]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/exec.c
Revert "mm: enlarge stack guard gap"
[mirror_ubuntu-zesty-kernel.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60
61 #include <trace/events/fs.h>
62
63 #include <linux/uaccess.h>
64 #include <asm/mmu_context.h>
65 #include <asm/tlb.h>
66
67 #include <trace/events/task.h>
68 #include "internal.h"
69
70 #include <trace/events/sched.h>
71
72 int suid_dumpable = 0;
73
74 static LIST_HEAD(formats);
75 static DEFINE_RWLOCK(binfmt_lock);
76
77 void __register_binfmt(struct linux_binfmt * fmt, int insert)
78 {
79 BUG_ON(!fmt);
80 if (WARN_ON(!fmt->load_binary))
81 return;
82 write_lock(&binfmt_lock);
83 insert ? list_add(&fmt->lh, &formats) :
84 list_add_tail(&fmt->lh, &formats);
85 write_unlock(&binfmt_lock);
86 }
87
88 EXPORT_SYMBOL(__register_binfmt);
89
90 void unregister_binfmt(struct linux_binfmt * fmt)
91 {
92 write_lock(&binfmt_lock);
93 list_del(&fmt->lh);
94 write_unlock(&binfmt_lock);
95 }
96
97 EXPORT_SYMBOL(unregister_binfmt);
98
99 static inline void put_binfmt(struct linux_binfmt * fmt)
100 {
101 module_put(fmt->module);
102 }
103
104 bool path_noexec(const struct path *path)
105 {
106 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
107 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
108 }
109 EXPORT_SYMBOL_GPL(path_noexec);
110
111 bool path_nosuid(const struct path *path)
112 {
113 return !mnt_may_suid(path->mnt) ||
114 (path->mnt->mnt_sb->s_iflags & SB_I_NOSUID);
115 }
116 EXPORT_SYMBOL(path_nosuid);
117
118 #ifdef CONFIG_USELIB
119 /*
120 * Note that a shared library must be both readable and executable due to
121 * security reasons.
122 *
123 * Also note that we take the address to load from from the file itself.
124 */
125 SYSCALL_DEFINE1(uselib, const char __user *, library)
126 {
127 struct linux_binfmt *fmt;
128 struct file *file;
129 struct filename *tmp = getname(library);
130 int error = PTR_ERR(tmp);
131 static const struct open_flags uselib_flags = {
132 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
133 .acc_mode = MAY_READ | MAY_EXEC,
134 .intent = LOOKUP_OPEN,
135 .lookup_flags = LOOKUP_FOLLOW,
136 };
137
138 if (IS_ERR(tmp))
139 goto out;
140
141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142 putname(tmp);
143 error = PTR_ERR(file);
144 if (IS_ERR(file))
145 goto out;
146
147 error = -EINVAL;
148 if (!S_ISREG(file_inode(file)->i_mode))
149 goto exit;
150
151 error = -EACCES;
152 if (path_noexec(&file->f_path))
153 goto exit;
154
155 fsnotify_open(file);
156
157 error = -ENOEXEC;
158
159 read_lock(&binfmt_lock);
160 list_for_each_entry(fmt, &formats, lh) {
161 if (!fmt->load_shlib)
162 continue;
163 if (!try_module_get(fmt->module))
164 continue;
165 read_unlock(&binfmt_lock);
166 error = fmt->load_shlib(file);
167 read_lock(&binfmt_lock);
168 put_binfmt(fmt);
169 if (error != -ENOEXEC)
170 break;
171 }
172 read_unlock(&binfmt_lock);
173 exit:
174 fput(file);
175 out:
176 return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179
180 #ifdef CONFIG_MMU
181 /*
182 * The nascent bprm->mm is not visible until exec_mmap() but it can
183 * use a lot of memory, account these pages in current->mm temporary
184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185 * change the counter back via acct_arg_size(0).
186 */
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189 struct mm_struct *mm = current->mm;
190 long diff = (long)(pages - bprm->vma_pages);
191
192 if (!mm || !diff)
193 return;
194
195 bprm->vma_pages = pages;
196 add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 int write)
201 {
202 struct page *page;
203 int ret;
204 unsigned int gup_flags = FOLL_FORCE;
205
206 #ifdef CONFIG_STACK_GROWSUP
207 if (write) {
208 ret = expand_downwards(bprm->vma, pos);
209 if (ret < 0)
210 return NULL;
211 }
212 #endif
213
214 if (write)
215 gup_flags |= FOLL_WRITE;
216
217 /*
218 * We are doing an exec(). 'current' is the process
219 * doing the exec and bprm->mm is the new process's mm.
220 */
221 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
222 &page, NULL, NULL);
223 if (ret <= 0)
224 return NULL;
225
226 if (write) {
227 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
228 struct rlimit *rlim;
229
230 acct_arg_size(bprm, size / PAGE_SIZE);
231
232 /*
233 * We've historically supported up to 32 pages (ARG_MAX)
234 * of argument strings even with small stacks
235 */
236 if (size <= ARG_MAX)
237 return page;
238
239 /*
240 * Limit to 1/4-th the stack size for the argv+env strings.
241 * This ensures that:
242 * - the remaining binfmt code will not run out of stack space,
243 * - the program will have a reasonable amount of stack left
244 * to work from.
245 */
246 rlim = current->signal->rlim;
247 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
248 put_page(page);
249 return NULL;
250 }
251 }
252
253 return page;
254 }
255
256 static void put_arg_page(struct page *page)
257 {
258 put_page(page);
259 }
260
261 static void free_arg_pages(struct linux_binprm *bprm)
262 {
263 }
264
265 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
266 struct page *page)
267 {
268 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
269 }
270
271 static int __bprm_mm_init(struct linux_binprm *bprm)
272 {
273 int err;
274 struct vm_area_struct *vma = NULL;
275 struct mm_struct *mm = bprm->mm;
276
277 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
278 if (!vma)
279 return -ENOMEM;
280
281 if (down_write_killable(&mm->mmap_sem)) {
282 err = -EINTR;
283 goto err_free;
284 }
285 vma->vm_mm = mm;
286
287 /*
288 * Place the stack at the largest stack address the architecture
289 * supports. Later, we'll move this to an appropriate place. We don't
290 * use STACK_TOP because that can depend on attributes which aren't
291 * configured yet.
292 */
293 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
294 vma->vm_end = STACK_TOP_MAX;
295 vma->vm_start = vma->vm_end - PAGE_SIZE;
296 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
297 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
298 INIT_LIST_HEAD(&vma->anon_vma_chain);
299
300 err = insert_vm_struct(mm, vma);
301 if (err)
302 goto err;
303
304 mm->stack_vm = mm->total_vm = 1;
305 arch_bprm_mm_init(mm, vma);
306 up_write(&mm->mmap_sem);
307 bprm->p = vma->vm_end - sizeof(void *);
308 return 0;
309 err:
310 up_write(&mm->mmap_sem);
311 err_free:
312 bprm->vma = NULL;
313 kmem_cache_free(vm_area_cachep, vma);
314 return err;
315 }
316
317 static bool valid_arg_len(struct linux_binprm *bprm, long len)
318 {
319 return len <= MAX_ARG_STRLEN;
320 }
321
322 #else
323
324 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
325 {
326 }
327
328 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
329 int write)
330 {
331 struct page *page;
332
333 page = bprm->page[pos / PAGE_SIZE];
334 if (!page && write) {
335 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
336 if (!page)
337 return NULL;
338 bprm->page[pos / PAGE_SIZE] = page;
339 }
340
341 return page;
342 }
343
344 static void put_arg_page(struct page *page)
345 {
346 }
347
348 static void free_arg_page(struct linux_binprm *bprm, int i)
349 {
350 if (bprm->page[i]) {
351 __free_page(bprm->page[i]);
352 bprm->page[i] = NULL;
353 }
354 }
355
356 static void free_arg_pages(struct linux_binprm *bprm)
357 {
358 int i;
359
360 for (i = 0; i < MAX_ARG_PAGES; i++)
361 free_arg_page(bprm, i);
362 }
363
364 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
365 struct page *page)
366 {
367 }
368
369 static int __bprm_mm_init(struct linux_binprm *bprm)
370 {
371 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
372 return 0;
373 }
374
375 static bool valid_arg_len(struct linux_binprm *bprm, long len)
376 {
377 return len <= bprm->p;
378 }
379
380 #endif /* CONFIG_MMU */
381
382 /*
383 * Create a new mm_struct and populate it with a temporary stack
384 * vm_area_struct. We don't have enough context at this point to set the stack
385 * flags, permissions, and offset, so we use temporary values. We'll update
386 * them later in setup_arg_pages().
387 */
388 static int bprm_mm_init(struct linux_binprm *bprm)
389 {
390 int err;
391 struct mm_struct *mm = NULL;
392
393 bprm->mm = mm = mm_alloc();
394 err = -ENOMEM;
395 if (!mm)
396 goto err;
397
398 err = __bprm_mm_init(bprm);
399 if (err)
400 goto err;
401
402 return 0;
403
404 err:
405 if (mm) {
406 bprm->mm = NULL;
407 mmdrop(mm);
408 }
409
410 return err;
411 }
412
413 struct user_arg_ptr {
414 #ifdef CONFIG_COMPAT
415 bool is_compat;
416 #endif
417 union {
418 const char __user *const __user *native;
419 #ifdef CONFIG_COMPAT
420 const compat_uptr_t __user *compat;
421 #endif
422 } ptr;
423 };
424
425 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
426 {
427 const char __user *native;
428
429 #ifdef CONFIG_COMPAT
430 if (unlikely(argv.is_compat)) {
431 compat_uptr_t compat;
432
433 if (get_user(compat, argv.ptr.compat + nr))
434 return ERR_PTR(-EFAULT);
435
436 return compat_ptr(compat);
437 }
438 #endif
439
440 if (get_user(native, argv.ptr.native + nr))
441 return ERR_PTR(-EFAULT);
442
443 return native;
444 }
445
446 /*
447 * count() counts the number of strings in array ARGV.
448 */
449 static int count(struct user_arg_ptr argv, int max)
450 {
451 int i = 0;
452
453 if (argv.ptr.native != NULL) {
454 for (;;) {
455 const char __user *p = get_user_arg_ptr(argv, i);
456
457 if (!p)
458 break;
459
460 if (IS_ERR(p))
461 return -EFAULT;
462
463 if (i >= max)
464 return -E2BIG;
465 ++i;
466
467 if (fatal_signal_pending(current))
468 return -ERESTARTNOHAND;
469 cond_resched();
470 }
471 }
472 return i;
473 }
474
475 /*
476 * 'copy_strings()' copies argument/environment strings from the old
477 * processes's memory to the new process's stack. The call to get_user_pages()
478 * ensures the destination page is created and not swapped out.
479 */
480 static int copy_strings(int argc, struct user_arg_ptr argv,
481 struct linux_binprm *bprm)
482 {
483 struct page *kmapped_page = NULL;
484 char *kaddr = NULL;
485 unsigned long kpos = 0;
486 int ret;
487
488 while (argc-- > 0) {
489 const char __user *str;
490 int len;
491 unsigned long pos;
492
493 ret = -EFAULT;
494 str = get_user_arg_ptr(argv, argc);
495 if (IS_ERR(str))
496 goto out;
497
498 len = strnlen_user(str, MAX_ARG_STRLEN);
499 if (!len)
500 goto out;
501
502 ret = -E2BIG;
503 if (!valid_arg_len(bprm, len))
504 goto out;
505
506 /* We're going to work our way backwords. */
507 pos = bprm->p;
508 str += len;
509 bprm->p -= len;
510
511 while (len > 0) {
512 int offset, bytes_to_copy;
513
514 if (fatal_signal_pending(current)) {
515 ret = -ERESTARTNOHAND;
516 goto out;
517 }
518 cond_resched();
519
520 offset = pos % PAGE_SIZE;
521 if (offset == 0)
522 offset = PAGE_SIZE;
523
524 bytes_to_copy = offset;
525 if (bytes_to_copy > len)
526 bytes_to_copy = len;
527
528 offset -= bytes_to_copy;
529 pos -= bytes_to_copy;
530 str -= bytes_to_copy;
531 len -= bytes_to_copy;
532
533 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
534 struct page *page;
535
536 page = get_arg_page(bprm, pos, 1);
537 if (!page) {
538 ret = -E2BIG;
539 goto out;
540 }
541
542 if (kmapped_page) {
543 flush_kernel_dcache_page(kmapped_page);
544 kunmap(kmapped_page);
545 put_arg_page(kmapped_page);
546 }
547 kmapped_page = page;
548 kaddr = kmap(kmapped_page);
549 kpos = pos & PAGE_MASK;
550 flush_arg_page(bprm, kpos, kmapped_page);
551 }
552 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
553 ret = -EFAULT;
554 goto out;
555 }
556 }
557 }
558 ret = 0;
559 out:
560 if (kmapped_page) {
561 flush_kernel_dcache_page(kmapped_page);
562 kunmap(kmapped_page);
563 put_arg_page(kmapped_page);
564 }
565 return ret;
566 }
567
568 /*
569 * Like copy_strings, but get argv and its values from kernel memory.
570 */
571 int copy_strings_kernel(int argc, const char *const *__argv,
572 struct linux_binprm *bprm)
573 {
574 int r;
575 mm_segment_t oldfs = get_fs();
576 struct user_arg_ptr argv = {
577 .ptr.native = (const char __user *const __user *)__argv,
578 };
579
580 set_fs(KERNEL_DS);
581 r = copy_strings(argc, argv, bprm);
582 set_fs(oldfs);
583
584 return r;
585 }
586 EXPORT_SYMBOL(copy_strings_kernel);
587
588 #ifdef CONFIG_MMU
589
590 /*
591 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
592 * the binfmt code determines where the new stack should reside, we shift it to
593 * its final location. The process proceeds as follows:
594 *
595 * 1) Use shift to calculate the new vma endpoints.
596 * 2) Extend vma to cover both the old and new ranges. This ensures the
597 * arguments passed to subsequent functions are consistent.
598 * 3) Move vma's page tables to the new range.
599 * 4) Free up any cleared pgd range.
600 * 5) Shrink the vma to cover only the new range.
601 */
602 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
603 {
604 struct mm_struct *mm = vma->vm_mm;
605 unsigned long old_start = vma->vm_start;
606 unsigned long old_end = vma->vm_end;
607 unsigned long length = old_end - old_start;
608 unsigned long new_start = old_start - shift;
609 unsigned long new_end = old_end - shift;
610 struct mmu_gather tlb;
611
612 BUG_ON(new_start > new_end);
613
614 /*
615 * ensure there are no vmas between where we want to go
616 * and where we are
617 */
618 if (vma != find_vma(mm, new_start))
619 return -EFAULT;
620
621 /*
622 * cover the whole range: [new_start, old_end)
623 */
624 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
625 return -ENOMEM;
626
627 /*
628 * move the page tables downwards, on failure we rely on
629 * process cleanup to remove whatever mess we made.
630 */
631 if (length != move_page_tables(vma, old_start,
632 vma, new_start, length, false))
633 return -ENOMEM;
634
635 lru_add_drain();
636 tlb_gather_mmu(&tlb, mm, old_start, old_end);
637 if (new_end > old_start) {
638 /*
639 * when the old and new regions overlap clear from new_end.
640 */
641 free_pgd_range(&tlb, new_end, old_end, new_end,
642 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
643 } else {
644 /*
645 * otherwise, clean from old_start; this is done to not touch
646 * the address space in [new_end, old_start) some architectures
647 * have constraints on va-space that make this illegal (IA64) -
648 * for the others its just a little faster.
649 */
650 free_pgd_range(&tlb, old_start, old_end, new_end,
651 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
652 }
653 tlb_finish_mmu(&tlb, old_start, old_end);
654
655 /*
656 * Shrink the vma to just the new range. Always succeeds.
657 */
658 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
659
660 return 0;
661 }
662
663 /*
664 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
665 * the stack is optionally relocated, and some extra space is added.
666 */
667 int setup_arg_pages(struct linux_binprm *bprm,
668 unsigned long stack_top,
669 int executable_stack)
670 {
671 unsigned long ret;
672 unsigned long stack_shift;
673 struct mm_struct *mm = current->mm;
674 struct vm_area_struct *vma = bprm->vma;
675 struct vm_area_struct *prev = NULL;
676 unsigned long vm_flags;
677 unsigned long stack_base;
678 unsigned long stack_size;
679 unsigned long stack_expand;
680 unsigned long rlim_stack;
681
682 #ifdef CONFIG_STACK_GROWSUP
683 /* Limit stack size */
684 stack_base = rlimit_max(RLIMIT_STACK);
685 if (stack_base > STACK_SIZE_MAX)
686 stack_base = STACK_SIZE_MAX;
687
688 /* Add space for stack randomization. */
689 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
690
691 /* Make sure we didn't let the argument array grow too large. */
692 if (vma->vm_end - vma->vm_start > stack_base)
693 return -ENOMEM;
694
695 stack_base = PAGE_ALIGN(stack_top - stack_base);
696
697 stack_shift = vma->vm_start - stack_base;
698 mm->arg_start = bprm->p - stack_shift;
699 bprm->p = vma->vm_end - stack_shift;
700 #else
701 stack_top = arch_align_stack(stack_top);
702 stack_top = PAGE_ALIGN(stack_top);
703
704 if (unlikely(stack_top < mmap_min_addr) ||
705 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
706 return -ENOMEM;
707
708 stack_shift = vma->vm_end - stack_top;
709
710 bprm->p -= stack_shift;
711 mm->arg_start = bprm->p;
712 #endif
713
714 if (bprm->loader)
715 bprm->loader -= stack_shift;
716 bprm->exec -= stack_shift;
717
718 if (down_write_killable(&mm->mmap_sem))
719 return -EINTR;
720
721 vm_flags = VM_STACK_FLAGS;
722
723 /*
724 * Adjust stack execute permissions; explicitly enable for
725 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
726 * (arch default) otherwise.
727 */
728 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
729 vm_flags |= VM_EXEC;
730 else if (executable_stack == EXSTACK_DISABLE_X)
731 vm_flags &= ~VM_EXEC;
732 vm_flags |= mm->def_flags;
733 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
734
735 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
736 vm_flags);
737 if (ret)
738 goto out_unlock;
739 BUG_ON(prev != vma);
740
741 /* Move stack pages down in memory. */
742 if (stack_shift) {
743 ret = shift_arg_pages(vma, stack_shift);
744 if (ret)
745 goto out_unlock;
746 }
747
748 /* mprotect_fixup is overkill to remove the temporary stack flags */
749 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
750
751 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
752 stack_size = vma->vm_end - vma->vm_start;
753 /*
754 * Align this down to a page boundary as expand_stack
755 * will align it up.
756 */
757 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
758 #ifdef CONFIG_STACK_GROWSUP
759 if (stack_size + stack_expand > rlim_stack)
760 stack_base = vma->vm_start + rlim_stack;
761 else
762 stack_base = vma->vm_end + stack_expand;
763 #else
764 if (stack_size + stack_expand > rlim_stack)
765 stack_base = vma->vm_end - rlim_stack;
766 else
767 stack_base = vma->vm_start - stack_expand;
768 #endif
769 current->mm->start_stack = bprm->p;
770 ret = expand_stack(vma, stack_base);
771 if (ret)
772 ret = -EFAULT;
773
774 out_unlock:
775 up_write(&mm->mmap_sem);
776 return ret;
777 }
778 EXPORT_SYMBOL(setup_arg_pages);
779
780 #else
781
782 /*
783 * Transfer the program arguments and environment from the holding pages
784 * onto the stack. The provided stack pointer is adjusted accordingly.
785 */
786 int transfer_args_to_stack(struct linux_binprm *bprm,
787 unsigned long *sp_location)
788 {
789 unsigned long index, stop, sp;
790 int ret = 0;
791
792 stop = bprm->p >> PAGE_SHIFT;
793 sp = *sp_location;
794
795 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
796 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
797 char *src = kmap(bprm->page[index]) + offset;
798 sp -= PAGE_SIZE - offset;
799 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
800 ret = -EFAULT;
801 kunmap(bprm->page[index]);
802 if (ret)
803 goto out;
804 }
805
806 *sp_location = sp;
807
808 out:
809 return ret;
810 }
811 EXPORT_SYMBOL(transfer_args_to_stack);
812
813 #endif /* CONFIG_MMU */
814
815 static struct file *do_open_execat(int fd, struct filename *name, int flags)
816 {
817 struct file *file;
818 int err;
819 struct open_flags open_exec_flags = {
820 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
821 .acc_mode = MAY_EXEC,
822 .intent = LOOKUP_OPEN,
823 .lookup_flags = LOOKUP_FOLLOW,
824 };
825
826 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
827 return ERR_PTR(-EINVAL);
828 if (flags & AT_SYMLINK_NOFOLLOW)
829 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
830 if (flags & AT_EMPTY_PATH)
831 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
832
833 file = do_filp_open(fd, name, &open_exec_flags);
834 if (IS_ERR(file))
835 goto out;
836
837 err = -EACCES;
838 if (!S_ISREG(file_inode(file)->i_mode))
839 goto exit;
840
841 if (path_noexec(&file->f_path))
842 goto exit;
843
844 err = deny_write_access(file);
845 if (err)
846 goto exit;
847
848 if (name->name[0] != '\0')
849 fsnotify_open(file);
850
851 trace_open_exec(name->name);
852
853 out:
854 return file;
855
856 exit:
857 fput(file);
858 return ERR_PTR(err);
859 }
860
861 struct file *open_exec(const char *name)
862 {
863 struct filename *filename = getname_kernel(name);
864 struct file *f = ERR_CAST(filename);
865
866 if (!IS_ERR(filename)) {
867 f = do_open_execat(AT_FDCWD, filename, 0);
868 putname(filename);
869 }
870 return f;
871 }
872 EXPORT_SYMBOL(open_exec);
873
874 int kernel_read(struct file *file, loff_t offset,
875 char *addr, unsigned long count)
876 {
877 mm_segment_t old_fs;
878 loff_t pos = offset;
879 int result;
880
881 old_fs = get_fs();
882 set_fs(get_ds());
883 /* The cast to a user pointer is valid due to the set_fs() */
884 result = vfs_read(file, (void __user *)addr, count, &pos);
885 set_fs(old_fs);
886 return result;
887 }
888
889 EXPORT_SYMBOL(kernel_read);
890
891 int kernel_read_file(struct file *file, void **buf, loff_t *size,
892 loff_t max_size, enum kernel_read_file_id id)
893 {
894 loff_t i_size, pos;
895 ssize_t bytes = 0;
896 int ret;
897
898 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
899 return -EINVAL;
900
901 ret = security_kernel_read_file(file, id);
902 if (ret)
903 return ret;
904
905 ret = deny_write_access(file);
906 if (ret)
907 return ret;
908
909 i_size = i_size_read(file_inode(file));
910 if (max_size > 0 && i_size > max_size) {
911 ret = -EFBIG;
912 goto out;
913 }
914 if (i_size <= 0) {
915 ret = -EINVAL;
916 goto out;
917 }
918
919 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
920 *buf = vmalloc(i_size);
921 if (!*buf) {
922 ret = -ENOMEM;
923 goto out;
924 }
925
926 pos = 0;
927 while (pos < i_size) {
928 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
929 i_size - pos);
930 if (bytes < 0) {
931 ret = bytes;
932 goto out;
933 }
934
935 if (bytes == 0)
936 break;
937 pos += bytes;
938 }
939
940 if (pos != i_size) {
941 ret = -EIO;
942 goto out_free;
943 }
944
945 ret = security_kernel_post_read_file(file, *buf, i_size, id);
946 if (!ret)
947 *size = pos;
948
949 out_free:
950 if (ret < 0) {
951 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
952 vfree(*buf);
953 *buf = NULL;
954 }
955 }
956
957 out:
958 allow_write_access(file);
959 return ret;
960 }
961 EXPORT_SYMBOL_GPL(kernel_read_file);
962
963 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
964 loff_t max_size, enum kernel_read_file_id id)
965 {
966 struct file *file;
967 int ret;
968
969 if (!path || !*path)
970 return -EINVAL;
971
972 file = filp_open(path, O_RDONLY, 0);
973 if (IS_ERR(file))
974 return PTR_ERR(file);
975
976 ret = kernel_read_file(file, buf, size, max_size, id);
977 fput(file);
978 return ret;
979 }
980 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
981
982 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
983 enum kernel_read_file_id id)
984 {
985 struct fd f = fdget(fd);
986 int ret = -EBADF;
987
988 if (!f.file)
989 goto out;
990
991 ret = kernel_read_file(f.file, buf, size, max_size, id);
992 out:
993 fdput(f);
994 return ret;
995 }
996 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
997
998 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
999 {
1000 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1001 if (res > 0)
1002 flush_icache_range(addr, addr + len);
1003 return res;
1004 }
1005 EXPORT_SYMBOL(read_code);
1006
1007 static int exec_mmap(struct mm_struct *mm)
1008 {
1009 struct task_struct *tsk;
1010 struct mm_struct *old_mm, *active_mm;
1011
1012 /* Notify parent that we're no longer interested in the old VM */
1013 tsk = current;
1014 old_mm = current->mm;
1015 mm_release(tsk, old_mm);
1016
1017 if (old_mm) {
1018 sync_mm_rss(old_mm);
1019 /*
1020 * Make sure that if there is a core dump in progress
1021 * for the old mm, we get out and die instead of going
1022 * through with the exec. We must hold mmap_sem around
1023 * checking core_state and changing tsk->mm.
1024 */
1025 down_read(&old_mm->mmap_sem);
1026 if (unlikely(old_mm->core_state)) {
1027 up_read(&old_mm->mmap_sem);
1028 return -EINTR;
1029 }
1030 }
1031 task_lock(tsk);
1032 active_mm = tsk->active_mm;
1033 tsk->mm = mm;
1034 tsk->active_mm = mm;
1035 activate_mm(active_mm, mm);
1036 tsk->mm->vmacache_seqnum = 0;
1037 vmacache_flush(tsk);
1038 task_unlock(tsk);
1039 if (old_mm) {
1040 up_read(&old_mm->mmap_sem);
1041 BUG_ON(active_mm != old_mm);
1042 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1043 mm_update_next_owner(old_mm);
1044 mmput(old_mm);
1045 return 0;
1046 }
1047 mmdrop(active_mm);
1048 return 0;
1049 }
1050
1051 /*
1052 * This function makes sure the current process has its own signal table,
1053 * so that flush_signal_handlers can later reset the handlers without
1054 * disturbing other processes. (Other processes might share the signal
1055 * table via the CLONE_SIGHAND option to clone().)
1056 */
1057 static int de_thread(struct task_struct *tsk)
1058 {
1059 struct signal_struct *sig = tsk->signal;
1060 struct sighand_struct *oldsighand = tsk->sighand;
1061 spinlock_t *lock = &oldsighand->siglock;
1062
1063 if (thread_group_empty(tsk))
1064 goto no_thread_group;
1065
1066 /*
1067 * Kill all other threads in the thread group.
1068 */
1069 spin_lock_irq(lock);
1070 if (signal_group_exit(sig)) {
1071 /*
1072 * Another group action in progress, just
1073 * return so that the signal is processed.
1074 */
1075 spin_unlock_irq(lock);
1076 return -EAGAIN;
1077 }
1078
1079 sig->group_exit_task = tsk;
1080 sig->notify_count = zap_other_threads(tsk);
1081 if (!thread_group_leader(tsk))
1082 sig->notify_count--;
1083
1084 while (sig->notify_count) {
1085 __set_current_state(TASK_KILLABLE);
1086 spin_unlock_irq(lock);
1087 schedule();
1088 if (unlikely(__fatal_signal_pending(tsk)))
1089 goto killed;
1090 spin_lock_irq(lock);
1091 }
1092 spin_unlock_irq(lock);
1093
1094 /*
1095 * At this point all other threads have exited, all we have to
1096 * do is to wait for the thread group leader to become inactive,
1097 * and to assume its PID:
1098 */
1099 if (!thread_group_leader(tsk)) {
1100 struct task_struct *leader = tsk->group_leader;
1101
1102 for (;;) {
1103 threadgroup_change_begin(tsk);
1104 write_lock_irq(&tasklist_lock);
1105 /*
1106 * Do this under tasklist_lock to ensure that
1107 * exit_notify() can't miss ->group_exit_task
1108 */
1109 sig->notify_count = -1;
1110 if (likely(leader->exit_state))
1111 break;
1112 __set_current_state(TASK_KILLABLE);
1113 write_unlock_irq(&tasklist_lock);
1114 threadgroup_change_end(tsk);
1115 schedule();
1116 if (unlikely(__fatal_signal_pending(tsk)))
1117 goto killed;
1118 }
1119
1120 /*
1121 * The only record we have of the real-time age of a
1122 * process, regardless of execs it's done, is start_time.
1123 * All the past CPU time is accumulated in signal_struct
1124 * from sister threads now dead. But in this non-leader
1125 * exec, nothing survives from the original leader thread,
1126 * whose birth marks the true age of this process now.
1127 * When we take on its identity by switching to its PID, we
1128 * also take its birthdate (always earlier than our own).
1129 */
1130 tsk->start_time = leader->start_time;
1131 tsk->real_start_time = leader->real_start_time;
1132
1133 BUG_ON(!same_thread_group(leader, tsk));
1134 BUG_ON(has_group_leader_pid(tsk));
1135 /*
1136 * An exec() starts a new thread group with the
1137 * TGID of the previous thread group. Rehash the
1138 * two threads with a switched PID, and release
1139 * the former thread group leader:
1140 */
1141
1142 /* Become a process group leader with the old leader's pid.
1143 * The old leader becomes a thread of the this thread group.
1144 * Note: The old leader also uses this pid until release_task
1145 * is called. Odd but simple and correct.
1146 */
1147 tsk->pid = leader->pid;
1148 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1149 transfer_pid(leader, tsk, PIDTYPE_PGID);
1150 transfer_pid(leader, tsk, PIDTYPE_SID);
1151
1152 list_replace_rcu(&leader->tasks, &tsk->tasks);
1153 list_replace_init(&leader->sibling, &tsk->sibling);
1154
1155 tsk->group_leader = tsk;
1156 leader->group_leader = tsk;
1157
1158 tsk->exit_signal = SIGCHLD;
1159 leader->exit_signal = -1;
1160
1161 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1162 leader->exit_state = EXIT_DEAD;
1163
1164 /*
1165 * We are going to release_task()->ptrace_unlink() silently,
1166 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1167 * the tracer wont't block again waiting for this thread.
1168 */
1169 if (unlikely(leader->ptrace))
1170 __wake_up_parent(leader, leader->parent);
1171 write_unlock_irq(&tasklist_lock);
1172 threadgroup_change_end(tsk);
1173
1174 release_task(leader);
1175 }
1176
1177 sig->group_exit_task = NULL;
1178 sig->notify_count = 0;
1179
1180 no_thread_group:
1181 /* we have changed execution domain */
1182 tsk->exit_signal = SIGCHLD;
1183
1184 #ifdef CONFIG_POSIX_TIMERS
1185 exit_itimers(sig);
1186 flush_itimer_signals();
1187 #endif
1188
1189 if (atomic_read(&oldsighand->count) != 1) {
1190 struct sighand_struct *newsighand;
1191 /*
1192 * This ->sighand is shared with the CLONE_SIGHAND
1193 * but not CLONE_THREAD task, switch to the new one.
1194 */
1195 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1196 if (!newsighand)
1197 return -ENOMEM;
1198
1199 atomic_set(&newsighand->count, 1);
1200 memcpy(newsighand->action, oldsighand->action,
1201 sizeof(newsighand->action));
1202
1203 write_lock_irq(&tasklist_lock);
1204 spin_lock(&oldsighand->siglock);
1205 rcu_assign_pointer(tsk->sighand, newsighand);
1206 spin_unlock(&oldsighand->siglock);
1207 write_unlock_irq(&tasklist_lock);
1208
1209 __cleanup_sighand(oldsighand);
1210 }
1211
1212 BUG_ON(!thread_group_leader(tsk));
1213 return 0;
1214
1215 killed:
1216 /* protects against exit_notify() and __exit_signal() */
1217 read_lock(&tasklist_lock);
1218 sig->group_exit_task = NULL;
1219 sig->notify_count = 0;
1220 read_unlock(&tasklist_lock);
1221 return -EAGAIN;
1222 }
1223
1224 char *get_task_comm(char *buf, struct task_struct *tsk)
1225 {
1226 /* buf must be at least sizeof(tsk->comm) in size */
1227 task_lock(tsk);
1228 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1229 task_unlock(tsk);
1230 return buf;
1231 }
1232 EXPORT_SYMBOL_GPL(get_task_comm);
1233
1234 /*
1235 * These functions flushes out all traces of the currently running executable
1236 * so that a new one can be started
1237 */
1238
1239 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1240 {
1241 task_lock(tsk);
1242 trace_task_rename(tsk, buf);
1243 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1244 task_unlock(tsk);
1245 perf_event_comm(tsk, exec);
1246 }
1247
1248 int flush_old_exec(struct linux_binprm * bprm)
1249 {
1250 int retval;
1251
1252 /*
1253 * Make sure we have a private signal table and that
1254 * we are unassociated from the previous thread group.
1255 */
1256 retval = de_thread(current);
1257 if (retval)
1258 goto out;
1259
1260 /*
1261 * Must be called _before_ exec_mmap() as bprm->mm is
1262 * not visibile until then. This also enables the update
1263 * to be lockless.
1264 */
1265 set_mm_exe_file(bprm->mm, bprm->file);
1266
1267 /*
1268 * Release all of the old mmap stuff
1269 */
1270 acct_arg_size(bprm, 0);
1271 retval = exec_mmap(bprm->mm);
1272 if (retval)
1273 goto out;
1274
1275 bprm->mm = NULL; /* We're using it now */
1276
1277 set_fs(USER_DS);
1278 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1279 PF_NOFREEZE | PF_NO_SETAFFINITY);
1280 flush_thread();
1281 current->personality &= ~bprm->per_clear;
1282
1283 /*
1284 * We have to apply CLOEXEC before we change whether the process is
1285 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1286 * trying to access the should-be-closed file descriptors of a process
1287 * undergoing exec(2).
1288 */
1289 do_close_on_exec(current->files);
1290 return 0;
1291
1292 out:
1293 return retval;
1294 }
1295 EXPORT_SYMBOL(flush_old_exec);
1296
1297 void would_dump(struct linux_binprm *bprm, struct file *file)
1298 {
1299 struct inode *inode = file_inode(file);
1300 if (inode_permission(inode, MAY_READ) < 0) {
1301 struct user_namespace *old, *user_ns;
1302 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1303
1304 /* Ensure mm->user_ns contains the executable */
1305 user_ns = old = bprm->mm->user_ns;
1306 while ((user_ns != &init_user_ns) &&
1307 !privileged_wrt_inode_uidgid(user_ns, inode))
1308 user_ns = user_ns->parent;
1309
1310 if (old != user_ns) {
1311 bprm->mm->user_ns = get_user_ns(user_ns);
1312 put_user_ns(old);
1313 }
1314 }
1315 }
1316 EXPORT_SYMBOL(would_dump);
1317
1318 void setup_new_exec(struct linux_binprm * bprm)
1319 {
1320 arch_pick_mmap_layout(current->mm);
1321
1322 /* This is the point of no return */
1323 current->sas_ss_sp = current->sas_ss_size = 0;
1324
1325 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1326 set_dumpable(current->mm, SUID_DUMP_USER);
1327 else
1328 set_dumpable(current->mm, suid_dumpable);
1329
1330 perf_event_exec();
1331 __set_task_comm(current, kbasename(bprm->filename), true);
1332
1333 /* Set the new mm task size. We have to do that late because it may
1334 * depend on TIF_32BIT which is only updated in flush_thread() on
1335 * some architectures like powerpc
1336 */
1337 current->mm->task_size = TASK_SIZE;
1338
1339 /* install the new credentials */
1340 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1341 !gid_eq(bprm->cred->gid, current_egid())) {
1342 current->pdeath_signal = 0;
1343 } else {
1344 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1345 set_dumpable(current->mm, suid_dumpable);
1346 }
1347
1348 /* An exec changes our domain. We are no longer part of the thread
1349 group */
1350 current->self_exec_id++;
1351 flush_signal_handlers(current, 0);
1352 }
1353 EXPORT_SYMBOL(setup_new_exec);
1354
1355 /*
1356 * Prepare credentials and lock ->cred_guard_mutex.
1357 * install_exec_creds() commits the new creds and drops the lock.
1358 * Or, if exec fails before, free_bprm() should release ->cred and
1359 * and unlock.
1360 */
1361 int prepare_bprm_creds(struct linux_binprm *bprm)
1362 {
1363 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1364 return -ERESTARTNOINTR;
1365
1366 bprm->cred = prepare_exec_creds();
1367 if (likely(bprm->cred))
1368 return 0;
1369
1370 mutex_unlock(&current->signal->cred_guard_mutex);
1371 return -ENOMEM;
1372 }
1373
1374 static void free_bprm(struct linux_binprm *bprm)
1375 {
1376 free_arg_pages(bprm);
1377 if (bprm->cred) {
1378 mutex_unlock(&current->signal->cred_guard_mutex);
1379 abort_creds(bprm->cred);
1380 }
1381 if (bprm->file) {
1382 allow_write_access(bprm->file);
1383 fput(bprm->file);
1384 }
1385 /* If a binfmt changed the interp, free it. */
1386 if (bprm->interp != bprm->filename)
1387 kfree(bprm->interp);
1388 kfree(bprm);
1389 }
1390
1391 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1392 {
1393 /* If a binfmt changed the interp, free it first. */
1394 if (bprm->interp != bprm->filename)
1395 kfree(bprm->interp);
1396 bprm->interp = kstrdup(interp, GFP_KERNEL);
1397 if (!bprm->interp)
1398 return -ENOMEM;
1399 return 0;
1400 }
1401 EXPORT_SYMBOL(bprm_change_interp);
1402
1403 /*
1404 * install the new credentials for this executable
1405 */
1406 void install_exec_creds(struct linux_binprm *bprm)
1407 {
1408 security_bprm_committing_creds(bprm);
1409
1410 commit_creds(bprm->cred);
1411 bprm->cred = NULL;
1412
1413 /*
1414 * Disable monitoring for regular users
1415 * when executing setuid binaries. Must
1416 * wait until new credentials are committed
1417 * by commit_creds() above
1418 */
1419 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1420 perf_event_exit_task(current);
1421 /*
1422 * cred_guard_mutex must be held at least to this point to prevent
1423 * ptrace_attach() from altering our determination of the task's
1424 * credentials; any time after this it may be unlocked.
1425 */
1426 security_bprm_committed_creds(bprm);
1427 mutex_unlock(&current->signal->cred_guard_mutex);
1428 }
1429 EXPORT_SYMBOL(install_exec_creds);
1430
1431 /*
1432 * determine how safe it is to execute the proposed program
1433 * - the caller must hold ->cred_guard_mutex to protect against
1434 * PTRACE_ATTACH or seccomp thread-sync
1435 */
1436 static void check_unsafe_exec(struct linux_binprm *bprm)
1437 {
1438 struct task_struct *p = current, *t;
1439 unsigned n_fs;
1440 bool fs_recheck;
1441
1442 if (p->ptrace) {
1443 if (ptracer_capable(p, current_user_ns()))
1444 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1445 else
1446 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1447 }
1448
1449 /*
1450 * This isn't strictly necessary, but it makes it harder for LSMs to
1451 * mess up.
1452 */
1453 if (task_no_new_privs(current))
1454 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1455
1456 recheck:
1457 fs_recheck = false;
1458 t = p;
1459 n_fs = 1;
1460 spin_lock(&p->fs->lock);
1461 rcu_read_lock();
1462 while_each_thread(p, t) {
1463 if (t->fs == p->fs)
1464 n_fs++;
1465 if (t->flags & (PF_EXITING | PF_FORKNOEXEC))
1466 fs_recheck = true;
1467 }
1468 rcu_read_unlock();
1469
1470 if (p->fs->users > n_fs) {
1471 if (fs_recheck) {
1472 spin_unlock(&p->fs->lock);
1473 goto recheck;
1474 }
1475 bprm->unsafe |= LSM_UNSAFE_SHARE;
1476 } else
1477 p->fs->in_exec = 1;
1478 spin_unlock(&p->fs->lock);
1479 }
1480
1481 static void bprm_fill_uid(struct linux_binprm *bprm)
1482 {
1483 struct inode *inode;
1484 unsigned int mode;
1485 kuid_t uid;
1486 kgid_t gid;
1487
1488 /*
1489 * Since this can be called multiple times (via prepare_binprm),
1490 * we must clear any previous work done when setting set[ug]id
1491 * bits from any earlier bprm->file uses (for example when run
1492 * first for a setuid script then again for its interpreter).
1493 */
1494 bprm->cred->euid = current_euid();
1495 bprm->cred->egid = current_egid();
1496
1497 if (path_nosuid(&bprm->file->f_path))
1498 return;
1499
1500 if (task_no_new_privs(current))
1501 return;
1502
1503 inode = file_inode(bprm->file);
1504 mode = READ_ONCE(inode->i_mode);
1505 if (!(mode & (S_ISUID|S_ISGID)))
1506 return;
1507
1508 /* Be careful if suid/sgid is set */
1509 inode_lock(inode);
1510
1511 /* reload atomically mode/uid/gid now that lock held */
1512 mode = inode->i_mode;
1513 uid = inode->i_uid;
1514 gid = inode->i_gid;
1515 inode_unlock(inode);
1516
1517 /* We ignore suid/sgid if there are no mappings for them in the ns */
1518 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1519 !kgid_has_mapping(bprm->cred->user_ns, gid))
1520 return;
1521
1522 if (mode & S_ISUID) {
1523 bprm->per_clear |= PER_CLEAR_ON_SETID;
1524 bprm->cred->euid = uid;
1525 }
1526
1527 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1528 bprm->per_clear |= PER_CLEAR_ON_SETID;
1529 bprm->cred->egid = gid;
1530 }
1531 }
1532
1533 /*
1534 * Fill the binprm structure from the inode.
1535 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1536 *
1537 * This may be called multiple times for binary chains (scripts for example).
1538 */
1539 int prepare_binprm(struct linux_binprm *bprm)
1540 {
1541 int retval;
1542
1543 bprm_fill_uid(bprm);
1544
1545 /* fill in binprm security blob */
1546 retval = security_bprm_set_creds(bprm);
1547 if (retval)
1548 return retval;
1549 bprm->cred_prepared = 1;
1550
1551 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1552 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1553 }
1554
1555 EXPORT_SYMBOL(prepare_binprm);
1556
1557 /*
1558 * Arguments are '\0' separated strings found at the location bprm->p
1559 * points to; chop off the first by relocating brpm->p to right after
1560 * the first '\0' encountered.
1561 */
1562 int remove_arg_zero(struct linux_binprm *bprm)
1563 {
1564 int ret = 0;
1565 unsigned long offset;
1566 char *kaddr;
1567 struct page *page;
1568
1569 if (!bprm->argc)
1570 return 0;
1571
1572 do {
1573 offset = bprm->p & ~PAGE_MASK;
1574 page = get_arg_page(bprm, bprm->p, 0);
1575 if (!page) {
1576 ret = -EFAULT;
1577 goto out;
1578 }
1579 kaddr = kmap_atomic(page);
1580
1581 for (; offset < PAGE_SIZE && kaddr[offset];
1582 offset++, bprm->p++)
1583 ;
1584
1585 kunmap_atomic(kaddr);
1586 put_arg_page(page);
1587 } while (offset == PAGE_SIZE);
1588
1589 bprm->p++;
1590 bprm->argc--;
1591 ret = 0;
1592
1593 out:
1594 return ret;
1595 }
1596 EXPORT_SYMBOL(remove_arg_zero);
1597
1598 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1599 /*
1600 * cycle the list of binary formats handler, until one recognizes the image
1601 */
1602 int search_binary_handler(struct linux_binprm *bprm)
1603 {
1604 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1605 struct linux_binfmt *fmt;
1606 int retval;
1607
1608 /* This allows 4 levels of binfmt rewrites before failing hard. */
1609 if (bprm->recursion_depth > 5)
1610 return -ELOOP;
1611
1612 retval = security_bprm_check(bprm);
1613 if (retval)
1614 return retval;
1615
1616 retval = -ENOENT;
1617 retry:
1618 read_lock(&binfmt_lock);
1619 list_for_each_entry(fmt, &formats, lh) {
1620 if (!try_module_get(fmt->module))
1621 continue;
1622 read_unlock(&binfmt_lock);
1623 bprm->recursion_depth++;
1624 retval = fmt->load_binary(bprm);
1625 read_lock(&binfmt_lock);
1626 put_binfmt(fmt);
1627 bprm->recursion_depth--;
1628 if (retval < 0 && !bprm->mm) {
1629 /* we got to flush_old_exec() and failed after it */
1630 read_unlock(&binfmt_lock);
1631 force_sigsegv(SIGSEGV, current);
1632 return retval;
1633 }
1634 if (retval != -ENOEXEC || !bprm->file) {
1635 read_unlock(&binfmt_lock);
1636 return retval;
1637 }
1638 }
1639 read_unlock(&binfmt_lock);
1640
1641 if (need_retry) {
1642 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1643 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1644 return retval;
1645 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1646 return retval;
1647 need_retry = false;
1648 goto retry;
1649 }
1650
1651 return retval;
1652 }
1653 EXPORT_SYMBOL(search_binary_handler);
1654
1655 static int exec_binprm(struct linux_binprm *bprm)
1656 {
1657 pid_t old_pid, old_vpid;
1658 int ret;
1659
1660 /* Need to fetch pid before load_binary changes it */
1661 old_pid = current->pid;
1662 rcu_read_lock();
1663 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1664 rcu_read_unlock();
1665
1666 ret = search_binary_handler(bprm);
1667 if (ret >= 0) {
1668 audit_bprm(bprm);
1669 trace_sched_process_exec(current, old_pid, bprm);
1670 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1671 proc_exec_connector(current);
1672 }
1673
1674 return ret;
1675 }
1676
1677 /*
1678 * sys_execve() executes a new program.
1679 */
1680 static int do_execveat_common(int fd, struct filename *filename,
1681 struct user_arg_ptr argv,
1682 struct user_arg_ptr envp,
1683 int flags)
1684 {
1685 char *pathbuf = NULL;
1686 struct linux_binprm *bprm;
1687 struct file *file;
1688 struct files_struct *displaced;
1689 int retval;
1690
1691 if (IS_ERR(filename))
1692 return PTR_ERR(filename);
1693
1694 /*
1695 * We move the actual failure in case of RLIMIT_NPROC excess from
1696 * set*uid() to execve() because too many poorly written programs
1697 * don't check setuid() return code. Here we additionally recheck
1698 * whether NPROC limit is still exceeded.
1699 */
1700 if ((current->flags & PF_NPROC_EXCEEDED) &&
1701 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1702 retval = -EAGAIN;
1703 goto out_ret;
1704 }
1705
1706 /* We're below the limit (still or again), so we don't want to make
1707 * further execve() calls fail. */
1708 current->flags &= ~PF_NPROC_EXCEEDED;
1709
1710 retval = unshare_files(&displaced);
1711 if (retval)
1712 goto out_ret;
1713
1714 retval = -ENOMEM;
1715 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1716 if (!bprm)
1717 goto out_files;
1718
1719 retval = prepare_bprm_creds(bprm);
1720 if (retval)
1721 goto out_free;
1722
1723 check_unsafe_exec(bprm);
1724 current->in_execve = 1;
1725
1726 file = do_open_execat(fd, filename, flags);
1727 retval = PTR_ERR(file);
1728 if (IS_ERR(file))
1729 goto out_unmark;
1730
1731 sched_exec();
1732
1733 bprm->file = file;
1734 if (fd == AT_FDCWD || filename->name[0] == '/') {
1735 bprm->filename = filename->name;
1736 } else {
1737 if (filename->name[0] == '\0')
1738 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1739 else
1740 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1741 fd, filename->name);
1742 if (!pathbuf) {
1743 retval = -ENOMEM;
1744 goto out_unmark;
1745 }
1746 /*
1747 * Record that a name derived from an O_CLOEXEC fd will be
1748 * inaccessible after exec. Relies on having exclusive access to
1749 * current->files (due to unshare_files above).
1750 */
1751 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1752 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1753 bprm->filename = pathbuf;
1754 }
1755 bprm->interp = bprm->filename;
1756
1757 retval = bprm_mm_init(bprm);
1758 if (retval)
1759 goto out_unmark;
1760
1761 bprm->argc = count(argv, MAX_ARG_STRINGS);
1762 if ((retval = bprm->argc) < 0)
1763 goto out;
1764
1765 bprm->envc = count(envp, MAX_ARG_STRINGS);
1766 if ((retval = bprm->envc) < 0)
1767 goto out;
1768
1769 retval = prepare_binprm(bprm);
1770 if (retval < 0)
1771 goto out;
1772
1773 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1774 if (retval < 0)
1775 goto out;
1776
1777 bprm->exec = bprm->p;
1778 retval = copy_strings(bprm->envc, envp, bprm);
1779 if (retval < 0)
1780 goto out;
1781
1782 retval = copy_strings(bprm->argc, argv, bprm);
1783 if (retval < 0)
1784 goto out;
1785
1786 would_dump(bprm, bprm->file);
1787
1788 retval = exec_binprm(bprm);
1789 if (retval < 0)
1790 goto out;
1791
1792 /* execve succeeded */
1793 current->fs->in_exec = 0;
1794 current->in_execve = 0;
1795 acct_update_integrals(current);
1796 task_numa_free(current);
1797 free_bprm(bprm);
1798 kfree(pathbuf);
1799 putname(filename);
1800 if (displaced)
1801 put_files_struct(displaced);
1802 return retval;
1803
1804 out:
1805 if (bprm->mm) {
1806 acct_arg_size(bprm, 0);
1807 mmput(bprm->mm);
1808 }
1809
1810 out_unmark:
1811 current->fs->in_exec = 0;
1812 current->in_execve = 0;
1813
1814 out_free:
1815 free_bprm(bprm);
1816 kfree(pathbuf);
1817
1818 out_files:
1819 if (displaced)
1820 reset_files_struct(displaced);
1821 out_ret:
1822 putname(filename);
1823 return retval;
1824 }
1825
1826 int do_execve(struct filename *filename,
1827 const char __user *const __user *__argv,
1828 const char __user *const __user *__envp)
1829 {
1830 struct user_arg_ptr argv = { .ptr.native = __argv };
1831 struct user_arg_ptr envp = { .ptr.native = __envp };
1832 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1833 }
1834
1835 int do_execveat(int fd, struct filename *filename,
1836 const char __user *const __user *__argv,
1837 const char __user *const __user *__envp,
1838 int flags)
1839 {
1840 struct user_arg_ptr argv = { .ptr.native = __argv };
1841 struct user_arg_ptr envp = { .ptr.native = __envp };
1842
1843 return do_execveat_common(fd, filename, argv, envp, flags);
1844 }
1845
1846 #ifdef CONFIG_COMPAT
1847 static int compat_do_execve(struct filename *filename,
1848 const compat_uptr_t __user *__argv,
1849 const compat_uptr_t __user *__envp)
1850 {
1851 struct user_arg_ptr argv = {
1852 .is_compat = true,
1853 .ptr.compat = __argv,
1854 };
1855 struct user_arg_ptr envp = {
1856 .is_compat = true,
1857 .ptr.compat = __envp,
1858 };
1859 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1860 }
1861
1862 static int compat_do_execveat(int fd, struct filename *filename,
1863 const compat_uptr_t __user *__argv,
1864 const compat_uptr_t __user *__envp,
1865 int flags)
1866 {
1867 struct user_arg_ptr argv = {
1868 .is_compat = true,
1869 .ptr.compat = __argv,
1870 };
1871 struct user_arg_ptr envp = {
1872 .is_compat = true,
1873 .ptr.compat = __envp,
1874 };
1875 return do_execveat_common(fd, filename, argv, envp, flags);
1876 }
1877 #endif
1878
1879 void set_binfmt(struct linux_binfmt *new)
1880 {
1881 struct mm_struct *mm = current->mm;
1882
1883 if (mm->binfmt)
1884 module_put(mm->binfmt->module);
1885
1886 mm->binfmt = new;
1887 if (new)
1888 __module_get(new->module);
1889 }
1890 EXPORT_SYMBOL(set_binfmt);
1891
1892 /*
1893 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1894 */
1895 void set_dumpable(struct mm_struct *mm, int value)
1896 {
1897 unsigned long old, new;
1898
1899 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1900 return;
1901
1902 do {
1903 old = ACCESS_ONCE(mm->flags);
1904 new = (old & ~MMF_DUMPABLE_MASK) | value;
1905 } while (cmpxchg(&mm->flags, old, new) != old);
1906 }
1907
1908 SYSCALL_DEFINE3(execve,
1909 const char __user *, filename,
1910 const char __user *const __user *, argv,
1911 const char __user *const __user *, envp)
1912 {
1913 return do_execve(getname(filename), argv, envp);
1914 }
1915
1916 SYSCALL_DEFINE5(execveat,
1917 int, fd, const char __user *, filename,
1918 const char __user *const __user *, argv,
1919 const char __user *const __user *, envp,
1920 int, flags)
1921 {
1922 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1923
1924 return do_execveat(fd,
1925 getname_flags(filename, lookup_flags, NULL),
1926 argv, envp, flags);
1927 }
1928
1929 #ifdef CONFIG_COMPAT
1930 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1931 const compat_uptr_t __user *, argv,
1932 const compat_uptr_t __user *, envp)
1933 {
1934 return compat_do_execve(getname(filename), argv, envp);
1935 }
1936
1937 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1938 const char __user *, filename,
1939 const compat_uptr_t __user *, argv,
1940 const compat_uptr_t __user *, envp,
1941 int, flags)
1942 {
1943 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1944
1945 return compat_do_execveat(fd,
1946 getname_flags(filename, lookup_flags, NULL),
1947 argv, envp, flags);
1948 }
1949 #endif