]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/dcache.c
KVM: arm64: vgic-v3: Add ICV_IAR1_EL1 handler
[mirror_ubuntu-zesty-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89 EXPORT_SYMBOL(rename_lock);
90
91 static struct kmem_cache *dentry_cache __read_mostly;
92
93 /*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107 static inline struct hlist_bl_head *d_hash(unsigned int hash)
108 {
109 return dentry_hashtable + (hash >> (32 - d_hash_shift));
110 }
111
112 #define IN_LOOKUP_SHIFT 10
113 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
114
115 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
116 unsigned int hash)
117 {
118 hash += (unsigned long) parent / L1_CACHE_BYTES;
119 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
120 }
121
122
123 /* Statistics gathering. */
124 struct dentry_stat_t dentry_stat = {
125 .age_limit = 45,
126 };
127
128 static DEFINE_PER_CPU(long, nr_dentry);
129 static DEFINE_PER_CPU(long, nr_dentry_unused);
130
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132
133 /*
134 * Here we resort to our own counters instead of using generic per-cpu counters
135 * for consistency with what the vfs inode code does. We are expected to harvest
136 * better code and performance by having our own specialized counters.
137 *
138 * Please note that the loop is done over all possible CPUs, not over all online
139 * CPUs. The reason for this is that we don't want to play games with CPUs going
140 * on and off. If one of them goes off, we will just keep their counters.
141 *
142 * glommer: See cffbc8a for details, and if you ever intend to change this,
143 * please update all vfs counters to match.
144 */
145 static long get_nr_dentry(void)
146 {
147 int i;
148 long sum = 0;
149 for_each_possible_cpu(i)
150 sum += per_cpu(nr_dentry, i);
151 return sum < 0 ? 0 : sum;
152 }
153
154 static long get_nr_dentry_unused(void)
155 {
156 int i;
157 long sum = 0;
158 for_each_possible_cpu(i)
159 sum += per_cpu(nr_dentry_unused, i);
160 return sum < 0 ? 0 : sum;
161 }
162
163 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
164 size_t *lenp, loff_t *ppos)
165 {
166 dentry_stat.nr_dentry = get_nr_dentry();
167 dentry_stat.nr_unused = get_nr_dentry_unused();
168 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
169 }
170 #endif
171
172 /*
173 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
174 * The strings are both count bytes long, and count is non-zero.
175 */
176 #ifdef CONFIG_DCACHE_WORD_ACCESS
177
178 #include <asm/word-at-a-time.h>
179 /*
180 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
181 * aligned allocation for this particular component. We don't
182 * strictly need the load_unaligned_zeropad() safety, but it
183 * doesn't hurt either.
184 *
185 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
186 * need the careful unaligned handling.
187 */
188 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
189 {
190 unsigned long a,b,mask;
191
192 for (;;) {
193 a = *(unsigned long *)cs;
194 b = load_unaligned_zeropad(ct);
195 if (tcount < sizeof(unsigned long))
196 break;
197 if (unlikely(a != b))
198 return 1;
199 cs += sizeof(unsigned long);
200 ct += sizeof(unsigned long);
201 tcount -= sizeof(unsigned long);
202 if (!tcount)
203 return 0;
204 }
205 mask = bytemask_from_count(tcount);
206 return unlikely(!!((a ^ b) & mask));
207 }
208
209 #else
210
211 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
212 {
213 do {
214 if (*cs != *ct)
215 return 1;
216 cs++;
217 ct++;
218 tcount--;
219 } while (tcount);
220 return 0;
221 }
222
223 #endif
224
225 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
226 {
227 /*
228 * Be careful about RCU walk racing with rename:
229 * use 'lockless_dereference' to fetch the name pointer.
230 *
231 * NOTE! Even if a rename will mean that the length
232 * was not loaded atomically, we don't care. The
233 * RCU walk will check the sequence count eventually,
234 * and catch it. And we won't overrun the buffer,
235 * because we're reading the name pointer atomically,
236 * and a dentry name is guaranteed to be properly
237 * terminated with a NUL byte.
238 *
239 * End result: even if 'len' is wrong, we'll exit
240 * early because the data cannot match (there can
241 * be no NUL in the ct/tcount data)
242 */
243 const unsigned char *cs = lockless_dereference(dentry->d_name.name);
244
245 return dentry_string_cmp(cs, ct, tcount);
246 }
247
248 struct external_name {
249 union {
250 atomic_t count;
251 struct rcu_head head;
252 } u;
253 unsigned char name[];
254 };
255
256 static inline struct external_name *external_name(struct dentry *dentry)
257 {
258 return container_of(dentry->d_name.name, struct external_name, name[0]);
259 }
260
261 static void __d_free(struct rcu_head *head)
262 {
263 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
264
265 kmem_cache_free(dentry_cache, dentry);
266 }
267
268 static void __d_free_external(struct rcu_head *head)
269 {
270 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
271 kfree(external_name(dentry));
272 kmem_cache_free(dentry_cache, dentry);
273 }
274
275 static inline int dname_external(const struct dentry *dentry)
276 {
277 return dentry->d_name.name != dentry->d_iname;
278 }
279
280 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
281 {
282 spin_lock(&dentry->d_lock);
283 if (unlikely(dname_external(dentry))) {
284 struct external_name *p = external_name(dentry);
285 atomic_inc(&p->u.count);
286 spin_unlock(&dentry->d_lock);
287 name->name = p->name;
288 } else {
289 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
290 spin_unlock(&dentry->d_lock);
291 name->name = name->inline_name;
292 }
293 }
294 EXPORT_SYMBOL(take_dentry_name_snapshot);
295
296 void release_dentry_name_snapshot(struct name_snapshot *name)
297 {
298 if (unlikely(name->name != name->inline_name)) {
299 struct external_name *p;
300 p = container_of(name->name, struct external_name, name[0]);
301 if (unlikely(atomic_dec_and_test(&p->u.count)))
302 kfree_rcu(p, u.head);
303 }
304 }
305 EXPORT_SYMBOL(release_dentry_name_snapshot);
306
307 static inline void __d_set_inode_and_type(struct dentry *dentry,
308 struct inode *inode,
309 unsigned type_flags)
310 {
311 unsigned flags;
312
313 dentry->d_inode = inode;
314 flags = READ_ONCE(dentry->d_flags);
315 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
316 flags |= type_flags;
317 WRITE_ONCE(dentry->d_flags, flags);
318 }
319
320 static inline void __d_clear_type_and_inode(struct dentry *dentry)
321 {
322 unsigned flags = READ_ONCE(dentry->d_flags);
323
324 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
325 WRITE_ONCE(dentry->d_flags, flags);
326 dentry->d_inode = NULL;
327 }
328
329 static void dentry_free(struct dentry *dentry)
330 {
331 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
332 if (unlikely(dname_external(dentry))) {
333 struct external_name *p = external_name(dentry);
334 if (likely(atomic_dec_and_test(&p->u.count))) {
335 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
336 return;
337 }
338 }
339 /* if dentry was never visible to RCU, immediate free is OK */
340 if (!(dentry->d_flags & DCACHE_RCUACCESS))
341 __d_free(&dentry->d_u.d_rcu);
342 else
343 call_rcu(&dentry->d_u.d_rcu, __d_free);
344 }
345
346 /*
347 * Release the dentry's inode, using the filesystem
348 * d_iput() operation if defined.
349 */
350 static void dentry_unlink_inode(struct dentry * dentry)
351 __releases(dentry->d_lock)
352 __releases(dentry->d_inode->i_lock)
353 {
354 struct inode *inode = dentry->d_inode;
355 bool hashed = !d_unhashed(dentry);
356
357 if (hashed)
358 raw_write_seqcount_begin(&dentry->d_seq);
359 __d_clear_type_and_inode(dentry);
360 hlist_del_init(&dentry->d_u.d_alias);
361 if (hashed)
362 raw_write_seqcount_end(&dentry->d_seq);
363 spin_unlock(&dentry->d_lock);
364 spin_unlock(&inode->i_lock);
365 if (!inode->i_nlink)
366 fsnotify_inoderemove(inode);
367 if (dentry->d_op && dentry->d_op->d_iput)
368 dentry->d_op->d_iput(dentry, inode);
369 else
370 iput(inode);
371 }
372
373 /*
374 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
375 * is in use - which includes both the "real" per-superblock
376 * LRU list _and_ the DCACHE_SHRINK_LIST use.
377 *
378 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
379 * on the shrink list (ie not on the superblock LRU list).
380 *
381 * The per-cpu "nr_dentry_unused" counters are updated with
382 * the DCACHE_LRU_LIST bit.
383 *
384 * These helper functions make sure we always follow the
385 * rules. d_lock must be held by the caller.
386 */
387 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
388 static void d_lru_add(struct dentry *dentry)
389 {
390 D_FLAG_VERIFY(dentry, 0);
391 dentry->d_flags |= DCACHE_LRU_LIST;
392 this_cpu_inc(nr_dentry_unused);
393 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
394 }
395
396 static void d_lru_del(struct dentry *dentry)
397 {
398 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
399 dentry->d_flags &= ~DCACHE_LRU_LIST;
400 this_cpu_dec(nr_dentry_unused);
401 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
402 }
403
404 static void d_shrink_del(struct dentry *dentry)
405 {
406 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
407 list_del_init(&dentry->d_lru);
408 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
409 this_cpu_dec(nr_dentry_unused);
410 }
411
412 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
413 {
414 D_FLAG_VERIFY(dentry, 0);
415 list_add(&dentry->d_lru, list);
416 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
417 this_cpu_inc(nr_dentry_unused);
418 }
419
420 /*
421 * These can only be called under the global LRU lock, ie during the
422 * callback for freeing the LRU list. "isolate" removes it from the
423 * LRU lists entirely, while shrink_move moves it to the indicated
424 * private list.
425 */
426 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
427 {
428 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
429 dentry->d_flags &= ~DCACHE_LRU_LIST;
430 this_cpu_dec(nr_dentry_unused);
431 list_lru_isolate(lru, &dentry->d_lru);
432 }
433
434 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
435 struct list_head *list)
436 {
437 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
438 dentry->d_flags |= DCACHE_SHRINK_LIST;
439 list_lru_isolate_move(lru, &dentry->d_lru, list);
440 }
441
442 /*
443 * dentry_lru_(add|del)_list) must be called with d_lock held.
444 */
445 static void dentry_lru_add(struct dentry *dentry)
446 {
447 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
448 d_lru_add(dentry);
449 }
450
451 /**
452 * d_drop - drop a dentry
453 * @dentry: dentry to drop
454 *
455 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
456 * be found through a VFS lookup any more. Note that this is different from
457 * deleting the dentry - d_delete will try to mark the dentry negative if
458 * possible, giving a successful _negative_ lookup, while d_drop will
459 * just make the cache lookup fail.
460 *
461 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
462 * reason (NFS timeouts or autofs deletes).
463 *
464 * __d_drop requires dentry->d_lock.
465 */
466 void __d_drop(struct dentry *dentry)
467 {
468 if (!d_unhashed(dentry)) {
469 struct hlist_bl_head *b;
470 /*
471 * Hashed dentries are normally on the dentry hashtable,
472 * with the exception of those newly allocated by
473 * d_obtain_alias, which are always IS_ROOT:
474 */
475 if (unlikely(IS_ROOT(dentry)))
476 b = &dentry->d_sb->s_anon;
477 else
478 b = d_hash(dentry->d_name.hash);
479
480 hlist_bl_lock(b);
481 __hlist_bl_del(&dentry->d_hash);
482 dentry->d_hash.pprev = NULL;
483 hlist_bl_unlock(b);
484 /* After this call, in-progress rcu-walk path lookup will fail. */
485 write_seqcount_invalidate(&dentry->d_seq);
486 }
487 }
488 EXPORT_SYMBOL(__d_drop);
489
490 void d_drop(struct dentry *dentry)
491 {
492 spin_lock(&dentry->d_lock);
493 __d_drop(dentry);
494 spin_unlock(&dentry->d_lock);
495 }
496 EXPORT_SYMBOL(d_drop);
497
498 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
499 {
500 struct dentry *next;
501 /*
502 * Inform d_walk() and shrink_dentry_list() that we are no longer
503 * attached to the dentry tree
504 */
505 dentry->d_flags |= DCACHE_DENTRY_KILLED;
506 if (unlikely(list_empty(&dentry->d_child)))
507 return;
508 __list_del_entry(&dentry->d_child);
509 /*
510 * Cursors can move around the list of children. While we'd been
511 * a normal list member, it didn't matter - ->d_child.next would've
512 * been updated. However, from now on it won't be and for the
513 * things like d_walk() it might end up with a nasty surprise.
514 * Normally d_walk() doesn't care about cursors moving around -
515 * ->d_lock on parent prevents that and since a cursor has no children
516 * of its own, we get through it without ever unlocking the parent.
517 * There is one exception, though - if we ascend from a child that
518 * gets killed as soon as we unlock it, the next sibling is found
519 * using the value left in its ->d_child.next. And if _that_
520 * pointed to a cursor, and cursor got moved (e.g. by lseek())
521 * before d_walk() regains parent->d_lock, we'll end up skipping
522 * everything the cursor had been moved past.
523 *
524 * Solution: make sure that the pointer left behind in ->d_child.next
525 * points to something that won't be moving around. I.e. skip the
526 * cursors.
527 */
528 while (dentry->d_child.next != &parent->d_subdirs) {
529 next = list_entry(dentry->d_child.next, struct dentry, d_child);
530 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
531 break;
532 dentry->d_child.next = next->d_child.next;
533 }
534 }
535
536 static void __dentry_kill(struct dentry *dentry)
537 {
538 struct dentry *parent = NULL;
539 bool can_free = true;
540 if (!IS_ROOT(dentry))
541 parent = dentry->d_parent;
542
543 /*
544 * The dentry is now unrecoverably dead to the world.
545 */
546 lockref_mark_dead(&dentry->d_lockref);
547
548 /*
549 * inform the fs via d_prune that this dentry is about to be
550 * unhashed and destroyed.
551 */
552 if (dentry->d_flags & DCACHE_OP_PRUNE)
553 dentry->d_op->d_prune(dentry);
554
555 if (dentry->d_flags & DCACHE_LRU_LIST) {
556 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
557 d_lru_del(dentry);
558 }
559 /* if it was on the hash then remove it */
560 __d_drop(dentry);
561 dentry_unlist(dentry, parent);
562 if (parent)
563 spin_unlock(&parent->d_lock);
564 if (dentry->d_inode)
565 dentry_unlink_inode(dentry);
566 else
567 spin_unlock(&dentry->d_lock);
568 this_cpu_dec(nr_dentry);
569 if (dentry->d_op && dentry->d_op->d_release)
570 dentry->d_op->d_release(dentry);
571
572 spin_lock(&dentry->d_lock);
573 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
574 dentry->d_flags |= DCACHE_MAY_FREE;
575 can_free = false;
576 }
577 spin_unlock(&dentry->d_lock);
578 if (likely(can_free))
579 dentry_free(dentry);
580 }
581
582 /*
583 * Finish off a dentry we've decided to kill.
584 * dentry->d_lock must be held, returns with it unlocked.
585 * If ref is non-zero, then decrement the refcount too.
586 * Returns dentry requiring refcount drop, or NULL if we're done.
587 */
588 static struct dentry *dentry_kill(struct dentry *dentry)
589 __releases(dentry->d_lock)
590 {
591 struct inode *inode = dentry->d_inode;
592 struct dentry *parent = NULL;
593
594 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
595 goto failed;
596
597 if (!IS_ROOT(dentry)) {
598 parent = dentry->d_parent;
599 if (unlikely(!spin_trylock(&parent->d_lock))) {
600 if (inode)
601 spin_unlock(&inode->i_lock);
602 goto failed;
603 }
604 }
605
606 __dentry_kill(dentry);
607 return parent;
608
609 failed:
610 spin_unlock(&dentry->d_lock);
611 return dentry; /* try again with same dentry */
612 }
613
614 static inline struct dentry *lock_parent(struct dentry *dentry)
615 {
616 struct dentry *parent = dentry->d_parent;
617 if (IS_ROOT(dentry))
618 return NULL;
619 if (unlikely(dentry->d_lockref.count < 0))
620 return NULL;
621 if (likely(spin_trylock(&parent->d_lock)))
622 return parent;
623 rcu_read_lock();
624 spin_unlock(&dentry->d_lock);
625 again:
626 parent = ACCESS_ONCE(dentry->d_parent);
627 spin_lock(&parent->d_lock);
628 /*
629 * We can't blindly lock dentry until we are sure
630 * that we won't violate the locking order.
631 * Any changes of dentry->d_parent must have
632 * been done with parent->d_lock held, so
633 * spin_lock() above is enough of a barrier
634 * for checking if it's still our child.
635 */
636 if (unlikely(parent != dentry->d_parent)) {
637 spin_unlock(&parent->d_lock);
638 goto again;
639 }
640 rcu_read_unlock();
641 if (parent != dentry)
642 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
643 else
644 parent = NULL;
645 return parent;
646 }
647
648 /*
649 * Try to do a lockless dput(), and return whether that was successful.
650 *
651 * If unsuccessful, we return false, having already taken the dentry lock.
652 *
653 * The caller needs to hold the RCU read lock, so that the dentry is
654 * guaranteed to stay around even if the refcount goes down to zero!
655 */
656 static inline bool fast_dput(struct dentry *dentry)
657 {
658 int ret;
659 unsigned int d_flags;
660
661 /*
662 * If we have a d_op->d_delete() operation, we sould not
663 * let the dentry count go to zero, so use "put_or_lock".
664 */
665 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
666 return lockref_put_or_lock(&dentry->d_lockref);
667
668 /*
669 * .. otherwise, we can try to just decrement the
670 * lockref optimistically.
671 */
672 ret = lockref_put_return(&dentry->d_lockref);
673
674 /*
675 * If the lockref_put_return() failed due to the lock being held
676 * by somebody else, the fast path has failed. We will need to
677 * get the lock, and then check the count again.
678 */
679 if (unlikely(ret < 0)) {
680 spin_lock(&dentry->d_lock);
681 if (dentry->d_lockref.count > 1) {
682 dentry->d_lockref.count--;
683 spin_unlock(&dentry->d_lock);
684 return 1;
685 }
686 return 0;
687 }
688
689 /*
690 * If we weren't the last ref, we're done.
691 */
692 if (ret)
693 return 1;
694
695 /*
696 * Careful, careful. The reference count went down
697 * to zero, but we don't hold the dentry lock, so
698 * somebody else could get it again, and do another
699 * dput(), and we need to not race with that.
700 *
701 * However, there is a very special and common case
702 * where we don't care, because there is nothing to
703 * do: the dentry is still hashed, it does not have
704 * a 'delete' op, and it's referenced and already on
705 * the LRU list.
706 *
707 * NOTE! Since we aren't locked, these values are
708 * not "stable". However, it is sufficient that at
709 * some point after we dropped the reference the
710 * dentry was hashed and the flags had the proper
711 * value. Other dentry users may have re-gotten
712 * a reference to the dentry and change that, but
713 * our work is done - we can leave the dentry
714 * around with a zero refcount.
715 */
716 smp_rmb();
717 d_flags = ACCESS_ONCE(dentry->d_flags);
718 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
719
720 /* Nothing to do? Dropping the reference was all we needed? */
721 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
722 return 1;
723
724 /*
725 * Not the fast normal case? Get the lock. We've already decremented
726 * the refcount, but we'll need to re-check the situation after
727 * getting the lock.
728 */
729 spin_lock(&dentry->d_lock);
730
731 /*
732 * Did somebody else grab a reference to it in the meantime, and
733 * we're no longer the last user after all? Alternatively, somebody
734 * else could have killed it and marked it dead. Either way, we
735 * don't need to do anything else.
736 */
737 if (dentry->d_lockref.count) {
738 spin_unlock(&dentry->d_lock);
739 return 1;
740 }
741
742 /*
743 * Re-get the reference we optimistically dropped. We hold the
744 * lock, and we just tested that it was zero, so we can just
745 * set it to 1.
746 */
747 dentry->d_lockref.count = 1;
748 return 0;
749 }
750
751
752 /*
753 * This is dput
754 *
755 * This is complicated by the fact that we do not want to put
756 * dentries that are no longer on any hash chain on the unused
757 * list: we'd much rather just get rid of them immediately.
758 *
759 * However, that implies that we have to traverse the dentry
760 * tree upwards to the parents which might _also_ now be
761 * scheduled for deletion (it may have been only waiting for
762 * its last child to go away).
763 *
764 * This tail recursion is done by hand as we don't want to depend
765 * on the compiler to always get this right (gcc generally doesn't).
766 * Real recursion would eat up our stack space.
767 */
768
769 /*
770 * dput - release a dentry
771 * @dentry: dentry to release
772 *
773 * Release a dentry. This will drop the usage count and if appropriate
774 * call the dentry unlink method as well as removing it from the queues and
775 * releasing its resources. If the parent dentries were scheduled for release
776 * they too may now get deleted.
777 */
778 void dput(struct dentry *dentry)
779 {
780 if (unlikely(!dentry))
781 return;
782
783 repeat:
784 might_sleep();
785
786 rcu_read_lock();
787 if (likely(fast_dput(dentry))) {
788 rcu_read_unlock();
789 return;
790 }
791
792 /* Slow case: now with the dentry lock held */
793 rcu_read_unlock();
794
795 WARN_ON(d_in_lookup(dentry));
796
797 /* Unreachable? Get rid of it */
798 if (unlikely(d_unhashed(dentry)))
799 goto kill_it;
800
801 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
802 goto kill_it;
803
804 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
805 if (dentry->d_op->d_delete(dentry))
806 goto kill_it;
807 }
808
809 if (!(dentry->d_flags & DCACHE_REFERENCED))
810 dentry->d_flags |= DCACHE_REFERENCED;
811 dentry_lru_add(dentry);
812
813 dentry->d_lockref.count--;
814 spin_unlock(&dentry->d_lock);
815 return;
816
817 kill_it:
818 dentry = dentry_kill(dentry);
819 if (dentry) {
820 cond_resched();
821 goto repeat;
822 }
823 }
824 EXPORT_SYMBOL(dput);
825
826
827 /* This must be called with d_lock held */
828 static inline void __dget_dlock(struct dentry *dentry)
829 {
830 dentry->d_lockref.count++;
831 }
832
833 static inline void __dget(struct dentry *dentry)
834 {
835 lockref_get(&dentry->d_lockref);
836 }
837
838 struct dentry *dget_parent(struct dentry *dentry)
839 {
840 int gotref;
841 struct dentry *ret;
842
843 /*
844 * Do optimistic parent lookup without any
845 * locking.
846 */
847 rcu_read_lock();
848 ret = ACCESS_ONCE(dentry->d_parent);
849 gotref = lockref_get_not_zero(&ret->d_lockref);
850 rcu_read_unlock();
851 if (likely(gotref)) {
852 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
853 return ret;
854 dput(ret);
855 }
856
857 repeat:
858 /*
859 * Don't need rcu_dereference because we re-check it was correct under
860 * the lock.
861 */
862 rcu_read_lock();
863 ret = dentry->d_parent;
864 spin_lock(&ret->d_lock);
865 if (unlikely(ret != dentry->d_parent)) {
866 spin_unlock(&ret->d_lock);
867 rcu_read_unlock();
868 goto repeat;
869 }
870 rcu_read_unlock();
871 BUG_ON(!ret->d_lockref.count);
872 ret->d_lockref.count++;
873 spin_unlock(&ret->d_lock);
874 return ret;
875 }
876 EXPORT_SYMBOL(dget_parent);
877
878 /**
879 * d_find_alias - grab a hashed alias of inode
880 * @inode: inode in question
881 *
882 * If inode has a hashed alias, or is a directory and has any alias,
883 * acquire the reference to alias and return it. Otherwise return NULL.
884 * Notice that if inode is a directory there can be only one alias and
885 * it can be unhashed only if it has no children, or if it is the root
886 * of a filesystem, or if the directory was renamed and d_revalidate
887 * was the first vfs operation to notice.
888 *
889 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
890 * any other hashed alias over that one.
891 */
892 static struct dentry *__d_find_alias(struct inode *inode)
893 {
894 struct dentry *alias, *discon_alias;
895
896 again:
897 discon_alias = NULL;
898 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
899 spin_lock(&alias->d_lock);
900 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
901 if (IS_ROOT(alias) &&
902 (alias->d_flags & DCACHE_DISCONNECTED)) {
903 discon_alias = alias;
904 } else {
905 __dget_dlock(alias);
906 spin_unlock(&alias->d_lock);
907 return alias;
908 }
909 }
910 spin_unlock(&alias->d_lock);
911 }
912 if (discon_alias) {
913 alias = discon_alias;
914 spin_lock(&alias->d_lock);
915 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
916 __dget_dlock(alias);
917 spin_unlock(&alias->d_lock);
918 return alias;
919 }
920 spin_unlock(&alias->d_lock);
921 goto again;
922 }
923 return NULL;
924 }
925
926 struct dentry *d_find_alias(struct inode *inode)
927 {
928 struct dentry *de = NULL;
929
930 if (!hlist_empty(&inode->i_dentry)) {
931 spin_lock(&inode->i_lock);
932 de = __d_find_alias(inode);
933 spin_unlock(&inode->i_lock);
934 }
935 return de;
936 }
937 EXPORT_SYMBOL(d_find_alias);
938
939 /*
940 * Try to kill dentries associated with this inode.
941 * WARNING: you must own a reference to inode.
942 */
943 void d_prune_aliases(struct inode *inode)
944 {
945 struct dentry *dentry;
946 restart:
947 spin_lock(&inode->i_lock);
948 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
949 spin_lock(&dentry->d_lock);
950 if (!dentry->d_lockref.count) {
951 struct dentry *parent = lock_parent(dentry);
952 if (likely(!dentry->d_lockref.count)) {
953 __dentry_kill(dentry);
954 dput(parent);
955 goto restart;
956 }
957 if (parent)
958 spin_unlock(&parent->d_lock);
959 }
960 spin_unlock(&dentry->d_lock);
961 }
962 spin_unlock(&inode->i_lock);
963 }
964 EXPORT_SYMBOL(d_prune_aliases);
965
966 static void shrink_dentry_list(struct list_head *list)
967 {
968 struct dentry *dentry, *parent;
969
970 while (!list_empty(list)) {
971 struct inode *inode;
972 dentry = list_entry(list->prev, struct dentry, d_lru);
973 spin_lock(&dentry->d_lock);
974 parent = lock_parent(dentry);
975
976 /*
977 * The dispose list is isolated and dentries are not accounted
978 * to the LRU here, so we can simply remove it from the list
979 * here regardless of whether it is referenced or not.
980 */
981 d_shrink_del(dentry);
982
983 /*
984 * We found an inuse dentry which was not removed from
985 * the LRU because of laziness during lookup. Do not free it.
986 */
987 if (dentry->d_lockref.count > 0) {
988 spin_unlock(&dentry->d_lock);
989 if (parent)
990 spin_unlock(&parent->d_lock);
991 continue;
992 }
993
994
995 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
996 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
997 spin_unlock(&dentry->d_lock);
998 if (parent)
999 spin_unlock(&parent->d_lock);
1000 if (can_free)
1001 dentry_free(dentry);
1002 continue;
1003 }
1004
1005 inode = dentry->d_inode;
1006 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1007 d_shrink_add(dentry, list);
1008 spin_unlock(&dentry->d_lock);
1009 if (parent)
1010 spin_unlock(&parent->d_lock);
1011 continue;
1012 }
1013
1014 __dentry_kill(dentry);
1015
1016 /*
1017 * We need to prune ancestors too. This is necessary to prevent
1018 * quadratic behavior of shrink_dcache_parent(), but is also
1019 * expected to be beneficial in reducing dentry cache
1020 * fragmentation.
1021 */
1022 dentry = parent;
1023 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1024 parent = lock_parent(dentry);
1025 if (dentry->d_lockref.count != 1) {
1026 dentry->d_lockref.count--;
1027 spin_unlock(&dentry->d_lock);
1028 if (parent)
1029 spin_unlock(&parent->d_lock);
1030 break;
1031 }
1032 inode = dentry->d_inode; /* can't be NULL */
1033 if (unlikely(!spin_trylock(&inode->i_lock))) {
1034 spin_unlock(&dentry->d_lock);
1035 if (parent)
1036 spin_unlock(&parent->d_lock);
1037 cpu_relax();
1038 continue;
1039 }
1040 __dentry_kill(dentry);
1041 dentry = parent;
1042 }
1043 }
1044 }
1045
1046 static enum lru_status dentry_lru_isolate(struct list_head *item,
1047 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1048 {
1049 struct list_head *freeable = arg;
1050 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1051
1052
1053 /*
1054 * we are inverting the lru lock/dentry->d_lock here,
1055 * so use a trylock. If we fail to get the lock, just skip
1056 * it
1057 */
1058 if (!spin_trylock(&dentry->d_lock))
1059 return LRU_SKIP;
1060
1061 /*
1062 * Referenced dentries are still in use. If they have active
1063 * counts, just remove them from the LRU. Otherwise give them
1064 * another pass through the LRU.
1065 */
1066 if (dentry->d_lockref.count) {
1067 d_lru_isolate(lru, dentry);
1068 spin_unlock(&dentry->d_lock);
1069 return LRU_REMOVED;
1070 }
1071
1072 if (dentry->d_flags & DCACHE_REFERENCED) {
1073 dentry->d_flags &= ~DCACHE_REFERENCED;
1074 spin_unlock(&dentry->d_lock);
1075
1076 /*
1077 * The list move itself will be made by the common LRU code. At
1078 * this point, we've dropped the dentry->d_lock but keep the
1079 * lru lock. This is safe to do, since every list movement is
1080 * protected by the lru lock even if both locks are held.
1081 *
1082 * This is guaranteed by the fact that all LRU management
1083 * functions are intermediated by the LRU API calls like
1084 * list_lru_add and list_lru_del. List movement in this file
1085 * only ever occur through this functions or through callbacks
1086 * like this one, that are called from the LRU API.
1087 *
1088 * The only exceptions to this are functions like
1089 * shrink_dentry_list, and code that first checks for the
1090 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1091 * operating only with stack provided lists after they are
1092 * properly isolated from the main list. It is thus, always a
1093 * local access.
1094 */
1095 return LRU_ROTATE;
1096 }
1097
1098 d_lru_shrink_move(lru, dentry, freeable);
1099 spin_unlock(&dentry->d_lock);
1100
1101 return LRU_REMOVED;
1102 }
1103
1104 /**
1105 * prune_dcache_sb - shrink the dcache
1106 * @sb: superblock
1107 * @sc: shrink control, passed to list_lru_shrink_walk()
1108 *
1109 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1110 * is done when we need more memory and called from the superblock shrinker
1111 * function.
1112 *
1113 * This function may fail to free any resources if all the dentries are in
1114 * use.
1115 */
1116 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1117 {
1118 LIST_HEAD(dispose);
1119 long freed;
1120
1121 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1122 dentry_lru_isolate, &dispose);
1123 shrink_dentry_list(&dispose);
1124 return freed;
1125 }
1126
1127 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1128 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1129 {
1130 struct list_head *freeable = arg;
1131 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1132
1133 /*
1134 * we are inverting the lru lock/dentry->d_lock here,
1135 * so use a trylock. If we fail to get the lock, just skip
1136 * it
1137 */
1138 if (!spin_trylock(&dentry->d_lock))
1139 return LRU_SKIP;
1140
1141 d_lru_shrink_move(lru, dentry, freeable);
1142 spin_unlock(&dentry->d_lock);
1143
1144 return LRU_REMOVED;
1145 }
1146
1147
1148 /**
1149 * shrink_dcache_sb - shrink dcache for a superblock
1150 * @sb: superblock
1151 *
1152 * Shrink the dcache for the specified super block. This is used to free
1153 * the dcache before unmounting a file system.
1154 */
1155 void shrink_dcache_sb(struct super_block *sb)
1156 {
1157 long freed;
1158
1159 do {
1160 LIST_HEAD(dispose);
1161
1162 freed = list_lru_walk(&sb->s_dentry_lru,
1163 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1164
1165 this_cpu_sub(nr_dentry_unused, freed);
1166 shrink_dentry_list(&dispose);
1167 } while (freed > 0);
1168 }
1169 EXPORT_SYMBOL(shrink_dcache_sb);
1170
1171 /**
1172 * enum d_walk_ret - action to talke during tree walk
1173 * @D_WALK_CONTINUE: contrinue walk
1174 * @D_WALK_QUIT: quit walk
1175 * @D_WALK_NORETRY: quit when retry is needed
1176 * @D_WALK_SKIP: skip this dentry and its children
1177 */
1178 enum d_walk_ret {
1179 D_WALK_CONTINUE,
1180 D_WALK_QUIT,
1181 D_WALK_NORETRY,
1182 D_WALK_SKIP,
1183 };
1184
1185 /**
1186 * d_walk - walk the dentry tree
1187 * @parent: start of walk
1188 * @data: data passed to @enter() and @finish()
1189 * @enter: callback when first entering the dentry
1190 * @finish: callback when successfully finished the walk
1191 *
1192 * The @enter() and @finish() callbacks are called with d_lock held.
1193 */
1194 void d_walk(struct dentry *parent, void *data,
1195 enum d_walk_ret (*enter)(void *, struct dentry *),
1196 void (*finish)(void *))
1197 {
1198 struct dentry *this_parent;
1199 struct list_head *next;
1200 unsigned seq = 0;
1201 enum d_walk_ret ret;
1202 bool retry = true;
1203
1204 again:
1205 read_seqbegin_or_lock(&rename_lock, &seq);
1206 this_parent = parent;
1207 spin_lock(&this_parent->d_lock);
1208
1209 ret = enter(data, this_parent);
1210 switch (ret) {
1211 case D_WALK_CONTINUE:
1212 break;
1213 case D_WALK_QUIT:
1214 case D_WALK_SKIP:
1215 goto out_unlock;
1216 case D_WALK_NORETRY:
1217 retry = false;
1218 break;
1219 }
1220 repeat:
1221 next = this_parent->d_subdirs.next;
1222 resume:
1223 while (next != &this_parent->d_subdirs) {
1224 struct list_head *tmp = next;
1225 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1226 next = tmp->next;
1227
1228 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1229 continue;
1230
1231 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1232
1233 ret = enter(data, dentry);
1234 switch (ret) {
1235 case D_WALK_CONTINUE:
1236 break;
1237 case D_WALK_QUIT:
1238 spin_unlock(&dentry->d_lock);
1239 goto out_unlock;
1240 case D_WALK_NORETRY:
1241 retry = false;
1242 break;
1243 case D_WALK_SKIP:
1244 spin_unlock(&dentry->d_lock);
1245 continue;
1246 }
1247
1248 if (!list_empty(&dentry->d_subdirs)) {
1249 spin_unlock(&this_parent->d_lock);
1250 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1251 this_parent = dentry;
1252 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1253 goto repeat;
1254 }
1255 spin_unlock(&dentry->d_lock);
1256 }
1257 /*
1258 * All done at this level ... ascend and resume the search.
1259 */
1260 rcu_read_lock();
1261 ascend:
1262 if (this_parent != parent) {
1263 struct dentry *child = this_parent;
1264 this_parent = child->d_parent;
1265
1266 spin_unlock(&child->d_lock);
1267 spin_lock(&this_parent->d_lock);
1268
1269 /* might go back up the wrong parent if we have had a rename. */
1270 if (need_seqretry(&rename_lock, seq))
1271 goto rename_retry;
1272 /* go into the first sibling still alive */
1273 do {
1274 next = child->d_child.next;
1275 if (next == &this_parent->d_subdirs)
1276 goto ascend;
1277 child = list_entry(next, struct dentry, d_child);
1278 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1279 rcu_read_unlock();
1280 goto resume;
1281 }
1282 if (need_seqretry(&rename_lock, seq))
1283 goto rename_retry;
1284 rcu_read_unlock();
1285 if (finish)
1286 finish(data);
1287
1288 out_unlock:
1289 spin_unlock(&this_parent->d_lock);
1290 done_seqretry(&rename_lock, seq);
1291 return;
1292
1293 rename_retry:
1294 spin_unlock(&this_parent->d_lock);
1295 rcu_read_unlock();
1296 BUG_ON(seq & 1);
1297 if (!retry)
1298 return;
1299 seq = 1;
1300 goto again;
1301 }
1302 EXPORT_SYMBOL_GPL(d_walk);
1303
1304 struct check_mount {
1305 struct vfsmount *mnt;
1306 unsigned int mounted;
1307 };
1308
1309 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1310 {
1311 struct check_mount *info = data;
1312 struct path path = { .mnt = info->mnt, .dentry = dentry };
1313
1314 if (likely(!d_mountpoint(dentry)))
1315 return D_WALK_CONTINUE;
1316 if (__path_is_mountpoint(&path)) {
1317 info->mounted = 1;
1318 return D_WALK_QUIT;
1319 }
1320 return D_WALK_CONTINUE;
1321 }
1322
1323 /**
1324 * path_has_submounts - check for mounts over a dentry in the
1325 * current namespace.
1326 * @parent: path to check.
1327 *
1328 * Return true if the parent or its subdirectories contain
1329 * a mount point in the current namespace.
1330 */
1331 int path_has_submounts(const struct path *parent)
1332 {
1333 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1334
1335 read_seqlock_excl(&mount_lock);
1336 d_walk(parent->dentry, &data, path_check_mount, NULL);
1337 read_sequnlock_excl(&mount_lock);
1338
1339 return data.mounted;
1340 }
1341 EXPORT_SYMBOL(path_has_submounts);
1342
1343 /*
1344 * Called by mount code to set a mountpoint and check if the mountpoint is
1345 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1346 * subtree can become unreachable).
1347 *
1348 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1349 * this reason take rename_lock and d_lock on dentry and ancestors.
1350 */
1351 int d_set_mounted(struct dentry *dentry)
1352 {
1353 struct dentry *p;
1354 int ret = -ENOENT;
1355 write_seqlock(&rename_lock);
1356 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1357 /* Need exclusion wrt. d_invalidate() */
1358 spin_lock(&p->d_lock);
1359 if (unlikely(d_unhashed(p))) {
1360 spin_unlock(&p->d_lock);
1361 goto out;
1362 }
1363 spin_unlock(&p->d_lock);
1364 }
1365 spin_lock(&dentry->d_lock);
1366 if (!d_unlinked(dentry)) {
1367 ret = -EBUSY;
1368 if (!d_mountpoint(dentry)) {
1369 dentry->d_flags |= DCACHE_MOUNTED;
1370 ret = 0;
1371 }
1372 }
1373 spin_unlock(&dentry->d_lock);
1374 out:
1375 write_sequnlock(&rename_lock);
1376 return ret;
1377 }
1378
1379 /*
1380 * Search the dentry child list of the specified parent,
1381 * and move any unused dentries to the end of the unused
1382 * list for prune_dcache(). We descend to the next level
1383 * whenever the d_subdirs list is non-empty and continue
1384 * searching.
1385 *
1386 * It returns zero iff there are no unused children,
1387 * otherwise it returns the number of children moved to
1388 * the end of the unused list. This may not be the total
1389 * number of unused children, because select_parent can
1390 * drop the lock and return early due to latency
1391 * constraints.
1392 */
1393
1394 struct select_data {
1395 struct dentry *start;
1396 struct list_head dispose;
1397 int found;
1398 };
1399
1400 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1401 {
1402 struct select_data *data = _data;
1403 enum d_walk_ret ret = D_WALK_CONTINUE;
1404
1405 if (data->start == dentry)
1406 goto out;
1407
1408 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1409 data->found++;
1410 } else {
1411 if (dentry->d_flags & DCACHE_LRU_LIST)
1412 d_lru_del(dentry);
1413 if (!dentry->d_lockref.count) {
1414 d_shrink_add(dentry, &data->dispose);
1415 data->found++;
1416 }
1417 }
1418 /*
1419 * We can return to the caller if we have found some (this
1420 * ensures forward progress). We'll be coming back to find
1421 * the rest.
1422 */
1423 if (!list_empty(&data->dispose))
1424 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1425 out:
1426 return ret;
1427 }
1428
1429 /**
1430 * shrink_dcache_parent - prune dcache
1431 * @parent: parent of entries to prune
1432 *
1433 * Prune the dcache to remove unused children of the parent dentry.
1434 */
1435 void shrink_dcache_parent(struct dentry *parent)
1436 {
1437 for (;;) {
1438 struct select_data data;
1439
1440 INIT_LIST_HEAD(&data.dispose);
1441 data.start = parent;
1442 data.found = 0;
1443
1444 d_walk(parent, &data, select_collect, NULL);
1445 if (!data.found)
1446 break;
1447
1448 shrink_dentry_list(&data.dispose);
1449 cond_resched();
1450 }
1451 }
1452 EXPORT_SYMBOL(shrink_dcache_parent);
1453
1454 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1455 {
1456 /* it has busy descendents; complain about those instead */
1457 if (!list_empty(&dentry->d_subdirs))
1458 return D_WALK_CONTINUE;
1459
1460 /* root with refcount 1 is fine */
1461 if (dentry == _data && dentry->d_lockref.count == 1)
1462 return D_WALK_CONTINUE;
1463
1464 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1465 " still in use (%d) [unmount of %s %s]\n",
1466 dentry,
1467 dentry->d_inode ?
1468 dentry->d_inode->i_ino : 0UL,
1469 dentry,
1470 dentry->d_lockref.count,
1471 dentry->d_sb->s_type->name,
1472 dentry->d_sb->s_id);
1473 WARN_ON(1);
1474 return D_WALK_CONTINUE;
1475 }
1476
1477 static void do_one_tree(struct dentry *dentry)
1478 {
1479 shrink_dcache_parent(dentry);
1480 d_walk(dentry, dentry, umount_check, NULL);
1481 d_drop(dentry);
1482 dput(dentry);
1483 }
1484
1485 /*
1486 * destroy the dentries attached to a superblock on unmounting
1487 */
1488 void shrink_dcache_for_umount(struct super_block *sb)
1489 {
1490 struct dentry *dentry;
1491
1492 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1493
1494 dentry = sb->s_root;
1495 sb->s_root = NULL;
1496 do_one_tree(dentry);
1497
1498 while (!hlist_bl_empty(&sb->s_anon)) {
1499 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1500 do_one_tree(dentry);
1501 }
1502 }
1503
1504 struct detach_data {
1505 struct select_data select;
1506 struct dentry *mountpoint;
1507 };
1508 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1509 {
1510 struct detach_data *data = _data;
1511
1512 if (d_mountpoint(dentry)) {
1513 __dget_dlock(dentry);
1514 data->mountpoint = dentry;
1515 return D_WALK_QUIT;
1516 }
1517
1518 return select_collect(&data->select, dentry);
1519 }
1520
1521 static void check_and_drop(void *_data)
1522 {
1523 struct detach_data *data = _data;
1524
1525 if (!data->mountpoint && !data->select.found)
1526 __d_drop(data->select.start);
1527 }
1528
1529 /**
1530 * d_invalidate - detach submounts, prune dcache, and drop
1531 * @dentry: dentry to invalidate (aka detach, prune and drop)
1532 *
1533 * no dcache lock.
1534 *
1535 * The final d_drop is done as an atomic operation relative to
1536 * rename_lock ensuring there are no races with d_set_mounted. This
1537 * ensures there are no unhashed dentries on the path to a mountpoint.
1538 */
1539 void d_invalidate(struct dentry *dentry)
1540 {
1541 /*
1542 * If it's already been dropped, return OK.
1543 */
1544 spin_lock(&dentry->d_lock);
1545 if (d_unhashed(dentry)) {
1546 spin_unlock(&dentry->d_lock);
1547 return;
1548 }
1549 spin_unlock(&dentry->d_lock);
1550
1551 /* Negative dentries can be dropped without further checks */
1552 if (!dentry->d_inode) {
1553 d_drop(dentry);
1554 return;
1555 }
1556
1557 for (;;) {
1558 struct detach_data data;
1559
1560 data.mountpoint = NULL;
1561 INIT_LIST_HEAD(&data.select.dispose);
1562 data.select.start = dentry;
1563 data.select.found = 0;
1564
1565 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1566
1567 if (data.select.found)
1568 shrink_dentry_list(&data.select.dispose);
1569
1570 if (data.mountpoint) {
1571 detach_mounts(data.mountpoint);
1572 dput(data.mountpoint);
1573 }
1574
1575 if (!data.mountpoint && !data.select.found)
1576 break;
1577
1578 cond_resched();
1579 }
1580 }
1581 EXPORT_SYMBOL(d_invalidate);
1582
1583 /**
1584 * __d_alloc - allocate a dcache entry
1585 * @sb: filesystem it will belong to
1586 * @name: qstr of the name
1587 *
1588 * Allocates a dentry. It returns %NULL if there is insufficient memory
1589 * available. On a success the dentry is returned. The name passed in is
1590 * copied and the copy passed in may be reused after this call.
1591 */
1592
1593 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1594 {
1595 struct dentry *dentry;
1596 char *dname;
1597 int err;
1598
1599 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1600 if (!dentry)
1601 return NULL;
1602
1603 /*
1604 * We guarantee that the inline name is always NUL-terminated.
1605 * This way the memcpy() done by the name switching in rename
1606 * will still always have a NUL at the end, even if we might
1607 * be overwriting an internal NUL character
1608 */
1609 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1610 if (unlikely(!name)) {
1611 static const struct qstr anon = QSTR_INIT("/", 1);
1612 name = &anon;
1613 dname = dentry->d_iname;
1614 } else if (name->len > DNAME_INLINE_LEN-1) {
1615 size_t size = offsetof(struct external_name, name[1]);
1616 struct external_name *p = kmalloc(size + name->len,
1617 GFP_KERNEL_ACCOUNT);
1618 if (!p) {
1619 kmem_cache_free(dentry_cache, dentry);
1620 return NULL;
1621 }
1622 atomic_set(&p->u.count, 1);
1623 dname = p->name;
1624 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1625 kasan_unpoison_shadow(dname,
1626 round_up(name->len + 1, sizeof(unsigned long)));
1627 } else {
1628 dname = dentry->d_iname;
1629 }
1630
1631 dentry->d_name.len = name->len;
1632 dentry->d_name.hash = name->hash;
1633 memcpy(dname, name->name, name->len);
1634 dname[name->len] = 0;
1635
1636 /* Make sure we always see the terminating NUL character */
1637 smp_wmb();
1638 dentry->d_name.name = dname;
1639
1640 dentry->d_lockref.count = 1;
1641 dentry->d_flags = 0;
1642 spin_lock_init(&dentry->d_lock);
1643 seqcount_init(&dentry->d_seq);
1644 dentry->d_inode = NULL;
1645 dentry->d_parent = dentry;
1646 dentry->d_sb = sb;
1647 dentry->d_op = NULL;
1648 dentry->d_fsdata = NULL;
1649 INIT_HLIST_BL_NODE(&dentry->d_hash);
1650 INIT_LIST_HEAD(&dentry->d_lru);
1651 INIT_LIST_HEAD(&dentry->d_subdirs);
1652 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1653 INIT_LIST_HEAD(&dentry->d_child);
1654 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1655
1656 if (dentry->d_op && dentry->d_op->d_init) {
1657 err = dentry->d_op->d_init(dentry);
1658 if (err) {
1659 if (dname_external(dentry))
1660 kfree(external_name(dentry));
1661 kmem_cache_free(dentry_cache, dentry);
1662 return NULL;
1663 }
1664 }
1665
1666 this_cpu_inc(nr_dentry);
1667
1668 return dentry;
1669 }
1670
1671 /**
1672 * d_alloc - allocate a dcache entry
1673 * @parent: parent of entry to allocate
1674 * @name: qstr of the name
1675 *
1676 * Allocates a dentry. It returns %NULL if there is insufficient memory
1677 * available. On a success the dentry is returned. The name passed in is
1678 * copied and the copy passed in may be reused after this call.
1679 */
1680 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1681 {
1682 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1683 if (!dentry)
1684 return NULL;
1685 dentry->d_flags |= DCACHE_RCUACCESS;
1686 spin_lock(&parent->d_lock);
1687 /*
1688 * don't need child lock because it is not subject
1689 * to concurrency here
1690 */
1691 __dget_dlock(parent);
1692 dentry->d_parent = parent;
1693 list_add(&dentry->d_child, &parent->d_subdirs);
1694 spin_unlock(&parent->d_lock);
1695
1696 return dentry;
1697 }
1698 EXPORT_SYMBOL(d_alloc);
1699
1700 struct dentry *d_alloc_cursor(struct dentry * parent)
1701 {
1702 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1703 if (dentry) {
1704 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1705 dentry->d_parent = dget(parent);
1706 }
1707 return dentry;
1708 }
1709
1710 /**
1711 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1712 * @sb: the superblock
1713 * @name: qstr of the name
1714 *
1715 * For a filesystem that just pins its dentries in memory and never
1716 * performs lookups at all, return an unhashed IS_ROOT dentry.
1717 */
1718 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1719 {
1720 return __d_alloc(sb, name);
1721 }
1722 EXPORT_SYMBOL(d_alloc_pseudo);
1723
1724 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1725 {
1726 struct qstr q;
1727
1728 q.name = name;
1729 q.hash_len = hashlen_string(parent, name);
1730 return d_alloc(parent, &q);
1731 }
1732 EXPORT_SYMBOL(d_alloc_name);
1733
1734 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1735 {
1736 WARN_ON_ONCE(dentry->d_op);
1737 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1738 DCACHE_OP_COMPARE |
1739 DCACHE_OP_REVALIDATE |
1740 DCACHE_OP_WEAK_REVALIDATE |
1741 DCACHE_OP_DELETE |
1742 DCACHE_OP_REAL));
1743 dentry->d_op = op;
1744 if (!op)
1745 return;
1746 if (op->d_hash)
1747 dentry->d_flags |= DCACHE_OP_HASH;
1748 if (op->d_compare)
1749 dentry->d_flags |= DCACHE_OP_COMPARE;
1750 if (op->d_revalidate)
1751 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1752 if (op->d_weak_revalidate)
1753 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1754 if (op->d_delete)
1755 dentry->d_flags |= DCACHE_OP_DELETE;
1756 if (op->d_prune)
1757 dentry->d_flags |= DCACHE_OP_PRUNE;
1758 if (op->d_real)
1759 dentry->d_flags |= DCACHE_OP_REAL;
1760
1761 }
1762 EXPORT_SYMBOL(d_set_d_op);
1763
1764
1765 /*
1766 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1767 * @dentry - The dentry to mark
1768 *
1769 * Mark a dentry as falling through to the lower layer (as set with
1770 * d_pin_lower()). This flag may be recorded on the medium.
1771 */
1772 void d_set_fallthru(struct dentry *dentry)
1773 {
1774 spin_lock(&dentry->d_lock);
1775 dentry->d_flags |= DCACHE_FALLTHRU;
1776 spin_unlock(&dentry->d_lock);
1777 }
1778 EXPORT_SYMBOL(d_set_fallthru);
1779
1780 static unsigned d_flags_for_inode(struct inode *inode)
1781 {
1782 unsigned add_flags = DCACHE_REGULAR_TYPE;
1783
1784 if (!inode)
1785 return DCACHE_MISS_TYPE;
1786
1787 if (S_ISDIR(inode->i_mode)) {
1788 add_flags = DCACHE_DIRECTORY_TYPE;
1789 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1790 if (unlikely(!inode->i_op->lookup))
1791 add_flags = DCACHE_AUTODIR_TYPE;
1792 else
1793 inode->i_opflags |= IOP_LOOKUP;
1794 }
1795 goto type_determined;
1796 }
1797
1798 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1799 if (unlikely(inode->i_op->get_link)) {
1800 add_flags = DCACHE_SYMLINK_TYPE;
1801 goto type_determined;
1802 }
1803 inode->i_opflags |= IOP_NOFOLLOW;
1804 }
1805
1806 if (unlikely(!S_ISREG(inode->i_mode)))
1807 add_flags = DCACHE_SPECIAL_TYPE;
1808
1809 type_determined:
1810 if (unlikely(IS_AUTOMOUNT(inode)))
1811 add_flags |= DCACHE_NEED_AUTOMOUNT;
1812 return add_flags;
1813 }
1814
1815 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1816 {
1817 unsigned add_flags = d_flags_for_inode(inode);
1818 WARN_ON(d_in_lookup(dentry));
1819
1820 spin_lock(&dentry->d_lock);
1821 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1822 raw_write_seqcount_begin(&dentry->d_seq);
1823 __d_set_inode_and_type(dentry, inode, add_flags);
1824 raw_write_seqcount_end(&dentry->d_seq);
1825 fsnotify_update_flags(dentry);
1826 spin_unlock(&dentry->d_lock);
1827 }
1828
1829 /**
1830 * d_instantiate - fill in inode information for a dentry
1831 * @entry: dentry to complete
1832 * @inode: inode to attach to this dentry
1833 *
1834 * Fill in inode information in the entry.
1835 *
1836 * This turns negative dentries into productive full members
1837 * of society.
1838 *
1839 * NOTE! This assumes that the inode count has been incremented
1840 * (or otherwise set) by the caller to indicate that it is now
1841 * in use by the dcache.
1842 */
1843
1844 void d_instantiate(struct dentry *entry, struct inode * inode)
1845 {
1846 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1847 if (inode) {
1848 security_d_instantiate(entry, inode);
1849 spin_lock(&inode->i_lock);
1850 __d_instantiate(entry, inode);
1851 spin_unlock(&inode->i_lock);
1852 }
1853 }
1854 EXPORT_SYMBOL(d_instantiate);
1855
1856 /**
1857 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1858 * @entry: dentry to complete
1859 * @inode: inode to attach to this dentry
1860 *
1861 * Fill in inode information in the entry. If a directory alias is found, then
1862 * return an error (and drop inode). Together with d_materialise_unique() this
1863 * guarantees that a directory inode may never have more than one alias.
1864 */
1865 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1866 {
1867 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1868
1869 security_d_instantiate(entry, inode);
1870 spin_lock(&inode->i_lock);
1871 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1872 spin_unlock(&inode->i_lock);
1873 iput(inode);
1874 return -EBUSY;
1875 }
1876 __d_instantiate(entry, inode);
1877 spin_unlock(&inode->i_lock);
1878
1879 return 0;
1880 }
1881 EXPORT_SYMBOL(d_instantiate_no_diralias);
1882
1883 struct dentry *d_make_root(struct inode *root_inode)
1884 {
1885 struct dentry *res = NULL;
1886
1887 if (root_inode) {
1888 res = __d_alloc(root_inode->i_sb, NULL);
1889 if (res)
1890 d_instantiate(res, root_inode);
1891 else
1892 iput(root_inode);
1893 }
1894 return res;
1895 }
1896 EXPORT_SYMBOL(d_make_root);
1897
1898 static struct dentry * __d_find_any_alias(struct inode *inode)
1899 {
1900 struct dentry *alias;
1901
1902 if (hlist_empty(&inode->i_dentry))
1903 return NULL;
1904 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1905 __dget(alias);
1906 return alias;
1907 }
1908
1909 /**
1910 * d_find_any_alias - find any alias for a given inode
1911 * @inode: inode to find an alias for
1912 *
1913 * If any aliases exist for the given inode, take and return a
1914 * reference for one of them. If no aliases exist, return %NULL.
1915 */
1916 struct dentry *d_find_any_alias(struct inode *inode)
1917 {
1918 struct dentry *de;
1919
1920 spin_lock(&inode->i_lock);
1921 de = __d_find_any_alias(inode);
1922 spin_unlock(&inode->i_lock);
1923 return de;
1924 }
1925 EXPORT_SYMBOL(d_find_any_alias);
1926
1927 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1928 {
1929 struct dentry *tmp;
1930 struct dentry *res;
1931 unsigned add_flags;
1932
1933 if (!inode)
1934 return ERR_PTR(-ESTALE);
1935 if (IS_ERR(inode))
1936 return ERR_CAST(inode);
1937
1938 res = d_find_any_alias(inode);
1939 if (res)
1940 goto out_iput;
1941
1942 tmp = __d_alloc(inode->i_sb, NULL);
1943 if (!tmp) {
1944 res = ERR_PTR(-ENOMEM);
1945 goto out_iput;
1946 }
1947
1948 security_d_instantiate(tmp, inode);
1949 spin_lock(&inode->i_lock);
1950 res = __d_find_any_alias(inode);
1951 if (res) {
1952 spin_unlock(&inode->i_lock);
1953 dput(tmp);
1954 goto out_iput;
1955 }
1956
1957 /* attach a disconnected dentry */
1958 add_flags = d_flags_for_inode(inode);
1959
1960 if (disconnected)
1961 add_flags |= DCACHE_DISCONNECTED;
1962
1963 spin_lock(&tmp->d_lock);
1964 __d_set_inode_and_type(tmp, inode, add_flags);
1965 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1966 hlist_bl_lock(&tmp->d_sb->s_anon);
1967 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1968 hlist_bl_unlock(&tmp->d_sb->s_anon);
1969 spin_unlock(&tmp->d_lock);
1970 spin_unlock(&inode->i_lock);
1971
1972 return tmp;
1973
1974 out_iput:
1975 iput(inode);
1976 return res;
1977 }
1978
1979 /**
1980 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1981 * @inode: inode to allocate the dentry for
1982 *
1983 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1984 * similar open by handle operations. The returned dentry may be anonymous,
1985 * or may have a full name (if the inode was already in the cache).
1986 *
1987 * When called on a directory inode, we must ensure that the inode only ever
1988 * has one dentry. If a dentry is found, that is returned instead of
1989 * allocating a new one.
1990 *
1991 * On successful return, the reference to the inode has been transferred
1992 * to the dentry. In case of an error the reference on the inode is released.
1993 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1994 * be passed in and the error will be propagated to the return value,
1995 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1996 */
1997 struct dentry *d_obtain_alias(struct inode *inode)
1998 {
1999 return __d_obtain_alias(inode, 1);
2000 }
2001 EXPORT_SYMBOL(d_obtain_alias);
2002
2003 /**
2004 * d_obtain_root - find or allocate a dentry for a given inode
2005 * @inode: inode to allocate the dentry for
2006 *
2007 * Obtain an IS_ROOT dentry for the root of a filesystem.
2008 *
2009 * We must ensure that directory inodes only ever have one dentry. If a
2010 * dentry is found, that is returned instead of allocating a new one.
2011 *
2012 * On successful return, the reference to the inode has been transferred
2013 * to the dentry. In case of an error the reference on the inode is
2014 * released. A %NULL or IS_ERR inode may be passed in and will be the
2015 * error will be propagate to the return value, with a %NULL @inode
2016 * replaced by ERR_PTR(-ESTALE).
2017 */
2018 struct dentry *d_obtain_root(struct inode *inode)
2019 {
2020 return __d_obtain_alias(inode, 0);
2021 }
2022 EXPORT_SYMBOL(d_obtain_root);
2023
2024 /**
2025 * d_add_ci - lookup or allocate new dentry with case-exact name
2026 * @inode: the inode case-insensitive lookup has found
2027 * @dentry: the negative dentry that was passed to the parent's lookup func
2028 * @name: the case-exact name to be associated with the returned dentry
2029 *
2030 * This is to avoid filling the dcache with case-insensitive names to the
2031 * same inode, only the actual correct case is stored in the dcache for
2032 * case-insensitive filesystems.
2033 *
2034 * For a case-insensitive lookup match and if the the case-exact dentry
2035 * already exists in in the dcache, use it and return it.
2036 *
2037 * If no entry exists with the exact case name, allocate new dentry with
2038 * the exact case, and return the spliced entry.
2039 */
2040 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2041 struct qstr *name)
2042 {
2043 struct dentry *found, *res;
2044
2045 /*
2046 * First check if a dentry matching the name already exists,
2047 * if not go ahead and create it now.
2048 */
2049 found = d_hash_and_lookup(dentry->d_parent, name);
2050 if (found) {
2051 iput(inode);
2052 return found;
2053 }
2054 if (d_in_lookup(dentry)) {
2055 found = d_alloc_parallel(dentry->d_parent, name,
2056 dentry->d_wait);
2057 if (IS_ERR(found) || !d_in_lookup(found)) {
2058 iput(inode);
2059 return found;
2060 }
2061 } else {
2062 found = d_alloc(dentry->d_parent, name);
2063 if (!found) {
2064 iput(inode);
2065 return ERR_PTR(-ENOMEM);
2066 }
2067 }
2068 res = d_splice_alias(inode, found);
2069 if (res) {
2070 dput(found);
2071 return res;
2072 }
2073 return found;
2074 }
2075 EXPORT_SYMBOL(d_add_ci);
2076
2077
2078 static inline bool d_same_name(const struct dentry *dentry,
2079 const struct dentry *parent,
2080 const struct qstr *name)
2081 {
2082 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2083 if (dentry->d_name.len != name->len)
2084 return false;
2085 return dentry_cmp(dentry, name->name, name->len) == 0;
2086 }
2087 return parent->d_op->d_compare(dentry,
2088 dentry->d_name.len, dentry->d_name.name,
2089 name) == 0;
2090 }
2091
2092 /**
2093 * __d_lookup_rcu - search for a dentry (racy, store-free)
2094 * @parent: parent dentry
2095 * @name: qstr of name we wish to find
2096 * @seqp: returns d_seq value at the point where the dentry was found
2097 * Returns: dentry, or NULL
2098 *
2099 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2100 * resolution (store-free path walking) design described in
2101 * Documentation/filesystems/path-lookup.txt.
2102 *
2103 * This is not to be used outside core vfs.
2104 *
2105 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2106 * held, and rcu_read_lock held. The returned dentry must not be stored into
2107 * without taking d_lock and checking d_seq sequence count against @seq
2108 * returned here.
2109 *
2110 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2111 * function.
2112 *
2113 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2114 * the returned dentry, so long as its parent's seqlock is checked after the
2115 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2116 * is formed, giving integrity down the path walk.
2117 *
2118 * NOTE! The caller *has* to check the resulting dentry against the sequence
2119 * number we've returned before using any of the resulting dentry state!
2120 */
2121 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2122 const struct qstr *name,
2123 unsigned *seqp)
2124 {
2125 u64 hashlen = name->hash_len;
2126 const unsigned char *str = name->name;
2127 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2128 struct hlist_bl_node *node;
2129 struct dentry *dentry;
2130
2131 /*
2132 * Note: There is significant duplication with __d_lookup_rcu which is
2133 * required to prevent single threaded performance regressions
2134 * especially on architectures where smp_rmb (in seqcounts) are costly.
2135 * Keep the two functions in sync.
2136 */
2137
2138 /*
2139 * The hash list is protected using RCU.
2140 *
2141 * Carefully use d_seq when comparing a candidate dentry, to avoid
2142 * races with d_move().
2143 *
2144 * It is possible that concurrent renames can mess up our list
2145 * walk here and result in missing our dentry, resulting in the
2146 * false-negative result. d_lookup() protects against concurrent
2147 * renames using rename_lock seqlock.
2148 *
2149 * See Documentation/filesystems/path-lookup.txt for more details.
2150 */
2151 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2152 unsigned seq;
2153
2154 seqretry:
2155 /*
2156 * The dentry sequence count protects us from concurrent
2157 * renames, and thus protects parent and name fields.
2158 *
2159 * The caller must perform a seqcount check in order
2160 * to do anything useful with the returned dentry.
2161 *
2162 * NOTE! We do a "raw" seqcount_begin here. That means that
2163 * we don't wait for the sequence count to stabilize if it
2164 * is in the middle of a sequence change. If we do the slow
2165 * dentry compare, we will do seqretries until it is stable,
2166 * and if we end up with a successful lookup, we actually
2167 * want to exit RCU lookup anyway.
2168 *
2169 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2170 * we are still guaranteed NUL-termination of ->d_name.name.
2171 */
2172 seq = raw_seqcount_begin(&dentry->d_seq);
2173 if (dentry->d_parent != parent)
2174 continue;
2175 if (d_unhashed(dentry))
2176 continue;
2177
2178 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2179 int tlen;
2180 const char *tname;
2181 if (dentry->d_name.hash != hashlen_hash(hashlen))
2182 continue;
2183 tlen = dentry->d_name.len;
2184 tname = dentry->d_name.name;
2185 /* we want a consistent (name,len) pair */
2186 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2187 cpu_relax();
2188 goto seqretry;
2189 }
2190 if (parent->d_op->d_compare(dentry,
2191 tlen, tname, name) != 0)
2192 continue;
2193 } else {
2194 if (dentry->d_name.hash_len != hashlen)
2195 continue;
2196 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2197 continue;
2198 }
2199 *seqp = seq;
2200 return dentry;
2201 }
2202 return NULL;
2203 }
2204
2205 /**
2206 * d_lookup - search for a dentry
2207 * @parent: parent dentry
2208 * @name: qstr of name we wish to find
2209 * Returns: dentry, or NULL
2210 *
2211 * d_lookup searches the children of the parent dentry for the name in
2212 * question. If the dentry is found its reference count is incremented and the
2213 * dentry is returned. The caller must use dput to free the entry when it has
2214 * finished using it. %NULL is returned if the dentry does not exist.
2215 */
2216 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2217 {
2218 struct dentry *dentry;
2219 unsigned seq;
2220
2221 do {
2222 seq = read_seqbegin(&rename_lock);
2223 dentry = __d_lookup(parent, name);
2224 if (dentry)
2225 break;
2226 } while (read_seqretry(&rename_lock, seq));
2227 return dentry;
2228 }
2229 EXPORT_SYMBOL(d_lookup);
2230
2231 /**
2232 * __d_lookup - search for a dentry (racy)
2233 * @parent: parent dentry
2234 * @name: qstr of name we wish to find
2235 * Returns: dentry, or NULL
2236 *
2237 * __d_lookup is like d_lookup, however it may (rarely) return a
2238 * false-negative result due to unrelated rename activity.
2239 *
2240 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2241 * however it must be used carefully, eg. with a following d_lookup in
2242 * the case of failure.
2243 *
2244 * __d_lookup callers must be commented.
2245 */
2246 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2247 {
2248 unsigned int hash = name->hash;
2249 struct hlist_bl_head *b = d_hash(hash);
2250 struct hlist_bl_node *node;
2251 struct dentry *found = NULL;
2252 struct dentry *dentry;
2253
2254 /*
2255 * Note: There is significant duplication with __d_lookup_rcu which is
2256 * required to prevent single threaded performance regressions
2257 * especially on architectures where smp_rmb (in seqcounts) are costly.
2258 * Keep the two functions in sync.
2259 */
2260
2261 /*
2262 * The hash list is protected using RCU.
2263 *
2264 * Take d_lock when comparing a candidate dentry, to avoid races
2265 * with d_move().
2266 *
2267 * It is possible that concurrent renames can mess up our list
2268 * walk here and result in missing our dentry, resulting in the
2269 * false-negative result. d_lookup() protects against concurrent
2270 * renames using rename_lock seqlock.
2271 *
2272 * See Documentation/filesystems/path-lookup.txt for more details.
2273 */
2274 rcu_read_lock();
2275
2276 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2277
2278 if (dentry->d_name.hash != hash)
2279 continue;
2280
2281 spin_lock(&dentry->d_lock);
2282 if (dentry->d_parent != parent)
2283 goto next;
2284 if (d_unhashed(dentry))
2285 goto next;
2286
2287 if (!d_same_name(dentry, parent, name))
2288 goto next;
2289
2290 dentry->d_lockref.count++;
2291 found = dentry;
2292 spin_unlock(&dentry->d_lock);
2293 break;
2294 next:
2295 spin_unlock(&dentry->d_lock);
2296 }
2297 rcu_read_unlock();
2298
2299 return found;
2300 }
2301
2302 /**
2303 * d_hash_and_lookup - hash the qstr then search for a dentry
2304 * @dir: Directory to search in
2305 * @name: qstr of name we wish to find
2306 *
2307 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2308 */
2309 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2310 {
2311 /*
2312 * Check for a fs-specific hash function. Note that we must
2313 * calculate the standard hash first, as the d_op->d_hash()
2314 * routine may choose to leave the hash value unchanged.
2315 */
2316 name->hash = full_name_hash(dir, name->name, name->len);
2317 if (dir->d_flags & DCACHE_OP_HASH) {
2318 int err = dir->d_op->d_hash(dir, name);
2319 if (unlikely(err < 0))
2320 return ERR_PTR(err);
2321 }
2322 return d_lookup(dir, name);
2323 }
2324 EXPORT_SYMBOL(d_hash_and_lookup);
2325
2326 /*
2327 * When a file is deleted, we have two options:
2328 * - turn this dentry into a negative dentry
2329 * - unhash this dentry and free it.
2330 *
2331 * Usually, we want to just turn this into
2332 * a negative dentry, but if anybody else is
2333 * currently using the dentry or the inode
2334 * we can't do that and we fall back on removing
2335 * it from the hash queues and waiting for
2336 * it to be deleted later when it has no users
2337 */
2338
2339 /**
2340 * d_delete - delete a dentry
2341 * @dentry: The dentry to delete
2342 *
2343 * Turn the dentry into a negative dentry if possible, otherwise
2344 * remove it from the hash queues so it can be deleted later
2345 */
2346
2347 void d_delete(struct dentry * dentry)
2348 {
2349 struct inode *inode;
2350 int isdir = 0;
2351 /*
2352 * Are we the only user?
2353 */
2354 again:
2355 spin_lock(&dentry->d_lock);
2356 inode = dentry->d_inode;
2357 isdir = S_ISDIR(inode->i_mode);
2358 if (dentry->d_lockref.count == 1) {
2359 if (!spin_trylock(&inode->i_lock)) {
2360 spin_unlock(&dentry->d_lock);
2361 cpu_relax();
2362 goto again;
2363 }
2364 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2365 dentry_unlink_inode(dentry);
2366 fsnotify_nameremove(dentry, isdir);
2367 return;
2368 }
2369
2370 if (!d_unhashed(dentry))
2371 __d_drop(dentry);
2372
2373 spin_unlock(&dentry->d_lock);
2374
2375 fsnotify_nameremove(dentry, isdir);
2376 }
2377 EXPORT_SYMBOL(d_delete);
2378
2379 static void __d_rehash(struct dentry *entry)
2380 {
2381 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2382 BUG_ON(!d_unhashed(entry));
2383 hlist_bl_lock(b);
2384 hlist_bl_add_head_rcu(&entry->d_hash, b);
2385 hlist_bl_unlock(b);
2386 }
2387
2388 /**
2389 * d_rehash - add an entry back to the hash
2390 * @entry: dentry to add to the hash
2391 *
2392 * Adds a dentry to the hash according to its name.
2393 */
2394
2395 void d_rehash(struct dentry * entry)
2396 {
2397 spin_lock(&entry->d_lock);
2398 __d_rehash(entry);
2399 spin_unlock(&entry->d_lock);
2400 }
2401 EXPORT_SYMBOL(d_rehash);
2402
2403 static inline unsigned start_dir_add(struct inode *dir)
2404 {
2405
2406 for (;;) {
2407 unsigned n = dir->i_dir_seq;
2408 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2409 return n;
2410 cpu_relax();
2411 }
2412 }
2413
2414 static inline void end_dir_add(struct inode *dir, unsigned n)
2415 {
2416 smp_store_release(&dir->i_dir_seq, n + 2);
2417 }
2418
2419 static void d_wait_lookup(struct dentry *dentry)
2420 {
2421 if (d_in_lookup(dentry)) {
2422 DECLARE_WAITQUEUE(wait, current);
2423 add_wait_queue(dentry->d_wait, &wait);
2424 do {
2425 set_current_state(TASK_UNINTERRUPTIBLE);
2426 spin_unlock(&dentry->d_lock);
2427 schedule();
2428 spin_lock(&dentry->d_lock);
2429 } while (d_in_lookup(dentry));
2430 }
2431 }
2432
2433 struct dentry *d_alloc_parallel(struct dentry *parent,
2434 const struct qstr *name,
2435 wait_queue_head_t *wq)
2436 {
2437 unsigned int hash = name->hash;
2438 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2439 struct hlist_bl_node *node;
2440 struct dentry *new = d_alloc(parent, name);
2441 struct dentry *dentry;
2442 unsigned seq, r_seq, d_seq;
2443
2444 if (unlikely(!new))
2445 return ERR_PTR(-ENOMEM);
2446
2447 retry:
2448 rcu_read_lock();
2449 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2450 r_seq = read_seqbegin(&rename_lock);
2451 dentry = __d_lookup_rcu(parent, name, &d_seq);
2452 if (unlikely(dentry)) {
2453 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2454 rcu_read_unlock();
2455 goto retry;
2456 }
2457 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2458 rcu_read_unlock();
2459 dput(dentry);
2460 goto retry;
2461 }
2462 rcu_read_unlock();
2463 dput(new);
2464 return dentry;
2465 }
2466 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2467 rcu_read_unlock();
2468 goto retry;
2469 }
2470 hlist_bl_lock(b);
2471 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2472 hlist_bl_unlock(b);
2473 rcu_read_unlock();
2474 goto retry;
2475 }
2476 /*
2477 * No changes for the parent since the beginning of d_lookup().
2478 * Since all removals from the chain happen with hlist_bl_lock(),
2479 * any potential in-lookup matches are going to stay here until
2480 * we unlock the chain. All fields are stable in everything
2481 * we encounter.
2482 */
2483 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2484 if (dentry->d_name.hash != hash)
2485 continue;
2486 if (dentry->d_parent != parent)
2487 continue;
2488 if (!d_same_name(dentry, parent, name))
2489 continue;
2490 hlist_bl_unlock(b);
2491 /* now we can try to grab a reference */
2492 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2493 rcu_read_unlock();
2494 goto retry;
2495 }
2496
2497 rcu_read_unlock();
2498 /*
2499 * somebody is likely to be still doing lookup for it;
2500 * wait for them to finish
2501 */
2502 spin_lock(&dentry->d_lock);
2503 d_wait_lookup(dentry);
2504 /*
2505 * it's not in-lookup anymore; in principle we should repeat
2506 * everything from dcache lookup, but it's likely to be what
2507 * d_lookup() would've found anyway. If it is, just return it;
2508 * otherwise we really have to repeat the whole thing.
2509 */
2510 if (unlikely(dentry->d_name.hash != hash))
2511 goto mismatch;
2512 if (unlikely(dentry->d_parent != parent))
2513 goto mismatch;
2514 if (unlikely(d_unhashed(dentry)))
2515 goto mismatch;
2516 if (unlikely(!d_same_name(dentry, parent, name)))
2517 goto mismatch;
2518 /* OK, it *is* a hashed match; return it */
2519 spin_unlock(&dentry->d_lock);
2520 dput(new);
2521 return dentry;
2522 }
2523 rcu_read_unlock();
2524 /* we can't take ->d_lock here; it's OK, though. */
2525 new->d_flags |= DCACHE_PAR_LOOKUP;
2526 new->d_wait = wq;
2527 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2528 hlist_bl_unlock(b);
2529 return new;
2530 mismatch:
2531 spin_unlock(&dentry->d_lock);
2532 dput(dentry);
2533 goto retry;
2534 }
2535 EXPORT_SYMBOL(d_alloc_parallel);
2536
2537 void __d_lookup_done(struct dentry *dentry)
2538 {
2539 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2540 dentry->d_name.hash);
2541 hlist_bl_lock(b);
2542 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2543 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2544 wake_up_all(dentry->d_wait);
2545 dentry->d_wait = NULL;
2546 hlist_bl_unlock(b);
2547 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2548 INIT_LIST_HEAD(&dentry->d_lru);
2549 }
2550 EXPORT_SYMBOL(__d_lookup_done);
2551
2552 /* inode->i_lock held if inode is non-NULL */
2553
2554 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2555 {
2556 struct inode *dir = NULL;
2557 unsigned n;
2558 spin_lock(&dentry->d_lock);
2559 if (unlikely(d_in_lookup(dentry))) {
2560 dir = dentry->d_parent->d_inode;
2561 n = start_dir_add(dir);
2562 __d_lookup_done(dentry);
2563 }
2564 if (inode) {
2565 unsigned add_flags = d_flags_for_inode(inode);
2566 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2567 raw_write_seqcount_begin(&dentry->d_seq);
2568 __d_set_inode_and_type(dentry, inode, add_flags);
2569 raw_write_seqcount_end(&dentry->d_seq);
2570 fsnotify_update_flags(dentry);
2571 }
2572 __d_rehash(dentry);
2573 if (dir)
2574 end_dir_add(dir, n);
2575 spin_unlock(&dentry->d_lock);
2576 if (inode)
2577 spin_unlock(&inode->i_lock);
2578 }
2579
2580 /**
2581 * d_add - add dentry to hash queues
2582 * @entry: dentry to add
2583 * @inode: The inode to attach to this dentry
2584 *
2585 * This adds the entry to the hash queues and initializes @inode.
2586 * The entry was actually filled in earlier during d_alloc().
2587 */
2588
2589 void d_add(struct dentry *entry, struct inode *inode)
2590 {
2591 if (inode) {
2592 security_d_instantiate(entry, inode);
2593 spin_lock(&inode->i_lock);
2594 }
2595 __d_add(entry, inode);
2596 }
2597 EXPORT_SYMBOL(d_add);
2598
2599 /**
2600 * d_exact_alias - find and hash an exact unhashed alias
2601 * @entry: dentry to add
2602 * @inode: The inode to go with this dentry
2603 *
2604 * If an unhashed dentry with the same name/parent and desired
2605 * inode already exists, hash and return it. Otherwise, return
2606 * NULL.
2607 *
2608 * Parent directory should be locked.
2609 */
2610 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2611 {
2612 struct dentry *alias;
2613 unsigned int hash = entry->d_name.hash;
2614
2615 spin_lock(&inode->i_lock);
2616 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2617 /*
2618 * Don't need alias->d_lock here, because aliases with
2619 * d_parent == entry->d_parent are not subject to name or
2620 * parent changes, because the parent inode i_mutex is held.
2621 */
2622 if (alias->d_name.hash != hash)
2623 continue;
2624 if (alias->d_parent != entry->d_parent)
2625 continue;
2626 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2627 continue;
2628 spin_lock(&alias->d_lock);
2629 if (!d_unhashed(alias)) {
2630 spin_unlock(&alias->d_lock);
2631 alias = NULL;
2632 } else {
2633 __dget_dlock(alias);
2634 __d_rehash(alias);
2635 spin_unlock(&alias->d_lock);
2636 }
2637 spin_unlock(&inode->i_lock);
2638 return alias;
2639 }
2640 spin_unlock(&inode->i_lock);
2641 return NULL;
2642 }
2643 EXPORT_SYMBOL(d_exact_alias);
2644
2645 /**
2646 * dentry_update_name_case - update case insensitive dentry with a new name
2647 * @dentry: dentry to be updated
2648 * @name: new name
2649 *
2650 * Update a case insensitive dentry with new case of name.
2651 *
2652 * dentry must have been returned by d_lookup with name @name. Old and new
2653 * name lengths must match (ie. no d_compare which allows mismatched name
2654 * lengths).
2655 *
2656 * Parent inode i_mutex must be held over d_lookup and into this call (to
2657 * keep renames and concurrent inserts, and readdir(2) away).
2658 */
2659 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2660 {
2661 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2662 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2663
2664 spin_lock(&dentry->d_lock);
2665 write_seqcount_begin(&dentry->d_seq);
2666 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2667 write_seqcount_end(&dentry->d_seq);
2668 spin_unlock(&dentry->d_lock);
2669 }
2670 EXPORT_SYMBOL(dentry_update_name_case);
2671
2672 static void swap_names(struct dentry *dentry, struct dentry *target)
2673 {
2674 if (unlikely(dname_external(target))) {
2675 if (unlikely(dname_external(dentry))) {
2676 /*
2677 * Both external: swap the pointers
2678 */
2679 swap(target->d_name.name, dentry->d_name.name);
2680 } else {
2681 /*
2682 * dentry:internal, target:external. Steal target's
2683 * storage and make target internal.
2684 */
2685 memcpy(target->d_iname, dentry->d_name.name,
2686 dentry->d_name.len + 1);
2687 dentry->d_name.name = target->d_name.name;
2688 target->d_name.name = target->d_iname;
2689 }
2690 } else {
2691 if (unlikely(dname_external(dentry))) {
2692 /*
2693 * dentry:external, target:internal. Give dentry's
2694 * storage to target and make dentry internal
2695 */
2696 memcpy(dentry->d_iname, target->d_name.name,
2697 target->d_name.len + 1);
2698 target->d_name.name = dentry->d_name.name;
2699 dentry->d_name.name = dentry->d_iname;
2700 } else {
2701 /*
2702 * Both are internal.
2703 */
2704 unsigned int i;
2705 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2706 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2707 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2708 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2709 swap(((long *) &dentry->d_iname)[i],
2710 ((long *) &target->d_iname)[i]);
2711 }
2712 }
2713 }
2714 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2715 }
2716
2717 static void copy_name(struct dentry *dentry, struct dentry *target)
2718 {
2719 struct external_name *old_name = NULL;
2720 if (unlikely(dname_external(dentry)))
2721 old_name = external_name(dentry);
2722 if (unlikely(dname_external(target))) {
2723 atomic_inc(&external_name(target)->u.count);
2724 dentry->d_name = target->d_name;
2725 } else {
2726 memcpy(dentry->d_iname, target->d_name.name,
2727 target->d_name.len + 1);
2728 dentry->d_name.name = dentry->d_iname;
2729 dentry->d_name.hash_len = target->d_name.hash_len;
2730 }
2731 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2732 kfree_rcu(old_name, u.head);
2733 }
2734
2735 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2736 {
2737 /*
2738 * XXXX: do we really need to take target->d_lock?
2739 */
2740 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2741 spin_lock(&target->d_parent->d_lock);
2742 else {
2743 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2744 spin_lock(&dentry->d_parent->d_lock);
2745 spin_lock_nested(&target->d_parent->d_lock,
2746 DENTRY_D_LOCK_NESTED);
2747 } else {
2748 spin_lock(&target->d_parent->d_lock);
2749 spin_lock_nested(&dentry->d_parent->d_lock,
2750 DENTRY_D_LOCK_NESTED);
2751 }
2752 }
2753 if (target < dentry) {
2754 spin_lock_nested(&target->d_lock, 2);
2755 spin_lock_nested(&dentry->d_lock, 3);
2756 } else {
2757 spin_lock_nested(&dentry->d_lock, 2);
2758 spin_lock_nested(&target->d_lock, 3);
2759 }
2760 }
2761
2762 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2763 {
2764 if (target->d_parent != dentry->d_parent)
2765 spin_unlock(&dentry->d_parent->d_lock);
2766 if (target->d_parent != target)
2767 spin_unlock(&target->d_parent->d_lock);
2768 spin_unlock(&target->d_lock);
2769 spin_unlock(&dentry->d_lock);
2770 }
2771
2772 /*
2773 * When switching names, the actual string doesn't strictly have to
2774 * be preserved in the target - because we're dropping the target
2775 * anyway. As such, we can just do a simple memcpy() to copy over
2776 * the new name before we switch, unless we are going to rehash
2777 * it. Note that if we *do* unhash the target, we are not allowed
2778 * to rehash it without giving it a new name/hash key - whether
2779 * we swap or overwrite the names here, resulting name won't match
2780 * the reality in filesystem; it's only there for d_path() purposes.
2781 * Note that all of this is happening under rename_lock, so the
2782 * any hash lookup seeing it in the middle of manipulations will
2783 * be discarded anyway. So we do not care what happens to the hash
2784 * key in that case.
2785 */
2786 /*
2787 * __d_move - move a dentry
2788 * @dentry: entry to move
2789 * @target: new dentry
2790 * @exchange: exchange the two dentries
2791 *
2792 * Update the dcache to reflect the move of a file name. Negative
2793 * dcache entries should not be moved in this way. Caller must hold
2794 * rename_lock, the i_mutex of the source and target directories,
2795 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2796 */
2797 static void __d_move(struct dentry *dentry, struct dentry *target,
2798 bool exchange)
2799 {
2800 struct inode *dir = NULL;
2801 unsigned n;
2802 if (!dentry->d_inode)
2803 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2804
2805 BUG_ON(d_ancestor(dentry, target));
2806 BUG_ON(d_ancestor(target, dentry));
2807
2808 dentry_lock_for_move(dentry, target);
2809 if (unlikely(d_in_lookup(target))) {
2810 dir = target->d_parent->d_inode;
2811 n = start_dir_add(dir);
2812 __d_lookup_done(target);
2813 }
2814
2815 write_seqcount_begin(&dentry->d_seq);
2816 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2817
2818 /* unhash both */
2819 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2820 __d_drop(dentry);
2821 __d_drop(target);
2822
2823 /* Switch the names.. */
2824 if (exchange)
2825 swap_names(dentry, target);
2826 else
2827 copy_name(dentry, target);
2828
2829 /* rehash in new place(s) */
2830 __d_rehash(dentry);
2831 if (exchange)
2832 __d_rehash(target);
2833
2834 /* ... and switch them in the tree */
2835 if (IS_ROOT(dentry)) {
2836 /* splicing a tree */
2837 dentry->d_flags |= DCACHE_RCUACCESS;
2838 dentry->d_parent = target->d_parent;
2839 target->d_parent = target;
2840 list_del_init(&target->d_child);
2841 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2842 } else {
2843 /* swapping two dentries */
2844 swap(dentry->d_parent, target->d_parent);
2845 list_move(&target->d_child, &target->d_parent->d_subdirs);
2846 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2847 if (exchange)
2848 fsnotify_update_flags(target);
2849 fsnotify_update_flags(dentry);
2850 }
2851
2852 write_seqcount_end(&target->d_seq);
2853 write_seqcount_end(&dentry->d_seq);
2854
2855 if (dir)
2856 end_dir_add(dir, n);
2857 dentry_unlock_for_move(dentry, target);
2858 }
2859
2860 /*
2861 * d_move - move a dentry
2862 * @dentry: entry to move
2863 * @target: new dentry
2864 *
2865 * Update the dcache to reflect the move of a file name. Negative
2866 * dcache entries should not be moved in this way. See the locking
2867 * requirements for __d_move.
2868 */
2869 void d_move(struct dentry *dentry, struct dentry *target)
2870 {
2871 write_seqlock(&rename_lock);
2872 __d_move(dentry, target, false);
2873 write_sequnlock(&rename_lock);
2874 }
2875 EXPORT_SYMBOL(d_move);
2876
2877 /*
2878 * d_exchange - exchange two dentries
2879 * @dentry1: first dentry
2880 * @dentry2: second dentry
2881 */
2882 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2883 {
2884 write_seqlock(&rename_lock);
2885
2886 WARN_ON(!dentry1->d_inode);
2887 WARN_ON(!dentry2->d_inode);
2888 WARN_ON(IS_ROOT(dentry1));
2889 WARN_ON(IS_ROOT(dentry2));
2890
2891 __d_move(dentry1, dentry2, true);
2892
2893 write_sequnlock(&rename_lock);
2894 }
2895 EXPORT_SYMBOL_GPL(d_exchange);
2896
2897 /**
2898 * d_ancestor - search for an ancestor
2899 * @p1: ancestor dentry
2900 * @p2: child dentry
2901 *
2902 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2903 * an ancestor of p2, else NULL.
2904 */
2905 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2906 {
2907 struct dentry *p;
2908
2909 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2910 if (p->d_parent == p1)
2911 return p;
2912 }
2913 return NULL;
2914 }
2915
2916 /*
2917 * This helper attempts to cope with remotely renamed directories
2918 *
2919 * It assumes that the caller is already holding
2920 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2921 *
2922 * Note: If ever the locking in lock_rename() changes, then please
2923 * remember to update this too...
2924 */
2925 static int __d_unalias(struct inode *inode,
2926 struct dentry *dentry, struct dentry *alias)
2927 {
2928 struct mutex *m1 = NULL;
2929 struct rw_semaphore *m2 = NULL;
2930 int ret = -ESTALE;
2931
2932 /* If alias and dentry share a parent, then no extra locks required */
2933 if (alias->d_parent == dentry->d_parent)
2934 goto out_unalias;
2935
2936 /* See lock_rename() */
2937 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2938 goto out_err;
2939 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2940 if (!inode_trylock_shared(alias->d_parent->d_inode))
2941 goto out_err;
2942 m2 = &alias->d_parent->d_inode->i_rwsem;
2943 out_unalias:
2944 __d_move(alias, dentry, false);
2945 ret = 0;
2946 out_err:
2947 if (m2)
2948 up_read(m2);
2949 if (m1)
2950 mutex_unlock(m1);
2951 return ret;
2952 }
2953
2954 /**
2955 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2956 * @inode: the inode which may have a disconnected dentry
2957 * @dentry: a negative dentry which we want to point to the inode.
2958 *
2959 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2960 * place of the given dentry and return it, else simply d_add the inode
2961 * to the dentry and return NULL.
2962 *
2963 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2964 * we should error out: directories can't have multiple aliases.
2965 *
2966 * This is needed in the lookup routine of any filesystem that is exportable
2967 * (via knfsd) so that we can build dcache paths to directories effectively.
2968 *
2969 * If a dentry was found and moved, then it is returned. Otherwise NULL
2970 * is returned. This matches the expected return value of ->lookup.
2971 *
2972 * Cluster filesystems may call this function with a negative, hashed dentry.
2973 * In that case, we know that the inode will be a regular file, and also this
2974 * will only occur during atomic_open. So we need to check for the dentry
2975 * being already hashed only in the final case.
2976 */
2977 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2978 {
2979 if (IS_ERR(inode))
2980 return ERR_CAST(inode);
2981
2982 BUG_ON(!d_unhashed(dentry));
2983
2984 if (!inode)
2985 goto out;
2986
2987 security_d_instantiate(dentry, inode);
2988 spin_lock(&inode->i_lock);
2989 if (S_ISDIR(inode->i_mode)) {
2990 struct dentry *new = __d_find_any_alias(inode);
2991 if (unlikely(new)) {
2992 /* The reference to new ensures it remains an alias */
2993 spin_unlock(&inode->i_lock);
2994 write_seqlock(&rename_lock);
2995 if (unlikely(d_ancestor(new, dentry))) {
2996 write_sequnlock(&rename_lock);
2997 dput(new);
2998 new = ERR_PTR(-ELOOP);
2999 pr_warn_ratelimited(
3000 "VFS: Lookup of '%s' in %s %s"
3001 " would have caused loop\n",
3002 dentry->d_name.name,
3003 inode->i_sb->s_type->name,
3004 inode->i_sb->s_id);
3005 } else if (!IS_ROOT(new)) {
3006 int err = __d_unalias(inode, dentry, new);
3007 write_sequnlock(&rename_lock);
3008 if (err) {
3009 dput(new);
3010 new = ERR_PTR(err);
3011 }
3012 } else {
3013 __d_move(new, dentry, false);
3014 write_sequnlock(&rename_lock);
3015 }
3016 iput(inode);
3017 return new;
3018 }
3019 }
3020 out:
3021 __d_add(dentry, inode);
3022 return NULL;
3023 }
3024 EXPORT_SYMBOL(d_splice_alias);
3025
3026 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3027 {
3028 *buflen -= namelen;
3029 if (*buflen < 0)
3030 return -ENAMETOOLONG;
3031 *buffer -= namelen;
3032 memcpy(*buffer, str, namelen);
3033 return 0;
3034 }
3035
3036 /**
3037 * prepend_name - prepend a pathname in front of current buffer pointer
3038 * @buffer: buffer pointer
3039 * @buflen: allocated length of the buffer
3040 * @name: name string and length qstr structure
3041 *
3042 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3043 * make sure that either the old or the new name pointer and length are
3044 * fetched. However, there may be mismatch between length and pointer.
3045 * The length cannot be trusted, we need to copy it byte-by-byte until
3046 * the length is reached or a null byte is found. It also prepends "/" at
3047 * the beginning of the name. The sequence number check at the caller will
3048 * retry it again when a d_move() does happen. So any garbage in the buffer
3049 * due to mismatched pointer and length will be discarded.
3050 *
3051 * Data dependency barrier is needed to make sure that we see that terminating
3052 * NUL. Alpha strikes again, film at 11...
3053 */
3054 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3055 {
3056 const char *dname = ACCESS_ONCE(name->name);
3057 u32 dlen = ACCESS_ONCE(name->len);
3058 char *p;
3059
3060 smp_read_barrier_depends();
3061
3062 *buflen -= dlen + 1;
3063 if (*buflen < 0)
3064 return -ENAMETOOLONG;
3065 p = *buffer -= dlen + 1;
3066 *p++ = '/';
3067 while (dlen--) {
3068 char c = *dname++;
3069 if (!c)
3070 break;
3071 *p++ = c;
3072 }
3073 return 0;
3074 }
3075
3076 /**
3077 * prepend_path - Prepend path string to a buffer
3078 * @path: the dentry/vfsmount to report
3079 * @root: root vfsmnt/dentry
3080 * @buffer: pointer to the end of the buffer
3081 * @buflen: pointer to buffer length
3082 *
3083 * The function will first try to write out the pathname without taking any
3084 * lock other than the RCU read lock to make sure that dentries won't go away.
3085 * It only checks the sequence number of the global rename_lock as any change
3086 * in the dentry's d_seq will be preceded by changes in the rename_lock
3087 * sequence number. If the sequence number had been changed, it will restart
3088 * the whole pathname back-tracing sequence again by taking the rename_lock.
3089 * In this case, there is no need to take the RCU read lock as the recursive
3090 * parent pointer references will keep the dentry chain alive as long as no
3091 * rename operation is performed.
3092 */
3093 static int prepend_path(const struct path *path,
3094 const struct path *root,
3095 char **buffer, int *buflen)
3096 {
3097 struct dentry *dentry;
3098 struct vfsmount *vfsmnt;
3099 struct mount *mnt;
3100 int error = 0;
3101 unsigned seq, m_seq = 0;
3102 char *bptr;
3103 int blen;
3104
3105 rcu_read_lock();
3106 restart_mnt:
3107 read_seqbegin_or_lock(&mount_lock, &m_seq);
3108 seq = 0;
3109 rcu_read_lock();
3110 restart:
3111 bptr = *buffer;
3112 blen = *buflen;
3113 error = 0;
3114 dentry = path->dentry;
3115 vfsmnt = path->mnt;
3116 mnt = real_mount(vfsmnt);
3117 read_seqbegin_or_lock(&rename_lock, &seq);
3118 while (dentry != root->dentry || vfsmnt != root->mnt) {
3119 struct dentry * parent;
3120
3121 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3122 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3123 /* Escaped? */
3124 if (dentry != vfsmnt->mnt_root) {
3125 bptr = *buffer;
3126 blen = *buflen;
3127 error = 3;
3128 break;
3129 }
3130 /* Global root? */
3131 if (mnt != parent) {
3132 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3133 mnt = parent;
3134 vfsmnt = &mnt->mnt;
3135 continue;
3136 }
3137 if (!error)
3138 error = is_mounted(vfsmnt) ? 1 : 2;
3139 break;
3140 }
3141 parent = dentry->d_parent;
3142 prefetch(parent);
3143 error = prepend_name(&bptr, &blen, &dentry->d_name);
3144 if (error)
3145 break;
3146
3147 dentry = parent;
3148 }
3149 if (!(seq & 1))
3150 rcu_read_unlock();
3151 if (need_seqretry(&rename_lock, seq)) {
3152 seq = 1;
3153 goto restart;
3154 }
3155 done_seqretry(&rename_lock, seq);
3156
3157 if (!(m_seq & 1))
3158 rcu_read_unlock();
3159 if (need_seqretry(&mount_lock, m_seq)) {
3160 m_seq = 1;
3161 goto restart_mnt;
3162 }
3163 done_seqretry(&mount_lock, m_seq);
3164
3165 if (error >= 0 && bptr == *buffer) {
3166 if (--blen < 0)
3167 error = -ENAMETOOLONG;
3168 else
3169 *--bptr = '/';
3170 }
3171 *buffer = bptr;
3172 *buflen = blen;
3173 return error;
3174 }
3175
3176 /**
3177 * __d_path - return the path of a dentry
3178 * @path: the dentry/vfsmount to report
3179 * @root: root vfsmnt/dentry
3180 * @buf: buffer to return value in
3181 * @buflen: buffer length
3182 *
3183 * Convert a dentry into an ASCII path name.
3184 *
3185 * Returns a pointer into the buffer or an error code if the
3186 * path was too long.
3187 *
3188 * "buflen" should be positive.
3189 *
3190 * If the path is not reachable from the supplied root, return %NULL.
3191 */
3192 char *__d_path(const struct path *path,
3193 const struct path *root,
3194 char *buf, int buflen)
3195 {
3196 char *res = buf + buflen;
3197 int error;
3198
3199 prepend(&res, &buflen, "\0", 1);
3200 error = prepend_path(path, root, &res, &buflen);
3201
3202 if (error < 0)
3203 return ERR_PTR(error);
3204 if (error > 0)
3205 return NULL;
3206 return res;
3207 }
3208
3209 char *d_absolute_path(const struct path *path,
3210 char *buf, int buflen)
3211 {
3212 struct path root = {};
3213 char *res = buf + buflen;
3214 int error;
3215
3216 prepend(&res, &buflen, "\0", 1);
3217 error = prepend_path(path, &root, &res, &buflen);
3218
3219 if (error > 1)
3220 error = -EINVAL;
3221 if (error < 0)
3222 return ERR_PTR(error);
3223 return res;
3224 }
3225
3226 /*
3227 * same as __d_path but appends "(deleted)" for unlinked files.
3228 */
3229 static int path_with_deleted(const struct path *path,
3230 const struct path *root,
3231 char **buf, int *buflen)
3232 {
3233 prepend(buf, buflen, "\0", 1);
3234 if (d_unlinked(path->dentry)) {
3235 int error = prepend(buf, buflen, " (deleted)", 10);
3236 if (error)
3237 return error;
3238 }
3239
3240 return prepend_path(path, root, buf, buflen);
3241 }
3242
3243 static int prepend_unreachable(char **buffer, int *buflen)
3244 {
3245 return prepend(buffer, buflen, "(unreachable)", 13);
3246 }
3247
3248 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3249 {
3250 unsigned seq;
3251
3252 do {
3253 seq = read_seqcount_begin(&fs->seq);
3254 *root = fs->root;
3255 } while (read_seqcount_retry(&fs->seq, seq));
3256 }
3257
3258 /**
3259 * d_path - return the path of a dentry
3260 * @path: path to report
3261 * @buf: buffer to return value in
3262 * @buflen: buffer length
3263 *
3264 * Convert a dentry into an ASCII path name. If the entry has been deleted
3265 * the string " (deleted)" is appended. Note that this is ambiguous.
3266 *
3267 * Returns a pointer into the buffer or an error code if the path was
3268 * too long. Note: Callers should use the returned pointer, not the passed
3269 * in buffer, to use the name! The implementation often starts at an offset
3270 * into the buffer, and may leave 0 bytes at the start.
3271 *
3272 * "buflen" should be positive.
3273 */
3274 char *d_path(const struct path *path, char *buf, int buflen)
3275 {
3276 char *res = buf + buflen;
3277 struct path root;
3278 int error;
3279
3280 /*
3281 * We have various synthetic filesystems that never get mounted. On
3282 * these filesystems dentries are never used for lookup purposes, and
3283 * thus don't need to be hashed. They also don't need a name until a
3284 * user wants to identify the object in /proc/pid/fd/. The little hack
3285 * below allows us to generate a name for these objects on demand:
3286 *
3287 * Some pseudo inodes are mountable. When they are mounted
3288 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3289 * and instead have d_path return the mounted path.
3290 */
3291 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3292 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3293 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3294
3295 rcu_read_lock();
3296 get_fs_root_rcu(current->fs, &root);
3297 error = path_with_deleted(path, &root, &res, &buflen);
3298 rcu_read_unlock();
3299
3300 if (error < 0)
3301 res = ERR_PTR(error);
3302 return res;
3303 }
3304 EXPORT_SYMBOL(d_path);
3305
3306 /*
3307 * Helper function for dentry_operations.d_dname() members
3308 */
3309 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3310 const char *fmt, ...)
3311 {
3312 va_list args;
3313 char temp[64];
3314 int sz;
3315
3316 va_start(args, fmt);
3317 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3318 va_end(args);
3319
3320 if (sz > sizeof(temp) || sz > buflen)
3321 return ERR_PTR(-ENAMETOOLONG);
3322
3323 buffer += buflen - sz;
3324 return memcpy(buffer, temp, sz);
3325 }
3326
3327 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3328 {
3329 char *end = buffer + buflen;
3330 /* these dentries are never renamed, so d_lock is not needed */
3331 if (prepend(&end, &buflen, " (deleted)", 11) ||
3332 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3333 prepend(&end, &buflen, "/", 1))
3334 end = ERR_PTR(-ENAMETOOLONG);
3335 return end;
3336 }
3337 EXPORT_SYMBOL(simple_dname);
3338
3339 /*
3340 * Write full pathname from the root of the filesystem into the buffer.
3341 */
3342 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3343 {
3344 struct dentry *dentry;
3345 char *end, *retval;
3346 int len, seq = 0;
3347 int error = 0;
3348
3349 if (buflen < 2)
3350 goto Elong;
3351
3352 rcu_read_lock();
3353 restart:
3354 dentry = d;
3355 end = buf + buflen;
3356 len = buflen;
3357 prepend(&end, &len, "\0", 1);
3358 /* Get '/' right */
3359 retval = end-1;
3360 *retval = '/';
3361 read_seqbegin_or_lock(&rename_lock, &seq);
3362 while (!IS_ROOT(dentry)) {
3363 struct dentry *parent = dentry->d_parent;
3364
3365 prefetch(parent);
3366 error = prepend_name(&end, &len, &dentry->d_name);
3367 if (error)
3368 break;
3369
3370 retval = end;
3371 dentry = parent;
3372 }
3373 if (!(seq & 1))
3374 rcu_read_unlock();
3375 if (need_seqretry(&rename_lock, seq)) {
3376 seq = 1;
3377 goto restart;
3378 }
3379 done_seqretry(&rename_lock, seq);
3380 if (error)
3381 goto Elong;
3382 return retval;
3383 Elong:
3384 return ERR_PTR(-ENAMETOOLONG);
3385 }
3386
3387 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3388 {
3389 return __dentry_path(dentry, buf, buflen);
3390 }
3391 EXPORT_SYMBOL(dentry_path_raw);
3392
3393 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3394 {
3395 char *p = NULL;
3396 char *retval;
3397
3398 if (d_unlinked(dentry)) {
3399 p = buf + buflen;
3400 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3401 goto Elong;
3402 buflen++;
3403 }
3404 retval = __dentry_path(dentry, buf, buflen);
3405 if (!IS_ERR(retval) && p)
3406 *p = '/'; /* restore '/' overriden with '\0' */
3407 return retval;
3408 Elong:
3409 return ERR_PTR(-ENAMETOOLONG);
3410 }
3411
3412 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3413 struct path *pwd)
3414 {
3415 unsigned seq;
3416
3417 do {
3418 seq = read_seqcount_begin(&fs->seq);
3419 *root = fs->root;
3420 *pwd = fs->pwd;
3421 } while (read_seqcount_retry(&fs->seq, seq));
3422 }
3423
3424 /*
3425 * NOTE! The user-level library version returns a
3426 * character pointer. The kernel system call just
3427 * returns the length of the buffer filled (which
3428 * includes the ending '\0' character), or a negative
3429 * error value. So libc would do something like
3430 *
3431 * char *getcwd(char * buf, size_t size)
3432 * {
3433 * int retval;
3434 *
3435 * retval = sys_getcwd(buf, size);
3436 * if (retval >= 0)
3437 * return buf;
3438 * errno = -retval;
3439 * return NULL;
3440 * }
3441 */
3442 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3443 {
3444 int error;
3445 struct path pwd, root;
3446 char *page = __getname();
3447
3448 if (!page)
3449 return -ENOMEM;
3450
3451 rcu_read_lock();
3452 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3453
3454 error = -ENOENT;
3455 if (!d_unlinked(pwd.dentry)) {
3456 unsigned long len;
3457 char *cwd = page + PATH_MAX;
3458 int buflen = PATH_MAX;
3459
3460 prepend(&cwd, &buflen, "\0", 1);
3461 error = prepend_path(&pwd, &root, &cwd, &buflen);
3462 rcu_read_unlock();
3463
3464 if (error < 0)
3465 goto out;
3466
3467 /* Unreachable from current root */
3468 if (error > 0) {
3469 error = prepend_unreachable(&cwd, &buflen);
3470 if (error)
3471 goto out;
3472 }
3473
3474 error = -ERANGE;
3475 len = PATH_MAX + page - cwd;
3476 if (len <= size) {
3477 error = len;
3478 if (copy_to_user(buf, cwd, len))
3479 error = -EFAULT;
3480 }
3481 } else {
3482 rcu_read_unlock();
3483 }
3484
3485 out:
3486 __putname(page);
3487 return error;
3488 }
3489
3490 /*
3491 * Test whether new_dentry is a subdirectory of old_dentry.
3492 *
3493 * Trivially implemented using the dcache structure
3494 */
3495
3496 /**
3497 * is_subdir - is new dentry a subdirectory of old_dentry
3498 * @new_dentry: new dentry
3499 * @old_dentry: old dentry
3500 *
3501 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3502 * Returns false otherwise.
3503 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3504 */
3505
3506 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3507 {
3508 bool result;
3509 unsigned seq;
3510
3511 if (new_dentry == old_dentry)
3512 return true;
3513
3514 do {
3515 /* for restarting inner loop in case of seq retry */
3516 seq = read_seqbegin(&rename_lock);
3517 /*
3518 * Need rcu_readlock to protect against the d_parent trashing
3519 * due to d_move
3520 */
3521 rcu_read_lock();
3522 if (d_ancestor(old_dentry, new_dentry))
3523 result = true;
3524 else
3525 result = false;
3526 rcu_read_unlock();
3527 } while (read_seqretry(&rename_lock, seq));
3528
3529 return result;
3530 }
3531
3532 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3533 {
3534 struct dentry *root = data;
3535 if (dentry != root) {
3536 if (d_unhashed(dentry) || !dentry->d_inode)
3537 return D_WALK_SKIP;
3538
3539 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3540 dentry->d_flags |= DCACHE_GENOCIDE;
3541 dentry->d_lockref.count--;
3542 }
3543 }
3544 return D_WALK_CONTINUE;
3545 }
3546
3547 void d_genocide(struct dentry *parent)
3548 {
3549 d_walk(parent, parent, d_genocide_kill, NULL);
3550 }
3551
3552 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3553 {
3554 inode_dec_link_count(inode);
3555 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3556 !hlist_unhashed(&dentry->d_u.d_alias) ||
3557 !d_unlinked(dentry));
3558 spin_lock(&dentry->d_parent->d_lock);
3559 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3560 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3561 (unsigned long long)inode->i_ino);
3562 spin_unlock(&dentry->d_lock);
3563 spin_unlock(&dentry->d_parent->d_lock);
3564 d_instantiate(dentry, inode);
3565 }
3566 EXPORT_SYMBOL(d_tmpfile);
3567
3568 static __initdata unsigned long dhash_entries;
3569 static int __init set_dhash_entries(char *str)
3570 {
3571 if (!str)
3572 return 0;
3573 dhash_entries = simple_strtoul(str, &str, 0);
3574 return 1;
3575 }
3576 __setup("dhash_entries=", set_dhash_entries);
3577
3578 static void __init dcache_init_early(void)
3579 {
3580 unsigned int loop;
3581
3582 /* If hashes are distributed across NUMA nodes, defer
3583 * hash allocation until vmalloc space is available.
3584 */
3585 if (hashdist)
3586 return;
3587
3588 dentry_hashtable =
3589 alloc_large_system_hash("Dentry cache",
3590 sizeof(struct hlist_bl_head),
3591 dhash_entries,
3592 13,
3593 HASH_EARLY,
3594 &d_hash_shift,
3595 &d_hash_mask,
3596 0,
3597 0);
3598
3599 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3600 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3601 }
3602
3603 static void __init dcache_init(void)
3604 {
3605 unsigned int loop;
3606
3607 /*
3608 * A constructor could be added for stable state like the lists,
3609 * but it is probably not worth it because of the cache nature
3610 * of the dcache.
3611 */
3612 dentry_cache = KMEM_CACHE(dentry,
3613 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3614
3615 /* Hash may have been set up in dcache_init_early */
3616 if (!hashdist)
3617 return;
3618
3619 dentry_hashtable =
3620 alloc_large_system_hash("Dentry cache",
3621 sizeof(struct hlist_bl_head),
3622 dhash_entries,
3623 13,
3624 0,
3625 &d_hash_shift,
3626 &d_hash_mask,
3627 0,
3628 0);
3629
3630 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3631 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3632 }
3633
3634 /* SLAB cache for __getname() consumers */
3635 struct kmem_cache *names_cachep __read_mostly;
3636 EXPORT_SYMBOL(names_cachep);
3637
3638 EXPORT_SYMBOL(d_genocide);
3639
3640 void __init vfs_caches_init_early(void)
3641 {
3642 dcache_init_early();
3643 inode_init_early();
3644 }
3645
3646 void __init vfs_caches_init(void)
3647 {
3648 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3649 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3650
3651 dcache_init();
3652 inode_init();
3653 files_init();
3654 files_maxfiles_init();
3655 mnt_init();
3656 bdev_cache_init();
3657 chrdev_init();
3658 }