput(parent);
928 goto restart;
929 }
930 if (parent)
931 spin_unlock(&parent->d_lock);
932 }
933 spin_unlock(&dentry->d_lock);
934 }
935 spin_unlock(&inode->i_lock);
936 }
937 EXPORT_SYMBOL(d_prune_aliases);
938
939 static void shrink_dentry_list(struct list_head *list)
940 {
941 struct dentry *dentry, *parent;
942
943 while (!list_empty(list)) {
944 struct inode *inode;
945 dentry = list_entry(list->prev, struct dentry, d_lru);
946 spin_lock(&dentry->d_lock);
947 parent = lock_parent(dentry);
948
949 /*
950 * The dispose list is isolated and dentries are not accounted
951 * to the LRU here, so we can simply remove it from the list
952 * here regardless of whether it is referenced or not.
953 */
954 d_shrink_del(dentry);
955
956 /*
957 * We found an inuse dentry which was not removed from
958 * the LRU because of laziness during lookup. Do not free it.
959 */
960 if (dentry->d_lockref.count > 0) {
961 spin_unlock(&dentry->d_lock);
962 if (parent)
963 spin_unlock(&parent->d_lock);
964 continue;
965 }
966
967
968 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
969 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
970 spin_unlock(&dentry->d_lock);
971 if (parent)
972 spin_unlock(&parent->d_lock);
973 if (can_free)
974 dentry_free(dentry);
975 continue;
976 }
977
978 inode = dentry->d_inode;
979 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
980 d_shrink_add(dentry, list);
981 spin_unlock(&dentry->d_lock);
982 if (parent)
983 spin_unlock(&parent->d_lock);
984 continue;
985 }
986
987 __dentry_kill(dentry);
988
989 /*
990 * We need to prune ancestors too. This is necessary to prevent
991 * quadratic behavior of shrink_dcache_parent(), but is also
992 * expected to be beneficial in reducing dentry cache
993 * fragmentation.
994 */
995 dentry = parent;
996 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
997 parent = lock_parent(dentry);
998 if (dentry->d_lockref.count != 1) {
999 dentry->d_lockref.count--;
1000 spin_unlock(&dentry->d_lock);
1001 if (parent)
1002 spin_unlock(&parent->d_lock);
1003 break;
1004 }
1005 inode = dentry->d_inode; /* can't be NULL */
1006 if (unlikely(!spin_trylock(&inode->i_lock))) {
1007 spin_unlock(&dentry->d_lock);
1008 if (parent)
1009 spin_unlock(&parent->d_lock);
1010 cpu_relax();
1011 continue;
1012 }
1013 __dentry_kill(dentry);
1014 dentry = parent;
1015 }
1016 }
1017 }
1018
1019 static enum lru_status dentry_lru_isolate(struct list_head *item,
1020 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1021 {
1022 struct list_head *freeable = arg;
1023 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1024
1025
1026 /*
1027 * we are inverting the lru lock/dentry->d_lock here,
1028 * so use a trylock. If we fail to get the lock, just skip
1029 * it
1030 */
1031 if (!spin_trylock(&dentry->d_lock))
1032 return LRU_SKIP;
1033
1034 /*
1035 * Referenced dentries are still in use. If they have active
1036 * counts, just remove them from the LRU. Otherwise give them
1037 * another pass through the LRU.
1038 */
1039 if (dentry->d_lockref.count) {
1040 d_lru_isolate(lru, dentry);
1041 spin_unlock(&dentry->d_lock);
1042 return LRU_REMOVED;
1043 }
1044
1045 if (dentry->d_flags & DCACHE_REFERENCED) {
1046 dentry->d_flags &= ~DCACHE_REFERENCED;
1047 spin_unlock(&dentry->d_lock);
1048
1049 /*
1050 * The list move itself will be made by the common LRU code. At
1051 * this point, we've dropped the dentry->d_lock but keep the
1052 * lru lock. This is safe to do, since every list movement is
1053 * protected by the lru lock even if both locks are held.
1054 *
1055 * This is guaranteed by the fact that all LRU management
1056 * functions are intermediated by the LRU API calls like
1057 * list_lru_add and list_lru_del. List movement in this file
1058 * only ever occur through this functions or through callbacks
1059 * like this one, that are called from the LRU API.
1060 *
1061 * The only exceptions to this are functions like
1062 * shrink_dentry_list, and code that first checks for the
1063 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1064 * operating only with stack provided lists after they are
1065 * properly isolated from the main list. It is thus, always a
1066 * local access.
1067 */
1068 return LRU_ROTATE;
1069 }
1070
1071 d_lru_shrink_move(lru, dentry, freeable);
1072 spin_unlock(&dentry->d_lock);
1073
1074 return LRU_REMOVED;
1075 }
1076
1077 /**
1078 * prune_dcache_sb - shrink the dcache
1079 * @sb: superblock
1080 * @sc: shrink control, passed to list_lru_shrink_walk()
1081 *
1082 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1083 * is done when we need more memory and called from the superblock shrinker
1084 * function.
1085 *
1086 * This function may fail to free any resources if all the dentries are in
1087 * use.
1088 */
1089 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1090 {
1091 LIST_HEAD(dispose);
1092 long freed;
1093
1094 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1095 dentry_lru_isolate, &dispose);
1096 shrink_dentry_list(&dispose);
1097 return freed;
1098 }
1099
1100 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1101 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1102 {
1103 struct list_head *freeable = arg;
1104 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1105
1106 /*
1107 * we are inverting the lru lock/dentry->d_lock here,
1108 * so use a trylock. If we fail to get the lock, just skip
1109 * it
1110 */
1111 if (!spin_trylock(&dentry->d_lock))
1112 return LRU_SKIP;
1113
1114 d_lru_shrink_move(lru, dentry, freeable);
1115 spin_unlock(&dentry->d_lock);
1116
1117 return LRU_REMOVED;
1118 }
1119
1120
1121 /**
1122 * shrink_dcache_sb - shrink dcache for a superblock
1123 * @sb: superblock
1124 *
1125 * Shrink the dcache for the specified super block. This is used to free
1126 * the dcache before unmounting a file system.
1127 */
1128 void shrink_dcache_sb(struct super_block *sb)
1129 {
1130 long freed;
1131
1132 do {
1133 LIST_HEAD(dispose);
1134
1135 freed = list_lru_walk(&sb->s_dentry_lru,
1136 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1137
1138 this_cpu_sub(nr_dentry_unused, freed);
1139 shrink_dentry_list(&dispose);
1140 } while (freed > 0);
1141 }
1142 EXPORT_SYMBOL(shrink_dcache_sb);
1143
1144 /**
1145 * enum d_walk_ret - action to talke during tree walk
1146 * @D_WALK_CONTINUE: contrinue walk
1147 * @D_WALK_QUIT: quit walk
1148 * @D_WALK_NORETRY: quit when retry is needed
1149 * @D_WALK_SKIP: skip this dentry and its children
1150 */
1151 enum d_walk_ret {
1152 D_WALK_CONTINUE,
1153 D_WALK_QUIT,
1154 D_WALK_NORETRY,
1155 D_WALK_SKIP,
1156 };
1157
1158 /**
1159 * d_walk - walk the dentry tree
1160 * @parent: start of walk
1161 * @data: data passed to @enter() and @finish()
1162 * @enter: callback when first entering the dentry
1163 * @finish: callback when successfully finished the walk
1164 *
1165 * The @enter() and @finish() callbacks are called with d_lock held.
1166 */
1167 void d_walk(struct dentry *parent, void *data,
1168 enum d_walk_ret (*enter)(void *, struct dentry *),
1169 void (*finish)(void *))
1170 {
1171 struct dentry *this_parent;
1172 struct list_head *next;
1173 unsigned seq = 0;
1174 enum d_walk_ret ret;
1175 bool retry = true;
1176
1177 again:
1178 read_seqbegin_or_lock(&rename_lock, &seq);
1179 this_parent = parent;
1180 spin_lock(&this_parent->d_lock);
1181
1182 ret = enter(data, this_parent);
1183 switch (ret) {
1184 case D_WALK_CONTINUE:
1185 break;
1186 case D_WALK_QUIT:
1187 case D_WALK_SKIP:
1188 goto out_unlock;
1189 case D_WALK_NORETRY:
1190 retry = false;
1191 break;
1192 }
1193 repeat:
1194 next = this_parent->d_subdirs.next;
1195 resume:
1196 while (next != &this_parent->d_subdirs) {
1197 struct list_head *tmp = next;
1198 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1199 next = tmp->next;
1200
1201 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1202 continue;
1203
1204 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1205
1206 ret = enter(data, dentry);
1207 switch (ret) {
1208 case D_WALK_CONTINUE:
1209 break;
1210 case D_WALK_QUIT:
1211 spin_unlock(&dentry->d_lock);
1212 goto out_unlock;
1213 case D_WALK_NORETRY:
1214 retry = false;
1215 break;
1216 case D_WALK_SKIP:
1217 spin_unlock(&dentry->d_lock);
1218 continue;
1219 }
1220
1221 if (!list_empty(&dentry->d_subdirs)) {
1222 spin_unlock(&this_parent->d_lock);
1223 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1224 this_parent = dentry;
1225 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1226 goto repeat;
1227 }
1228 spin_unlock(&dentry->d_lock);
1229 }
1230 /*
1231 * All done at this level ... ascend and resume the search.
1232 */
1233 rcu_read_lock();
1234 ascend:
1235 if (this_parent != parent) {
1236 struct dentry *child = this_parent;
1237 this_parent = child->d_parent;
1238
1239 spin_unlock(&child->d_lock);
1240 spin_lock(&this_parent->d_lock);
1241
1242 /* might go back up the wrong parent if we have had a rename. */
1243 if (need_seqretry(&rename_lock, seq))
1244 goto rename_retry;
1245 /* go into the first sibling still alive */
1246 do {
1247 next = child->d_child.next;
1248 if (next == &this_parent->d_subdirs)
1249 goto ascend;
1250 child = list_entry(next, struct dentry, d_child);
1251 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1252 rcu_read_unlock();
1253 goto resume;
1254 }
1255 if (need_seqretry(&rename_lock, seq))
1256 goto rename_retry;
1257 rcu_read_unlock();
1258 if (finish)
1259 finish(data);
1260
1261 out_unlock:
1262 spin_unlock(&this_parent->d_lock);
1263 done_seqretry(&rename_lock, seq);
1264 return;
1265
1266 rename_retry:
1267 spin_unlock(&this_parent->d_lock);
1268 rcu_read_unlock();
1269 BUG_ON(seq & 1);
1270 if (!retry)
1271 return;
1272 seq = 1;
1273 goto again;
1274 }
1275 EXPORT_SYMBOL_GPL(d_walk);
1276
1277 struct check_mount {
1278 struct vfsmount *mnt;
1279 unsigned int mounted;
1280 };
1281
1282 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1283 {
1284 struct check_mount *info = data;
1285 struct path path = { .mnt = info->mnt, .dentry = dentry };
1286
1287 if (likely(!d_mountpoint(dentry)))
1288 return D_WALK_CONTINUE;
1289 if (__path_is_mountpoint(&path)) {
1290 info->mounted = 1;
1291 return D_WALK_QUIT;
1292 }
1293 return D_WALK_CONTINUE;
1294 }
1295
1296 /**
1297 * path_has_submounts - check for mounts over a dentry in the
1298 * current namespace.
1299 * @parent: path to check.
1300 *
1301 * Return true if the parent or its subdirectories contain
1302 * a mount point in the current namespace.
1303 */
1304 int path_has_submounts(const struct path *parent)
1305 {
1306 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1307
1308 read_seqlock_excl(&mount_lock);
1309 d_walk(parent->dentry, &data, path_check_mount, NULL);
1310 read_sequnlock_excl(&mount_lock);
1311
1312 return data.mounted;
1313 }
1314 EXPORT_SYMBOL(path_has_submounts);
1315
1316 /*
1317 * Called by mount code to set a mountpoint and check if the mountpoint is
1318 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1319 * subtree can become unreachable).
1320 *
1321 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1322 * this reason take rename_lock and d_lock on dentry and ancestors.
1323 */
1324 int d_set_mounted(struct dentry *dentry)
1325 {
1326 struct dentry *p;
1327 int ret = -ENOENT;
1328 write_seqlock(&rename_lock);
1329 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1330 /* Need exclusion wrt. d_invalidate() */
1331 spin_lock(&p->d_lock);
1332 if (unlikely(d_unhashed(p))) {
1333 spin_unlock(&p->d_lock);
1334 goto out;
1335 }
1336 spin_unlock(&p->d_lock);
1337 }
1338 spin_lock(&dentry->d_lock);
1339 if (!d_unlinked(dentry)) {
1340 ret = -EBUSY;
1341 if (!d_mountpoint(dentry)) {
1342 dentry->d_flags |= DCACHE_MOUNTED;
1343 ret = 0;
1344 }
1345 }
1346 spin_unlock(&dentry->d_lock);
1347 out:
1348 write_sequnlock(&rename_lock);
1349 return ret;
1350 }
1351
1352 /*
1353 * Search the dentry child list of the specified parent,
1354 * and move any unused dentries to the end of the unused
1355 * list for prune_dcache(). We descend to the next level
1356 * whenever the d_subdirs list is non-empty and continue
1357 * searching.
1358 *
1359 * It returns zero iff there are no unused children,
1360 * otherwise it returns the number of children moved to
1361 * the end of the unused list. This may not be the total
1362 * number of unused children, because select_parent can
1363 * drop the lock and return early due to latency
1364 * constraints.
1365 */
1366
1367 struct select_data {
1368 struct dentry *start;
1369 struct list_head dispose;
1370 int found;
1371 };
1372
1373 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1374 {
1375 struct select_data *data = _data;
1376 enum d_walk_ret ret = D_WALK_CONTINUE;
1377
1378 if (data->start == dentry)
1379 goto out;
1380
1381 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1382 data->found++;
1383 } else {
1384 if (dentry->d_flags & DCACHE_LRU_LIST)
1385 d_lru_del(dentry);
1386 if (!dentry->d_lockref.count) {
1387 d_shrink_add(dentry, &data->dispose);
1388 data->found++;
1389 }
1390 }
1391 /*
1392 * We can return to the caller if we have found some (this
1393 * ensures forward progress). We'll be coming back to find
1394 * the rest.
1395 */
1396 if (!list_empty(&data->dispose))
1397 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1398 out:
1399 return ret;
1400 }
1401
1402 /**
1403 * shrink_dcache_parent - prune dcache
1404 * @parent: parent of entries to prune
1405 *
1406 * Prune the dcache to remove unused children of the parent dentry.
1407 */
1408 void shrink_dcache_parent(struct dentry *parent)
1409 {
1410 for (;;) {
1411 struct select_data data;
1412
1413 INIT_LIST_HEAD(&data.dispose);
1414 data.start = parent;
1415 data.found = 0;
1416
1417 d_walk(parent, &data, select_collect, NULL);
1418 if (!data.found)
1419 break;
1420
1421 shrink_dentry_list(&data.dispose);
1422 cond_resched();
1423 }
1424 }
1425 EXPORT_SYMBOL(shrink_dcache_parent);
1426
1427 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1428 {
1429 /* it has busy descendents; complain about those instead */
1430 if (!list_empty(&dentry->d_subdirs))
1431 return D_WALK_CONTINUE;
1432
1433 /* root with refcount 1 is fine */
1434 if (dentry == _data && dentry->d_lockref.count == 1)
1435 return D_WALK_CONTINUE;
1436
1437 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1438 " still in use (%d) [unmount of %s %s]\n",
1439 dentry,
1440 dentry->d_inode ?
1441 dentry->d_inode->i_ino : 0UL,
1442 dentry,
1443 dentry->d_lockref.count,
1444 dentry->d_sb->s_type->name,
1445 dentry->d_sb->s_id);
1446 WARN_ON(1);
1447 return D_WALK_CONTINUE;
1448 }
1449
1450 static void do_one_tree(struct dentry *dentry)
1451 {
1452 shrink_dcache_parent(dentry);
1453 d_walk(dentry, dentry, umount_check, NULL);
1454 d_drop(dentry);
1455 dput(dentry);
1456 }
1457
1458 /*
1459 * destroy the dentries attached to a superblock on unmounting
1460 */
1461 void shrink_dcache_for_umount(struct super_block *sb)
1462 {
1463 struct dentry *dentry;
1464
1465 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1466
1467 dentry = sb->s_root;
1468 sb->s_root = NULL;
1469 do_one_tree(dentry);
1470
1471 while (!hlist_bl_empty(&sb->s_anon)) {
1472 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1473 do_one_tree(dentry);
1474 }
1475 }
1476
1477 struct detach_data {
1478 struct select_data select;
1479 struct dentry *mountpoint;
1480 };
1481 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1482 {
1483 struct detach_data *data = _data;
1484
1485 if (d_mountpoint(dentry)) {
1486 __dget_dlock(dentry);
1487 data->mountpoint = dentry;
1488 return D_WALK_QUIT;
1489 }
1490
1491 return select_collect(&data->select, dentry);
1492 }
1493
1494 static void check_and_drop(void *_data)
1495 {
1496 struct detach_data *data = _data;
1497
1498 if (!data->mountpoint && !data->select.found)
1499 __d_drop(data->select.start);
1500 }
1501
1502 /**
1503 * d_invalidate - detach submounts, prune dcache, and drop
1504 * @dentry: dentry to invalidate (aka detach, prune and drop)
1505 *
1506 * no dcache lock.
1507 *
1508 * The final d_drop is done as an atomic operation relative to
1509 * rename_lock ensuring there are no races with d_set_mounted. This
1510 * ensures there are no unhashed dentries on the path to a mountpoint.
1511 */
1512 void d_invalidate(struct dentry *dentry)
1513 {
1514 /*
1515 * If it's already been dropped, return OK.
1516 */
1517 spin_lock(&dentry->d_lock);
1518 if (d_unhashed(dentry)) {
1519 spin_unlock(&dentry->d_lock);
1520 return;
1521 }
1522 spin_unlock(&dentry->d_lock);
1523
1524 /* Negative dentries can be dropped without further checks */
1525 if (!dentry->d_inode) {
1526 d_drop(dentry);
1527 return;
1528 }
1529
1530 for (;;) {
1531 struct detach_data data;
1532
1533 data.mountpoint = NULL;
1534 INIT_LIST_HEAD(&data.select.dispose);
1535 data.select.start = dentry;
1536 data.select.found = 0;
1537
1538 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1539
1540 if (data.select.found)
1541 shrink_dentry_list(&data.select.dispose);
1542
1543 if (data.mountpoint) {
1544 detach_mounts(data.mountpoint);
1545 dput(data.mountpoint);
1546 }
1547
1548 if (!data.mountpoint && !data.select.found)
1549 break;
1550
1551 cond_resched();
1552 }
1553 }
1554 EXPORT_SYMBOL(d_invalidate);
1555
1556 /**
1557 * __d_alloc - allocate a dcache entry
1558 * @sb: filesystem it will belong to
1559 * @name: qstr of the name
1560 *
1561 * Allocates a dentry. It returns %NULL if there is insufficient memory
1562 * available. On a success the dentry is returned. The name passed in is
1563 * copied and the copy passed in may be reused after this call.
1564 */
1565
1566 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1567 {
1568 struct dentry *dentry;
1569 char *dname;
1570 int err;
1571
1572 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1573 if (!dentry)
1574 return NULL;
1575
1576 /*
1577 * We guarantee that the inline name is always NUL-terminated.
1578 * This way the memcpy() done by the name switching in rename
1579 * will still always have a NUL at the end, even if we might
1580 * be overwriting an internal NUL character
1581 */
1582 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1583 if (unlikely(!name)) {
1584 static const struct qstr anon = QSTR_INIT("/", 1);
1585 name = &anon;
1586 dname = dentry->d_iname;
1587 } else if (name->len > DNAME_INLINE_LEN-1) {
1588 size_t size = offsetof(struct external_name, name[1]);
1589 struct external_name *p = kmalloc(size + name->len,
1590 GFP_KERNEL_ACCOUNT);
1591 if (!p) {
1592 kmem_cache_free(dentry_cache, dentry);
1593 return NULL;
1594 }
1595 atomic_set(&p->u.count, 1);
1596 dname = p->name;
1597 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1598 kasan_unpoison_shadow(dname,
1599 round_up(name->len + 1, sizeof(unsigned long)));
1600 } else {
1601 dname = dentry->d_iname;
1602 }
1603
1604 dentry->d_name.len = name->len;
1605 dentry->d_name.hash = name->hash;
1606 memcpy(dname, name->name, name->len);
1607 dname[name->len] = 0;
1608
1609 /* Make sure we always see the terminating NUL character */
1610 smp_wmb();
1611 dentry->d_name.name = dname;
1612
1613 dentry->d_lockref.count = 1;
1614 dentry->d_flags = 0;
1615 spin_lock_init(&dentry->d_lock);
1616 seqcount_init(&dentry->d_seq);
1617 dentry->d_inode = NULL;
1618 dentry->d_parent = dentry;
1619 dentry->d_sb = sb;
1620 dentry->d_op = NULL;
1621 dentry->d_fsdata = NULL;
1622 INIT_HLIST_BL_NODE(&dentry->d_hash);
1623 INIT_LIST_HEAD(&dentry->d_lru);
1624 INIT_LIST_HEAD(&dentry->d_subdirs);
1625 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1626 INIT_LIST_HEAD(&dentry->d_child);
1627 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1628
1629 if (dentry->d_op && dentry->d_op->d_init) {
1630 err = dentry->d_op->d_init(dentry);
1631 if (err) {
1632 if (dname_external(dentry))
1633 kfree(external_name(dentry));
1634 kmem_cache_free(dentry_cache, dentry);
1635 return NULL;
1636 }
1637 }
1638
1639 this_cpu_inc(nr_dentry);
1640
1641 return dentry;
1642 }
1643
1644 /**
1645 * d_alloc - allocate a dcache entry
1646 * @parent: parent of entry to allocate
1647 * @name: qstr of the name
1648 *
1649 * Allocates a dentry. It returns %NULL if there is insufficient memory
1650 * available. On a success the dentry is returned. The name passed in is
1651 * copied and the copy passed in may be reused after this call.
1652 */
1653 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1654 {
1655 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1656 if (!dentry)
1657 return NULL;
1658 dentry->d_flags |= DCACHE_RCUACCESS;
1659 spin_lock(&parent->d_lock);
1660 /*
1661 * don't need child lock because it is not subject
1662 * to concurrency here
1663 */
1664 __dget_dlock(parent);
1665 dentry->d_parent = parent;
1666 list_add(&dentry->d_child, &parent->d_subdirs);
1667 spin_unlock(&parent->d_lock);
1668
1669 return dentry;
1670 }
1671 EXPORT_SYMBOL(d_alloc);
1672
1673 struct dentry *d_alloc_cursor(struct dentry * parent)
1674 {
1675 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1676 if (dentry) {
1677 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1678 dentry->d_parent = dget(parent);
1679 }
1680 return dentry;
1681 }
1682
1683 /**
1684 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1685 * @sb: the superblock
1686 * @name: qstr of the name
1687 *
1688 * For a filesystem that just pins its dentries in memory and never
1689 * performs lookups at all, return an unhashed IS_ROOT dentry.
1690 */
1691 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1692 {
1693 return __d_alloc(sb, name);
1694 }
1695 EXPORT_SYMBOL(d_alloc_pseudo);
1696
1697 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1698 {
1699 struct qstr q;
1700
1701 q.name = name;
1702 q.hash_len = hashlen_string(parent, name);
1703 return d_alloc(parent, &q);
1704 }
1705 EXPORT_SYMBOL(d_alloc_name);
1706
1707 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1708 {
1709 WARN_ON_ONCE(dentry->d_op);
1710 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1711 DCACHE_OP_COMPARE |
1712 DCACHE_OP_REVALIDATE |
1713 DCACHE_OP_WEAK_REVALIDATE |
1714 DCACHE_OP_DELETE |
1715 DCACHE_OP_REAL));
1716 dentry->d_op = op;
1717 if (!op)
1718 return;
1719 if (op->d_hash)
1720 dentry->d_flags |= DCACHE_OP_HASH;
1721 if (op->d_compare)
1722 dentry->d_flags |= DCACHE_OP_COMPARE;
1723 if (op->d_revalidate)
1724 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1725 if (op->d_weak_revalidate)
1726 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1727 if (op->d_delete)
1728 dentry->d_flags |= DCACHE_OP_DELETE;
1729 if (op->d_prune)
1730 dentry->d_flags |= DCACHE_OP_PRUNE;
1731 if (op->d_real)
1732 dentry->d_flags |= DCACHE_OP_REAL;
1733
1734 }
1735 EXPORT_SYMBOL(d_set_d_op);
1736
1737
1738 /*
1739 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1740 * @dentry - The dentry to mark
1741 *
1742 * Mark a dentry as falling through to the lower layer (as set with
1743 * d_pin_lower()). This flag may be recorded on the medium.
1744 */
1745 void d_set_fallthru(struct dentry *dentry)
1746 {
1747 spin_lock(&dentry->d_lock);
1748 dentry->d_flags |= DCACHE_FALLTHRU;
1749 spin_unlock(&dentry->d_lock);
1750 }
1751 EXPORT_SYMBOL(d_set_fallthru);
1752
1753 static unsigned d_flags_for_inode(struct inode *inode)
1754 {
1755 unsigned add_flags = DCACHE_REGULAR_TYPE;
1756
1757 if (!inode)
1758 return DCACHE_MISS_TYPE;
1759
1760 if (S_ISDIR(inode->i_mode)) {
1761 add_flags = DCACHE_DIRECTORY_TYPE;
1762 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1763 if (unlikely(!inode->i_op->lookup))
1764 add_flags = DCACHE_AUTODIR_TYPE;
1765 else
1766 inode->i_opflags |= IOP_LOOKUP;
1767 }
1768 goto type_determined;
1769 }
1770
1771 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1772 if (unlikely(inode->i_op->get_link)) {
1773 add_flags = DCACHE_SYMLINK_TYPE;
1774 goto type_determined;
1775 }
1776 inode->i_opflags |= IOP_NOFOLLOW;
1777 }
1778
1779 if (unlikely(!S_ISREG(inode->i_mode)))
1780 add_flags = DCACHE_SPECIAL_TYPE;
1781
1782 type_determined:
1783 if (unlikely(IS_AUTOMOUNT(inode)))
1784 add_flags |= DCACHE_NEED_AUTOMOUNT;
1785 return add_flags;
1786 }
1787
1788 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1789 {
1790 unsigned add_flags = d_flags_for_inode(inode);
1791 WARN_ON(d_in_lookup(dentry));
1792
1793 spin_lock(&dentry->d_lock);
1794 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1795 raw_write_seqcount_begin(&dentry->d_seq);
1796 __d_set_inode_and_type(dentry, inode, add_flags);
1797 raw_write_seqcount_end(&dentry->d_seq);
1798 fsnotify_update_flags(dentry);
1799 spin_unlock(&dentry->d_lock);
1800 }
1801
1802 /**
1803 * d_instantiate - fill in inode information for a dentry
1804 * @entry: dentry to complete
1805 * @inode: inode to attach to this dentry
1806 *
1807 * Fill in inode information in the entry.
1808 *
1809 * This turns negative dentries into productive full members
1810 * of society.
1811 *
1812 * NOTE! This assumes that the inode count has been incremented
1813 * (or otherwise set) by the caller to indicate that it is now
1814 * in use by the dcache.
1815 */
1816
1817 void d_instantiate(struct dentry *entry, struct inode * inode)
1818 {
1819 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1820 if (inode) {
1821 security_d_instantiate(entry, inode);
1822 spin_lock(&inode->i_lock);
1823 __d_instantiate(entry, inode);
1824 spin_unlock(&inode->i_lock);
1825 }
1826 }
1827 EXPORT_SYMBOL(d_instantiate);
1828
1829 /**
1830 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1831 * @entry: dentry to complete
1832 * @inode: inode to attach to this dentry
1833 *
1834 * Fill in inode information in the entry. If a directory alias is found, then
1835 * return an error (and drop inode). Together with d_materialise_unique() this
1836 * guarantees that a directory inode may never have more than one alias.
1837 */
1838 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1839 {
1840 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1841
1842 security_d_instantiate(entry, inode);
1843 spin_lock(&inode->i_lock);
1844 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1845 spin_unlock(&inode->i_lock);
1846 iput(inode);
1847 return -EBUSY;
1848 }
1849 __d_instantiate(entry, inode);
1850 spin_unlock(&inode->i_lock);
1851
1852 return 0;
1853 }
1854 EXPORT_SYMBOL(d_instantiate_no_diralias);
1855
1856 struct dentry *d_make_root(struct inode *root_inode)
1857 {
1858 struct dentry *res = NULL;
1859
1860 if (root_inode) {
1861 res = __d_alloc(root_inode->i_sb, NULL);
1862 if (res)
1863 d_instantiate(res, root_inode);
1864 else
1865 iput(root_inode);
1866 }
1867 return res;
1868 }
1869 EXPORT_SYMBOL(d_make_root);
1870
1871 static struct dentry * __d_find_any_alias(struct inode *inode)
1872 {
1873 struct dentry *alias;
1874
1875 if (hlist_empty(&inode->i_dentry))
1876 return NULL;
1877 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1878 __dget(alias);
1879 return alias;
1880 }
1881
1882 /**
1883 * d_find_any_alias - find any alias for a given inode
1884 * @inode: inode to find an alias for
1885 *
1886 * If any aliases exist for the given inode, take and return a
1887 * reference for one of them. If no aliases exist, return %NULL.
1888 */
1889 struct dentry *d_find_any_alias(struct inode *inode)
1890 {
1891 struct dentry *de;
1892
1893 spin_lock(&inode->i_lock);
1894 de = __d_find_any_alias(inode);
1895 spin_unlock(&inode->i_lock);
1896 return de;
1897 }
1898 EXPORT_SYMBOL(d_find_any_alias);
1899
1900 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1901 {
1902 struct dentry *tmp;
1903 struct dentry *res;
1904 unsigned add_flags;
1905
1906 if (!inode)
1907 return ERR_PTR(-ESTALE);
1908 if (IS_ERR(inode))
1909 return ERR_CAST(inode);
1910
1911 res = d_find_any_alias(inode);
1912 if (res)
1913 goto out_iput;
1914
1915 tmp = __d_alloc(inode->i_sb, NULL);
1916 if (!tmp) {
1917 res = ERR_PTR(-ENOMEM);
1918 goto out_iput;
1919 }
1920
1921 security_d_instantiate(tmp, inode);
1922 spin_lock(&inode->i_lock);
1923 res = __d_find_any_alias(inode);
1924 if (res) {
1925 spin_unlock(&inode->i_lock);
1926 dput(tmp);
1927 goto out_iput;
1928 }
1929
1930 /* attach a disconnected dentry */
1931 add_flags = d_flags_for_inode(inode);
1932
1933 if (disconnected)
1934 add_flags |= DCACHE_DISCONNECTED;
1935
1936 spin_lock(&tmp->d_lock);
1937 __d_set_inode_and_type(tmp, inode, add_flags);
1938 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1939 hlist_bl_lock(&tmp->d_sb->s_anon);
1940 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1941 hlist_bl_unlock(&tmp->d_sb->s_anon);
1942 spin_unlock(&tmp->d_lock);
1943 spin_unlock(&inode->i_lock);
1944
1945 return tmp;
1946
1947 out_iput:
1948 iput(inode);
1949 return res;
1950 }
1951
1952 /**
1953 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1954 * @inode: inode to allocate the dentry for
1955 *
1956 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1957 * similar open by handle operations. The returned dentry may be anonymous,
1958 * or may have a full name (if the inode was already in the cache).
1959 *
1960 * When called on a directory inode, we must ensure that the inode only ever
1961 * has one dentry. If a dentry is found, that is returned instead of
1962 * allocating a new one.
1963 *
1964 * On successful return, the reference to the inode has been transferred
1965 * to the dentry. In case of an error the reference on the inode is released.
1966 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1967 * be passed in and the error will be propagated to the return value,
1968 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1969 */
1970 struct dentry *d_obtain_alias(struct inode *inode)
1971 {
1972 return __d_obtain_alias(inode, 1);
1973 }
1974 EXPORT_SYMBOL(d_obtain_alias);
1975
1976 /**
1977 * d_obtain_root - find or allocate a dentry for a given inode
1978 * @inode: inode to allocate the dentry for
1979 *
1980 * Obtain an IS_ROOT dentry for the root of a filesystem.
1981 *
1982 * We must ensure that directory inodes only ever have one dentry. If a
1983 * dentry is found, that is returned instead of allocating a new one.
1984 *
1985 * On successful return, the reference to the inode has been transferred
1986 * to the dentry. In case of an error the reference on the inode is
1987 * released. A %NULL or IS_ERR inode may be passed in and will be the
1988 * error will be propagate to the return value, with a %NULL @inode
1989 * replaced by ERR_PTR(-ESTALE).
1990 */
1991 struct dentry *d_obtain_root(struct inode *inode)
1992 {
1993 return __d_obtain_alias(inode, 0);
1994 }
1995 EXPORT_SYMBOL(d_obtain_root);
1996
1997 /**
1998 * d_add_ci - lookup or allocate new dentry with case-exact name
1999 * @inode: the inode case-insensitive lookup has found
2000 * @dentry: the negative dentry that was passed to the parent's lookup func
2001 * @name: the case-exact name to be associated with the returned dentry
2002 *
2003 * This is to avoid filling the dcache with case-insensitive names to the
2004 * same inode, only the actual correct case is stored in the dcache for
2005 * case-insensitive filesystems.
2006 *
2007 * For a case-insensitive lookup match and if the the case-exact dentry
2008 * already exists in in the dcache, use it and return it.
2009 *
2010 * If no entry exists with the exact case name, allocate new dentry with
2011 * the exact case, and return the spliced entry.
2012 */
2013 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2014 struct qstr *name)
2015 {
2016 struct dentry *found, *res;
2017
2018 /*
2019 * First check if a dentry matching the name already exists,
2020 * if not go ahead and create it now.
2021 */
2022 found = d_hash_and_lookup(dentry->d_parent, name);
2023 if (found) {
2024 iput(inode);
2025 return found;
2026 }
2027 if (d_in_lookup(dentry)) {
2028 found = d_alloc_parallel(dentry->d_parent, name,
2029 dentry->d_wait);
2030 if (IS_ERR(found) || !d_in_lookup(found)) {
2031 iput(inode);
2032 return found;
2033 }
2034 } else {
2035 found = d_alloc(dentry->d_parent, name);
2036 if (!found) {
2037 iput(inode);
2038 return ERR_PTR(-ENOMEM);
2039 }
2040 }
2041 res = d_splice_alias(inode, found);
2042 if (res) {
2043 dput(found);
2044 return res;
2045 }
2046 return found;
2047 }
2048 EXPORT_SYMBOL(d_add_ci);
2049
2050
2051 static inline bool d_same_name(const struct dentry *dentry,
2052 const struct dentry *parent,
2053 const struct qstr *name)
2054 {
2055 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2056 if (dentry->d_name.len != name->len)
2057 return false;
2058 return dentry_cmp(dentry, name->name, name->len) == 0;
2059 }
2060 return parent->d_op->d_compare(dentry,
2061 dentry->d_name.len, dentry->d_name.name,
2062 name) == 0;
2063 }
2064
2065 /**
2066 * __d_lookup_rcu - search for a dentry (racy, store-free)
2067 * @parent: parent dentry
2068 * @name: qstr of name we wish to find
2069 * @seqp: returns d_seq value at the point where the dentry was found
2070 * Returns: dentry, or NULL
2071 *
2072 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2073 * resolution (store-free path walking) design described in
2074 * Documentation/filesystems/path-lookup.txt.
2075 *
2076 * This is not to be used outside core vfs.
2077 *
2078 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2079 * held, and rcu_read_lock held. The returned dentry must not be stored into
2080 * without taking d_lock and checking d_seq sequence count against @seq
2081 * returned here.
2082 *
2083 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2084 * function.
2085 *
2086 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2087 * the returned dentry, so long as its parent's seqlock is checked after the
2088 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2089 * is formed, giving integrity down the path walk.
2090 *
2091 * NOTE! The caller *has* to check the resulting dentry against the sequence
2092 * number we've returned before using any of the resulting dentry state!
2093 */
2094 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2095 const struct qstr *name,
2096 unsigned *seqp)
2097 {
2098 u64 hashlen = name->hash_len;
2099 const unsigned char *str = name->name;
2100 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2101 struct hlist_bl_node *node;
2102 struct dentry *dentry;
2103
2104 /*
2105 * Note: There is significant duplication with __d_lookup_rcu which is
2106 * required to prevent single threaded performance regressions
2107 * especially on architectures where smp_rmb (in seqcounts) are costly.
2108 * Keep the two functions in sync.
2109 */
2110
2111 /*
2112 * The hash list is protected using RCU.
2113 *
2114 * Carefully use d_seq when comparing a candidate dentry, to avoid
2115 * races with d_move().
2116 *
2117 * It is possible that concurrent renames can mess up our list
2118 * walk here and result in missing our dentry, resulting in the
2119 * false-negative result. d_lookup() protects against concurrent
2120 * renames using rename_lock seqlock.
2121 *
2122 * See Documentation/filesystems/path-lookup.txt for more details.
2123 */
2124 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2125 unsigned seq;
2126
2127 seqretry:
2128 /*
2129 * The dentry sequence count protects us from concurrent
2130 * renames, and thus protects parent and name fields.
2131 *
2132 * The caller must perform a seqcount check in order
2133 * to do anything useful with the returned dentry.
2134 *
2135 * NOTE! We do a "raw" seqcount_begin here. That means that
2136 * we don't wait for the sequence count to stabilize if it
2137 * is in the middle of a sequence change. If we do the slow
2138 * dentry compare, we will do seqretries until it is stable,
2139 * and if we end up with a successful lookup, we actually
2140 * want to exit RCU lookup anyway.
2141 *
2142 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2143 * we are still guaranteed NUL-termination of ->d_name.name.
2144 */
2145 seq = raw_seqcount_begin(&dentry->d_seq);
2146 if (dentry->d_parent != parent)
2147 continue;
2148 if (d_unhashed(dentry))
2149 continue;
2150
2151 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2152 int tlen;
2153 const char *tname;
2154 if (dentry->d_name.hash != hashlen_hash(hashlen))
2155 continue;
2156 tlen = dentry->d_name.len;
2157 tname = dentry->d_name.name;
2158 /* we want a consistent (name,len) pair */
2159 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2160 cpu_relax();
2161 goto seqretry;
2162 }
2163 if (parent->d_op->d_compare(dentry,
2164 tlen, tname, name) != 0)
2165 continue;
2166 } else {
2167 if (dentry->d_name.hash_len != hashlen)
2168 continue;
2169 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2170 continue;
2171 }
2172 *seqp = seq;
2173 return dentry;
2174 }
2175 return NULL;
2176 }
2177
2178 /**
2179 * d_lookup - search for a dentry
2180 * @parent: parent dentry
2181 * @name: qstr of name we wish to find
2182 * Returns: dentry, or NULL
2183 *
2184 * d_lookup searches the children of the parent dentry for the name in
2185 * question. If the dentry is found its reference count is incremented and the
2186 * dentry is returned. The caller must use dput to free the entry when it has
2187 * finished using it. %NULL is returned if the dentry does not exist.
2188 */
2189 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2190 {
2191 struct dentry *dentry;
2192 unsigned seq;
2193
2194 do {
2195 seq = read_seqbegin(&rename_lock);
2196 dentry = __d_lookup(parent, name);
2197 if (dentry)
2198 break;
2199 } while (read_seqretry(&rename_lock, seq));
2200 return dentry;
2201 }
2202 EXPORT_SYMBOL(d_lookup);
2203
2204 /**
2205 * __d_lookup - search for a dentry (racy)
2206 * @parent: parent dentry
2207 * @name: qstr of name we wish to find
2208 * Returns: dentry, or NULL
2209 *
2210 * __d_lookup is like d_lookup, however it may (rarely) return a
2211 * false-negative result due to unrelated rename activity.
2212 *
2213 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2214 * however it must be used carefully, eg. with a following d_lookup in
2215 * the case of failure.
2216 *
2217 * __d_lookup callers must be commented.
2218 */
2219 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2220 {
2221 unsigned int hash = name->hash;
2222 struct hlist_bl_head *b = d_hash(hash);
2223 struct hlist_bl_node *node;
2224 struct dentry *found = NULL;
2225 struct dentry *dentry;
2226
2227 /*
2228 * Note: There is significant duplication with __d_lookup_rcu which is
2229 * required to prevent single threaded performance regressions
2230 * especially on architectures where smp_rmb (in seqcounts) are costly.
2231 * Keep the two functions in sync.
2232 */
2233
2234 /*
2235 * The hash list is protected using RCU.
2236 *
2237 * Take d_lock when comparing a candidate dentry, to avoid races
2238 * with d_move().
2239 *
2240 * It is possible that concurrent renames can mess up our list
2241 * walk here and result in missing our dentry, resulting in the
2242 * false-negative result. d_lookup() protects against concurrent
2243 * renames using rename_lock seqlock.
2244 *
2245 * See Documentation/filesystems/path-lookup.txt for more details.
2246 */
2247 rcu_read_lock();
2248
2249 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2250
2251 if (dentry->d_name.hash != hash)
2252 continue;
2253
2254 spin_lock(&dentry->d_lock);
2255 if (dentry->d_parent != parent)
2256 goto next;
2257 if (d_unhashed(dentry))
2258 goto next;
2259
2260 if (!d_same_name(dentry, parent, name))
2261 goto next;
2262
2263 dentry->d_lockref.count++;
2264 found = dentry;
2265 spin_unlock(&dentry->d_lock);
2266 break;
2267 next:
2268 spin_unlock(&dentry->d_lock);
2269 }
2270 rcu_read_unlock();
2271
2272 return found;
2273 }
2274
2275 /**
2276 * d_hash_and_lookup - hash the qstr then search for a dentry
2277 * @dir: Directory to search in
2278 * @name: qstr of name we wish to find
2279 *
2280 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2281 */
2282 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2283 {
2284 /*
2285 * Check for a fs-specific hash function. Note that we must
2286 * calculate the standard hash first, as the d_op->d_hash()
2287 * routine may choose to leave the hash value unchanged.
2288 */
2289 name->hash = full_name_hash(dir, name->name, name->len);
2290 if (dir->d_flags & DCACHE_OP_HASH) {
2291 int err = dir->d_op->d_hash(dir, name);
2292 if (unlikely(err < 0))
2293 return ERR_PTR(err);
2294 }
2295 return d_lookup(dir, name);
2296 }
2297 EXPORT_SYMBOL(d_hash_and_lookup);
2298
2299 /*
2300 * When a file is deleted, we have two options:
2301 * - turn this dentry into a negative dentry
2302 * - unhash this dentry and free it.
2303 *
2304 * Usually, we want to just turn this into
2305 * a negative dentry, but if anybody else is
2306 * currently using the dentry or the inode
2307 * we can't do that and we fall back on removing
2308 * it from the hash queues and waiting for
2309 * it to be deleted later when it has no users
2310 */
2311
2312 /**
2313 * d_delete - delete a dentry
2314 * @dentry: The dentry to delete
2315 *
2316 * Turn the dentry into a negative dentry if possible, otherwise
2317 * remove it from the hash queues so it can be deleted later
2318 */
2319
2320 void d_delete(struct dentry * dentry)
2321 {
2322 struct inode *inode;
2323 int isdir = 0;
2324 /*
2325 * Are we the only user?
2326 */
2327 again:
2328 spin_lock(&dentry->d_lock);
2329 inode = dentry->d_inode;
2330 isdir = S_ISDIR(inode->i_mode);
2331 if (dentry->d_lockref.count == 1) {
2332 if (!spin_trylock(&inode->i_lock)) {
2333 spin_unlock(&dentry->d_lock);
2334 cpu_relax();
2335 goto again;
2336 }
2337 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2338 dentry_unlink_inode(dentry);
2339 fsnotify_nameremove(dentry, isdir);
2340 return;
2341 }
2342
2343 if (!d_unhashed(dentry))
2344 __d_drop(dentry);
2345
2346 spin_unlock(&dentry->d_lock);
2347
2348 fsnotify_nameremove(dentry, isdir);
2349 }
2350 EXPORT_SYMBOL(d_delete);
2351
2352 static void __d_rehash(struct dentry *entry)
2353 {
2354 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2355 BUG_ON(!d_unhashed(entry));
2356 hlist_bl_lock(b);
2357 hlist_bl_add_head_rcu(&entry->d_hash, b);
2358 hlist_bl_unlock(b);
2359 }
2360
2361 /**
2362 * d_rehash - add an entry back to the hash
2363 * @entry: dentry to add to the hash
2364 *
2365 * Adds a dentry to the hash according to its name.
2366 */
2367
2368 void d_rehash(struct dentry * entry)
2369 {
2370 spin_lock(&entry->d_lock);
2371 __d_rehash(entry);
2372 spin_unlock(&entry->d_lock);
2373 }
2374 EXPORT_SYMBOL(d_rehash);
2375
2376 static inline unsigned start_dir_add(struct inode *dir)
2377 {
2378
2379 for (;;) {
2380 unsigned n = dir->i_dir_seq;
2381 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2382 return n;
2383 cpu_relax();
2384 }
2385 }
2386
2387 static inline void end_dir_add(struct inode *dir, unsigned n)
2388 {
2389 smp_store_release(&dir->i_dir_seq, n + 2);
2390 }
2391
2392 static void d_wait_lookup(struct dentry *dentry)
2393 {
2394 if (d_in_lookup(dentry)) {
2395 DECLARE_WAITQUEUE(wait, current);
2396 add_wait_queue(dentry->d_wait, &wait);
2397 do {
2398 set_current_state(TASK_UNINTERRUPTIBLE);
2399 spin_unlock(&dentry->d_lock);
2400 schedule();
2401 spin_lock(&dentry->d_lock);
2402 } while (d_in_lookup(dentry));
2403 }
2404 }
2405
2406 struct dentry *d_alloc_parallel(struct dentry *parent,
2407 const struct qstr *name,
2408 wait_queue_head_t *wq)
2409 {
2410 unsigned int hash = name->hash;
2411 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2412 struct hlist_bl_node *node;
2413 struct dentry *new = d_alloc(parent, name);
2414 struct dentry *dentry;
2415 unsigned seq, r_seq, d_seq;
2416
2417 if (unlikely(!new))
2418 return ERR_PTR(-ENOMEM);
2419
2420 retry:
2421 rcu_read_lock();
2422 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2423 r_seq = read_seqbegin(&rename_lock);
2424 dentry = __d_lookup_rcu(parent, name, &d_seq);
2425 if (unlikely(dentry)) {
2426 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2427 rcu_read_unlock();
2428 goto retry;
2429 }
2430 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2431 rcu_read_unlock();
2432 dput(dentry);
2433 goto retry;
2434 }
2435 rcu_read_unlock();
2436 dput(new);
2437 return dentry;
2438 }
2439 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2440 rcu_read_unlock();
2441 goto retry;
2442 }
2443 hlist_bl_lock(b);
2444 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2445 hlist_bl_unlock(b);
2446 rcu_read_unlock();
2447 goto retry;
2448 }
2449 /*
2450 * No changes for the parent since the beginning of d_lookup().
2451 * Since all removals from the chain happen with hlist_bl_lock(),
2452 * any potential in-lookup matches are going to stay here until
2453 * we unlock the chain. All fields are stable in everything
2454 * we encounter.
2455 */
2456 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2457 if (dentry->d_name.hash != hash)
2458 continue;
2459 if (dentry->d_parent != parent)
2460 continue;
2461 if (!d_same_name(dentry, parent, name))
2462 continue;
2463 hlist_bl_unlock(b);
2464 /* now we can try to grab a reference */
2465 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2466 rcu_read_unlock();
2467 goto retry;
2468 }
2469
2470 rcu_read_unlock();
2471 /*
2472 * somebody is likely to be still doing lookup for it;
2473 * wait for them to finish
2474 */
2475 spin_lock(&dentry->d_lock);
2476 d_wait_lookup(dentry);
2477 /*
2478 * it's not in-lookup anymore; in principle we should repeat
2479 * everything from dcache lookup, but it's likely to be what
2480 * d_lookup() would've found anyway. If it is, just return it;
2481 * otherwise we really have to repeat the whole thing.
2482 */
2483 if (unlikely(dentry->d_name.hash != hash))
2484 goto mismatch;
2485 if (unlikely(dentry->d_parent != parent))
2486 goto mismatch;
2487 if (unlikely(d_unhashed(dentry)))
2488 goto mismatch;
2489 if (unlikely(!d_same_name(dentry, parent, name)))
2490 goto mismatch;
2491 /* OK, it *is* a hashed match; return it */
2492 spin_unlock(&dentry->d_lock);
2493 dput(new);
2494 return dentry;
2495 }
2496 rcu_read_unlock();
2497 /* we can't take ->d_lock here; it's OK, though. */
2498 new->d_flags |= DCACHE_PAR_LOOKUP;
2499 new->d_wait = wq;
2500 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2501 hlist_bl_unlock(b);
2502 return new;
2503 mismatch:
2504 spin_unlock(&dentry->d_lock);
2505 dput(dentry);
2506 goto retry;
2507 }
2508 EXPORT_SYMBOL(d_alloc_parallel);
2509
2510 void __d_lookup_done(struct dentry *dentry)
2511 {
2512 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2513 dentry->d_name.hash);
2514 hlist_bl_lock(b);
2515 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2516 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2517 wake_up_all(dentry->d_wait);
2518 dentry->d_wait = NULL;
2519 hlist_bl_unlock(b);
2520 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2521 INIT_LIST_HEAD(&dentry->d_lru);
2522 }
2523 EXPORT_SYMBOL(__d_lookup_done);
2524
2525 /* inode->i_lock held if inode is non-NULL */
2526
2527 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2528 {
2529 struct inode *dir = NULL;
2530 unsigned n;
2531 spin_lock(&dentry->d_lock);
2532 if (unlikely(d_in_lookup(dentry))) {
2533 dir = dentry->d_parent->d_inode;
2534 n = start_dir_add(dir);
2535 __d_lookup_done(dentry);
2536 }
2537 if (inode) {
2538 unsigned add_flags = d_flags_for_inode(inode);
2539 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2540 raw_write_seqcount_begin(&dentry->d_seq);
2541 __d_set_inode_and_type(dentry, inode, add_flags);
2542 raw_write_seqcount_end(&dentry->d_seq);
2543 fsnotify_update_flags(dentry);
2544 }
2545 __d_rehash(dentry);
2546 if (dir)
2547 end_dir_add(dir, n);
2548 spin_unlock(&dentry->d_lock);
2549 if (inode)
2550 spin_unlock(&inode->i_lock);
2551 }
2552
2553 /**
2554 * d_add - add dentry to hash queues
2555 * @entry: dentry to add
2556 * @inode: The inode to attach to this dentry
2557 *
2558 * This adds the entry to the hash queues and initializes @inode.
2559 * The entry was actually filled in earlier during d_alloc().
2560 */
2561
2562 void d_add(struct dentry *entry, struct inode *inode)
2563 {
2564 if (inode) {
2565 security_d_instantiate(entry, inode);
2566 spin_lock(&inode->i_lock);
2567 }
2568 __d_add(entry, inode);
2569 }
2570 EXPORT_SYMBOL(d_add);
2571
2572 /**
2573 * d_exact_alias - find and hash an exact unhashed alias
2574 * @entry: dentry to add
2575 * @inode: The inode to go with this dentry
2576 *
2577 * If an unhashed dentry with the same name/parent and desired
2578 * inode already exists, hash and return it. Otherwise, return
2579 * NULL.
2580 *
2581 * Parent directory should be locked.
2582 */
2583 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2584 {
2585 struct dentry *alias;
2586 unsigned int hash = entry->d_name.hash;
2587
2588 spin_lock(&inode->i_lock);
2589 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2590 /*
2591 * Don't need alias->d_lock here, because aliases with
2592 * d_parent == entry->d_parent are not subject to name or
2593 * parent changes, because the parent inode i_mutex is held.
2594 */
2595 if (alias->d_name.hash != hash)
2596 continue;
2597 if (alias->d_parent != entry->d_parent)
2598 continue;
2599 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2600 continue;
2601 spin_lock(&alias->d_lock);
2602 if (!d_unhashed(alias)) {
2603 spin_unlock(&alias->d_lock);
2604 alias = NULL;
2605 } else {
2606 __dget_dlock(alias);
2607 __d_rehash(alias);
2608 spin_unlock(&alias->d_lock);
2609 }
2610 spin_unlock(&inode->i_lock);
2611 return alias;
2612 }
2613 spin_unlock(&inode->i_lock);
2614 return NULL;
2615 }
2616 EXPORT_SYMBOL(d_exact_alias);
2617
2618 /**
2619 * dentry_update_name_case - update case insensitive dentry with a new name
2620 * @dentry: dentry to be updated
2621 * @name: new name
2622 *
2623 * Update a case insensitive dentry with new case of name.
2624 *
2625 * dentry must have been returned by d_lookup with name @name. Old and new
2626 * name lengths must match (ie. no d_compare which allows mismatched name
2627 * lengths).
2628 *
2629 * Parent inode i_mutex must be held over d_lookup and into this call (to
2630 * keep renames and concurrent inserts, and readdir(2) away).
2631 */
2632 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2633 {
2634 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2635 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2636
2637 spin_lock(&dentry->d_lock);
2638 write_seqcount_begin(&dentry->d_seq);
2639 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2640 write_seqcount_end(&dentry->d_seq);
2641 spin_unlock(&dentry->d_lock);
2642 }
2643 EXPORT_SYMBOL(dentry_update_name_case);
2644
2645 static void swap_names(struct dentry *dentry, struct dentry *target)
2646 {
2647 if (unlikely(dname_external(target))) {
2648 if (unlikely(dname_external(dentry))) {
2649 /*
2650 * Both external: swap the pointers
2651 */
2652 swap(target->d_name.name, dentry->d_name.name);
2653 } else {
2654 /*
2655 * dentry:internal, target:external. Steal target's
2656 * storage and make target internal.
2657 */
2658 memcpy(target->d_iname, dentry->d_name.name,
2659 dentry->d_name.len + 1);
2660 dentry->d_name.name = target->d_name.name;
2661 target->d_name.name = target->d_iname;
2662 }
2663 } else {
2664 if (unlikely(dname_external(dentry))) {
2665 /*
2666 * dentry:external, target:internal. Give dentry's
2667 * storage to target and make dentry internal
2668 */
2669 memcpy(dentry->d_iname, target->d_name.name,
2670 target->d_name.len + 1);
2671 target->d_name.name = dentry->d_name.name;
2672 dentry->d_name.name = dentry->d_iname;
2673 } else {
2674 /*
2675 * Both are internal.
2676 */
2677 unsigned int i;
2678 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2679 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2680 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2681 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2682 swap(((long *) &dentry->d_iname)[i],
2683 ((long *) &target->d_iname)[i]);
2684 }
2685 }
2686 }
2687 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2688 }
2689
2690 static void copy_name(struct dentry *dentry, struct dentry *target)
2691 {
2692 struct external_name *old_name = NULL;
2693 if (unlikely(dname_external(dentry)))
2694 old_name = external_name(dentry);
2695 if (unlikely(dname_external(target))) {
2696 atomic_inc(&external_name(target)->u.count);
2697 dentry->d_name = target->d_name;
2698 } else {
2699 memcpy(dentry->d_iname, target->d_name.name,
2700 target->d_name.len + 1);
2701 dentry->d_name.name = dentry->d_iname;
2702 dentry->d_name.hash_len = target->d_name.hash_len;
2703 }
2704 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2705 kfree_rcu(old_name, u.head);
2706 }
2707
2708 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2709 {
2710 /*
2711 * XXXX: do we really need to take target->d_lock?
2712 */
2713 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2714 spin_lock(&target->d_parent->d_lock);
2715 else {
2716 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2717 spin_lock(&dentry->d_parent->d_lock);
2718 spin_lock_nested(&target->d_parent->d_lock,
2719 DENTRY_D_LOCK_NESTED);
2720 } else {
2721 spin_lock(&target->d_parent->d_lock);
2722 spin_lock_nested(&dentry->d_parent->d_lock,
2723 DENTRY_D_LOCK_NESTED);
2724 }
2725 }
2726 if (target < dentry) {
2727 spin_lock_nested(&target->d_lock, 2);
2728 spin_lock_nested(&dentry->d_lock, 3);
2729 } else {
2730 spin_lock_nested(&dentry->d_lock, 2);
2731 spin_lock_nested(&target->d_lock, 3);
2732 }
2733 }
2734
2735 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2736 {
2737 if (target->d_parent != dentry->d_parent)
2738 spin_unlock(&dentry->d_parent->d_lock);
2739 if (target->d_parent != target)
2740 spin_unlock(&target->d_parent->d_lock);
2741 spin_unlock(&target->d_lock);
2742 spin_unlock(&dentry->d_lock);
2743 }
2744
2745 /*
2746 * When switching names, the actual string doesn't strictly have to
2747 * be preserved in the target - because we're dropping the target
2748 * anyway. As such, we can just do a simple memcpy() to copy over
2749 * the new name before we switch, unless we are going to rehash
2750 * it. Note that if we *do* unhash the target, we are not allowed
2751 * to rehash it without giving it a new name/hash key - whether
2752 * we swap or overwrite the names here, resulting name won't match
2753 * the reality in filesystem; it's only there for d_path() purposes.
2754 * Note that all of this is happening under rename_lock, so the
2755 * any hash lookup seeing it in the middle of manipulations will
2756 * be discarded anyway. So we do not care what happens to the hash
2757 * key in that case.
2758 */
2759 /*
2760 * __d_move - move a dentry
2761 * @dentry: entry to move
2762 * @target: new dentry
2763 * @exchange: exchange the two dentries
2764 *
2765 * Update the dcache to reflect the move of a file name. Negative
2766 * dcache entries should not be moved in this way. Caller must hold
2767 * rename_lock, the i_mutex of the source and target directories,
2768 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2769 */
2770 static void __d_move(struct dentry *dentry, struct dentry *target,
2771 bool exchange)
2772 {
2773 struct inode *dir = NULL;
2774 unsigned n;
2775 if (!dentry->d_inode)
2776 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2777
2778 BUG_ON(d_ancestor(dentry, target));
2779 BUG_ON(d_ancestor(target, dentry));
2780
2781 dentry_lock_for_move(dentry, target);
2782 if (unlikely(d_in_lookup(target))) {
2783 dir = target->d_parent->d_inode;
2784 n = start_dir_add(dir);
2785 __d_lookup_done(target);
2786 }
2787
2788 write_seqcount_begin(&dentry->d_seq);
2789 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2790
2791 /* unhash both */
2792 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2793 __d_drop(dentry);
2794 __d_drop(target);
2795
2796 /* Switch the names.. */
2797 if (exchange)
2798 swap_names(dentry, target);
2799 else
2800 copy_name(dentry, target);
2801
2802 /* rehash in new place(s) */
2803 __d_rehash(dentry);
2804 if (exchange)
2805 __d_rehash(target);
2806
2807 /* ... and switch them in the tree */
2808 if (IS_ROOT(dentry)) {
2809 /* splicing a tree */
2810 dentry->d_flags |= DCACHE_RCUACCESS;
2811 dentry->d_parent = target->d_parent;
2812 target->d_parent = target;
2813 list_del_init(&target->d_child);
2814 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2815 } else {
2816 /* swapping two dentries */
2817 swap(dentry->d_parent, target->d_parent);
2818 list_move(&target->d_child, &target->d_parent->d_subdirs);
2819 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2820 if (exchange)
2821 fsnotify_update_flags(target);
2822 fsnotify_update_flags(dentry);
2823 }
2824
2825 write_seqcount_end(&target->d_seq);
2826 write_seqcount_end(&dentry->d_seq);
2827
2828 if (dir)
2829 end_dir_add(dir, n);
2830 dentry_unlock_for_move(dentry, target);
2831 }
2832
2833 /*
2834 * d_move - move a dentry
2835 * @dentry: entry to move
2836 * @target: new dentry
2837 *
2838 * Update the dcache to reflect the move of a file name. Negative
2839 * dcache entries should not be moved in this way. See the locking
2840 * requirements for __d_move.
2841 */
2842 void d_move(struct dentry *dentry, struct dentry *target)
2843 {
2844 write_seqlock(&rename_lock);
2845 __d_move(dentry, target, false);
2846 write_sequnlock(&rename_lock);
2847 }
2848 EXPORT_SYMBOL(d_move);
2849
2850 /*
2851 * d_exchange - exchange two dentries
2852 * @dentry1: first dentry
2853 * @dentry2: second dentry
2854 */
2855 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2856 {
2857 write_seqlock(&rename_lock);
2858
2859 WARN_ON(!dentry1->d_inode);
2860 WARN_ON(!dentry2->d_inode);
2861 WARN_ON(IS_ROOT(dentry1));
2862 WARN_ON(IS_ROOT(dentry2));
2863
2864 __d_move(dentry1, dentry2, true);
2865
2866 write_sequnlock(&rename_lock);
2867 }
2868
2869 /**
2870 * d_ancestor - search for an ancestor
2871 * @p1: ancestor dentry
2872 * @p2: child dentry
2873 *
2874 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2875 * an ancestor of p2, else NULL.
2876 */
2877 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2878 {
2879 struct dentry *p;
2880
2881 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2882 if (p->d_parent == p1)
2883 return p;
2884 }
2885 return NULL;
2886 }
2887
2888 /*
2889 * This helper attempts to cope with remotely renamed directories
2890 *
2891 * It assumes that the caller is already holding
2892 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2893 *
2894 * Note: If ever the locking in lock_rename() changes, then please
2895 * remember to update this too...
2896 */
2897 static int __d_unalias(struct inode *inode,
2898 struct dentry *dentry, struct dentry *alias)
2899 {
2900 struct mutex *m1 = NULL;
2901 struct rw_semaphore *m2 = NULL;
2902 int ret = -ESTALE;
2903
2904 /* If alias and dentry share a parent, then no extra locks required */
2905 if (alias->d_parent == dentry->d_parent)
2906 goto out_unalias;
2907
2908 /* See lock_rename() */
2909 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2910 goto out_err;
2911 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2912 if (!inode_trylock_shared(alias->d_parent->d_inode))
2913 goto out_err;
2914 m2 = &alias->d_parent->d_inode->i_rwsem;
2915 out_unalias:
2916 __d_move(alias, dentry, false);
2917 ret = 0;
2918 out_err:
2919 if (m2)
2920 up_read(m2);
2921 if (m1)
2922 mutex_unlock(m1);
2923 return ret;
2924 }
2925
2926 /**
2927 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2928 * @inode: the inode which may have a disconnected dentry
2929 * @dentry: a negative dentry which we want to point to the inode.
2930 *
2931 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2932 * place of the given dentry and return it, else simply d_add the inode
2933 * to the dentry and return NULL.
2934 *
2935 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2936 * we should error out: directories can't have multiple aliases.
2937 *
2938 * This is needed in the lookup routine of any filesystem that is exportable
2939 * (via knfsd) so that we can build dcache paths to directories effectively.
2940 *
2941 * If a dentry was found and moved, then it is returned. Otherwise NULL
2942 * is returned. This matches the expected return value of ->lookup.
2943 *
2944 * Cluster filesystems may call this function with a negative, hashed dentry.
2945 * In that case, we know that the inode will be a regular file, and also this
2946 * will only occur during atomic_open. So we need to check for the dentry
2947 * being already hashed only in the final case.
2948 */
2949 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2950 {
2951 if (IS_ERR(inode))
2952 return ERR_CAST(inode);
2953
2954 BUG_ON(!d_unhashed(dentry));
2955
2956 if (!inode)
2957 goto out;
2958
2959 security_d_instantiate(dentry, inode);
2960 spin_lock(&inode->i_lock);
2961 if (S_ISDIR(inode->i_mode)) {
2962 struct dentry *new = __d_find_any_alias(inode);
2963 if (unlikely(new)) {
2964 /* The reference to new ensures it remains an alias */
2965 spin_unlock(&inode->i_lock);
2966 write_seqlock(&rename_lock);
2967 if (unlikely(d_ancestor(new, dentry))) {
2968 write_sequnlock(&rename_lock);
2969 dput(new);
2970 new = ERR_PTR(-ELOOP);
2971 pr_warn_ratelimited(
2972 "VFS: Lookup of '%s' in %s %s"
2973 " would have caused loop\n",
2974 dentry->d_name.name,
2975 inode->i_sb->s_type->name,
2976 inode->i_sb->s_id);
2977 } else if (!IS_ROOT(new)) {
2978 int err = __d_unalias(inode, dentry, new);
2979 write_sequnlock(&rename_lock);
2980 if (err) {
2981 dput(new);
2982 new = ERR_PTR(err);
2983 }
2984 } else {
2985 __d_move(new, dentry, false);
2986 write_sequnlock(&rename_lock);
2987 }
2988 iput(inode);
2989 return new;
2990 }
2991 }
2992 out:
2993 __d_add(dentry, inode);
2994 return NULL;
2995 }
2996 EXPORT_SYMBOL(d_splice_alias);
2997
2998 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2999 {
3000 *buflen -= namelen;
3001 if (*buflen < 0)
3002 return -ENAMETOOLONG;
3003 *buffer -= namelen;
3004 memcpy(*buffer, str, namelen);
3005 return 0;
3006 }
3007
3008 /**
3009 * prepend_name - prepend a pathname in front of current buffer pointer
3010 * @buffer: buffer pointer
3011 * @buflen: allocated length of the buffer
3012 * @name: name string and length qstr structure
3013 *
3014 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3015 * make sure that either the old or the new name pointer and length are
3016 * fetched. However, there may be mismatch between length and pointer.
3017 * The length cannot be trusted, we need to copy it byte-by-byte until
3018 * the length is reached or a null byte is found. It also prepends "/" at
3019 * the beginning of the name. The sequence number check at the caller will
3020 * retry it again when a d_move() does happen. So any garbage in the buffer
3021 * due to mismatched pointer and length will be discarded.
3022 *
3023 * Data dependency barrier is needed to make sure that we see that terminating
3024 * NUL. Alpha strikes again, film at 11...
3025 */
3026 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3027 {
3028 const char *dname = ACCESS_ONCE(name->name);
3029 u32 dlen = ACCESS_ONCE(name->len);
3030 char *p;
3031
3032 smp_read_barrier_depends();
3033
3034 *buflen -= dlen + 1;
3035 if (*buflen < 0)
3036 return -ENAMETOOLONG;
3037 p = *buffer -= dlen + 1;
3038 *p++ = '/';
3039 while (dlen--) {
3040 char c = *dname++;
3041 if (!c)
3042 break;
3043 *p++ = c;
3044 }
3045 return 0;
3046 }
3047
3048 /**
3049 * prepend_path - Prepend path string to a buffer
3050 * @path: the dentry/vfsmount to report
3051 * @root: root vfsmnt/dentry
3052 * @buffer: pointer to the end of the buffer
3053 * @buflen: pointer to buffer length
3054 *
3055 * The function will first try to write out the pathname without taking any
3056 * lock other than the RCU read lock to make sure that dentries won't go away.
3057 * It only checks the sequence number of the global rename_lock as any change
3058 * in the dentry's d_seq will be preceded by changes in the rename_lock
3059 * sequence number. If the sequence number had been changed, it will restart
3060 * the whole pathname back-tracing sequence again by taking the rename_lock.
3061 * In this case, there is no need to take the RCU read lock as the recursive
3062 * parent pointer references will keep the dentry chain alive as long as no
3063 * rename operation is performed.
3064 */
3065 static int prepend_path(const struct path *path,
3066 const struct path *root,
3067 char **buffer, int *buflen)
3068 {
3069 struct dentry *dentry;
3070 struct vfsmount *vfsmnt;
3071 struct mount *mnt;
3072 int error = 0;
3073 unsigned seq, m_seq = 0;
3074 char *bptr;
3075 int blen;
3076
3077 rcu_read_lock();
3078 restart_mnt:
3079 read_seqbegin_or_lock(&mount_lock, &m_seq);
3080 seq = 0;
3081 rcu_read_lock();
3082 restart:
3083 bptr = *buffer;
3084 blen = *buflen;
3085 error = 0;
3086 dentry = path->dentry;
3087 vfsmnt = path->mnt;
3088 mnt = real_mount(vfsmnt);
3089 read_seqbegin_or_lock(&rename_lock, &seq);
3090 while (dentry != root->dentry || vfsmnt != root->mnt) {
3091 struct dentry * parent;
3092
3093 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3094 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3095 /* Escaped? */
3096 if (dentry != vfsmnt->mnt_root) {
3097 bptr = *buffer;
3098 blen = *buflen;
3099 error = 3;
3100 break;
3101 }
3102 /* Global root? */
3103 if (mnt != parent) {
3104 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3105 mnt = parent;
3106 vfsmnt = &mnt->mnt;
3107 continue;
3108 }
3109 if (!error)
3110 error = is_mounted(vfsmnt) ? 1 : 2;
3111 break;
3112 }
3113 parent = dentry->d_parent;
3114 prefetch(parent);
3115 error = prepend_name(&bptr, &blen, &dentry->d_name);
3116 if (error)
3117 break;
3118
3119 dentry = parent;
3120 }
3121 if (!(seq & 1))
3122 rcu_read_unlock();
3123 if (need_seqretry(&rename_lock, seq)) {
3124 seq = 1;
3125 goto restart;
3126 }
3127 done_seqretry(&rename_lock, seq);
3128
3129 if (!(m_seq & 1))
3130 rcu_read_unlock();
3131 if (need_seqretry(&mount_lock, m_seq)) {
3132 m_seq = 1;
3133 goto restart_mnt;
3134 }
3135 done_seqretry(&mount_lock, m_seq);
3136
3137 if (error >= 0 && bptr == *buffer) {
3138 if (--blen < 0)
3139 error = -ENAMETOOLONG;
3140 else
3141 *--bptr = '/';
3142 }
3143 *buffer = bptr;
3144 *buflen = blen;
3145 return error;
3146 }
3147
3148 /**
3149 * __d_path - return the path of a dentry
3150 * @path: the dentry/vfsmount to report
3151 * @root: root vfsmnt/dentry
3152 * @buf: buffer to return value in
3153 * @buflen: buffer length
3154 *
3155 * Convert a dentry into an ASCII path name.
3156 *
3157 * Returns a pointer into the buffer or an error code if the
3158 * path was too long.
3159 *
3160 * "buflen" should be positive.
3161 *
3162 * If the path is not reachable from the supplied root, return %NULL.
3163 */
3164 char *__d_path(const struct path *path,
3165 const struct path *root,
3166 char *buf, int buflen)
3167 {
3168 char *res = buf + buflen;
3169 int error;
3170
3171 prepend(&res, &buflen, "\0", 1);
3172 error = prepend_path(path, root, &res, &buflen);
3173
3174 if (error < 0)
3175 return ERR_PTR(error);
3176 if (error > 0)
3177 return NULL;
3178 return res;
3179 }
3180
3181 char *d_absolute_path(const struct path *path,
3182 char *buf, int buflen)
3183 {
3184 struct path root = {};
3185 char *res = buf + buflen;
3186 int error;
3187
3188 prepend(&res, &buflen, "\0", 1);
3189 error = prepend_path(path, &root, &res, &buflen);
3190
3191 if (error > 1)
3192 error = -EINVAL;
3193 if (error < 0)
3194 return ERR_PTR(error);
3195 return res;
3196 }
3197
3198 /*
3199 * same as __d_path but appends "(deleted)" for unlinked files.
3200 */
3201 static int path_with_deleted(const struct path *path,
3202 const struct path *root,
3203 char **buf, int *buflen)
3204 {
3205 prepend(buf, buflen, "\0", 1);
3206 if (d_unlinked(path->dentry)) {
3207 int error = prepend(buf, buflen, " (deleted)", 10);
3208 if (error)
3209 return error;
3210 }
3211
3212 return prepend_path(path, root, buf, buflen);
3213 }
3214
3215 static int prepend_unreachable(char **buffer, int *buflen)
3216 {
3217 return prepend(buffer, buflen, "(unreachable)", 13);
3218 }
3219
3220 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3221 {
3222 unsigned seq;
3223
3224 do {
3225 seq = read_seqcount_begin(&fs->seq);
3226 *root = fs->root;
3227 } while (read_seqcount_retry(&fs->seq, seq));
3228 }
3229
3230 /**
3231 * d_path - return the path of a dentry
3232 * @path: path to report
3233 * @buf: buffer to return value in
3234 * @buflen: buffer length
3235 *
3236 * Convert a dentry into an ASCII path name. If the entry has been deleted
3237 * the string " (deleted)" is appended. Note that this is ambiguous.
3238 *
3239 * Returns a pointer into the buffer or an error code if the path was
3240 * too long. Note: Callers should use the returned pointer, not the passed
3241 * in buffer, to use the name! The implementation often starts at an offset
3242 * into the buffer, and may leave 0 bytes at the start.
3243 *
3244 * "buflen" should be positive.
3245 */
3246 char *d_path(const struct path *path, char *buf, int buflen)
3247 {
3248 char *res = buf + buflen;
3249 struct path root;
3250 int error;
3251
3252 /*
3253 * We have various synthetic filesystems that never get mounted. On
3254 * these filesystems dentries are never used for lookup purposes, and
3255 * thus don't need to be hashed. They also don't need a name until a
3256 * user wants to identify the object in /proc/pid/fd/. The little hack
3257 * below allows us to generate a name for these objects on demand:
3258 *
3259 * Some pseudo inodes are mountable. When they are mounted
3260 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3261 * and instead have d_path return the mounted path.
3262 */
3263 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3264 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3265 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3266
3267 rcu_read_lock();
3268 get_fs_root_rcu(current->fs, &root);
3269 error = path_with_deleted(path, &root, &res, &buflen);
3270 rcu_read_unlock();
3271
3272 if (error < 0)
3273 res = ERR_PTR(error);
3274 return res;
3275 }
3276 EXPORT_SYMBOL(d_path);
3277
3278 /*
3279 * Helper function for dentry_operations.d_dname() members
3280 */
3281 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3282 const char *fmt, ...)
3283 {
3284 va_list args;
3285 char temp[64];
3286 int sz;
3287
3288 va_start(args, fmt);
3289 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3290 va_end(args);
3291
3292 if (sz > sizeof(temp) || sz > buflen)
3293 return ERR_PTR(-ENAMETOOLONG);
3294
3295 buffer += buflen - sz;
3296 return memcpy(buffer, temp, sz);
3297 }
3298
3299 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3300 {
3301 char *end = buffer + buflen;
3302 /* these dentries are never renamed, so d_lock is not needed */
3303 if (prepend(&end, &buflen, " (deleted)", 11) ||
3304 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3305 prepend(&end, &buflen, "/", 1))
3306 end = ERR_PTR(-ENAMETOOLONG);
3307 return end;
3308 }
3309 EXPORT_SYMBOL(simple_dname);
3310
3311 /*
3312 * Write full pathname from the root of the filesystem into the buffer.
3313 */
3314 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3315 {
3316 struct dentry *dentry;
3317 char *end, *retval;
3318 int len, seq = 0;
3319 int error = 0;
3320
3321 if (buflen < 2)
3322 goto Elong;
3323
3324 rcu_read_lock();
3325 restart:
3326 dentry = d;
3327 end = buf + buflen;
3328 len = buflen;
3329 prepend(&end, &len, "\0", 1);
3330 /* Get '/' right */
3331 retval = end-1;
3332 *retval = '/';
3333 read_seqbegin_or_lock(&rename_lock, &seq);
3334 while (!IS_ROOT(dentry)) {
3335 struct dentry *parent = dentry->d_parent;
3336
3337 prefetch(parent);
3338 error = prepend_name(&end, &len, &dentry->d_name);
3339 if (error)
3340 break;
3341
3342 retval = end;
3343 dentry = parent;
3344 }
3345 if (!(seq & 1))
3346 rcu_read_unlock();
3347 if (need_seqretry(&rename_lock, seq)) {
3348 seq = 1;
3349 goto restart;
3350 }
3351 done_seqretry(&rename_lock, seq);
3352 if (error)
3353 goto Elong;
3354 return retval;
3355 Elong:
3356 return ERR_PTR(-ENAMETOOLONG);
3357 }
3358
3359 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3360 {
3361 return __dentry_path(dentry, buf, buflen);
3362 }
3363 EXPORT_SYMBOL(dentry_path_raw);
3364
3365 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3366 {
3367 char *p = NULL;
3368 char *retval;
3369
3370 if (d_unlinked(dentry)) {
3371 p = buf + buflen;
3372 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3373 goto Elong;
3374 buflen++;
3375 }
3376 retval = __dentry_path(dentry, buf, buflen);
3377 if (!IS_ERR(retval) && p)
3378 *p = '/'; /* restore '/' overriden with '\0' */
3379 return retval;
3380 Elong:
3381 return ERR_PTR(-ENAMETOOLONG);
3382 }
3383
3384 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3385 struct path *pwd)
3386 {
3387 unsigned seq;
3388
3389 do {
3390 seq = read_seqcount_begin(&fs->seq);
3391 *root = fs->root;
3392 *pwd = fs->pwd;
3393 } while (read_seqcount_retry(&fs->seq, seq));
3394 }
3395
3396 /*
3397 * NOTE! The user-level library version returns a
3398 * character pointer. The kernel system call just
3399 * returns the length of the buffer filled (which
3400 * includes the ending '\0' character), or a negative
3401 * error value. So libc would do something like
3402 *
3403 * char *getcwd(char * buf, size_t size)
3404 * {
3405 * int retval;
3406 *
3407 * retval = sys_getcwd(buf, size);
3408 * if (retval >= 0)
3409 * return buf;
3410 * errno = -retval;
3411 * return NULL;
3412 * }
3413 */
3414 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3415 {
3416 int error;
3417 struct path pwd, root;
3418 char *page = __getname();
3419
3420 if (!page)
3421 return -ENOMEM;
3422
3423 rcu_read_lock();
3424 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3425
3426 error = -ENOENT;
3427 if (!d_unlinked(pwd.dentry)) {
3428 unsigned long len;
3429 char *cwd = page + PATH_MAX;
3430 int buflen = PATH_MAX;
3431
3432 prepend(&cwd, &buflen, "\0", 1);
3433 error = prepend_path(&pwd, &root, &cwd, &buflen);
3434 rcu_read_unlock();
3435
3436 if (error < 0)
3437 goto out;
3438
3439 /* Unreachable from current root */
3440 if (error > 0) {
3441 error = prepend_unreachable(&cwd, &buflen);
3442 if (error)
3443 goto out;
3444 }
3445
3446 error = -ERANGE;
3447 len = PATH_MAX + page - cwd;
3448 if (len <= size) {
3449 error = len;
3450 if (copy_to_user(buf, cwd, len))
3451 error = -EFAULT;
3452 }
3453 } else {
3454 rcu_read_unlock();
3455 }
3456
3457 out:
3458 __putname(page);
3459 return error;
3460 }
3461
3462 /*
3463 * Test whether new_dentry is a subdirectory of old_dentry.
3464 *
3465 * Trivially implemented using the dcache structure
3466 */
3467
3468 /**
3469 * is_subdir - is new dentry a subdirectory of old_dentry
3470 * @new_dentry: new dentry
3471 * @old_dentry: old dentry
3472 *
3473 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3474 * Returns false otherwise.
3475 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3476 */
3477
3478 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3479 {
3480 bool result;
3481 unsigned seq;
3482
3483 if (new_dentry == old_dentry)
3484 return true;
3485
3486 do {
3487 /* for restarting inner loop in case of seq retry */
3488 seq = read_seqbegin(&rename_lock);
3489 /*
3490 * Need rcu_readlock to protect against the d_parent trashing
3491 * due to d_move
3492 */
3493 rcu_read_lock();
3494 if (d_ancestor(old_dentry, new_dentry))
3495 result = true;
3496 else
3497 result = false;
3498 rcu_read_unlock();
3499 } while (read_seqretry(&rename_lock, seq));
3500
3501 return result;
3502 }
3503
3504 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3505 {
3506 struct dentry *root = data;
3507 if (dentry != root) {
3508 if (d_unhashed(dentry) || !dentry->d_inode)
3509 return D_WALK_SKIP;
3510
3511 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3512 dentry->d_flags |= DCACHE_GENOCIDE;
3513 dentry->d_lockref.count--;
3514 }
3515 }
3516 return D_WALK_CONTINUE;
3517 }
3518
3519 void d_genocide(struct dentry *parent)
3520 {
3521 d_walk(parent, parent, d_genocide_kill, NULL);
3522 }
3523
3524 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3525 {
3526 inode_dec_link_count(inode);
3527 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3528 !hlist_unhashed(&dentry->d_u.d_alias) ||
3529 !d_unlinked(dentry));
3530 spin_lock(&dentry->d_parent->d_lock);
3531 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3532 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3533 (unsigned long long)inode->i_ino);
3534 spin_unlock(&dentry->d_lock);
3535 spin_unlock(&dentry->d_parent->d_lock);
3536 d_instantiate(dentry, inode);
3537 }
3538 EXPORT_SYMBOL(d_tmpfile);
3539
3540 static __initdata unsigned long dhash_entries;
3541 static int __init set_dhash_entries(char *str)
3542 {
3543 if (!str)
3544 return 0;
3545 dhash_entries = simple_strtoul(str, &str, 0);
3546 return 1;
3547 }
3548 __setup("dhash_entries=", set_dhash_entries);
3549
3550 static void __init dcache_init_early(void)
3551 {
3552 unsigned int loop;
3553
3554 /* If hashes are distributed across NUMA nodes, defer
3555 * hash allocation until vmalloc space is available.
3556 */
3557 if (hashdist)
3558 return;
3559
3560 dentry_hashtable =
3561 alloc_large_system_hash("Dentry cache",
3562 sizeof(struct hlist_bl_head),
3563 dhash_entries,
3564 13,
3565 HASH_EARLY,
3566 &d_hash_shift,
3567 &d_hash_mask,
3568 0,
3569 0);
3570
3571 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3572 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3573 }
3574
3575 static void __init dcache_init(void)
3576 {
3577 unsigned int loop;
3578
3579 /*
3580 * A constructor could be added for stable state like the lists,
3581 * but it is probably not worth it because of the cache nature
3582 * of the dcache.
3583 */
3584 dentry_cache = KMEM_CACHE(dentry,
3585 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3586
3587 /* Hash may have been set up in dcache_init_early */
3588 if (!hashdist)
3589 return;
3590
3591 dentry_hashtable =
3592 alloc_large_system_hash("Dentry cache",
3593 sizeof(struct hlist_bl_head),
3594 dhash_entries,
3595 13,
3596 0,
3597 &d_hash_shift,
3598 &d_hash_mask,
3599 0,
3600 0);
3601
3602 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3603 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3604 }
3605
3606 /* SLAB cache for __getname() consumers */
3607 struct kmem_cache *names_cachep __read_mostly;
3608 EXPORT_SYMBOL(names_cachep);
3609
3610 EXPORT_SYMBOL(d_genocide);
3611
3612 void __init vfs_caches_init_early(void)
3613 {
3614 dcache_init_early();
3615 inode_init_early();
3616 }
3617
3618 void __init vfs_caches_init(void)
3619 {
3620 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3621 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3622
3623 dcache_init();
3624 inode_init();
3625 files_init();
3626 files_maxfiles_init();
3627 mnt_init();
3628 bdev_cache_init();
3629 chrdev_init();
3630 }