]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/namespace.c
KVM: PPC: Use preregistered memory API to access TCE list
[mirror_ubuntu-zesty-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
32
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
37
38 static __initdata unsigned long mhash_entries;
39 static int __init set_mhash_entries(char *str)
40 {
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
45 }
46 __setup("mhash_entries=", set_mhash_entries);
47
48 static __initdata unsigned long mphash_entries;
49 static int __init set_mphash_entries(char *str)
50 {
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55 }
56 __setup("mphash_entries=", set_mphash_entries);
57
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
64
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
69
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
73
74 /*
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
78 *
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
81 */
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
83
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
85 {
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
90 }
91
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
93 {
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
97 }
98
99 static int mnt_alloc_id(struct mount *mnt)
100 {
101 int res;
102
103 retry:
104 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
105 spin_lock(&mnt_id_lock);
106 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
107 if (!res)
108 mnt_id_start = mnt->mnt_id + 1;
109 spin_unlock(&mnt_id_lock);
110 if (res == -EAGAIN)
111 goto retry;
112
113 return res;
114 }
115
116 static void mnt_free_id(struct mount *mnt)
117 {
118 int id = mnt->mnt_id;
119 spin_lock(&mnt_id_lock);
120 ida_remove(&mnt_id_ida, id);
121 if (mnt_id_start > id)
122 mnt_id_start = id;
123 spin_unlock(&mnt_id_lock);
124 }
125
126 /*
127 * Allocate a new peer group ID
128 *
129 * mnt_group_ida is protected by namespace_sem
130 */
131 static int mnt_alloc_group_id(struct mount *mnt)
132 {
133 int res;
134
135 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
136 return -ENOMEM;
137
138 res = ida_get_new_above(&mnt_group_ida,
139 mnt_group_start,
140 &mnt->mnt_group_id);
141 if (!res)
142 mnt_group_start = mnt->mnt_group_id + 1;
143
144 return res;
145 }
146
147 /*
148 * Release a peer group ID
149 */
150 void mnt_release_group_id(struct mount *mnt)
151 {
152 int id = mnt->mnt_group_id;
153 ida_remove(&mnt_group_ida, id);
154 if (mnt_group_start > id)
155 mnt_group_start = id;
156 mnt->mnt_group_id = 0;
157 }
158
159 /*
160 * vfsmount lock must be held for read
161 */
162 static inline void mnt_add_count(struct mount *mnt, int n)
163 {
164 #ifdef CONFIG_SMP
165 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
166 #else
167 preempt_disable();
168 mnt->mnt_count += n;
169 preempt_enable();
170 #endif
171 }
172
173 /*
174 * vfsmount lock must be held for write
175 */
176 unsigned int mnt_get_count(struct mount *mnt)
177 {
178 #ifdef CONFIG_SMP
179 unsigned int count = 0;
180 int cpu;
181
182 for_each_possible_cpu(cpu) {
183 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
184 }
185
186 return count;
187 #else
188 return mnt->mnt_count;
189 #endif
190 }
191
192 static void drop_mountpoint(struct fs_pin *p)
193 {
194 struct mount *m = container_of(p, struct mount, mnt_umount);
195 dput(m->mnt_ex_mountpoint);
196 pin_remove(p);
197 mntput(&m->mnt);
198 }
199
200 static struct mount *alloc_vfsmnt(const char *name)
201 {
202 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
203 if (mnt) {
204 int err;
205
206 err = mnt_alloc_id(mnt);
207 if (err)
208 goto out_free_cache;
209
210 if (name) {
211 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
212 if (!mnt->mnt_devname)
213 goto out_free_id;
214 }
215
216 #ifdef CONFIG_SMP
217 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
218 if (!mnt->mnt_pcp)
219 goto out_free_devname;
220
221 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
222 #else
223 mnt->mnt_count = 1;
224 mnt->mnt_writers = 0;
225 #endif
226
227 INIT_HLIST_NODE(&mnt->mnt_hash);
228 INIT_LIST_HEAD(&mnt->mnt_child);
229 INIT_LIST_HEAD(&mnt->mnt_mounts);
230 INIT_LIST_HEAD(&mnt->mnt_list);
231 INIT_LIST_HEAD(&mnt->mnt_expire);
232 INIT_LIST_HEAD(&mnt->mnt_share);
233 INIT_LIST_HEAD(&mnt->mnt_slave_list);
234 INIT_LIST_HEAD(&mnt->mnt_slave);
235 INIT_HLIST_NODE(&mnt->mnt_mp_list);
236 #ifdef CONFIG_FSNOTIFY
237 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
238 #endif
239 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
240 }
241 return mnt;
242
243 #ifdef CONFIG_SMP
244 out_free_devname:
245 kfree_const(mnt->mnt_devname);
246 #endif
247 out_free_id:
248 mnt_free_id(mnt);
249 out_free_cache:
250 kmem_cache_free(mnt_cache, mnt);
251 return NULL;
252 }
253
254 /*
255 * Most r/o checks on a fs are for operations that take
256 * discrete amounts of time, like a write() or unlink().
257 * We must keep track of when those operations start
258 * (for permission checks) and when they end, so that
259 * we can determine when writes are able to occur to
260 * a filesystem.
261 */
262 /*
263 * __mnt_is_readonly: check whether a mount is read-only
264 * @mnt: the mount to check for its write status
265 *
266 * This shouldn't be used directly ouside of the VFS.
267 * It does not guarantee that the filesystem will stay
268 * r/w, just that it is right *now*. This can not and
269 * should not be used in place of IS_RDONLY(inode).
270 * mnt_want/drop_write() will _keep_ the filesystem
271 * r/w.
272 */
273 int __mnt_is_readonly(struct vfsmount *mnt)
274 {
275 if (mnt->mnt_flags & MNT_READONLY)
276 return 1;
277 if (mnt->mnt_sb->s_flags & MS_RDONLY)
278 return 1;
279 return 0;
280 }
281 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
282
283 static inline void mnt_inc_writers(struct mount *mnt)
284 {
285 #ifdef CONFIG_SMP
286 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
287 #else
288 mnt->mnt_writers++;
289 #endif
290 }
291
292 static inline void mnt_dec_writers(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
296 #else
297 mnt->mnt_writers--;
298 #endif
299 }
300
301 static unsigned int mnt_get_writers(struct mount *mnt)
302 {
303 #ifdef CONFIG_SMP
304 unsigned int count = 0;
305 int cpu;
306
307 for_each_possible_cpu(cpu) {
308 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
309 }
310
311 return count;
312 #else
313 return mnt->mnt_writers;
314 #endif
315 }
316
317 static int mnt_is_readonly(struct vfsmount *mnt)
318 {
319 if (mnt->mnt_sb->s_readonly_remount)
320 return 1;
321 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
322 smp_rmb();
323 return __mnt_is_readonly(mnt);
324 }
325
326 /*
327 * Most r/o & frozen checks on a fs are for operations that take discrete
328 * amounts of time, like a write() or unlink(). We must keep track of when
329 * those operations start (for permission checks) and when they end, so that we
330 * can determine when writes are able to occur to a filesystem.
331 */
332 /**
333 * __mnt_want_write - get write access to a mount without freeze protection
334 * @m: the mount on which to take a write
335 *
336 * This tells the low-level filesystem that a write is about to be performed to
337 * it, and makes sure that writes are allowed (mnt it read-write) before
338 * returning success. This operation does not protect against filesystem being
339 * frozen. When the write operation is finished, __mnt_drop_write() must be
340 * called. This is effectively a refcount.
341 */
342 int __mnt_want_write(struct vfsmount *m)
343 {
344 struct mount *mnt = real_mount(m);
345 int ret = 0;
346
347 preempt_disable();
348 mnt_inc_writers(mnt);
349 /*
350 * The store to mnt_inc_writers must be visible before we pass
351 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
352 * incremented count after it has set MNT_WRITE_HOLD.
353 */
354 smp_mb();
355 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
356 cpu_relax();
357 /*
358 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
359 * be set to match its requirements. So we must not load that until
360 * MNT_WRITE_HOLD is cleared.
361 */
362 smp_rmb();
363 if (mnt_is_readonly(m)) {
364 mnt_dec_writers(mnt);
365 ret = -EROFS;
366 }
367 preempt_enable();
368
369 return ret;
370 }
371
372 /**
373 * mnt_want_write - get write access to a mount
374 * @m: the mount on which to take a write
375 *
376 * This tells the low-level filesystem that a write is about to be performed to
377 * it, and makes sure that writes are allowed (mount is read-write, filesystem
378 * is not frozen) before returning success. When the write operation is
379 * finished, mnt_drop_write() must be called. This is effectively a refcount.
380 */
381 int mnt_want_write(struct vfsmount *m)
382 {
383 int ret;
384
385 sb_start_write(m->mnt_sb);
386 ret = __mnt_want_write(m);
387 if (ret)
388 sb_end_write(m->mnt_sb);
389 return ret;
390 }
391 EXPORT_SYMBOL_GPL(mnt_want_write);
392
393 /**
394 * mnt_clone_write - get write access to a mount
395 * @mnt: the mount on which to take a write
396 *
397 * This is effectively like mnt_want_write, except
398 * it must only be used to take an extra write reference
399 * on a mountpoint that we already know has a write reference
400 * on it. This allows some optimisation.
401 *
402 * After finished, mnt_drop_write must be called as usual to
403 * drop the reference.
404 */
405 int mnt_clone_write(struct vfsmount *mnt)
406 {
407 /* superblock may be r/o */
408 if (__mnt_is_readonly(mnt))
409 return -EROFS;
410 preempt_disable();
411 mnt_inc_writers(real_mount(mnt));
412 preempt_enable();
413 return 0;
414 }
415 EXPORT_SYMBOL_GPL(mnt_clone_write);
416
417 /**
418 * __mnt_want_write_file - get write access to a file's mount
419 * @file: the file who's mount on which to take a write
420 *
421 * This is like __mnt_want_write, but it takes a file and can
422 * do some optimisations if the file is open for write already
423 */
424 int __mnt_want_write_file(struct file *file)
425 {
426 if (!(file->f_mode & FMODE_WRITER))
427 return __mnt_want_write(file->f_path.mnt);
428 else
429 return mnt_clone_write(file->f_path.mnt);
430 }
431
432 /**
433 * mnt_want_write_file - get write access to a file's mount
434 * @file: the file who's mount on which to take a write
435 *
436 * This is like mnt_want_write, but it takes a file and can
437 * do some optimisations if the file is open for write already
438 */
439 int mnt_want_write_file(struct file *file)
440 {
441 int ret;
442
443 sb_start_write(file->f_path.mnt->mnt_sb);
444 ret = __mnt_want_write_file(file);
445 if (ret)
446 sb_end_write(file->f_path.mnt->mnt_sb);
447 return ret;
448 }
449 EXPORT_SYMBOL_GPL(mnt_want_write_file);
450
451 /**
452 * __mnt_drop_write - give up write access to a mount
453 * @mnt: the mount on which to give up write access
454 *
455 * Tells the low-level filesystem that we are done
456 * performing writes to it. Must be matched with
457 * __mnt_want_write() call above.
458 */
459 void __mnt_drop_write(struct vfsmount *mnt)
460 {
461 preempt_disable();
462 mnt_dec_writers(real_mount(mnt));
463 preempt_enable();
464 }
465 EXPORT_SYMBOL_GPL(__mnt_drop_write);
466
467 /**
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
470 *
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
474 */
475 void mnt_drop_write(struct vfsmount *mnt)
476 {
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
479 }
480 EXPORT_SYMBOL_GPL(mnt_drop_write);
481
482 void __mnt_drop_write_file(struct file *file)
483 {
484 __mnt_drop_write(file->f_path.mnt);
485 }
486
487 void mnt_drop_write_file(struct file *file)
488 {
489 mnt_drop_write(file->f_path.mnt);
490 }
491 EXPORT_SYMBOL(mnt_drop_write_file);
492
493 static int mnt_make_readonly(struct mount *mnt)
494 {
495 int ret = 0;
496
497 lock_mount_hash();
498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
499 /*
500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
502 */
503 smp_mb();
504
505 /*
506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
510 *
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
520 */
521 if (mnt_get_writers(mnt) > 0)
522 ret = -EBUSY;
523 else
524 mnt->mnt.mnt_flags |= MNT_READONLY;
525 /*
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
528 */
529 smp_wmb();
530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
531 unlock_mount_hash();
532 return ret;
533 }
534
535 static void __mnt_unmake_readonly(struct mount *mnt)
536 {
537 lock_mount_hash();
538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
539 unlock_mount_hash();
540 }
541
542 int sb_prepare_remount_readonly(struct super_block *sb)
543 {
544 struct mount *mnt;
545 int err = 0;
546
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
550
551 lock_mount_hash();
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
559 }
560 }
561 }
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
564
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
568 }
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 }
573 unlock_mount_hash();
574
575 return err;
576 }
577
578 static void free_vfsmnt(struct mount *mnt)
579 {
580 kfree_const(mnt->mnt_devname);
581 #ifdef CONFIG_SMP
582 free_percpu(mnt->mnt_pcp);
583 #endif
584 kmem_cache_free(mnt_cache, mnt);
585 }
586
587 static void delayed_free_vfsmnt(struct rcu_head *head)
588 {
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590 }
591
592 /* call under rcu_read_lock */
593 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594 {
595 struct mount *mnt;
596 if (read_seqretry(&mount_lock, seq))
597 return 1;
598 if (bastard == NULL)
599 return 0;
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
603 return 0;
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
606 return 1;
607 }
608 return -1;
609 }
610
611 /* call under rcu_read_lock */
612 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
613 {
614 int res = __legitimize_mnt(bastard, seq);
615 if (likely(!res))
616 return true;
617 if (unlikely(res < 0)) {
618 rcu_read_unlock();
619 mntput(bastard);
620 rcu_read_lock();
621 }
622 return false;
623 }
624
625 /*
626 * find the first mount at @dentry on vfsmount @mnt.
627 * call under rcu_read_lock()
628 */
629 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
630 {
631 struct hlist_head *head = m_hash(mnt, dentry);
632 struct mount *p;
633
634 hlist_for_each_entry_rcu(p, head, mnt_hash)
635 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
636 return p;
637 return NULL;
638 }
639
640 /*
641 * lookup_mnt - Return the first child mount mounted at path
642 *
643 * "First" means first mounted chronologically. If you create the
644 * following mounts:
645 *
646 * mount /dev/sda1 /mnt
647 * mount /dev/sda2 /mnt
648 * mount /dev/sda3 /mnt
649 *
650 * Then lookup_mnt() on the base /mnt dentry in the root mount will
651 * return successively the root dentry and vfsmount of /dev/sda1, then
652 * /dev/sda2, then /dev/sda3, then NULL.
653 *
654 * lookup_mnt takes a reference to the found vfsmount.
655 */
656 struct vfsmount *lookup_mnt(const struct path *path)
657 {
658 struct mount *child_mnt;
659 struct vfsmount *m;
660 unsigned seq;
661
662 rcu_read_lock();
663 do {
664 seq = read_seqbegin(&mount_lock);
665 child_mnt = __lookup_mnt(path->mnt, path->dentry);
666 m = child_mnt ? &child_mnt->mnt : NULL;
667 } while (!legitimize_mnt(m, seq));
668 rcu_read_unlock();
669 return m;
670 }
671
672 /*
673 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
674 * current mount namespace.
675 *
676 * The common case is dentries are not mountpoints at all and that
677 * test is handled inline. For the slow case when we are actually
678 * dealing with a mountpoint of some kind, walk through all of the
679 * mounts in the current mount namespace and test to see if the dentry
680 * is a mountpoint.
681 *
682 * The mount_hashtable is not usable in the context because we
683 * need to identify all mounts that may be in the current mount
684 * namespace not just a mount that happens to have some specified
685 * parent mount.
686 */
687 bool __is_local_mountpoint(struct dentry *dentry)
688 {
689 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
690 struct mount *mnt;
691 bool is_covered = false;
692
693 if (!d_mountpoint(dentry))
694 goto out;
695
696 down_read(&namespace_sem);
697 list_for_each_entry(mnt, &ns->list, mnt_list) {
698 is_covered = (mnt->mnt_mountpoint == dentry);
699 if (is_covered)
700 break;
701 }
702 up_read(&namespace_sem);
703 out:
704 return is_covered;
705 }
706
707 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
708 {
709 struct hlist_head *chain = mp_hash(dentry);
710 struct mountpoint *mp;
711
712 hlist_for_each_entry(mp, chain, m_hash) {
713 if (mp->m_dentry == dentry) {
714 /* might be worth a WARN_ON() */
715 if (d_unlinked(dentry))
716 return ERR_PTR(-ENOENT);
717 mp->m_count++;
718 return mp;
719 }
720 }
721 return NULL;
722 }
723
724 static struct mountpoint *get_mountpoint(struct dentry *dentry)
725 {
726 struct mountpoint *mp, *new = NULL;
727 int ret;
728
729 if (d_mountpoint(dentry)) {
730 mountpoint:
731 read_seqlock_excl(&mount_lock);
732 mp = lookup_mountpoint(dentry);
733 read_sequnlock_excl(&mount_lock);
734 if (mp)
735 goto done;
736 }
737
738 if (!new)
739 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
740 if (!new)
741 return ERR_PTR(-ENOMEM);
742
743
744 /* Exactly one processes may set d_mounted */
745 ret = d_set_mounted(dentry);
746
747 /* Someone else set d_mounted? */
748 if (ret == -EBUSY)
749 goto mountpoint;
750
751 /* The dentry is not available as a mountpoint? */
752 mp = ERR_PTR(ret);
753 if (ret)
754 goto done;
755
756 /* Add the new mountpoint to the hash table */
757 read_seqlock_excl(&mount_lock);
758 new->m_dentry = dentry;
759 new->m_count = 1;
760 hlist_add_head(&new->m_hash, mp_hash(dentry));
761 INIT_HLIST_HEAD(&new->m_list);
762 read_sequnlock_excl(&mount_lock);
763
764 mp = new;
765 new = NULL;
766 done:
767 kfree(new);
768 return mp;
769 }
770
771 static void put_mountpoint(struct mountpoint *mp)
772 {
773 if (!--mp->m_count) {
774 struct dentry *dentry = mp->m_dentry;
775 BUG_ON(!hlist_empty(&mp->m_list));
776 spin_lock(&dentry->d_lock);
777 dentry->d_flags &= ~DCACHE_MOUNTED;
778 spin_unlock(&dentry->d_lock);
779 hlist_del(&mp->m_hash);
780 kfree(mp);
781 }
782 }
783
784 static inline int check_mnt(struct mount *mnt)
785 {
786 return mnt->mnt_ns == current->nsproxy->mnt_ns;
787 }
788
789 /*
790 * vfsmount lock must be held for write
791 */
792 static void touch_mnt_namespace(struct mnt_namespace *ns)
793 {
794 if (ns) {
795 ns->event = ++event;
796 wake_up_interruptible(&ns->poll);
797 }
798 }
799
800 /*
801 * vfsmount lock must be held for write
802 */
803 static void __touch_mnt_namespace(struct mnt_namespace *ns)
804 {
805 if (ns && ns->event != event) {
806 ns->event = event;
807 wake_up_interruptible(&ns->poll);
808 }
809 }
810
811 /*
812 * vfsmount lock must be held for write
813 */
814 static void unhash_mnt(struct mount *mnt)
815 {
816 mnt->mnt_parent = mnt;
817 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
818 list_del_init(&mnt->mnt_child);
819 hlist_del_init_rcu(&mnt->mnt_hash);
820 hlist_del_init(&mnt->mnt_mp_list);
821 put_mountpoint(mnt->mnt_mp);
822 mnt->mnt_mp = NULL;
823 }
824
825 /*
826 * vfsmount lock must be held for write
827 */
828 static void detach_mnt(struct mount *mnt, struct path *old_path)
829 {
830 old_path->dentry = mnt->mnt_mountpoint;
831 old_path->mnt = &mnt->mnt_parent->mnt;
832 unhash_mnt(mnt);
833 }
834
835 /*
836 * vfsmount lock must be held for write
837 */
838 static void umount_mnt(struct mount *mnt)
839 {
840 /* old mountpoint will be dropped when we can do that */
841 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
842 unhash_mnt(mnt);
843 }
844
845 /*
846 * vfsmount lock must be held for write
847 */
848 void mnt_set_mountpoint(struct mount *mnt,
849 struct mountpoint *mp,
850 struct mount *child_mnt)
851 {
852 mp->m_count++;
853 mnt_add_count(mnt, 1); /* essentially, that's mntget */
854 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
855 child_mnt->mnt_parent = mnt;
856 child_mnt->mnt_mp = mp;
857 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
858 }
859
860 static void __attach_mnt(struct mount *mnt, struct mount *parent)
861 {
862 hlist_add_head_rcu(&mnt->mnt_hash,
863 m_hash(&parent->mnt, mnt->mnt_mountpoint));
864 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
865 }
866
867 /*
868 * vfsmount lock must be held for write
869 */
870 static void attach_mnt(struct mount *mnt,
871 struct mount *parent,
872 struct mountpoint *mp)
873 {
874 mnt_set_mountpoint(parent, mp, mnt);
875 __attach_mnt(mnt, parent);
876 }
877
878 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
879 {
880 struct mountpoint *old_mp = mnt->mnt_mp;
881 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
882 struct mount *old_parent = mnt->mnt_parent;
883
884 list_del_init(&mnt->mnt_child);
885 hlist_del_init(&mnt->mnt_mp_list);
886 hlist_del_init_rcu(&mnt->mnt_hash);
887
888 attach_mnt(mnt, parent, mp);
889
890 put_mountpoint(old_mp);
891
892 /*
893 * Safely avoid even the suggestion this code might sleep or
894 * lock the mount hash by taking advantage of the knowledge that
895 * mnt_change_mountpoint will not release the final reference
896 * to a mountpoint.
897 *
898 * During mounting, the mount passed in as the parent mount will
899 * continue to use the old mountpoint and during unmounting, the
900 * old mountpoint will continue to exist until namespace_unlock,
901 * which happens well after mnt_change_mountpoint.
902 */
903 spin_lock(&old_mountpoint->d_lock);
904 old_mountpoint->d_lockref.count--;
905 spin_unlock(&old_mountpoint->d_lock);
906
907 mnt_add_count(old_parent, -1);
908 }
909
910 /*
911 * vfsmount lock must be held for write
912 */
913 static void commit_tree(struct mount *mnt)
914 {
915 struct mount *parent = mnt->mnt_parent;
916 struct mount *m;
917 LIST_HEAD(head);
918 struct mnt_namespace *n = parent->mnt_ns;
919
920 BUG_ON(parent == mnt);
921
922 list_add_tail(&head, &mnt->mnt_list);
923 list_for_each_entry(m, &head, mnt_list)
924 m->mnt_ns = n;
925
926 list_splice(&head, n->list.prev);
927
928 n->mounts += n->pending_mounts;
929 n->pending_mounts = 0;
930
931 __attach_mnt(mnt, parent);
932 touch_mnt_namespace(n);
933 }
934
935 static struct mount *next_mnt(struct mount *p, struct mount *root)
936 {
937 struct list_head *next = p->mnt_mounts.next;
938 if (next == &p->mnt_mounts) {
939 while (1) {
940 if (p == root)
941 return NULL;
942 next = p->mnt_child.next;
943 if (next != &p->mnt_parent->mnt_mounts)
944 break;
945 p = p->mnt_parent;
946 }
947 }
948 return list_entry(next, struct mount, mnt_child);
949 }
950
951 static struct mount *skip_mnt_tree(struct mount *p)
952 {
953 struct list_head *prev = p->mnt_mounts.prev;
954 while (prev != &p->mnt_mounts) {
955 p = list_entry(prev, struct mount, mnt_child);
956 prev = p->mnt_mounts.prev;
957 }
958 return p;
959 }
960
961 struct vfsmount *
962 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
963 {
964 struct mount *mnt;
965 struct dentry *root;
966
967 if (!type)
968 return ERR_PTR(-ENODEV);
969
970 mnt = alloc_vfsmnt(name);
971 if (!mnt)
972 return ERR_PTR(-ENOMEM);
973
974 if (flags & MS_KERNMOUNT)
975 mnt->mnt.mnt_flags = MNT_INTERNAL;
976
977 root = mount_fs(type, flags, name, data);
978 if (IS_ERR(root)) {
979 mnt_free_id(mnt);
980 free_vfsmnt(mnt);
981 return ERR_CAST(root);
982 }
983
984 mnt->mnt.mnt_root = root;
985 mnt->mnt.mnt_sb = root->d_sb;
986 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
987 mnt->mnt_parent = mnt;
988 lock_mount_hash();
989 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
990 unlock_mount_hash();
991 return &mnt->mnt;
992 }
993 EXPORT_SYMBOL_GPL(vfs_kern_mount);
994
995 struct vfsmount *
996 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
997 const char *name, void *data)
998 {
999 /* Until it is worked out how to pass the user namespace
1000 * through from the parent mount to the submount don't support
1001 * unprivileged mounts with submounts.
1002 */
1003 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1004 return ERR_PTR(-EPERM);
1005
1006 return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
1007 }
1008 EXPORT_SYMBOL_GPL(vfs_submount);
1009
1010 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1011 int flag)
1012 {
1013 struct super_block *sb = old->mnt.mnt_sb;
1014 struct mount *mnt;
1015 int err;
1016
1017 mnt = alloc_vfsmnt(old->mnt_devname);
1018 if (!mnt)
1019 return ERR_PTR(-ENOMEM);
1020
1021 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1022 mnt->mnt_group_id = 0; /* not a peer of original */
1023 else
1024 mnt->mnt_group_id = old->mnt_group_id;
1025
1026 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1027 err = mnt_alloc_group_id(mnt);
1028 if (err)
1029 goto out_free;
1030 }
1031
1032 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
1033 /* Don't allow unprivileged users to change mount flags */
1034 if (flag & CL_UNPRIVILEGED) {
1035 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1036
1037 if (mnt->mnt.mnt_flags & MNT_READONLY)
1038 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1039
1040 if (mnt->mnt.mnt_flags & MNT_NODEV)
1041 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1042
1043 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1044 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1045
1046 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1047 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1048 }
1049
1050 /* Don't allow unprivileged users to reveal what is under a mount */
1051 if ((flag & CL_UNPRIVILEGED) &&
1052 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1053 mnt->mnt.mnt_flags |= MNT_LOCKED;
1054
1055 atomic_inc(&sb->s_active);
1056 mnt->mnt.mnt_sb = sb;
1057 mnt->mnt.mnt_root = dget(root);
1058 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1059 mnt->mnt_parent = mnt;
1060 lock_mount_hash();
1061 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1062 unlock_mount_hash();
1063
1064 if ((flag & CL_SLAVE) ||
1065 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1066 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1067 mnt->mnt_master = old;
1068 CLEAR_MNT_SHARED(mnt);
1069 } else if (!(flag & CL_PRIVATE)) {
1070 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1071 list_add(&mnt->mnt_share, &old->mnt_share);
1072 if (IS_MNT_SLAVE(old))
1073 list_add(&mnt->mnt_slave, &old->mnt_slave);
1074 mnt->mnt_master = old->mnt_master;
1075 } else {
1076 CLEAR_MNT_SHARED(mnt);
1077 }
1078 if (flag & CL_MAKE_SHARED)
1079 set_mnt_shared(mnt);
1080
1081 /* stick the duplicate mount on the same expiry list
1082 * as the original if that was on one */
1083 if (flag & CL_EXPIRE) {
1084 if (!list_empty(&old->mnt_expire))
1085 list_add(&mnt->mnt_expire, &old->mnt_expire);
1086 }
1087
1088 return mnt;
1089
1090 out_free:
1091 mnt_free_id(mnt);
1092 free_vfsmnt(mnt);
1093 return ERR_PTR(err);
1094 }
1095
1096 static void cleanup_mnt(struct mount *mnt)
1097 {
1098 /*
1099 * This probably indicates that somebody messed
1100 * up a mnt_want/drop_write() pair. If this
1101 * happens, the filesystem was probably unable
1102 * to make r/w->r/o transitions.
1103 */
1104 /*
1105 * The locking used to deal with mnt_count decrement provides barriers,
1106 * so mnt_get_writers() below is safe.
1107 */
1108 WARN_ON(mnt_get_writers(mnt));
1109 if (unlikely(mnt->mnt_pins.first))
1110 mnt_pin_kill(mnt);
1111 fsnotify_vfsmount_delete(&mnt->mnt);
1112 dput(mnt->mnt.mnt_root);
1113 deactivate_super(mnt->mnt.mnt_sb);
1114 mnt_free_id(mnt);
1115 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1116 }
1117
1118 static void __cleanup_mnt(struct rcu_head *head)
1119 {
1120 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1121 }
1122
1123 static LLIST_HEAD(delayed_mntput_list);
1124 static void delayed_mntput(struct work_struct *unused)
1125 {
1126 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1127 struct llist_node *next;
1128
1129 for (; node; node = next) {
1130 next = llist_next(node);
1131 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1132 }
1133 }
1134 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1135
1136 static void mntput_no_expire(struct mount *mnt)
1137 {
1138 rcu_read_lock();
1139 mnt_add_count(mnt, -1);
1140 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1141 rcu_read_unlock();
1142 return;
1143 }
1144 lock_mount_hash();
1145 if (mnt_get_count(mnt)) {
1146 rcu_read_unlock();
1147 unlock_mount_hash();
1148 return;
1149 }
1150 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1151 rcu_read_unlock();
1152 unlock_mount_hash();
1153 return;
1154 }
1155 mnt->mnt.mnt_flags |= MNT_DOOMED;
1156 rcu_read_unlock();
1157
1158 list_del(&mnt->mnt_instance);
1159
1160 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1161 struct mount *p, *tmp;
1162 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1163 umount_mnt(p);
1164 }
1165 }
1166 unlock_mount_hash();
1167
1168 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1169 struct task_struct *task = current;
1170 if (likely(!(task->flags & PF_KTHREAD))) {
1171 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1172 if (!task_work_add(task, &mnt->mnt_rcu, true))
1173 return;
1174 }
1175 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1176 schedule_delayed_work(&delayed_mntput_work, 1);
1177 return;
1178 }
1179 cleanup_mnt(mnt);
1180 }
1181
1182 void mntput(struct vfsmount *mnt)
1183 {
1184 if (mnt) {
1185 struct mount *m = real_mount(mnt);
1186 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1187 if (unlikely(m->mnt_expiry_mark))
1188 m->mnt_expiry_mark = 0;
1189 mntput_no_expire(m);
1190 }
1191 }
1192 EXPORT_SYMBOL(mntput);
1193
1194 struct vfsmount *mntget(struct vfsmount *mnt)
1195 {
1196 if (mnt)
1197 mnt_add_count(real_mount(mnt), 1);
1198 return mnt;
1199 }
1200 EXPORT_SYMBOL(mntget);
1201
1202 /* path_is_mountpoint() - Check if path is a mount in the current
1203 * namespace.
1204 *
1205 * d_mountpoint() can only be used reliably to establish if a dentry is
1206 * not mounted in any namespace and that common case is handled inline.
1207 * d_mountpoint() isn't aware of the possibility there may be multiple
1208 * mounts using a given dentry in a different namespace. This function
1209 * checks if the passed in path is a mountpoint rather than the dentry
1210 * alone.
1211 */
1212 bool path_is_mountpoint(const struct path *path)
1213 {
1214 unsigned seq;
1215 bool res;
1216
1217 if (!d_mountpoint(path->dentry))
1218 return false;
1219
1220 rcu_read_lock();
1221 do {
1222 seq = read_seqbegin(&mount_lock);
1223 res = __path_is_mountpoint(path);
1224 } while (read_seqretry(&mount_lock, seq));
1225 rcu_read_unlock();
1226
1227 return res;
1228 }
1229 EXPORT_SYMBOL(path_is_mountpoint);
1230
1231 struct vfsmount *mnt_clone_internal(const struct path *path)
1232 {
1233 struct mount *p;
1234 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1235 if (IS_ERR(p))
1236 return ERR_CAST(p);
1237 p->mnt.mnt_flags |= MNT_INTERNAL;
1238 return &p->mnt;
1239 }
1240
1241 static inline void mangle(struct seq_file *m, const char *s)
1242 {
1243 seq_escape(m, s, " \t\n\\");
1244 }
1245
1246 /*
1247 * Simple .show_options callback for filesystems which don't want to
1248 * implement more complex mount option showing.
1249 *
1250 * See also save_mount_options().
1251 */
1252 int generic_show_options(struct seq_file *m, struct dentry *root)
1253 {
1254 const char *options;
1255
1256 rcu_read_lock();
1257 options = rcu_dereference(root->d_sb->s_options);
1258
1259 if (options != NULL && options[0]) {
1260 seq_putc(m, ',');
1261 mangle(m, options);
1262 }
1263 rcu_read_unlock();
1264
1265 return 0;
1266 }
1267 EXPORT_SYMBOL(generic_show_options);
1268
1269 /*
1270 * If filesystem uses generic_show_options(), this function should be
1271 * called from the fill_super() callback.
1272 *
1273 * The .remount_fs callback usually needs to be handled in a special
1274 * way, to make sure, that previous options are not overwritten if the
1275 * remount fails.
1276 *
1277 * Also note, that if the filesystem's .remount_fs function doesn't
1278 * reset all options to their default value, but changes only newly
1279 * given options, then the displayed options will not reflect reality
1280 * any more.
1281 */
1282 void save_mount_options(struct super_block *sb, char *options)
1283 {
1284 BUG_ON(sb->s_options);
1285 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1286 }
1287 EXPORT_SYMBOL(save_mount_options);
1288
1289 void replace_mount_options(struct super_block *sb, char *options)
1290 {
1291 char *old = sb->s_options;
1292 rcu_assign_pointer(sb->s_options, options);
1293 if (old) {
1294 synchronize_rcu();
1295 kfree(old);
1296 }
1297 }
1298 EXPORT_SYMBOL(replace_mount_options);
1299
1300 #ifdef CONFIG_PROC_FS
1301 /* iterator; we want it to have access to namespace_sem, thus here... */
1302 static void *m_start(struct seq_file *m, loff_t *pos)
1303 {
1304 struct proc_mounts *p = m->private;
1305
1306 down_read(&namespace_sem);
1307 if (p->cached_event == p->ns->event) {
1308 void *v = p->cached_mount;
1309 if (*pos == p->cached_index)
1310 return v;
1311 if (*pos == p->cached_index + 1) {
1312 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1313 return p->cached_mount = v;
1314 }
1315 }
1316
1317 p->cached_event = p->ns->event;
1318 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1319 p->cached_index = *pos;
1320 return p->cached_mount;
1321 }
1322
1323 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1324 {
1325 struct proc_mounts *p = m->private;
1326
1327 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1328 p->cached_index = *pos;
1329 return p->cached_mount;
1330 }
1331
1332 static void m_stop(struct seq_file *m, void *v)
1333 {
1334 up_read(&namespace_sem);
1335 }
1336
1337 static int m_show(struct seq_file *m, void *v)
1338 {
1339 struct proc_mounts *p = m->private;
1340 struct mount *r = list_entry(v, struct mount, mnt_list);
1341 return p->show(m, &r->mnt);
1342 }
1343
1344 const struct seq_operations mounts_op = {
1345 .start = m_start,
1346 .next = m_next,
1347 .stop = m_stop,
1348 .show = m_show,
1349 };
1350 #endif /* CONFIG_PROC_FS */
1351
1352 /**
1353 * may_umount_tree - check if a mount tree is busy
1354 * @mnt: root of mount tree
1355 *
1356 * This is called to check if a tree of mounts has any
1357 * open files, pwds, chroots or sub mounts that are
1358 * busy.
1359 */
1360 int may_umount_tree(struct vfsmount *m)
1361 {
1362 struct mount *mnt = real_mount(m);
1363 int actual_refs = 0;
1364 int minimum_refs = 0;
1365 struct mount *p;
1366 BUG_ON(!m);
1367
1368 /* write lock needed for mnt_get_count */
1369 lock_mount_hash();
1370 for (p = mnt; p; p = next_mnt(p, mnt)) {
1371 actual_refs += mnt_get_count(p);
1372 minimum_refs += 2;
1373 }
1374 unlock_mount_hash();
1375
1376 if (actual_refs > minimum_refs)
1377 return 0;
1378
1379 return 1;
1380 }
1381
1382 EXPORT_SYMBOL(may_umount_tree);
1383
1384 /**
1385 * may_umount - check if a mount point is busy
1386 * @mnt: root of mount
1387 *
1388 * This is called to check if a mount point has any
1389 * open files, pwds, chroots or sub mounts. If the
1390 * mount has sub mounts this will return busy
1391 * regardless of whether the sub mounts are busy.
1392 *
1393 * Doesn't take quota and stuff into account. IOW, in some cases it will
1394 * give false negatives. The main reason why it's here is that we need
1395 * a non-destructive way to look for easily umountable filesystems.
1396 */
1397 int may_umount(struct vfsmount *mnt)
1398 {
1399 int ret = 1;
1400 down_read(&namespace_sem);
1401 lock_mount_hash();
1402 if (propagate_mount_busy(real_mount(mnt), 2))
1403 ret = 0;
1404 unlock_mount_hash();
1405 up_read(&namespace_sem);
1406 return ret;
1407 }
1408
1409 EXPORT_SYMBOL(may_umount);
1410
1411 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1412
1413 static void namespace_unlock(void)
1414 {
1415 struct hlist_head head;
1416
1417 hlist_move_list(&unmounted, &head);
1418
1419 up_write(&namespace_sem);
1420
1421 if (likely(hlist_empty(&head)))
1422 return;
1423
1424 synchronize_rcu();
1425
1426 group_pin_kill(&head);
1427 }
1428
1429 static inline void namespace_lock(void)
1430 {
1431 down_write(&namespace_sem);
1432 }
1433
1434 enum umount_tree_flags {
1435 UMOUNT_SYNC = 1,
1436 UMOUNT_PROPAGATE = 2,
1437 UMOUNT_CONNECTED = 4,
1438 };
1439
1440 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1441 {
1442 /* Leaving mounts connected is only valid for lazy umounts */
1443 if (how & UMOUNT_SYNC)
1444 return true;
1445
1446 /* A mount without a parent has nothing to be connected to */
1447 if (!mnt_has_parent(mnt))
1448 return true;
1449
1450 /* Because the reference counting rules change when mounts are
1451 * unmounted and connected, umounted mounts may not be
1452 * connected to mounted mounts.
1453 */
1454 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1455 return true;
1456
1457 /* Has it been requested that the mount remain connected? */
1458 if (how & UMOUNT_CONNECTED)
1459 return false;
1460
1461 /* Is the mount locked such that it needs to remain connected? */
1462 if (IS_MNT_LOCKED(mnt))
1463 return false;
1464
1465 /* By default disconnect the mount */
1466 return true;
1467 }
1468
1469 /*
1470 * mount_lock must be held
1471 * namespace_sem must be held for write
1472 */
1473 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1474 {
1475 LIST_HEAD(tmp_list);
1476 struct mount *p;
1477
1478 if (how & UMOUNT_PROPAGATE)
1479 propagate_mount_unlock(mnt);
1480
1481 /* Gather the mounts to umount */
1482 for (p = mnt; p; p = next_mnt(p, mnt)) {
1483 p->mnt.mnt_flags |= MNT_UMOUNT;
1484 list_move(&p->mnt_list, &tmp_list);
1485 }
1486
1487 /* Hide the mounts from mnt_mounts */
1488 list_for_each_entry(p, &tmp_list, mnt_list) {
1489 list_del_init(&p->mnt_child);
1490 }
1491
1492 /* Add propogated mounts to the tmp_list */
1493 if (how & UMOUNT_PROPAGATE)
1494 propagate_umount(&tmp_list);
1495
1496 while (!list_empty(&tmp_list)) {
1497 struct mnt_namespace *ns;
1498 bool disconnect;
1499 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1500 list_del_init(&p->mnt_expire);
1501 list_del_init(&p->mnt_list);
1502 ns = p->mnt_ns;
1503 if (ns) {
1504 ns->mounts--;
1505 __touch_mnt_namespace(ns);
1506 }
1507 p->mnt_ns = NULL;
1508 if (how & UMOUNT_SYNC)
1509 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1510
1511 disconnect = disconnect_mount(p, how);
1512
1513 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1514 disconnect ? &unmounted : NULL);
1515 if (mnt_has_parent(p)) {
1516 mnt_add_count(p->mnt_parent, -1);
1517 if (!disconnect) {
1518 /* Don't forget about p */
1519 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1520 } else {
1521 umount_mnt(p);
1522 }
1523 }
1524 change_mnt_propagation(p, MS_PRIVATE);
1525 }
1526 }
1527
1528 static void shrink_submounts(struct mount *mnt);
1529
1530 static int do_umount(struct mount *mnt, int flags)
1531 {
1532 struct super_block *sb = mnt->mnt.mnt_sb;
1533 int retval;
1534
1535 retval = security_sb_umount(&mnt->mnt, flags);
1536 if (retval)
1537 return retval;
1538
1539 /*
1540 * Allow userspace to request a mountpoint be expired rather than
1541 * unmounting unconditionally. Unmount only happens if:
1542 * (1) the mark is already set (the mark is cleared by mntput())
1543 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1544 */
1545 if (flags & MNT_EXPIRE) {
1546 if (&mnt->mnt == current->fs->root.mnt ||
1547 flags & (MNT_FORCE | MNT_DETACH))
1548 return -EINVAL;
1549
1550 /*
1551 * probably don't strictly need the lock here if we examined
1552 * all race cases, but it's a slowpath.
1553 */
1554 lock_mount_hash();
1555 if (mnt_get_count(mnt) != 2) {
1556 unlock_mount_hash();
1557 return -EBUSY;
1558 }
1559 unlock_mount_hash();
1560
1561 if (!xchg(&mnt->mnt_expiry_mark, 1))
1562 return -EAGAIN;
1563 }
1564
1565 /*
1566 * If we may have to abort operations to get out of this
1567 * mount, and they will themselves hold resources we must
1568 * allow the fs to do things. In the Unix tradition of
1569 * 'Gee thats tricky lets do it in userspace' the umount_begin
1570 * might fail to complete on the first run through as other tasks
1571 * must return, and the like. Thats for the mount program to worry
1572 * about for the moment.
1573 */
1574
1575 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1576 sb->s_op->umount_begin(sb);
1577 }
1578
1579 /*
1580 * No sense to grab the lock for this test, but test itself looks
1581 * somewhat bogus. Suggestions for better replacement?
1582 * Ho-hum... In principle, we might treat that as umount + switch
1583 * to rootfs. GC would eventually take care of the old vfsmount.
1584 * Actually it makes sense, especially if rootfs would contain a
1585 * /reboot - static binary that would close all descriptors and
1586 * call reboot(9). Then init(8) could umount root and exec /reboot.
1587 */
1588 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1589 /*
1590 * Special case for "unmounting" root ...
1591 * we just try to remount it readonly.
1592 */
1593 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1594 return -EPERM;
1595 down_write(&sb->s_umount);
1596 if (!(sb->s_flags & MS_RDONLY))
1597 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1598 up_write(&sb->s_umount);
1599 return retval;
1600 }
1601
1602 namespace_lock();
1603 lock_mount_hash();
1604 event++;
1605
1606 if (flags & MNT_DETACH) {
1607 if (!list_empty(&mnt->mnt_list))
1608 umount_tree(mnt, UMOUNT_PROPAGATE);
1609 retval = 0;
1610 } else {
1611 shrink_submounts(mnt);
1612 retval = -EBUSY;
1613 if (!propagate_mount_busy(mnt, 2)) {
1614 if (!list_empty(&mnt->mnt_list))
1615 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1616 retval = 0;
1617 }
1618 }
1619 unlock_mount_hash();
1620 namespace_unlock();
1621 return retval;
1622 }
1623
1624 /*
1625 * __detach_mounts - lazily unmount all mounts on the specified dentry
1626 *
1627 * During unlink, rmdir, and d_drop it is possible to loose the path
1628 * to an existing mountpoint, and wind up leaking the mount.
1629 * detach_mounts allows lazily unmounting those mounts instead of
1630 * leaking them.
1631 *
1632 * The caller may hold dentry->d_inode->i_mutex.
1633 */
1634 void __detach_mounts(struct dentry *dentry)
1635 {
1636 struct mountpoint *mp;
1637 struct mount *mnt;
1638
1639 namespace_lock();
1640 lock_mount_hash();
1641 mp = lookup_mountpoint(dentry);
1642 if (IS_ERR_OR_NULL(mp))
1643 goto out_unlock;
1644
1645 event++;
1646 while (!hlist_empty(&mp->m_list)) {
1647 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1648 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1649 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1650 umount_mnt(mnt);
1651 }
1652 else umount_tree(mnt, UMOUNT_CONNECTED);
1653 }
1654 put_mountpoint(mp);
1655 out_unlock:
1656 unlock_mount_hash();
1657 namespace_unlock();
1658 }
1659
1660 /*
1661 * Is the caller allowed to modify his namespace?
1662 */
1663 static inline bool may_mount(void)
1664 {
1665 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1666 }
1667
1668 static inline bool may_mandlock(void)
1669 {
1670 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1671 return false;
1672 #endif
1673 return capable(CAP_SYS_ADMIN);
1674 }
1675
1676 /*
1677 * Now umount can handle mount points as well as block devices.
1678 * This is important for filesystems which use unnamed block devices.
1679 *
1680 * We now support a flag for forced unmount like the other 'big iron'
1681 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1682 */
1683
1684 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1685 {
1686 struct path path;
1687 struct mount *mnt;
1688 int retval;
1689 int lookup_flags = 0;
1690
1691 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1692 return -EINVAL;
1693
1694 if (!may_mount())
1695 return -EPERM;
1696
1697 if (!(flags & UMOUNT_NOFOLLOW))
1698 lookup_flags |= LOOKUP_FOLLOW;
1699
1700 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1701 if (retval)
1702 goto out;
1703 mnt = real_mount(path.mnt);
1704 retval = -EINVAL;
1705 if (path.dentry != path.mnt->mnt_root)
1706 goto dput_and_out;
1707 if (!check_mnt(mnt))
1708 goto dput_and_out;
1709 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1710 goto dput_and_out;
1711 retval = -EPERM;
1712 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1713 goto dput_and_out;
1714
1715 retval = do_umount(mnt, flags);
1716 dput_and_out:
1717 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1718 dput(path.dentry);
1719 mntput_no_expire(mnt);
1720 out:
1721 return retval;
1722 }
1723
1724 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1725
1726 /*
1727 * The 2.0 compatible umount. No flags.
1728 */
1729 SYSCALL_DEFINE1(oldumount, char __user *, name)
1730 {
1731 return sys_umount(name, 0);
1732 }
1733
1734 #endif
1735
1736 static bool is_mnt_ns_file(struct dentry *dentry)
1737 {
1738 /* Is this a proxy for a mount namespace? */
1739 return dentry->d_op == &ns_dentry_operations &&
1740 dentry->d_fsdata == &mntns_operations;
1741 }
1742
1743 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1744 {
1745 return container_of(ns, struct mnt_namespace, ns);
1746 }
1747
1748 static bool mnt_ns_loop(struct dentry *dentry)
1749 {
1750 /* Could bind mounting the mount namespace inode cause a
1751 * mount namespace loop?
1752 */
1753 struct mnt_namespace *mnt_ns;
1754 if (!is_mnt_ns_file(dentry))
1755 return false;
1756
1757 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1758 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1759 }
1760
1761 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1762 int flag)
1763 {
1764 struct mount *res, *p, *q, *r, *parent;
1765
1766 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1767 return ERR_PTR(-EINVAL);
1768
1769 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1770 return ERR_PTR(-EINVAL);
1771
1772 res = q = clone_mnt(mnt, dentry, flag);
1773 if (IS_ERR(q))
1774 return q;
1775
1776 q->mnt_mountpoint = mnt->mnt_mountpoint;
1777
1778 p = mnt;
1779 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1780 struct mount *s;
1781 if (!is_subdir(r->mnt_mountpoint, dentry))
1782 continue;
1783
1784 for (s = r; s; s = next_mnt(s, r)) {
1785 if (!(flag & CL_COPY_UNBINDABLE) &&
1786 IS_MNT_UNBINDABLE(s)) {
1787 s = skip_mnt_tree(s);
1788 continue;
1789 }
1790 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1791 is_mnt_ns_file(s->mnt.mnt_root)) {
1792 s = skip_mnt_tree(s);
1793 continue;
1794 }
1795 while (p != s->mnt_parent) {
1796 p = p->mnt_parent;
1797 q = q->mnt_parent;
1798 }
1799 p = s;
1800 parent = q;
1801 q = clone_mnt(p, p->mnt.mnt_root, flag);
1802 if (IS_ERR(q))
1803 goto out;
1804 lock_mount_hash();
1805 list_add_tail(&q->mnt_list, &res->mnt_list);
1806 attach_mnt(q, parent, p->mnt_mp);
1807 unlock_mount_hash();
1808 }
1809 }
1810 return res;
1811 out:
1812 if (res) {
1813 lock_mount_hash();
1814 umount_tree(res, UMOUNT_SYNC);
1815 unlock_mount_hash();
1816 }
1817 return q;
1818 }
1819
1820 /* Caller should check returned pointer for errors */
1821
1822 struct vfsmount *collect_mounts(const struct path *path)
1823 {
1824 struct mount *tree;
1825 namespace_lock();
1826 if (!check_mnt(real_mount(path->mnt)))
1827 tree = ERR_PTR(-EINVAL);
1828 else
1829 tree = copy_tree(real_mount(path->mnt), path->dentry,
1830 CL_COPY_ALL | CL_PRIVATE);
1831 namespace_unlock();
1832 if (IS_ERR(tree))
1833 return ERR_CAST(tree);
1834 return &tree->mnt;
1835 }
1836
1837 void drop_collected_mounts(struct vfsmount *mnt)
1838 {
1839 namespace_lock();
1840 lock_mount_hash();
1841 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1842 unlock_mount_hash();
1843 namespace_unlock();
1844 }
1845
1846 /**
1847 * clone_private_mount - create a private clone of a path
1848 *
1849 * This creates a new vfsmount, which will be the clone of @path. The new will
1850 * not be attached anywhere in the namespace and will be private (i.e. changes
1851 * to the originating mount won't be propagated into this).
1852 *
1853 * Release with mntput().
1854 */
1855 struct vfsmount *clone_private_mount(const struct path *path)
1856 {
1857 struct mount *old_mnt = real_mount(path->mnt);
1858 struct mount *new_mnt;
1859
1860 if (IS_MNT_UNBINDABLE(old_mnt))
1861 return ERR_PTR(-EINVAL);
1862
1863 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1864 if (IS_ERR(new_mnt))
1865 return ERR_CAST(new_mnt);
1866
1867 return &new_mnt->mnt;
1868 }
1869 EXPORT_SYMBOL_GPL(clone_private_mount);
1870
1871 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1872 struct vfsmount *root)
1873 {
1874 struct mount *mnt;
1875 int res = f(root, arg);
1876 if (res)
1877 return res;
1878 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1879 res = f(&mnt->mnt, arg);
1880 if (res)
1881 return res;
1882 }
1883 return 0;
1884 }
1885 EXPORT_SYMBOL_GPL(iterate_mounts);
1886
1887 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1888 {
1889 struct mount *p;
1890
1891 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1892 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1893 mnt_release_group_id(p);
1894 }
1895 }
1896
1897 static int invent_group_ids(struct mount *mnt, bool recurse)
1898 {
1899 struct mount *p;
1900
1901 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1902 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1903 int err = mnt_alloc_group_id(p);
1904 if (err) {
1905 cleanup_group_ids(mnt, p);
1906 return err;
1907 }
1908 }
1909 }
1910
1911 return 0;
1912 }
1913
1914 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1915 {
1916 unsigned int max = READ_ONCE(sysctl_mount_max);
1917 unsigned int mounts = 0, old, pending, sum;
1918 struct mount *p;
1919
1920 for (p = mnt; p; p = next_mnt(p, mnt))
1921 mounts++;
1922
1923 old = ns->mounts;
1924 pending = ns->pending_mounts;
1925 sum = old + pending;
1926 if ((old > sum) ||
1927 (pending > sum) ||
1928 (max < sum) ||
1929 (mounts > (max - sum)))
1930 return -ENOSPC;
1931
1932 ns->pending_mounts = pending + mounts;
1933 return 0;
1934 }
1935
1936 /*
1937 * @source_mnt : mount tree to be attached
1938 * @nd : place the mount tree @source_mnt is attached
1939 * @parent_nd : if non-null, detach the source_mnt from its parent and
1940 * store the parent mount and mountpoint dentry.
1941 * (done when source_mnt is moved)
1942 *
1943 * NOTE: in the table below explains the semantics when a source mount
1944 * of a given type is attached to a destination mount of a given type.
1945 * ---------------------------------------------------------------------------
1946 * | BIND MOUNT OPERATION |
1947 * |**************************************************************************
1948 * | source-->| shared | private | slave | unbindable |
1949 * | dest | | | | |
1950 * | | | | | | |
1951 * | v | | | | |
1952 * |**************************************************************************
1953 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1954 * | | | | | |
1955 * |non-shared| shared (+) | private | slave (*) | invalid |
1956 * ***************************************************************************
1957 * A bind operation clones the source mount and mounts the clone on the
1958 * destination mount.
1959 *
1960 * (++) the cloned mount is propagated to all the mounts in the propagation
1961 * tree of the destination mount and the cloned mount is added to
1962 * the peer group of the source mount.
1963 * (+) the cloned mount is created under the destination mount and is marked
1964 * as shared. The cloned mount is added to the peer group of the source
1965 * mount.
1966 * (+++) the mount is propagated to all the mounts in the propagation tree
1967 * of the destination mount and the cloned mount is made slave
1968 * of the same master as that of the source mount. The cloned mount
1969 * is marked as 'shared and slave'.
1970 * (*) the cloned mount is made a slave of the same master as that of the
1971 * source mount.
1972 *
1973 * ---------------------------------------------------------------------------
1974 * | MOVE MOUNT OPERATION |
1975 * |**************************************************************************
1976 * | source-->| shared | private | slave | unbindable |
1977 * | dest | | | | |
1978 * | | | | | | |
1979 * | v | | | | |
1980 * |**************************************************************************
1981 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1982 * | | | | | |
1983 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1984 * ***************************************************************************
1985 *
1986 * (+) the mount is moved to the destination. And is then propagated to
1987 * all the mounts in the propagation tree of the destination mount.
1988 * (+*) the mount is moved to the destination.
1989 * (+++) the mount is moved to the destination and is then propagated to
1990 * all the mounts belonging to the destination mount's propagation tree.
1991 * the mount is marked as 'shared and slave'.
1992 * (*) the mount continues to be a slave at the new location.
1993 *
1994 * if the source mount is a tree, the operations explained above is
1995 * applied to each mount in the tree.
1996 * Must be called without spinlocks held, since this function can sleep
1997 * in allocations.
1998 */
1999 static int attach_recursive_mnt(struct mount *source_mnt,
2000 struct mount *dest_mnt,
2001 struct mountpoint *dest_mp,
2002 struct path *parent_path)
2003 {
2004 HLIST_HEAD(tree_list);
2005 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2006 struct mountpoint *smp;
2007 struct mount *child, *p;
2008 struct hlist_node *n;
2009 int err;
2010
2011 /* Preallocate a mountpoint in case the new mounts need
2012 * to be tucked under other mounts.
2013 */
2014 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2015 if (IS_ERR(smp))
2016 return PTR_ERR(smp);
2017
2018 /* Is there space to add these mounts to the mount namespace? */
2019 if (!parent_path) {
2020 err = count_mounts(ns, source_mnt);
2021 if (err)
2022 goto out;
2023 }
2024
2025 if (IS_MNT_SHARED(dest_mnt)) {
2026 err = invent_group_ids(source_mnt, true);
2027 if (err)
2028 goto out;
2029 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2030 lock_mount_hash();
2031 if (err)
2032 goto out_cleanup_ids;
2033 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2034 set_mnt_shared(p);
2035 } else {
2036 lock_mount_hash();
2037 }
2038 if (parent_path) {
2039 detach_mnt(source_mnt, parent_path);
2040 attach_mnt(source_mnt, dest_mnt, dest_mp);
2041 touch_mnt_namespace(source_mnt->mnt_ns);
2042 } else {
2043 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2044 commit_tree(source_mnt);
2045 }
2046
2047 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2048 struct mount *q;
2049 hlist_del_init(&child->mnt_hash);
2050 q = __lookup_mnt(&child->mnt_parent->mnt,
2051 child->mnt_mountpoint);
2052 if (q)
2053 mnt_change_mountpoint(child, smp, q);
2054 commit_tree(child);
2055 }
2056 put_mountpoint(smp);
2057 unlock_mount_hash();
2058
2059 return 0;
2060
2061 out_cleanup_ids:
2062 while (!hlist_empty(&tree_list)) {
2063 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2064 child->mnt_parent->mnt_ns->pending_mounts = 0;
2065 umount_tree(child, UMOUNT_SYNC);
2066 }
2067 unlock_mount_hash();
2068 cleanup_group_ids(source_mnt, NULL);
2069 out:
2070 ns->pending_mounts = 0;
2071
2072 read_seqlock_excl(&mount_lock);
2073 put_mountpoint(smp);
2074 read_sequnlock_excl(&mount_lock);
2075
2076 return err;
2077 }
2078
2079 static struct mountpoint *lock_mount(struct path *path)
2080 {
2081 struct vfsmount *mnt;
2082 struct dentry *dentry = path->dentry;
2083 retry:
2084 inode_lock(dentry->d_inode);
2085 if (unlikely(cant_mount(dentry))) {
2086 inode_unlock(dentry->d_inode);
2087 return ERR_PTR(-ENOENT);
2088 }
2089 namespace_lock();
2090 mnt = lookup_mnt(path);
2091 if (likely(!mnt)) {
2092 struct mountpoint *mp = get_mountpoint(dentry);
2093 if (IS_ERR(mp)) {
2094 namespace_unlock();
2095 inode_unlock(dentry->d_inode);
2096 return mp;
2097 }
2098 return mp;
2099 }
2100 namespace_unlock();
2101 inode_unlock(path->dentry->d_inode);
2102 path_put(path);
2103 path->mnt = mnt;
2104 dentry = path->dentry = dget(mnt->mnt_root);
2105 goto retry;
2106 }
2107
2108 static void unlock_mount(struct mountpoint *where)
2109 {
2110 struct dentry *dentry = where->m_dentry;
2111
2112 read_seqlock_excl(&mount_lock);
2113 put_mountpoint(where);
2114 read_sequnlock_excl(&mount_lock);
2115
2116 namespace_unlock();
2117 inode_unlock(dentry->d_inode);
2118 }
2119
2120 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2121 {
2122 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2123 return -EINVAL;
2124
2125 if (d_is_dir(mp->m_dentry) !=
2126 d_is_dir(mnt->mnt.mnt_root))
2127 return -ENOTDIR;
2128
2129 return attach_recursive_mnt(mnt, p, mp, NULL);
2130 }
2131
2132 /*
2133 * Sanity check the flags to change_mnt_propagation.
2134 */
2135
2136 static int flags_to_propagation_type(int flags)
2137 {
2138 int type = flags & ~(MS_REC | MS_SILENT);
2139
2140 /* Fail if any non-propagation flags are set */
2141 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2142 return 0;
2143 /* Only one propagation flag should be set */
2144 if (!is_power_of_2(type))
2145 return 0;
2146 return type;
2147 }
2148
2149 /*
2150 * recursively change the type of the mountpoint.
2151 */
2152 static int do_change_type(struct path *path, int flag)
2153 {
2154 struct mount *m;
2155 struct mount *mnt = real_mount(path->mnt);
2156 int recurse = flag & MS_REC;
2157 int type;
2158 int err = 0;
2159
2160 if (path->dentry != path->mnt->mnt_root)
2161 return -EINVAL;
2162
2163 type = flags_to_propagation_type(flag);
2164 if (!type)
2165 return -EINVAL;
2166
2167 namespace_lock();
2168 if (type == MS_SHARED) {
2169 err = invent_group_ids(mnt, recurse);
2170 if (err)
2171 goto out_unlock;
2172 }
2173
2174 lock_mount_hash();
2175 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2176 change_mnt_propagation(m, type);
2177 unlock_mount_hash();
2178
2179 out_unlock:
2180 namespace_unlock();
2181 return err;
2182 }
2183
2184 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2185 {
2186 struct mount *child;
2187 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2188 if (!is_subdir(child->mnt_mountpoint, dentry))
2189 continue;
2190
2191 if (child->mnt.mnt_flags & MNT_LOCKED)
2192 return true;
2193 }
2194 return false;
2195 }
2196
2197 /*
2198 * do loopback mount.
2199 */
2200 static int do_loopback(struct path *path, const char *old_name,
2201 int recurse)
2202 {
2203 struct path old_path;
2204 struct mount *mnt = NULL, *old, *parent;
2205 struct mountpoint *mp;
2206 int err;
2207 if (!old_name || !*old_name)
2208 return -EINVAL;
2209 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2210 if (err)
2211 return err;
2212
2213 err = -EINVAL;
2214 if (mnt_ns_loop(old_path.dentry))
2215 goto out;
2216
2217 mp = lock_mount(path);
2218 err = PTR_ERR(mp);
2219 if (IS_ERR(mp))
2220 goto out;
2221
2222 old = real_mount(old_path.mnt);
2223 parent = real_mount(path->mnt);
2224
2225 err = -EINVAL;
2226 if (IS_MNT_UNBINDABLE(old))
2227 goto out2;
2228
2229 if (!check_mnt(parent))
2230 goto out2;
2231
2232 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2233 goto out2;
2234
2235 if (!recurse && has_locked_children(old, old_path.dentry))
2236 goto out2;
2237
2238 if (recurse)
2239 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2240 else
2241 mnt = clone_mnt(old, old_path.dentry, 0);
2242
2243 if (IS_ERR(mnt)) {
2244 err = PTR_ERR(mnt);
2245 goto out2;
2246 }
2247
2248 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2249
2250 err = graft_tree(mnt, parent, mp);
2251 if (err) {
2252 lock_mount_hash();
2253 umount_tree(mnt, UMOUNT_SYNC);
2254 unlock_mount_hash();
2255 }
2256 out2:
2257 unlock_mount(mp);
2258 out:
2259 path_put(&old_path);
2260 return err;
2261 }
2262
2263 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2264 {
2265 int error = 0;
2266 int readonly_request = 0;
2267
2268 if (ms_flags & MS_RDONLY)
2269 readonly_request = 1;
2270 if (readonly_request == __mnt_is_readonly(mnt))
2271 return 0;
2272
2273 if (readonly_request)
2274 error = mnt_make_readonly(real_mount(mnt));
2275 else
2276 __mnt_unmake_readonly(real_mount(mnt));
2277 return error;
2278 }
2279
2280 /*
2281 * change filesystem flags. dir should be a physical root of filesystem.
2282 * If you've mounted a non-root directory somewhere and want to do remount
2283 * on it - tough luck.
2284 */
2285 static int do_remount(struct path *path, int flags, int mnt_flags,
2286 void *data)
2287 {
2288 int err;
2289 struct super_block *sb = path->mnt->mnt_sb;
2290 struct mount *mnt = real_mount(path->mnt);
2291
2292 if (!check_mnt(mnt))
2293 return -EINVAL;
2294
2295 if (path->dentry != path->mnt->mnt_root)
2296 return -EINVAL;
2297
2298 /* Don't allow changing of locked mnt flags.
2299 *
2300 * No locks need to be held here while testing the various
2301 * MNT_LOCK flags because those flags can never be cleared
2302 * once they are set.
2303 */
2304 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2305 !(mnt_flags & MNT_READONLY)) {
2306 return -EPERM;
2307 }
2308 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2309 !(mnt_flags & MNT_NODEV)) {
2310 return -EPERM;
2311 }
2312 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2313 !(mnt_flags & MNT_NOSUID)) {
2314 return -EPERM;
2315 }
2316 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2317 !(mnt_flags & MNT_NOEXEC)) {
2318 return -EPERM;
2319 }
2320 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2321 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2322 return -EPERM;
2323 }
2324
2325 err = security_sb_remount(sb, data);
2326 if (err)
2327 return err;
2328
2329 down_write(&sb->s_umount);
2330 if (flags & MS_BIND)
2331 err = change_mount_flags(path->mnt, flags);
2332 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2333 err = -EPERM;
2334 else
2335 err = do_remount_sb(sb, flags, data, 0);
2336 if (!err) {
2337 lock_mount_hash();
2338 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2339 mnt->mnt.mnt_flags = mnt_flags;
2340 touch_mnt_namespace(mnt->mnt_ns);
2341 unlock_mount_hash();
2342 }
2343 up_write(&sb->s_umount);
2344 return err;
2345 }
2346
2347 static inline int tree_contains_unbindable(struct mount *mnt)
2348 {
2349 struct mount *p;
2350 for (p = mnt; p; p = next_mnt(p, mnt)) {
2351 if (IS_MNT_UNBINDABLE(p))
2352 return 1;
2353 }
2354 return 0;
2355 }
2356
2357 static int do_move_mount(struct path *path, const char *old_name)
2358 {
2359 struct path old_path, parent_path;
2360 struct mount *p;
2361 struct mount *old;
2362 struct mountpoint *mp;
2363 int err;
2364 if (!old_name || !*old_name)
2365 return -EINVAL;
2366 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2367 if (err)
2368 return err;
2369
2370 mp = lock_mount(path);
2371 err = PTR_ERR(mp);
2372 if (IS_ERR(mp))
2373 goto out;
2374
2375 old = real_mount(old_path.mnt);
2376 p = real_mount(path->mnt);
2377
2378 err = -EINVAL;
2379 if (!check_mnt(p) || !check_mnt(old))
2380 goto out1;
2381
2382 if (old->mnt.mnt_flags & MNT_LOCKED)
2383 goto out1;
2384
2385 err = -EINVAL;
2386 if (old_path.dentry != old_path.mnt->mnt_root)
2387 goto out1;
2388
2389 if (!mnt_has_parent(old))
2390 goto out1;
2391
2392 if (d_is_dir(path->dentry) !=
2393 d_is_dir(old_path.dentry))
2394 goto out1;
2395 /*
2396 * Don't move a mount residing in a shared parent.
2397 */
2398 if (IS_MNT_SHARED(old->mnt_parent))
2399 goto out1;
2400 /*
2401 * Don't move a mount tree containing unbindable mounts to a destination
2402 * mount which is shared.
2403 */
2404 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2405 goto out1;
2406 err = -ELOOP;
2407 for (; mnt_has_parent(p); p = p->mnt_parent)
2408 if (p == old)
2409 goto out1;
2410
2411 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2412 if (err)
2413 goto out1;
2414
2415 /* if the mount is moved, it should no longer be expire
2416 * automatically */
2417 list_del_init(&old->mnt_expire);
2418 out1:
2419 unlock_mount(mp);
2420 out:
2421 if (!err)
2422 path_put(&parent_path);
2423 path_put(&old_path);
2424 return err;
2425 }
2426
2427 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2428 {
2429 int err;
2430 const char *subtype = strchr(fstype, '.');
2431 if (subtype) {
2432 subtype++;
2433 err = -EINVAL;
2434 if (!subtype[0])
2435 goto err;
2436 } else
2437 subtype = "";
2438
2439 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2440 err = -ENOMEM;
2441 if (!mnt->mnt_sb->s_subtype)
2442 goto err;
2443 return mnt;
2444
2445 err:
2446 mntput(mnt);
2447 return ERR_PTR(err);
2448 }
2449
2450 /*
2451 * add a mount into a namespace's mount tree
2452 */
2453 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2454 {
2455 struct mountpoint *mp;
2456 struct mount *parent;
2457 int err;
2458
2459 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2460
2461 mp = lock_mount(path);
2462 if (IS_ERR(mp))
2463 return PTR_ERR(mp);
2464
2465 parent = real_mount(path->mnt);
2466 err = -EINVAL;
2467 if (unlikely(!check_mnt(parent))) {
2468 /* that's acceptable only for automounts done in private ns */
2469 if (!(mnt_flags & MNT_SHRINKABLE))
2470 goto unlock;
2471 /* ... and for those we'd better have mountpoint still alive */
2472 if (!parent->mnt_ns)
2473 goto unlock;
2474 }
2475
2476 /* Refuse the same filesystem on the same mount point */
2477 err = -EBUSY;
2478 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2479 path->mnt->mnt_root == path->dentry)
2480 goto unlock;
2481
2482 err = -EINVAL;
2483 if (d_is_symlink(newmnt->mnt.mnt_root))
2484 goto unlock;
2485
2486 newmnt->mnt.mnt_flags = mnt_flags;
2487 err = graft_tree(newmnt, parent, mp);
2488
2489 unlock:
2490 unlock_mount(mp);
2491 return err;
2492 }
2493
2494 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2495
2496 /*
2497 * create a new mount for userspace and request it to be added into the
2498 * namespace's tree
2499 */
2500 static int do_new_mount(struct path *path, const char *fstype, int flags,
2501 int mnt_flags, const char *name, void *data)
2502 {
2503 struct file_system_type *type;
2504 struct vfsmount *mnt;
2505 int err;
2506
2507 if (!fstype)
2508 return -EINVAL;
2509
2510 type = get_fs_type(fstype);
2511 if (!type)
2512 return -ENODEV;
2513
2514 mnt = vfs_kern_mount(type, flags, name, data);
2515 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2516 !mnt->mnt_sb->s_subtype)
2517 mnt = fs_set_subtype(mnt, fstype);
2518
2519 put_filesystem(type);
2520 if (IS_ERR(mnt))
2521 return PTR_ERR(mnt);
2522
2523 if (mount_too_revealing(mnt, &mnt_flags)) {
2524 mntput(mnt);
2525 return -EPERM;
2526 }
2527
2528 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2529 if (err)
2530 mntput(mnt);
2531 return err;
2532 }
2533
2534 int finish_automount(struct vfsmount *m, struct path *path)
2535 {
2536 struct mount *mnt = real_mount(m);
2537 int err;
2538 /* The new mount record should have at least 2 refs to prevent it being
2539 * expired before we get a chance to add it
2540 */
2541 BUG_ON(mnt_get_count(mnt) < 2);
2542
2543 if (m->mnt_sb == path->mnt->mnt_sb &&
2544 m->mnt_root == path->dentry) {
2545 err = -ELOOP;
2546 goto fail;
2547 }
2548
2549 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2550 if (!err)
2551 return 0;
2552 fail:
2553 /* remove m from any expiration list it may be on */
2554 if (!list_empty(&mnt->mnt_expire)) {
2555 namespace_lock();
2556 list_del_init(&mnt->mnt_expire);
2557 namespace_unlock();
2558 }
2559 mntput(m);
2560 mntput(m);
2561 return err;
2562 }
2563
2564 /**
2565 * mnt_set_expiry - Put a mount on an expiration list
2566 * @mnt: The mount to list.
2567 * @expiry_list: The list to add the mount to.
2568 */
2569 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2570 {
2571 namespace_lock();
2572
2573 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2574
2575 namespace_unlock();
2576 }
2577 EXPORT_SYMBOL(mnt_set_expiry);
2578
2579 /*
2580 * process a list of expirable mountpoints with the intent of discarding any
2581 * mountpoints that aren't in use and haven't been touched since last we came
2582 * here
2583 */
2584 void mark_mounts_for_expiry(struct list_head *mounts)
2585 {
2586 struct mount *mnt, *next;
2587 LIST_HEAD(graveyard);
2588
2589 if (list_empty(mounts))
2590 return;
2591
2592 namespace_lock();
2593 lock_mount_hash();
2594
2595 /* extract from the expiration list every vfsmount that matches the
2596 * following criteria:
2597 * - only referenced by its parent vfsmount
2598 * - still marked for expiry (marked on the last call here; marks are
2599 * cleared by mntput())
2600 */
2601 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2602 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2603 propagate_mount_busy(mnt, 1))
2604 continue;
2605 list_move(&mnt->mnt_expire, &graveyard);
2606 }
2607 while (!list_empty(&graveyard)) {
2608 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2609 touch_mnt_namespace(mnt->mnt_ns);
2610 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2611 }
2612 unlock_mount_hash();
2613 namespace_unlock();
2614 }
2615
2616 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2617
2618 /*
2619 * Ripoff of 'select_parent()'
2620 *
2621 * search the list of submounts for a given mountpoint, and move any
2622 * shrinkable submounts to the 'graveyard' list.
2623 */
2624 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2625 {
2626 struct mount *this_parent = parent;
2627 struct list_head *next;
2628 int found = 0;
2629
2630 repeat:
2631 next = this_parent->mnt_mounts.next;
2632 resume:
2633 while (next != &this_parent->mnt_mounts) {
2634 struct list_head *tmp = next;
2635 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2636
2637 next = tmp->next;
2638 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2639 continue;
2640 /*
2641 * Descend a level if the d_mounts list is non-empty.
2642 */
2643 if (!list_empty(&mnt->mnt_mounts)) {
2644 this_parent = mnt;
2645 goto repeat;
2646 }
2647
2648 if (!propagate_mount_busy(mnt, 1)) {
2649 list_move_tail(&mnt->mnt_expire, graveyard);
2650 found++;
2651 }
2652 }
2653 /*
2654 * All done at this level ... ascend and resume the search
2655 */
2656 if (this_parent != parent) {
2657 next = this_parent->mnt_child.next;
2658 this_parent = this_parent->mnt_parent;
2659 goto resume;
2660 }
2661 return found;
2662 }
2663
2664 /*
2665 * process a list of expirable mountpoints with the intent of discarding any
2666 * submounts of a specific parent mountpoint
2667 *
2668 * mount_lock must be held for write
2669 */
2670 static void shrink_submounts(struct mount *mnt)
2671 {
2672 LIST_HEAD(graveyard);
2673 struct mount *m;
2674
2675 /* extract submounts of 'mountpoint' from the expiration list */
2676 while (select_submounts(mnt, &graveyard)) {
2677 while (!list_empty(&graveyard)) {
2678 m = list_first_entry(&graveyard, struct mount,
2679 mnt_expire);
2680 touch_mnt_namespace(m->mnt_ns);
2681 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2682 }
2683 }
2684 }
2685
2686 /*
2687 * Some copy_from_user() implementations do not return the exact number of
2688 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2689 * Note that this function differs from copy_from_user() in that it will oops
2690 * on bad values of `to', rather than returning a short copy.
2691 */
2692 static long exact_copy_from_user(void *to, const void __user * from,
2693 unsigned long n)
2694 {
2695 char *t = to;
2696 const char __user *f = from;
2697 char c;
2698
2699 if (!access_ok(VERIFY_READ, from, n))
2700 return n;
2701
2702 while (n) {
2703 if (__get_user(c, f)) {
2704 memset(t, 0, n);
2705 break;
2706 }
2707 *t++ = c;
2708 f++;
2709 n--;
2710 }
2711 return n;
2712 }
2713
2714 void *copy_mount_options(const void __user * data)
2715 {
2716 int i;
2717 unsigned long size;
2718 char *copy;
2719
2720 if (!data)
2721 return NULL;
2722
2723 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2724 if (!copy)
2725 return ERR_PTR(-ENOMEM);
2726
2727 /* We only care that *some* data at the address the user
2728 * gave us is valid. Just in case, we'll zero
2729 * the remainder of the page.
2730 */
2731 /* copy_from_user cannot cross TASK_SIZE ! */
2732 size = TASK_SIZE - (unsigned long)data;
2733 if (size > PAGE_SIZE)
2734 size = PAGE_SIZE;
2735
2736 i = size - exact_copy_from_user(copy, data, size);
2737 if (!i) {
2738 kfree(copy);
2739 return ERR_PTR(-EFAULT);
2740 }
2741 if (i != PAGE_SIZE)
2742 memset(copy + i, 0, PAGE_SIZE - i);
2743 return copy;
2744 }
2745
2746 char *copy_mount_string(const void __user *data)
2747 {
2748 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2749 }
2750
2751 /*
2752 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2753 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2754 *
2755 * data is a (void *) that can point to any structure up to
2756 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2757 * information (or be NULL).
2758 *
2759 * Pre-0.97 versions of mount() didn't have a flags word.
2760 * When the flags word was introduced its top half was required
2761 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2762 * Therefore, if this magic number is present, it carries no information
2763 * and must be discarded.
2764 */
2765 long do_mount(const char *dev_name, const char __user *dir_name,
2766 const char *type_page, unsigned long flags, void *data_page)
2767 {
2768 struct path path;
2769 int retval = 0;
2770 int mnt_flags = 0;
2771
2772 /* Discard magic */
2773 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2774 flags &= ~MS_MGC_MSK;
2775
2776 /* Basic sanity checks */
2777 if (data_page)
2778 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2779
2780 /* ... and get the mountpoint */
2781 retval = user_path(dir_name, &path);
2782 if (retval)
2783 return retval;
2784
2785 retval = security_sb_mount(dev_name, &path,
2786 type_page, flags, data_page);
2787 if (!retval && !may_mount())
2788 retval = -EPERM;
2789 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2790 retval = -EPERM;
2791 if (retval)
2792 goto dput_out;
2793
2794 /* Default to relatime unless overriden */
2795 if (!(flags & MS_NOATIME))
2796 mnt_flags |= MNT_RELATIME;
2797
2798 /* Separate the per-mountpoint flags */
2799 if (flags & MS_NOSUID)
2800 mnt_flags |= MNT_NOSUID;
2801 if (flags & MS_NODEV)
2802 mnt_flags |= MNT_NODEV;
2803 if (flags & MS_NOEXEC)
2804 mnt_flags |= MNT_NOEXEC;
2805 if (flags & MS_NOATIME)
2806 mnt_flags |= MNT_NOATIME;
2807 if (flags & MS_NODIRATIME)
2808 mnt_flags |= MNT_NODIRATIME;
2809 if (flags & MS_STRICTATIME)
2810 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2811 if (flags & MS_RDONLY)
2812 mnt_flags |= MNT_READONLY;
2813
2814 /* The default atime for remount is preservation */
2815 if ((flags & MS_REMOUNT) &&
2816 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2817 MS_STRICTATIME)) == 0)) {
2818 mnt_flags &= ~MNT_ATIME_MASK;
2819 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2820 }
2821
2822 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2823 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2824 MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
2825
2826 if (flags & MS_REMOUNT)
2827 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2828 data_page);
2829 else if (flags & MS_BIND)
2830 retval = do_loopback(&path, dev_name, flags & MS_REC);
2831 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2832 retval = do_change_type(&path, flags);
2833 else if (flags & MS_MOVE)
2834 retval = do_move_mount(&path, dev_name);
2835 else
2836 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2837 dev_name, data_page);
2838 dput_out:
2839 path_put(&path);
2840 return retval;
2841 }
2842
2843 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2844 {
2845 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2846 }
2847
2848 static void dec_mnt_namespaces(struct ucounts *ucounts)
2849 {
2850 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2851 }
2852
2853 static void free_mnt_ns(struct mnt_namespace *ns)
2854 {
2855 ns_free_inum(&ns->ns);
2856 dec_mnt_namespaces(ns->ucounts);
2857 put_user_ns(ns->user_ns);
2858 kfree(ns);
2859 }
2860
2861 /*
2862 * Assign a sequence number so we can detect when we attempt to bind
2863 * mount a reference to an older mount namespace into the current
2864 * mount namespace, preventing reference counting loops. A 64bit
2865 * number incrementing at 10Ghz will take 12,427 years to wrap which
2866 * is effectively never, so we can ignore the possibility.
2867 */
2868 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2869
2870 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2871 {
2872 struct mnt_namespace *new_ns;
2873 struct ucounts *ucounts;
2874 int ret;
2875
2876 ucounts = inc_mnt_namespaces(user_ns);
2877 if (!ucounts)
2878 return ERR_PTR(-ENOSPC);
2879
2880 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2881 if (!new_ns) {
2882 dec_mnt_namespaces(ucounts);
2883 return ERR_PTR(-ENOMEM);
2884 }
2885 ret = ns_alloc_inum(&new_ns->ns);
2886 if (ret) {
2887 kfree(new_ns);
2888 dec_mnt_namespaces(ucounts);
2889 return ERR_PTR(ret);
2890 }
2891 new_ns->ns.ops = &mntns_operations;
2892 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2893 atomic_set(&new_ns->count, 1);
2894 new_ns->root = NULL;
2895 INIT_LIST_HEAD(&new_ns->list);
2896 init_waitqueue_head(&new_ns->poll);
2897 new_ns->event = 0;
2898 new_ns->user_ns = get_user_ns(user_ns);
2899 new_ns->ucounts = ucounts;
2900 new_ns->mounts = 0;
2901 new_ns->pending_mounts = 0;
2902 return new_ns;
2903 }
2904
2905 __latent_entropy
2906 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2907 struct user_namespace *user_ns, struct fs_struct *new_fs)
2908 {
2909 struct mnt_namespace *new_ns;
2910 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2911 struct mount *p, *q;
2912 struct mount *old;
2913 struct mount *new;
2914 int copy_flags;
2915
2916 BUG_ON(!ns);
2917
2918 if (likely(!(flags & CLONE_NEWNS))) {
2919 get_mnt_ns(ns);
2920 return ns;
2921 }
2922
2923 old = ns->root;
2924
2925 new_ns = alloc_mnt_ns(user_ns);
2926 if (IS_ERR(new_ns))
2927 return new_ns;
2928
2929 namespace_lock();
2930 /* First pass: copy the tree topology */
2931 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2932 if (user_ns != ns->user_ns)
2933 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2934 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2935 if (IS_ERR(new)) {
2936 namespace_unlock();
2937 free_mnt_ns(new_ns);
2938 return ERR_CAST(new);
2939 }
2940 new_ns->root = new;
2941 list_add_tail(&new_ns->list, &new->mnt_list);
2942
2943 /*
2944 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2945 * as belonging to new namespace. We have already acquired a private
2946 * fs_struct, so tsk->fs->lock is not needed.
2947 */
2948 p = old;
2949 q = new;
2950 while (p) {
2951 q->mnt_ns = new_ns;
2952 new_ns->mounts++;
2953 if (new_fs) {
2954 if (&p->mnt == new_fs->root.mnt) {
2955 new_fs->root.mnt = mntget(&q->mnt);
2956 rootmnt = &p->mnt;
2957 }
2958 if (&p->mnt == new_fs->pwd.mnt) {
2959 new_fs->pwd.mnt = mntget(&q->mnt);
2960 pwdmnt = &p->mnt;
2961 }
2962 }
2963 p = next_mnt(p, old);
2964 q = next_mnt(q, new);
2965 if (!q)
2966 break;
2967 while (p->mnt.mnt_root != q->mnt.mnt_root)
2968 p = next_mnt(p, old);
2969 }
2970 namespace_unlock();
2971
2972 if (rootmnt)
2973 mntput(rootmnt);
2974 if (pwdmnt)
2975 mntput(pwdmnt);
2976
2977 return new_ns;
2978 }
2979
2980 /**
2981 * create_mnt_ns - creates a private namespace and adds a root filesystem
2982 * @mnt: pointer to the new root filesystem mountpoint
2983 */
2984 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2985 {
2986 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2987 if (!IS_ERR(new_ns)) {
2988 struct mount *mnt = real_mount(m);
2989 mnt->mnt_ns = new_ns;
2990 new_ns->root = mnt;
2991 new_ns->mounts++;
2992 list_add(&mnt->mnt_list, &new_ns->list);
2993 } else {
2994 mntput(m);
2995 }
2996 return new_ns;
2997 }
2998
2999 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3000 {
3001 struct mnt_namespace *ns;
3002 struct super_block *s;
3003 struct path path;
3004 int err;
3005
3006 ns = create_mnt_ns(mnt);
3007 if (IS_ERR(ns))
3008 return ERR_CAST(ns);
3009
3010 err = vfs_path_lookup(mnt->mnt_root, mnt,
3011 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3012
3013 put_mnt_ns(ns);
3014
3015 if (err)
3016 return ERR_PTR(err);
3017
3018 /* trade a vfsmount reference for active sb one */
3019 s = path.mnt->mnt_sb;
3020 atomic_inc(&s->s_active);
3021 mntput(path.mnt);
3022 /* lock the sucker */
3023 down_write(&s->s_umount);
3024 /* ... and return the root of (sub)tree on it */
3025 return path.dentry;
3026 }
3027 EXPORT_SYMBOL(mount_subtree);
3028
3029 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3030 char __user *, type, unsigned long, flags, void __user *, data)
3031 {
3032 int ret;
3033 char *kernel_type;
3034 char *kernel_dev;
3035 void *options;
3036
3037 kernel_type = copy_mount_string(type);
3038 ret = PTR_ERR(kernel_type);
3039 if (IS_ERR(kernel_type))
3040 goto out_type;
3041
3042 kernel_dev = copy_mount_string(dev_name);
3043 ret = PTR_ERR(kernel_dev);
3044 if (IS_ERR(kernel_dev))
3045 goto out_dev;
3046
3047 options = copy_mount_options(data);
3048 ret = PTR_ERR(options);
3049 if (IS_ERR(options))
3050 goto out_data;
3051
3052 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3053
3054 kfree(options);
3055 out_data:
3056 kfree(kernel_dev);
3057 out_dev:
3058 kfree(kernel_type);
3059 out_type:
3060 return ret;
3061 }
3062
3063 /*
3064 * Return true if path is reachable from root
3065 *
3066 * namespace_sem or mount_lock is held
3067 */
3068 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3069 const struct path *root)
3070 {
3071 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3072 dentry = mnt->mnt_mountpoint;
3073 mnt = mnt->mnt_parent;
3074 }
3075 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3076 }
3077
3078 bool path_is_under(const struct path *path1, const struct path *path2)
3079 {
3080 bool res;
3081 read_seqlock_excl(&mount_lock);
3082 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3083 read_sequnlock_excl(&mount_lock);
3084 return res;
3085 }
3086 EXPORT_SYMBOL(path_is_under);
3087
3088 /*
3089 * pivot_root Semantics:
3090 * Moves the root file system of the current process to the directory put_old,
3091 * makes new_root as the new root file system of the current process, and sets
3092 * root/cwd of all processes which had them on the current root to new_root.
3093 *
3094 * Restrictions:
3095 * The new_root and put_old must be directories, and must not be on the
3096 * same file system as the current process root. The put_old must be
3097 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3098 * pointed to by put_old must yield the same directory as new_root. No other
3099 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3100 *
3101 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3102 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3103 * in this situation.
3104 *
3105 * Notes:
3106 * - we don't move root/cwd if they are not at the root (reason: if something
3107 * cared enough to change them, it's probably wrong to force them elsewhere)
3108 * - it's okay to pick a root that isn't the root of a file system, e.g.
3109 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3110 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3111 * first.
3112 */
3113 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3114 const char __user *, put_old)
3115 {
3116 struct path new, old, parent_path, root_parent, root;
3117 struct mount *new_mnt, *root_mnt, *old_mnt;
3118 struct mountpoint *old_mp, *root_mp;
3119 int error;
3120
3121 if (!may_mount())
3122 return -EPERM;
3123
3124 error = user_path_dir(new_root, &new);
3125 if (error)
3126 goto out0;
3127
3128 error = user_path_dir(put_old, &old);
3129 if (error)
3130 goto out1;
3131
3132 error = security_sb_pivotroot(&old, &new);
3133 if (error)
3134 goto out2;
3135
3136 get_fs_root(current->fs, &root);
3137 old_mp = lock_mount(&old);
3138 error = PTR_ERR(old_mp);
3139 if (IS_ERR(old_mp))
3140 goto out3;
3141
3142 error = -EINVAL;
3143 new_mnt = real_mount(new.mnt);
3144 root_mnt = real_mount(root.mnt);
3145 old_mnt = real_mount(old.mnt);
3146 if (IS_MNT_SHARED(old_mnt) ||
3147 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3148 IS_MNT_SHARED(root_mnt->mnt_parent))
3149 goto out4;
3150 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3151 goto out4;
3152 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3153 goto out4;
3154 error = -ENOENT;
3155 if (d_unlinked(new.dentry))
3156 goto out4;
3157 error = -EBUSY;
3158 if (new_mnt == root_mnt || old_mnt == root_mnt)
3159 goto out4; /* loop, on the same file system */
3160 error = -EINVAL;
3161 if (root.mnt->mnt_root != root.dentry)
3162 goto out4; /* not a mountpoint */
3163 if (!mnt_has_parent(root_mnt))
3164 goto out4; /* not attached */
3165 root_mp = root_mnt->mnt_mp;
3166 if (new.mnt->mnt_root != new.dentry)
3167 goto out4; /* not a mountpoint */
3168 if (!mnt_has_parent(new_mnt))
3169 goto out4; /* not attached */
3170 /* make sure we can reach put_old from new_root */
3171 if (!is_path_reachable(old_mnt, old.dentry, &new))
3172 goto out4;
3173 /* make certain new is below the root */
3174 if (!is_path_reachable(new_mnt, new.dentry, &root))
3175 goto out4;
3176 root_mp->m_count++; /* pin it so it won't go away */
3177 lock_mount_hash();
3178 detach_mnt(new_mnt, &parent_path);
3179 detach_mnt(root_mnt, &root_parent);
3180 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3181 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3182 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3183 }
3184 /* mount old root on put_old */
3185 attach_mnt(root_mnt, old_mnt, old_mp);
3186 /* mount new_root on / */
3187 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3188 touch_mnt_namespace(current->nsproxy->mnt_ns);
3189 /* A moved mount should not expire automatically */
3190 list_del_init(&new_mnt->mnt_expire);
3191 put_mountpoint(root_mp);
3192 unlock_mount_hash();
3193 chroot_fs_refs(&root, &new);
3194 error = 0;
3195 out4:
3196 unlock_mount(old_mp);
3197 if (!error) {
3198 path_put(&root_parent);
3199 path_put(&parent_path);
3200 }
3201 out3:
3202 path_put(&root);
3203 out2:
3204 path_put(&old);
3205 out1:
3206 path_put(&new);
3207 out0:
3208 return error;
3209 }
3210
3211 static void __init init_mount_tree(void)
3212 {
3213 struct vfsmount *mnt;
3214 struct mnt_namespace *ns;
3215 struct path root;
3216 struct file_system_type *type;
3217
3218 type = get_fs_type("rootfs");
3219 if (!type)
3220 panic("Can't find rootfs type");
3221 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3222 put_filesystem(type);
3223 if (IS_ERR(mnt))
3224 panic("Can't create rootfs");
3225
3226 ns = create_mnt_ns(mnt);
3227 if (IS_ERR(ns))
3228 panic("Can't allocate initial namespace");
3229
3230 init_task.nsproxy->mnt_ns = ns;
3231 get_mnt_ns(ns);
3232
3233 root.mnt = mnt;
3234 root.dentry = mnt->mnt_root;
3235 mnt->mnt_flags |= MNT_LOCKED;
3236
3237 set_fs_pwd(current->fs, &root);
3238 set_fs_root(current->fs, &root);
3239 }
3240
3241 void __init mnt_init(void)
3242 {
3243 unsigned u;
3244 int err;
3245
3246 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3247 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3248
3249 mount_hashtable = alloc_large_system_hash("Mount-cache",
3250 sizeof(struct hlist_head),
3251 mhash_entries, 19,
3252 0,
3253 &m_hash_shift, &m_hash_mask, 0, 0);
3254 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3255 sizeof(struct hlist_head),
3256 mphash_entries, 19,
3257 0,
3258 &mp_hash_shift, &mp_hash_mask, 0, 0);
3259
3260 if (!mount_hashtable || !mountpoint_hashtable)
3261 panic("Failed to allocate mount hash table\n");
3262
3263 for (u = 0; u <= m_hash_mask; u++)
3264 INIT_HLIST_HEAD(&mount_hashtable[u]);
3265 for (u = 0; u <= mp_hash_mask; u++)
3266 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3267
3268 kernfs_init();
3269
3270 err = sysfs_init();
3271 if (err)
3272 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3273 __func__, err);
3274 fs_kobj = kobject_create_and_add("fs", NULL);
3275 if (!fs_kobj)
3276 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3277 init_rootfs();
3278 init_mount_tree();
3279 }
3280
3281 void put_mnt_ns(struct mnt_namespace *ns)
3282 {
3283 if (!atomic_dec_and_test(&ns->count))
3284 return;
3285 drop_collected_mounts(&ns->root->mnt);
3286 free_mnt_ns(ns);
3287 }
3288
3289 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3290 {
3291 struct vfsmount *mnt;
3292 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3293 if (!IS_ERR(mnt)) {
3294 /*
3295 * it is a longterm mount, don't release mnt until
3296 * we unmount before file sys is unregistered
3297 */
3298 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3299 }
3300 return mnt;
3301 }
3302 EXPORT_SYMBOL_GPL(kern_mount_data);
3303
3304 void kern_unmount(struct vfsmount *mnt)
3305 {
3306 /* release long term mount so mount point can be released */
3307 if (!IS_ERR_OR_NULL(mnt)) {
3308 real_mount(mnt)->mnt_ns = NULL;
3309 synchronize_rcu(); /* yecchhh... */
3310 mntput(mnt);
3311 }
3312 }
3313 EXPORT_SYMBOL(kern_unmount);
3314
3315 bool our_mnt(struct vfsmount *mnt)
3316 {
3317 return check_mnt(real_mount(mnt));
3318 }
3319
3320 bool current_chrooted(void)
3321 {
3322 /* Does the current process have a non-standard root */
3323 struct path ns_root;
3324 struct path fs_root;
3325 bool chrooted;
3326
3327 /* Find the namespace root */
3328 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3329 ns_root.dentry = ns_root.mnt->mnt_root;
3330 path_get(&ns_root);
3331 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3332 ;
3333
3334 get_fs_root(current->fs, &fs_root);
3335
3336 chrooted = !path_equal(&fs_root, &ns_root);
3337
3338 path_put(&fs_root);
3339 path_put(&ns_root);
3340
3341 return chrooted;
3342 }
3343
3344 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3345 int *new_mnt_flags)
3346 {
3347 int new_flags = *new_mnt_flags;
3348 struct mount *mnt;
3349 bool visible = false;
3350
3351 down_read(&namespace_sem);
3352 list_for_each_entry(mnt, &ns->list, mnt_list) {
3353 struct mount *child;
3354 int mnt_flags;
3355
3356 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3357 continue;
3358
3359 /* This mount is not fully visible if it's root directory
3360 * is not the root directory of the filesystem.
3361 */
3362 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3363 continue;
3364
3365 /* A local view of the mount flags */
3366 mnt_flags = mnt->mnt.mnt_flags;
3367
3368 /* Don't miss readonly hidden in the superblock flags */
3369 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3370 mnt_flags |= MNT_LOCK_READONLY;
3371
3372 /* Verify the mount flags are equal to or more permissive
3373 * than the proposed new mount.
3374 */
3375 if ((mnt_flags & MNT_LOCK_READONLY) &&
3376 !(new_flags & MNT_READONLY))
3377 continue;
3378 if ((mnt_flags & MNT_LOCK_ATIME) &&
3379 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3380 continue;
3381
3382 /* This mount is not fully visible if there are any
3383 * locked child mounts that cover anything except for
3384 * empty directories.
3385 */
3386 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3387 struct inode *inode = child->mnt_mountpoint->d_inode;
3388 /* Only worry about locked mounts */
3389 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3390 continue;
3391 /* Is the directory permanetly empty? */
3392 if (!is_empty_dir_inode(inode))
3393 goto next;
3394 }
3395 /* Preserve the locked attributes */
3396 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3397 MNT_LOCK_ATIME);
3398 visible = true;
3399 goto found;
3400 next: ;
3401 }
3402 found:
3403 up_read(&namespace_sem);
3404 return visible;
3405 }
3406
3407 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3408 {
3409 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3410 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3411 unsigned long s_iflags;
3412
3413 if (ns->user_ns == &init_user_ns)
3414 return false;
3415
3416 /* Can this filesystem be too revealing? */
3417 s_iflags = mnt->mnt_sb->s_iflags;
3418 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3419 return false;
3420
3421 if ((s_iflags & required_iflags) != required_iflags) {
3422 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3423 required_iflags);
3424 return true;
3425 }
3426
3427 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3428 }
3429
3430 bool mnt_may_suid(struct vfsmount *mnt)
3431 {
3432 /*
3433 * Foreign mounts (accessed via fchdir or through /proc
3434 * symlinks) are always treated as if they are nosuid. This
3435 * prevents namespaces from trusting potentially unsafe
3436 * suid/sgid bits, file caps, or security labels that originate
3437 * in other namespaces.
3438 */
3439 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3440 current_in_userns(mnt->mnt_sb->s_user_ns);
3441 }
3442
3443 static struct ns_common *mntns_get(struct task_struct *task)
3444 {
3445 struct ns_common *ns = NULL;
3446 struct nsproxy *nsproxy;
3447
3448 task_lock(task);
3449 nsproxy = task->nsproxy;
3450 if (nsproxy) {
3451 ns = &nsproxy->mnt_ns->ns;
3452 get_mnt_ns(to_mnt_ns(ns));
3453 }
3454 task_unlock(task);
3455
3456 return ns;
3457 }
3458
3459 static void mntns_put(struct ns_common *ns)
3460 {
3461 put_mnt_ns(to_mnt_ns(ns));
3462 }
3463
3464 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3465 {
3466 struct fs_struct *fs = current->fs;
3467 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3468 struct path root;
3469
3470 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3471 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3472 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3473 return -EPERM;
3474
3475 if (fs->users != 1)
3476 return -EINVAL;
3477
3478 get_mnt_ns(mnt_ns);
3479 put_mnt_ns(nsproxy->mnt_ns);
3480 nsproxy->mnt_ns = mnt_ns;
3481
3482 /* Find the root */
3483 root.mnt = &mnt_ns->root->mnt;
3484 root.dentry = mnt_ns->root->mnt.mnt_root;
3485 path_get(&root);
3486 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3487 ;
3488
3489 /* Update the pwd and root */
3490 set_fs_pwd(fs, &root);
3491 set_fs_root(fs, &root);
3492
3493 path_put(&root);
3494 return 0;
3495 }
3496
3497 static struct user_namespace *mntns_owner(struct ns_common *ns)
3498 {
3499 return to_mnt_ns(ns)->user_ns;
3500 }
3501
3502 const struct proc_ns_operations mntns_operations = {
3503 .name = "mnt",
3504 .type = CLONE_NEWNS,
3505 .get = mntns_get,
3506 .put = mntns_put,
3507 .install = mntns_install,
3508 .owner = mntns_owner,
3509 };