]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/exec.c
UBUNTU:SAUCE: exec: ensure file system accounting in check_unsafe_exec is correct
[mirror_ubuntu-zesty-kernel.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60
61 #include <trace/events/fs.h>
62
63 #include <linux/uaccess.h>
64 #include <asm/mmu_context.h>
65 #include <asm/tlb.h>
66
67 #include <trace/events/task.h>
68 #include "internal.h"
69
70 #include <trace/events/sched.h>
71
72 int suid_dumpable = 0;
73
74 static LIST_HEAD(formats);
75 static DEFINE_RWLOCK(binfmt_lock);
76
77 void __register_binfmt(struct linux_binfmt * fmt, int insert)
78 {
79 BUG_ON(!fmt);
80 if (WARN_ON(!fmt->load_binary))
81 return;
82 write_lock(&binfmt_lock);
83 insert ? list_add(&fmt->lh, &formats) :
84 list_add_tail(&fmt->lh, &formats);
85 write_unlock(&binfmt_lock);
86 }
87
88 EXPORT_SYMBOL(__register_binfmt);
89
90 void unregister_binfmt(struct linux_binfmt * fmt)
91 {
92 write_lock(&binfmt_lock);
93 list_del(&fmt->lh);
94 write_unlock(&binfmt_lock);
95 }
96
97 EXPORT_SYMBOL(unregister_binfmt);
98
99 static inline void put_binfmt(struct linux_binfmt * fmt)
100 {
101 module_put(fmt->module);
102 }
103
104 bool path_noexec(const struct path *path)
105 {
106 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
107 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
108 }
109 EXPORT_SYMBOL_GPL(path_noexec);
110
111 bool path_nosuid(const struct path *path)
112 {
113 return !mnt_may_suid(path->mnt) ||
114 (path->mnt->mnt_sb->s_iflags & SB_I_NOSUID);
115 }
116 EXPORT_SYMBOL(path_nosuid);
117
118 #ifdef CONFIG_USELIB
119 /*
120 * Note that a shared library must be both readable and executable due to
121 * security reasons.
122 *
123 * Also note that we take the address to load from from the file itself.
124 */
125 SYSCALL_DEFINE1(uselib, const char __user *, library)
126 {
127 struct linux_binfmt *fmt;
128 struct file *file;
129 struct filename *tmp = getname(library);
130 int error = PTR_ERR(tmp);
131 static const struct open_flags uselib_flags = {
132 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
133 .acc_mode = MAY_READ | MAY_EXEC,
134 .intent = LOOKUP_OPEN,
135 .lookup_flags = LOOKUP_FOLLOW,
136 };
137
138 if (IS_ERR(tmp))
139 goto out;
140
141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142 putname(tmp);
143 error = PTR_ERR(file);
144 if (IS_ERR(file))
145 goto out;
146
147 error = -EINVAL;
148 if (!S_ISREG(file_inode(file)->i_mode))
149 goto exit;
150
151 error = -EACCES;
152 if (path_noexec(&file->f_path))
153 goto exit;
154
155 fsnotify_open(file);
156
157 error = -ENOEXEC;
158
159 read_lock(&binfmt_lock);
160 list_for_each_entry(fmt, &formats, lh) {
161 if (!fmt->load_shlib)
162 continue;
163 if (!try_module_get(fmt->module))
164 continue;
165 read_unlock(&binfmt_lock);
166 error = fmt->load_shlib(file);
167 read_lock(&binfmt_lock);
168 put_binfmt(fmt);
169 if (error != -ENOEXEC)
170 break;
171 }
172 read_unlock(&binfmt_lock);
173 exit:
174 fput(file);
175 out:
176 return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179
180 #ifdef CONFIG_MMU
181 /*
182 * The nascent bprm->mm is not visible until exec_mmap() but it can
183 * use a lot of memory, account these pages in current->mm temporary
184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185 * change the counter back via acct_arg_size(0).
186 */
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189 struct mm_struct *mm = current->mm;
190 long diff = (long)(pages - bprm->vma_pages);
191
192 if (!mm || !diff)
193 return;
194
195 bprm->vma_pages = pages;
196 add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 int write)
201 {
202 struct page *page;
203 int ret;
204 unsigned int gup_flags = FOLL_FORCE;
205
206 #ifdef CONFIG_STACK_GROWSUP
207 if (write) {
208 ret = expand_downwards(bprm->vma, pos, 0);
209 if (ret < 0)
210 return NULL;
211 }
212 #endif
213
214 if (write)
215 gup_flags |= FOLL_WRITE;
216
217 /*
218 * We are doing an exec(). 'current' is the process
219 * doing the exec and bprm->mm is the new process's mm.
220 */
221 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
222 &page, NULL, NULL);
223 if (ret <= 0)
224 return NULL;
225
226 if (write) {
227 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
228 struct rlimit *rlim;
229
230 /*
231 * GRWOSUP doesn't really have any gap at this stage because we grow
232 * the stack down now. See the expand_downwards above.
233 */
234 if (!IS_ENABLED(CONFIG_STACK_GROWSUP))
235 size -= stack_guard_gap;
236 acct_arg_size(bprm, size / PAGE_SIZE);
237
238 /*
239 * We've historically supported up to 32 pages (ARG_MAX)
240 * of argument strings even with small stacks
241 */
242 if (size <= ARG_MAX)
243 return page;
244
245 /*
246 * Limit to 1/4-th the stack size for the argv+env strings.
247 * This ensures that:
248 * - the remaining binfmt code will not run out of stack space,
249 * - the program will have a reasonable amount of stack left
250 * to work from.
251 */
252 rlim = current->signal->rlim;
253 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
254 put_page(page);
255 return NULL;
256 }
257 }
258
259 return page;
260 }
261
262 static void put_arg_page(struct page *page)
263 {
264 put_page(page);
265 }
266
267 static void free_arg_pages(struct linux_binprm *bprm)
268 {
269 }
270
271 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
272 struct page *page)
273 {
274 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
275 }
276
277 static int __bprm_mm_init(struct linux_binprm *bprm)
278 {
279 int err;
280 struct vm_area_struct *vma = NULL;
281 struct mm_struct *mm = bprm->mm;
282
283 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
284 if (!vma)
285 return -ENOMEM;
286
287 if (down_write_killable(&mm->mmap_sem)) {
288 err = -EINTR;
289 goto err_free;
290 }
291 vma->vm_mm = mm;
292
293 /*
294 * Place the stack at the largest stack address the architecture
295 * supports. Later, we'll move this to an appropriate place. We don't
296 * use STACK_TOP because that can depend on attributes which aren't
297 * configured yet.
298 */
299 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
300 vma->vm_end = STACK_TOP_MAX;
301 vma->vm_start = vma->vm_end - PAGE_SIZE;
302 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
303 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
304 INIT_LIST_HEAD(&vma->anon_vma_chain);
305
306 err = insert_vm_struct(mm, vma);
307 if (err)
308 goto err;
309
310 mm->stack_vm = mm->total_vm = 1;
311 arch_bprm_mm_init(mm, vma);
312 up_write(&mm->mmap_sem);
313 bprm->p = vma->vm_end - sizeof(void *);
314 return 0;
315 err:
316 up_write(&mm->mmap_sem);
317 err_free:
318 bprm->vma = NULL;
319 kmem_cache_free(vm_area_cachep, vma);
320 return err;
321 }
322
323 static bool valid_arg_len(struct linux_binprm *bprm, long len)
324 {
325 return len <= MAX_ARG_STRLEN;
326 }
327
328 #else
329
330 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
331 {
332 }
333
334 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
335 int write)
336 {
337 struct page *page;
338
339 page = bprm->page[pos / PAGE_SIZE];
340 if (!page && write) {
341 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
342 if (!page)
343 return NULL;
344 bprm->page[pos / PAGE_SIZE] = page;
345 }
346
347 return page;
348 }
349
350 static void put_arg_page(struct page *page)
351 {
352 }
353
354 static void free_arg_page(struct linux_binprm *bprm, int i)
355 {
356 if (bprm->page[i]) {
357 __free_page(bprm->page[i]);
358 bprm->page[i] = NULL;
359 }
360 }
361
362 static void free_arg_pages(struct linux_binprm *bprm)
363 {
364 int i;
365
366 for (i = 0; i < MAX_ARG_PAGES; i++)
367 free_arg_page(bprm, i);
368 }
369
370 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
371 struct page *page)
372 {
373 }
374
375 static int __bprm_mm_init(struct linux_binprm *bprm)
376 {
377 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
378 return 0;
379 }
380
381 static bool valid_arg_len(struct linux_binprm *bprm, long len)
382 {
383 return len <= bprm->p;
384 }
385
386 #endif /* CONFIG_MMU */
387
388 /*
389 * Create a new mm_struct and populate it with a temporary stack
390 * vm_area_struct. We don't have enough context at this point to set the stack
391 * flags, permissions, and offset, so we use temporary values. We'll update
392 * them later in setup_arg_pages().
393 */
394 static int bprm_mm_init(struct linux_binprm *bprm)
395 {
396 int err;
397 struct mm_struct *mm = NULL;
398
399 bprm->mm = mm = mm_alloc();
400 err = -ENOMEM;
401 if (!mm)
402 goto err;
403
404 err = __bprm_mm_init(bprm);
405 if (err)
406 goto err;
407
408 return 0;
409
410 err:
411 if (mm) {
412 bprm->mm = NULL;
413 mmdrop(mm);
414 }
415
416 return err;
417 }
418
419 struct user_arg_ptr {
420 #ifdef CONFIG_COMPAT
421 bool is_compat;
422 #endif
423 union {
424 const char __user *const __user *native;
425 #ifdef CONFIG_COMPAT
426 const compat_uptr_t __user *compat;
427 #endif
428 } ptr;
429 };
430
431 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
432 {
433 const char __user *native;
434
435 #ifdef CONFIG_COMPAT
436 if (unlikely(argv.is_compat)) {
437 compat_uptr_t compat;
438
439 if (get_user(compat, argv.ptr.compat + nr))
440 return ERR_PTR(-EFAULT);
441
442 return compat_ptr(compat);
443 }
444 #endif
445
446 if (get_user(native, argv.ptr.native + nr))
447 return ERR_PTR(-EFAULT);
448
449 return native;
450 }
451
452 /*
453 * count() counts the number of strings in array ARGV.
454 */
455 static int count(struct user_arg_ptr argv, int max)
456 {
457 int i = 0;
458
459 if (argv.ptr.native != NULL) {
460 for (;;) {
461 const char __user *p = get_user_arg_ptr(argv, i);
462
463 if (!p)
464 break;
465
466 if (IS_ERR(p))
467 return -EFAULT;
468
469 if (i >= max)
470 return -E2BIG;
471 ++i;
472
473 if (fatal_signal_pending(current))
474 return -ERESTARTNOHAND;
475 cond_resched();
476 }
477 }
478 return i;
479 }
480
481 /*
482 * 'copy_strings()' copies argument/environment strings from the old
483 * processes's memory to the new process's stack. The call to get_user_pages()
484 * ensures the destination page is created and not swapped out.
485 */
486 static int copy_strings(int argc, struct user_arg_ptr argv,
487 struct linux_binprm *bprm)
488 {
489 struct page *kmapped_page = NULL;
490 char *kaddr = NULL;
491 unsigned long kpos = 0;
492 int ret;
493
494 while (argc-- > 0) {
495 const char __user *str;
496 int len;
497 unsigned long pos;
498
499 ret = -EFAULT;
500 str = get_user_arg_ptr(argv, argc);
501 if (IS_ERR(str))
502 goto out;
503
504 len = strnlen_user(str, MAX_ARG_STRLEN);
505 if (!len)
506 goto out;
507
508 ret = -E2BIG;
509 if (!valid_arg_len(bprm, len))
510 goto out;
511
512 /* We're going to work our way backwords. */
513 pos = bprm->p;
514 str += len;
515 bprm->p -= len;
516
517 while (len > 0) {
518 int offset, bytes_to_copy;
519
520 if (fatal_signal_pending(current)) {
521 ret = -ERESTARTNOHAND;
522 goto out;
523 }
524 cond_resched();
525
526 offset = pos % PAGE_SIZE;
527 if (offset == 0)
528 offset = PAGE_SIZE;
529
530 bytes_to_copy = offset;
531 if (bytes_to_copy > len)
532 bytes_to_copy = len;
533
534 offset -= bytes_to_copy;
535 pos -= bytes_to_copy;
536 str -= bytes_to_copy;
537 len -= bytes_to_copy;
538
539 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
540 struct page *page;
541
542 page = get_arg_page(bprm, pos, 1);
543 if (!page) {
544 ret = -E2BIG;
545 goto out;
546 }
547
548 if (kmapped_page) {
549 flush_kernel_dcache_page(kmapped_page);
550 kunmap(kmapped_page);
551 put_arg_page(kmapped_page);
552 }
553 kmapped_page = page;
554 kaddr = kmap(kmapped_page);
555 kpos = pos & PAGE_MASK;
556 flush_arg_page(bprm, kpos, kmapped_page);
557 }
558 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
559 ret = -EFAULT;
560 goto out;
561 }
562 }
563 }
564 ret = 0;
565 out:
566 if (kmapped_page) {
567 flush_kernel_dcache_page(kmapped_page);
568 kunmap(kmapped_page);
569 put_arg_page(kmapped_page);
570 }
571 return ret;
572 }
573
574 /*
575 * Like copy_strings, but get argv and its values from kernel memory.
576 */
577 int copy_strings_kernel(int argc, const char *const *__argv,
578 struct linux_binprm *bprm)
579 {
580 int r;
581 mm_segment_t oldfs = get_fs();
582 struct user_arg_ptr argv = {
583 .ptr.native = (const char __user *const __user *)__argv,
584 };
585
586 set_fs(KERNEL_DS);
587 r = copy_strings(argc, argv, bprm);
588 set_fs(oldfs);
589
590 return r;
591 }
592 EXPORT_SYMBOL(copy_strings_kernel);
593
594 #ifdef CONFIG_MMU
595
596 /*
597 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
598 * the binfmt code determines where the new stack should reside, we shift it to
599 * its final location. The process proceeds as follows:
600 *
601 * 1) Use shift to calculate the new vma endpoints.
602 * 2) Extend vma to cover both the old and new ranges. This ensures the
603 * arguments passed to subsequent functions are consistent.
604 * 3) Move vma's page tables to the new range.
605 * 4) Free up any cleared pgd range.
606 * 5) Shrink the vma to cover only the new range.
607 */
608 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
609 {
610 struct mm_struct *mm = vma->vm_mm;
611 unsigned long old_start = vma->vm_start;
612 unsigned long old_end = vma->vm_end;
613 unsigned long length = old_end - old_start;
614 unsigned long new_start = old_start - shift;
615 unsigned long new_end = old_end - shift;
616 struct mmu_gather tlb;
617
618 BUG_ON(new_start > new_end);
619
620 /*
621 * ensure there are no vmas between where we want to go
622 * and where we are
623 */
624 if (vma != find_vma(mm, new_start))
625 return -EFAULT;
626
627 /*
628 * cover the whole range: [new_start, old_end)
629 */
630 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
631 return -ENOMEM;
632
633 /*
634 * move the page tables downwards, on failure we rely on
635 * process cleanup to remove whatever mess we made.
636 */
637 if (length != move_page_tables(vma, old_start,
638 vma, new_start, length, false))
639 return -ENOMEM;
640
641 lru_add_drain();
642 tlb_gather_mmu(&tlb, mm, old_start, old_end);
643 if (new_end > old_start) {
644 /*
645 * when the old and new regions overlap clear from new_end.
646 */
647 free_pgd_range(&tlb, new_end, old_end, new_end,
648 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
649 } else {
650 /*
651 * otherwise, clean from old_start; this is done to not touch
652 * the address space in [new_end, old_start) some architectures
653 * have constraints on va-space that make this illegal (IA64) -
654 * for the others its just a little faster.
655 */
656 free_pgd_range(&tlb, old_start, old_end, new_end,
657 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
658 }
659 tlb_finish_mmu(&tlb, old_start, old_end);
660
661 /*
662 * Shrink the vma to just the new range. Always succeeds.
663 */
664 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
665
666 return 0;
667 }
668
669 /*
670 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
671 * the stack is optionally relocated, and some extra space is added.
672 */
673 int setup_arg_pages(struct linux_binprm *bprm,
674 unsigned long stack_top,
675 int executable_stack)
676 {
677 unsigned long ret;
678 unsigned long stack_shift;
679 struct mm_struct *mm = current->mm;
680 struct vm_area_struct *vma = bprm->vma;
681 struct vm_area_struct *prev = NULL;
682 unsigned long vm_flags;
683 unsigned long stack_base;
684 unsigned long stack_size;
685 unsigned long stack_expand;
686 unsigned long rlim_stack;
687
688 #ifdef CONFIG_STACK_GROWSUP
689 /* Limit stack size */
690 stack_base = rlimit_max(RLIMIT_STACK);
691 if (stack_base > STACK_SIZE_MAX)
692 stack_base = STACK_SIZE_MAX;
693
694 /* Add space for stack randomization. */
695 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
696
697 /* Make sure we didn't let the argument array grow too large. */
698 if (vma->vm_end - vma->vm_start > stack_base)
699 return -ENOMEM;
700
701 stack_base = PAGE_ALIGN(stack_top - stack_base);
702
703 stack_shift = vma->vm_start - stack_base;
704 mm->arg_start = bprm->p - stack_shift;
705 bprm->p = vma->vm_end - stack_shift;
706 #else
707 stack_top = arch_align_stack(stack_top);
708 stack_top = PAGE_ALIGN(stack_top);
709
710 if (unlikely(stack_top < mmap_min_addr) ||
711 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
712 return -ENOMEM;
713
714 stack_shift = vma->vm_end - stack_top;
715
716 bprm->p -= stack_shift;
717 mm->arg_start = bprm->p;
718 #endif
719
720 if (bprm->loader)
721 bprm->loader -= stack_shift;
722 bprm->exec -= stack_shift;
723
724 if (down_write_killable(&mm->mmap_sem))
725 return -EINTR;
726
727 vm_flags = VM_STACK_FLAGS;
728
729 /*
730 * Adjust stack execute permissions; explicitly enable for
731 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
732 * (arch default) otherwise.
733 */
734 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
735 vm_flags |= VM_EXEC;
736 else if (executable_stack == EXSTACK_DISABLE_X)
737 vm_flags &= ~VM_EXEC;
738 vm_flags |= mm->def_flags;
739 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
740
741 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
742 vm_flags);
743 if (ret)
744 goto out_unlock;
745 BUG_ON(prev != vma);
746
747 /* Move stack pages down in memory. */
748 if (stack_shift) {
749 ret = shift_arg_pages(vma, stack_shift);
750 if (ret)
751 goto out_unlock;
752 }
753
754 /* mprotect_fixup is overkill to remove the temporary stack flags */
755 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
756
757 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
758 stack_size = vma->vm_end - vma->vm_start;
759 /*
760 * Align this down to a page boundary as expand_stack
761 * will align it up.
762 */
763 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
764 #ifdef CONFIG_STACK_GROWSUP
765 if (stack_size + stack_expand > rlim_stack)
766 stack_base = vma->vm_start + rlim_stack;
767 else
768 stack_base = vma->vm_end + stack_expand;
769 #else
770 if (stack_size + stack_expand > rlim_stack)
771 stack_base = vma->vm_end - rlim_stack;
772 else
773 stack_base = vma->vm_start - stack_expand;
774 #endif
775 current->mm->start_stack = bprm->p;
776 ret = expand_stack(vma, stack_base);
777 if (ret)
778 ret = -EFAULT;
779
780 out_unlock:
781 up_write(&mm->mmap_sem);
782 return ret;
783 }
784 EXPORT_SYMBOL(setup_arg_pages);
785
786 #else
787
788 /*
789 * Transfer the program arguments and environment from the holding pages
790 * onto the stack. The provided stack pointer is adjusted accordingly.
791 */
792 int transfer_args_to_stack(struct linux_binprm *bprm,
793 unsigned long *sp_location)
794 {
795 unsigned long index, stop, sp;
796 int ret = 0;
797
798 stop = bprm->p >> PAGE_SHIFT;
799 sp = *sp_location;
800
801 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
802 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
803 char *src = kmap(bprm->page[index]) + offset;
804 sp -= PAGE_SIZE - offset;
805 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
806 ret = -EFAULT;
807 kunmap(bprm->page[index]);
808 if (ret)
809 goto out;
810 }
811
812 *sp_location = sp;
813
814 out:
815 return ret;
816 }
817 EXPORT_SYMBOL(transfer_args_to_stack);
818
819 #endif /* CONFIG_MMU */
820
821 static struct file *do_open_execat(int fd, struct filename *name, int flags)
822 {
823 struct file *file;
824 int err;
825 struct open_flags open_exec_flags = {
826 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
827 .acc_mode = MAY_EXEC,
828 .intent = LOOKUP_OPEN,
829 .lookup_flags = LOOKUP_FOLLOW,
830 };
831
832 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
833 return ERR_PTR(-EINVAL);
834 if (flags & AT_SYMLINK_NOFOLLOW)
835 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
836 if (flags & AT_EMPTY_PATH)
837 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
838
839 file = do_filp_open(fd, name, &open_exec_flags);
840 if (IS_ERR(file))
841 goto out;
842
843 err = -EACCES;
844 if (!S_ISREG(file_inode(file)->i_mode))
845 goto exit;
846
847 if (path_noexec(&file->f_path))
848 goto exit;
849
850 err = deny_write_access(file);
851 if (err)
852 goto exit;
853
854 if (name->name[0] != '\0')
855 fsnotify_open(file);
856
857 trace_open_exec(name->name);
858
859 out:
860 return file;
861
862 exit:
863 fput(file);
864 return ERR_PTR(err);
865 }
866
867 struct file *open_exec(const char *name)
868 {
869 struct filename *filename = getname_kernel(name);
870 struct file *f = ERR_CAST(filename);
871
872 if (!IS_ERR(filename)) {
873 f = do_open_execat(AT_FDCWD, filename, 0);
874 putname(filename);
875 }
876 return f;
877 }
878 EXPORT_SYMBOL(open_exec);
879
880 int kernel_read(struct file *file, loff_t offset,
881 char *addr, unsigned long count)
882 {
883 mm_segment_t old_fs;
884 loff_t pos = offset;
885 int result;
886
887 old_fs = get_fs();
888 set_fs(get_ds());
889 /* The cast to a user pointer is valid due to the set_fs() */
890 result = vfs_read(file, (void __user *)addr, count, &pos);
891 set_fs(old_fs);
892 return result;
893 }
894
895 EXPORT_SYMBOL(kernel_read);
896
897 int kernel_read_file(struct file *file, void **buf, loff_t *size,
898 loff_t max_size, enum kernel_read_file_id id)
899 {
900 loff_t i_size, pos;
901 ssize_t bytes = 0;
902 int ret;
903
904 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
905 return -EINVAL;
906
907 ret = security_kernel_read_file(file, id);
908 if (ret)
909 return ret;
910
911 ret = deny_write_access(file);
912 if (ret)
913 return ret;
914
915 i_size = i_size_read(file_inode(file));
916 if (max_size > 0 && i_size > max_size) {
917 ret = -EFBIG;
918 goto out;
919 }
920 if (i_size <= 0) {
921 ret = -EINVAL;
922 goto out;
923 }
924
925 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
926 *buf = vmalloc(i_size);
927 if (!*buf) {
928 ret = -ENOMEM;
929 goto out;
930 }
931
932 pos = 0;
933 while (pos < i_size) {
934 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
935 i_size - pos);
936 if (bytes < 0) {
937 ret = bytes;
938 goto out;
939 }
940
941 if (bytes == 0)
942 break;
943 pos += bytes;
944 }
945
946 if (pos != i_size) {
947 ret = -EIO;
948 goto out_free;
949 }
950
951 ret = security_kernel_post_read_file(file, *buf, i_size, id);
952 if (!ret)
953 *size = pos;
954
955 out_free:
956 if (ret < 0) {
957 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
958 vfree(*buf);
959 *buf = NULL;
960 }
961 }
962
963 out:
964 allow_write_access(file);
965 return ret;
966 }
967 EXPORT_SYMBOL_GPL(kernel_read_file);
968
969 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
970 loff_t max_size, enum kernel_read_file_id id)
971 {
972 struct file *file;
973 int ret;
974
975 if (!path || !*path)
976 return -EINVAL;
977
978 file = filp_open(path, O_RDONLY, 0);
979 if (IS_ERR(file))
980 return PTR_ERR(file);
981
982 ret = kernel_read_file(file, buf, size, max_size, id);
983 fput(file);
984 return ret;
985 }
986 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
987
988 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
989 enum kernel_read_file_id id)
990 {
991 struct fd f = fdget(fd);
992 int ret = -EBADF;
993
994 if (!f.file)
995 goto out;
996
997 ret = kernel_read_file(f.file, buf, size, max_size, id);
998 out:
999 fdput(f);
1000 return ret;
1001 }
1002 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1003
1004 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1005 {
1006 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1007 if (res > 0)
1008 flush_icache_range(addr, addr + len);
1009 return res;
1010 }
1011 EXPORT_SYMBOL(read_code);
1012
1013 static int exec_mmap(struct mm_struct *mm)
1014 {
1015 struct task_struct *tsk;
1016 struct mm_struct *old_mm, *active_mm;
1017
1018 /* Notify parent that we're no longer interested in the old VM */
1019 tsk = current;
1020 old_mm = current->mm;
1021 mm_release(tsk, old_mm);
1022
1023 if (old_mm) {
1024 sync_mm_rss(old_mm);
1025 /*
1026 * Make sure that if there is a core dump in progress
1027 * for the old mm, we get out and die instead of going
1028 * through with the exec. We must hold mmap_sem around
1029 * checking core_state and changing tsk->mm.
1030 */
1031 down_read(&old_mm->mmap_sem);
1032 if (unlikely(old_mm->core_state)) {
1033 up_read(&old_mm->mmap_sem);
1034 return -EINTR;
1035 }
1036 }
1037 task_lock(tsk);
1038 active_mm = tsk->active_mm;
1039 tsk->mm = mm;
1040 tsk->active_mm = mm;
1041 activate_mm(active_mm, mm);
1042 tsk->mm->vmacache_seqnum = 0;
1043 vmacache_flush(tsk);
1044 task_unlock(tsk);
1045 if (old_mm) {
1046 up_read(&old_mm->mmap_sem);
1047 BUG_ON(active_mm != old_mm);
1048 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1049 mm_update_next_owner(old_mm);
1050 mmput(old_mm);
1051 return 0;
1052 }
1053 mmdrop(active_mm);
1054 return 0;
1055 }
1056
1057 /*
1058 * This function makes sure the current process has its own signal table,
1059 * so that flush_signal_handlers can later reset the handlers without
1060 * disturbing other processes. (Other processes might share the signal
1061 * table via the CLONE_SIGHAND option to clone().)
1062 */
1063 static int de_thread(struct task_struct *tsk)
1064 {
1065 struct signal_struct *sig = tsk->signal;
1066 struct sighand_struct *oldsighand = tsk->sighand;
1067 spinlock_t *lock = &oldsighand->siglock;
1068
1069 if (thread_group_empty(tsk))
1070 goto no_thread_group;
1071
1072 /*
1073 * Kill all other threads in the thread group.
1074 */
1075 spin_lock_irq(lock);
1076 if (signal_group_exit(sig)) {
1077 /*
1078 * Another group action in progress, just
1079 * return so that the signal is processed.
1080 */
1081 spin_unlock_irq(lock);
1082 return -EAGAIN;
1083 }
1084
1085 sig->group_exit_task = tsk;
1086 sig->notify_count = zap_other_threads(tsk);
1087 if (!thread_group_leader(tsk))
1088 sig->notify_count--;
1089
1090 while (sig->notify_count) {
1091 __set_current_state(TASK_KILLABLE);
1092 spin_unlock_irq(lock);
1093 schedule();
1094 if (unlikely(__fatal_signal_pending(tsk)))
1095 goto killed;
1096 spin_lock_irq(lock);
1097 }
1098 spin_unlock_irq(lock);
1099
1100 /*
1101 * At this point all other threads have exited, all we have to
1102 * do is to wait for the thread group leader to become inactive,
1103 * and to assume its PID:
1104 */
1105 if (!thread_group_leader(tsk)) {
1106 struct task_struct *leader = tsk->group_leader;
1107
1108 for (;;) {
1109 threadgroup_change_begin(tsk);
1110 write_lock_irq(&tasklist_lock);
1111 /*
1112 * Do this under tasklist_lock to ensure that
1113 * exit_notify() can't miss ->group_exit_task
1114 */
1115 sig->notify_count = -1;
1116 if (likely(leader->exit_state))
1117 break;
1118 __set_current_state(TASK_KILLABLE);
1119 write_unlock_irq(&tasklist_lock);
1120 threadgroup_change_end(tsk);
1121 schedule();
1122 if (unlikely(__fatal_signal_pending(tsk)))
1123 goto killed;
1124 }
1125
1126 /*
1127 * The only record we have of the real-time age of a
1128 * process, regardless of execs it's done, is start_time.
1129 * All the past CPU time is accumulated in signal_struct
1130 * from sister threads now dead. But in this non-leader
1131 * exec, nothing survives from the original leader thread,
1132 * whose birth marks the true age of this process now.
1133 * When we take on its identity by switching to its PID, we
1134 * also take its birthdate (always earlier than our own).
1135 */
1136 tsk->start_time = leader->start_time;
1137 tsk->real_start_time = leader->real_start_time;
1138
1139 BUG_ON(!same_thread_group(leader, tsk));
1140 BUG_ON(has_group_leader_pid(tsk));
1141 /*
1142 * An exec() starts a new thread group with the
1143 * TGID of the previous thread group. Rehash the
1144 * two threads with a switched PID, and release
1145 * the former thread group leader:
1146 */
1147
1148 /* Become a process group leader with the old leader's pid.
1149 * The old leader becomes a thread of the this thread group.
1150 * Note: The old leader also uses this pid until release_task
1151 * is called. Odd but simple and correct.
1152 */
1153 tsk->pid = leader->pid;
1154 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1155 transfer_pid(leader, tsk, PIDTYPE_PGID);
1156 transfer_pid(leader, tsk, PIDTYPE_SID);
1157
1158 list_replace_rcu(&leader->tasks, &tsk->tasks);
1159 list_replace_init(&leader->sibling, &tsk->sibling);
1160
1161 tsk->group_leader = tsk;
1162 leader->group_leader = tsk;
1163
1164 tsk->exit_signal = SIGCHLD;
1165 leader->exit_signal = -1;
1166
1167 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1168 leader->exit_state = EXIT_DEAD;
1169
1170 /*
1171 * We are going to release_task()->ptrace_unlink() silently,
1172 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1173 * the tracer wont't block again waiting for this thread.
1174 */
1175 if (unlikely(leader->ptrace))
1176 __wake_up_parent(leader, leader->parent);
1177 write_unlock_irq(&tasklist_lock);
1178 threadgroup_change_end(tsk);
1179
1180 release_task(leader);
1181 }
1182
1183 sig->group_exit_task = NULL;
1184 sig->notify_count = 0;
1185
1186 no_thread_group:
1187 /* we have changed execution domain */
1188 tsk->exit_signal = SIGCHLD;
1189
1190 #ifdef CONFIG_POSIX_TIMERS
1191 exit_itimers(sig);
1192 flush_itimer_signals();
1193 #endif
1194
1195 if (atomic_read(&oldsighand->count) != 1) {
1196 struct sighand_struct *newsighand;
1197 /*
1198 * This ->sighand is shared with the CLONE_SIGHAND
1199 * but not CLONE_THREAD task, switch to the new one.
1200 */
1201 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1202 if (!newsighand)
1203 return -ENOMEM;
1204
1205 atomic_set(&newsighand->count, 1);
1206 memcpy(newsighand->action, oldsighand->action,
1207 sizeof(newsighand->action));
1208
1209 write_lock_irq(&tasklist_lock);
1210 spin_lock(&oldsighand->siglock);
1211 rcu_assign_pointer(tsk->sighand, newsighand);
1212 spin_unlock(&oldsighand->siglock);
1213 write_unlock_irq(&tasklist_lock);
1214
1215 __cleanup_sighand(oldsighand);
1216 }
1217
1218 BUG_ON(!thread_group_leader(tsk));
1219 return 0;
1220
1221 killed:
1222 /* protects against exit_notify() and __exit_signal() */
1223 read_lock(&tasklist_lock);
1224 sig->group_exit_task = NULL;
1225 sig->notify_count = 0;
1226 read_unlock(&tasklist_lock);
1227 return -EAGAIN;
1228 }
1229
1230 char *get_task_comm(char *buf, struct task_struct *tsk)
1231 {
1232 /* buf must be at least sizeof(tsk->comm) in size */
1233 task_lock(tsk);
1234 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1235 task_unlock(tsk);
1236 return buf;
1237 }
1238 EXPORT_SYMBOL_GPL(get_task_comm);
1239
1240 /*
1241 * These functions flushes out all traces of the currently running executable
1242 * so that a new one can be started
1243 */
1244
1245 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1246 {
1247 task_lock(tsk);
1248 trace_task_rename(tsk, buf);
1249 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1250 task_unlock(tsk);
1251 perf_event_comm(tsk, exec);
1252 }
1253
1254 int flush_old_exec(struct linux_binprm * bprm)
1255 {
1256 int retval;
1257
1258 /*
1259 * Make sure we have a private signal table and that
1260 * we are unassociated from the previous thread group.
1261 */
1262 retval = de_thread(current);
1263 if (retval)
1264 goto out;
1265
1266 /*
1267 * Must be called _before_ exec_mmap() as bprm->mm is
1268 * not visibile until then. This also enables the update
1269 * to be lockless.
1270 */
1271 set_mm_exe_file(bprm->mm, bprm->file);
1272
1273 /*
1274 * Release all of the old mmap stuff
1275 */
1276 acct_arg_size(bprm, 0);
1277 retval = exec_mmap(bprm->mm);
1278 if (retval)
1279 goto out;
1280
1281 bprm->mm = NULL; /* We're using it now */
1282
1283 set_fs(USER_DS);
1284 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1285 PF_NOFREEZE | PF_NO_SETAFFINITY);
1286 flush_thread();
1287 current->personality &= ~bprm->per_clear;
1288
1289 /*
1290 * We have to apply CLOEXEC before we change whether the process is
1291 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1292 * trying to access the should-be-closed file descriptors of a process
1293 * undergoing exec(2).
1294 */
1295 do_close_on_exec(current->files);
1296 return 0;
1297
1298 out:
1299 return retval;
1300 }
1301 EXPORT_SYMBOL(flush_old_exec);
1302
1303 void would_dump(struct linux_binprm *bprm, struct file *file)
1304 {
1305 struct inode *inode = file_inode(file);
1306 if (inode_permission(inode, MAY_READ) < 0) {
1307 struct user_namespace *old, *user_ns;
1308 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1309
1310 /* Ensure mm->user_ns contains the executable */
1311 user_ns = old = bprm->mm->user_ns;
1312 while ((user_ns != &init_user_ns) &&
1313 !privileged_wrt_inode_uidgid(user_ns, inode))
1314 user_ns = user_ns->parent;
1315
1316 if (old != user_ns) {
1317 bprm->mm->user_ns = get_user_ns(user_ns);
1318 put_user_ns(old);
1319 }
1320 }
1321 }
1322 EXPORT_SYMBOL(would_dump);
1323
1324 void setup_new_exec(struct linux_binprm * bprm)
1325 {
1326 arch_pick_mmap_layout(current->mm);
1327
1328 /* This is the point of no return */
1329 current->sas_ss_sp = current->sas_ss_size = 0;
1330
1331 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1332 set_dumpable(current->mm, SUID_DUMP_USER);
1333 else
1334 set_dumpable(current->mm, suid_dumpable);
1335
1336 perf_event_exec();
1337 __set_task_comm(current, kbasename(bprm->filename), true);
1338
1339 /* Set the new mm task size. We have to do that late because it may
1340 * depend on TIF_32BIT which is only updated in flush_thread() on
1341 * some architectures like powerpc
1342 */
1343 current->mm->task_size = TASK_SIZE;
1344
1345 /* install the new credentials */
1346 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1347 !gid_eq(bprm->cred->gid, current_egid())) {
1348 current->pdeath_signal = 0;
1349 } else {
1350 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1351 set_dumpable(current->mm, suid_dumpable);
1352 }
1353
1354 /* An exec changes our domain. We are no longer part of the thread
1355 group */
1356 current->self_exec_id++;
1357 flush_signal_handlers(current, 0);
1358 }
1359 EXPORT_SYMBOL(setup_new_exec);
1360
1361 /*
1362 * Prepare credentials and lock ->cred_guard_mutex.
1363 * install_exec_creds() commits the new creds and drops the lock.
1364 * Or, if exec fails before, free_bprm() should release ->cred and
1365 * and unlock.
1366 */
1367 int prepare_bprm_creds(struct linux_binprm *bprm)
1368 {
1369 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1370 return -ERESTARTNOINTR;
1371
1372 bprm->cred = prepare_exec_creds();
1373 if (likely(bprm->cred))
1374 return 0;
1375
1376 mutex_unlock(&current->signal->cred_guard_mutex);
1377 return -ENOMEM;
1378 }
1379
1380 static void free_bprm(struct linux_binprm *bprm)
1381 {
1382 free_arg_pages(bprm);
1383 if (bprm->cred) {
1384 mutex_unlock(&current->signal->cred_guard_mutex);
1385 abort_creds(bprm->cred);
1386 }
1387 if (bprm->file) {
1388 allow_write_access(bprm->file);
1389 fput(bprm->file);
1390 }
1391 /* If a binfmt changed the interp, free it. */
1392 if (bprm->interp != bprm->filename)
1393 kfree(bprm->interp);
1394 kfree(bprm);
1395 }
1396
1397 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1398 {
1399 /* If a binfmt changed the interp, free it first. */
1400 if (bprm->interp != bprm->filename)
1401 kfree(bprm->interp);
1402 bprm->interp = kstrdup(interp, GFP_KERNEL);
1403 if (!bprm->interp)
1404 return -ENOMEM;
1405 return 0;
1406 }
1407 EXPORT_SYMBOL(bprm_change_interp);
1408
1409 /*
1410 * install the new credentials for this executable
1411 */
1412 void install_exec_creds(struct linux_binprm *bprm)
1413 {
1414 security_bprm_committing_creds(bprm);
1415
1416 commit_creds(bprm->cred);
1417 bprm->cred = NULL;
1418
1419 /*
1420 * Disable monitoring for regular users
1421 * when executing setuid binaries. Must
1422 * wait until new credentials are committed
1423 * by commit_creds() above
1424 */
1425 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1426 perf_event_exit_task(current);
1427 /*
1428 * cred_guard_mutex must be held at least to this point to prevent
1429 * ptrace_attach() from altering our determination of the task's
1430 * credentials; any time after this it may be unlocked.
1431 */
1432 security_bprm_committed_creds(bprm);
1433 mutex_unlock(&current->signal->cred_guard_mutex);
1434 }
1435 EXPORT_SYMBOL(install_exec_creds);
1436
1437 /*
1438 * determine how safe it is to execute the proposed program
1439 * - the caller must hold ->cred_guard_mutex to protect against
1440 * PTRACE_ATTACH or seccomp thread-sync
1441 */
1442 static void check_unsafe_exec(struct linux_binprm *bprm)
1443 {
1444 struct task_struct *p = current, *t;
1445 unsigned n_fs;
1446 bool fs_recheck;
1447
1448 if (p->ptrace) {
1449 if (ptracer_capable(p, current_user_ns()))
1450 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1451 else
1452 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1453 }
1454
1455 /*
1456 * This isn't strictly necessary, but it makes it harder for LSMs to
1457 * mess up.
1458 */
1459 if (task_no_new_privs(current))
1460 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1461
1462 recheck:
1463 fs_recheck = false;
1464 t = p;
1465 n_fs = 1;
1466 spin_lock(&p->fs->lock);
1467 rcu_read_lock();
1468 while_each_thread(p, t) {
1469 if (t->fs == p->fs)
1470 n_fs++;
1471 if (t->flags & (PF_EXITING | PF_FORKNOEXEC))
1472 fs_recheck = true;
1473 }
1474 rcu_read_unlock();
1475
1476 if (p->fs->users > n_fs) {
1477 if (fs_recheck) {
1478 spin_unlock(&p->fs->lock);
1479 goto recheck;
1480 }
1481 bprm->unsafe |= LSM_UNSAFE_SHARE;
1482 } else
1483 p->fs->in_exec = 1;
1484 spin_unlock(&p->fs->lock);
1485 }
1486
1487 static void bprm_fill_uid(struct linux_binprm *bprm)
1488 {
1489 struct inode *inode;
1490 unsigned int mode;
1491 kuid_t uid;
1492 kgid_t gid;
1493
1494 /*
1495 * Since this can be called multiple times (via prepare_binprm),
1496 * we must clear any previous work done when setting set[ug]id
1497 * bits from any earlier bprm->file uses (for example when run
1498 * first for a setuid script then again for its interpreter).
1499 */
1500 bprm->cred->euid = current_euid();
1501 bprm->cred->egid = current_egid();
1502
1503 if (path_nosuid(&bprm->file->f_path))
1504 return;
1505
1506 if (task_no_new_privs(current))
1507 return;
1508
1509 inode = file_inode(bprm->file);
1510 mode = READ_ONCE(inode->i_mode);
1511 if (!(mode & (S_ISUID|S_ISGID)))
1512 return;
1513
1514 /* Be careful if suid/sgid is set */
1515 inode_lock(inode);
1516
1517 /* reload atomically mode/uid/gid now that lock held */
1518 mode = inode->i_mode;
1519 uid = inode->i_uid;
1520 gid = inode->i_gid;
1521 inode_unlock(inode);
1522
1523 /* We ignore suid/sgid if there are no mappings for them in the ns */
1524 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1525 !kgid_has_mapping(bprm->cred->user_ns, gid))
1526 return;
1527
1528 if (mode & S_ISUID) {
1529 bprm->per_clear |= PER_CLEAR_ON_SETID;
1530 bprm->cred->euid = uid;
1531 }
1532
1533 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1534 bprm->per_clear |= PER_CLEAR_ON_SETID;
1535 bprm->cred->egid = gid;
1536 }
1537 }
1538
1539 /*
1540 * Fill the binprm structure from the inode.
1541 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1542 *
1543 * This may be called multiple times for binary chains (scripts for example).
1544 */
1545 int prepare_binprm(struct linux_binprm *bprm)
1546 {
1547 int retval;
1548
1549 bprm_fill_uid(bprm);
1550
1551 /* fill in binprm security blob */
1552 retval = security_bprm_set_creds(bprm);
1553 if (retval)
1554 return retval;
1555 bprm->cred_prepared = 1;
1556
1557 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1558 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1559 }
1560
1561 EXPORT_SYMBOL(prepare_binprm);
1562
1563 /*
1564 * Arguments are '\0' separated strings found at the location bprm->p
1565 * points to; chop off the first by relocating brpm->p to right after
1566 * the first '\0' encountered.
1567 */
1568 int remove_arg_zero(struct linux_binprm *bprm)
1569 {
1570 int ret = 0;
1571 unsigned long offset;
1572 char *kaddr;
1573 struct page *page;
1574
1575 if (!bprm->argc)
1576 return 0;
1577
1578 do {
1579 offset = bprm->p & ~PAGE_MASK;
1580 page = get_arg_page(bprm, bprm->p, 0);
1581 if (!page) {
1582 ret = -EFAULT;
1583 goto out;
1584 }
1585 kaddr = kmap_atomic(page);
1586
1587 for (; offset < PAGE_SIZE && kaddr[offset];
1588 offset++, bprm->p++)
1589 ;
1590
1591 kunmap_atomic(kaddr);
1592 put_arg_page(page);
1593 } while (offset == PAGE_SIZE);
1594
1595 bprm->p++;
1596 bprm->argc--;
1597 ret = 0;
1598
1599 out:
1600 return ret;
1601 }
1602 EXPORT_SYMBOL(remove_arg_zero);
1603
1604 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1605 /*
1606 * cycle the list of binary formats handler, until one recognizes the image
1607 */
1608 int search_binary_handler(struct linux_binprm *bprm)
1609 {
1610 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1611 struct linux_binfmt *fmt;
1612 int retval;
1613
1614 /* This allows 4 levels of binfmt rewrites before failing hard. */
1615 if (bprm->recursion_depth > 5)
1616 return -ELOOP;
1617
1618 retval = security_bprm_check(bprm);
1619 if (retval)
1620 return retval;
1621
1622 retval = -ENOENT;
1623 retry:
1624 read_lock(&binfmt_lock);
1625 list_for_each_entry(fmt, &formats, lh) {
1626 if (!try_module_get(fmt->module))
1627 continue;
1628 read_unlock(&binfmt_lock);
1629 bprm->recursion_depth++;
1630 retval = fmt->load_binary(bprm);
1631 read_lock(&binfmt_lock);
1632 put_binfmt(fmt);
1633 bprm->recursion_depth--;
1634 if (retval < 0 && !bprm->mm) {
1635 /* we got to flush_old_exec() and failed after it */
1636 read_unlock(&binfmt_lock);
1637 force_sigsegv(SIGSEGV, current);
1638 return retval;
1639 }
1640 if (retval != -ENOEXEC || !bprm->file) {
1641 read_unlock(&binfmt_lock);
1642 return retval;
1643 }
1644 }
1645 read_unlock(&binfmt_lock);
1646
1647 if (need_retry) {
1648 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1649 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1650 return retval;
1651 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1652 return retval;
1653 need_retry = false;
1654 goto retry;
1655 }
1656
1657 return retval;
1658 }
1659 EXPORT_SYMBOL(search_binary_handler);
1660
1661 static int exec_binprm(struct linux_binprm *bprm)
1662 {
1663 pid_t old_pid, old_vpid;
1664 int ret;
1665
1666 /* Need to fetch pid before load_binary changes it */
1667 old_pid = current->pid;
1668 rcu_read_lock();
1669 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1670 rcu_read_unlock();
1671
1672 ret = search_binary_handler(bprm);
1673 if (ret >= 0) {
1674 audit_bprm(bprm);
1675 trace_sched_process_exec(current, old_pid, bprm);
1676 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1677 proc_exec_connector(current);
1678 }
1679
1680 return ret;
1681 }
1682
1683 /*
1684 * sys_execve() executes a new program.
1685 */
1686 static int do_execveat_common(int fd, struct filename *filename,
1687 struct user_arg_ptr argv,
1688 struct user_arg_ptr envp,
1689 int flags)
1690 {
1691 char *pathbuf = NULL;
1692 struct linux_binprm *bprm;
1693 struct file *file;
1694 struct files_struct *displaced;
1695 int retval;
1696
1697 if (IS_ERR(filename))
1698 return PTR_ERR(filename);
1699
1700 /*
1701 * We move the actual failure in case of RLIMIT_NPROC excess from
1702 * set*uid() to execve() because too many poorly written programs
1703 * don't check setuid() return code. Here we additionally recheck
1704 * whether NPROC limit is still exceeded.
1705 */
1706 if ((current->flags & PF_NPROC_EXCEEDED) &&
1707 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1708 retval = -EAGAIN;
1709 goto out_ret;
1710 }
1711
1712 /* We're below the limit (still or again), so we don't want to make
1713 * further execve() calls fail. */
1714 current->flags &= ~PF_NPROC_EXCEEDED;
1715
1716 retval = unshare_files(&displaced);
1717 if (retval)
1718 goto out_ret;
1719
1720 retval = -ENOMEM;
1721 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1722 if (!bprm)
1723 goto out_files;
1724
1725 retval = prepare_bprm_creds(bprm);
1726 if (retval)
1727 goto out_free;
1728
1729 check_unsafe_exec(bprm);
1730 current->in_execve = 1;
1731
1732 file = do_open_execat(fd, filename, flags);
1733 retval = PTR_ERR(file);
1734 if (IS_ERR(file))
1735 goto out_unmark;
1736
1737 sched_exec();
1738
1739 bprm->file = file;
1740 if (fd == AT_FDCWD || filename->name[0] == '/') {
1741 bprm->filename = filename->name;
1742 } else {
1743 if (filename->name[0] == '\0')
1744 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1745 else
1746 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1747 fd, filename->name);
1748 if (!pathbuf) {
1749 retval = -ENOMEM;
1750 goto out_unmark;
1751 }
1752 /*
1753 * Record that a name derived from an O_CLOEXEC fd will be
1754 * inaccessible after exec. Relies on having exclusive access to
1755 * current->files (due to unshare_files above).
1756 */
1757 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1758 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1759 bprm->filename = pathbuf;
1760 }
1761 bprm->interp = bprm->filename;
1762
1763 retval = bprm_mm_init(bprm);
1764 if (retval)
1765 goto out_unmark;
1766
1767 bprm->argc = count(argv, MAX_ARG_STRINGS);
1768 if ((retval = bprm->argc) < 0)
1769 goto out;
1770
1771 bprm->envc = count(envp, MAX_ARG_STRINGS);
1772 if ((retval = bprm->envc) < 0)
1773 goto out;
1774
1775 retval = prepare_binprm(bprm);
1776 if (retval < 0)
1777 goto out;
1778
1779 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1780 if (retval < 0)
1781 goto out;
1782
1783 bprm->exec = bprm->p;
1784 retval = copy_strings(bprm->envc, envp, bprm);
1785 if (retval < 0)
1786 goto out;
1787
1788 retval = copy_strings(bprm->argc, argv, bprm);
1789 if (retval < 0)
1790 goto out;
1791
1792 would_dump(bprm, bprm->file);
1793
1794 retval = exec_binprm(bprm);
1795 if (retval < 0)
1796 goto out;
1797
1798 /* execve succeeded */
1799 current->fs->in_exec = 0;
1800 current->in_execve = 0;
1801 acct_update_integrals(current);
1802 task_numa_free(current);
1803 free_bprm(bprm);
1804 kfree(pathbuf);
1805 putname(filename);
1806 if (displaced)
1807 put_files_struct(displaced);
1808 return retval;
1809
1810 out:
1811 if (bprm->mm) {
1812 acct_arg_size(bprm, 0);
1813 mmput(bprm->mm);
1814 }
1815
1816 out_unmark:
1817 current->fs->in_exec = 0;
1818 current->in_execve = 0;
1819
1820 out_free:
1821 free_bprm(bprm);
1822 kfree(pathbuf);
1823
1824 out_files:
1825 if (displaced)
1826 reset_files_struct(displaced);
1827 out_ret:
1828 putname(filename);
1829 return retval;
1830 }
1831
1832 int do_execve(struct filename *filename,
1833 const char __user *const __user *__argv,
1834 const char __user *const __user *__envp)
1835 {
1836 struct user_arg_ptr argv = { .ptr.native = __argv };
1837 struct user_arg_ptr envp = { .ptr.native = __envp };
1838 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1839 }
1840
1841 int do_execveat(int fd, struct filename *filename,
1842 const char __user *const __user *__argv,
1843 const char __user *const __user *__envp,
1844 int flags)
1845 {
1846 struct user_arg_ptr argv = { .ptr.native = __argv };
1847 struct user_arg_ptr envp = { .ptr.native = __envp };
1848
1849 return do_execveat_common(fd, filename, argv, envp, flags);
1850 }
1851
1852 #ifdef CONFIG_COMPAT
1853 static int compat_do_execve(struct filename *filename,
1854 const compat_uptr_t __user *__argv,
1855 const compat_uptr_t __user *__envp)
1856 {
1857 struct user_arg_ptr argv = {
1858 .is_compat = true,
1859 .ptr.compat = __argv,
1860 };
1861 struct user_arg_ptr envp = {
1862 .is_compat = true,
1863 .ptr.compat = __envp,
1864 };
1865 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1866 }
1867
1868 static int compat_do_execveat(int fd, struct filename *filename,
1869 const compat_uptr_t __user *__argv,
1870 const compat_uptr_t __user *__envp,
1871 int flags)
1872 {
1873 struct user_arg_ptr argv = {
1874 .is_compat = true,
1875 .ptr.compat = __argv,
1876 };
1877 struct user_arg_ptr envp = {
1878 .is_compat = true,
1879 .ptr.compat = __envp,
1880 };
1881 return do_execveat_common(fd, filename, argv, envp, flags);
1882 }
1883 #endif
1884
1885 void set_binfmt(struct linux_binfmt *new)
1886 {
1887 struct mm_struct *mm = current->mm;
1888
1889 if (mm->binfmt)
1890 module_put(mm->binfmt->module);
1891
1892 mm->binfmt = new;
1893 if (new)
1894 __module_get(new->module);
1895 }
1896 EXPORT_SYMBOL(set_binfmt);
1897
1898 /*
1899 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1900 */
1901 void set_dumpable(struct mm_struct *mm, int value)
1902 {
1903 unsigned long old, new;
1904
1905 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1906 return;
1907
1908 do {
1909 old = ACCESS_ONCE(mm->flags);
1910 new = (old & ~MMF_DUMPABLE_MASK) | value;
1911 } while (cmpxchg(&mm->flags, old, new) != old);
1912 }
1913
1914 SYSCALL_DEFINE3(execve,
1915 const char __user *, filename,
1916 const char __user *const __user *, argv,
1917 const char __user *const __user *, envp)
1918 {
1919 return do_execve(getname(filename), argv, envp);
1920 }
1921
1922 SYSCALL_DEFINE5(execveat,
1923 int, fd, const char __user *, filename,
1924 const char __user *const __user *, argv,
1925 const char __user *const __user *, envp,
1926 int, flags)
1927 {
1928 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1929
1930 return do_execveat(fd,
1931 getname_flags(filename, lookup_flags, NULL),
1932 argv, envp, flags);
1933 }
1934
1935 #ifdef CONFIG_COMPAT
1936 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1937 const compat_uptr_t __user *, argv,
1938 const compat_uptr_t __user *, envp)
1939 {
1940 return compat_do_execve(getname(filename), argv, envp);
1941 }
1942
1943 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1944 const char __user *, filename,
1945 const compat_uptr_t __user *, argv,
1946 const compat_uptr_t __user *, envp,
1947 int, flags)
1948 {
1949 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1950
1951 return compat_do_execveat(fd,
1952 getname_flags(filename, lookup_flags, NULL),
1953 argv, envp, flags);
1954 }
1955 #endif