]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/userfaultfd.c
UBUNTU: Start new release
[mirror_ubuntu-zesty-kernel.git] / fs / userfaultfd.c
1 /*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15 #include <linux/hashtable.h>
16 #include <linux/sched.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29
30 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
31
32 enum userfaultfd_state {
33 UFFD_STATE_WAIT_API,
34 UFFD_STATE_RUNNING,
35 };
36
37 /*
38 * Start with fault_pending_wqh and fault_wqh so they're more likely
39 * to be in the same cacheline.
40 */
41 struct userfaultfd_ctx {
42 /* waitqueue head for the pending (i.e. not read) userfaults */
43 wait_queue_head_t fault_pending_wqh;
44 /* waitqueue head for the userfaults */
45 wait_queue_head_t fault_wqh;
46 /* waitqueue head for the pseudo fd to wakeup poll/read */
47 wait_queue_head_t fd_wqh;
48 /* a refile sequence protected by fault_pending_wqh lock */
49 struct seqcount refile_seq;
50 /* pseudo fd refcounting */
51 atomic_t refcount;
52 /* userfaultfd syscall flags */
53 unsigned int flags;
54 /* state machine */
55 enum userfaultfd_state state;
56 /* released */
57 bool released;
58 /* mm with one ore more vmas attached to this userfaultfd_ctx */
59 struct mm_struct *mm;
60 };
61
62 struct userfaultfd_wait_queue {
63 struct uffd_msg msg;
64 wait_queue_t wq;
65 struct userfaultfd_ctx *ctx;
66 bool waken;
67 };
68
69 struct userfaultfd_wake_range {
70 unsigned long start;
71 unsigned long len;
72 };
73
74 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
75 int wake_flags, void *key)
76 {
77 struct userfaultfd_wake_range *range = key;
78 int ret;
79 struct userfaultfd_wait_queue *uwq;
80 unsigned long start, len;
81
82 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
83 ret = 0;
84 /* len == 0 means wake all */
85 start = range->start;
86 len = range->len;
87 if (len && (start > uwq->msg.arg.pagefault.address ||
88 start + len <= uwq->msg.arg.pagefault.address))
89 goto out;
90 WRITE_ONCE(uwq->waken, true);
91 /*
92 * The implicit smp_mb__before_spinlock in try_to_wake_up()
93 * renders uwq->waken visible to other CPUs before the task is
94 * waken.
95 */
96 ret = wake_up_state(wq->private, mode);
97 if (ret)
98 /*
99 * Wake only once, autoremove behavior.
100 *
101 * After the effect of list_del_init is visible to the
102 * other CPUs, the waitqueue may disappear from under
103 * us, see the !list_empty_careful() in
104 * handle_userfault(). try_to_wake_up() has an
105 * implicit smp_mb__before_spinlock, and the
106 * wq->private is read before calling the extern
107 * function "wake_up_state" (which in turns calls
108 * try_to_wake_up). While the spin_lock;spin_unlock;
109 * wouldn't be enough, the smp_mb__before_spinlock is
110 * enough to avoid an explicit smp_mb() here.
111 */
112 list_del_init(&wq->task_list);
113 out:
114 return ret;
115 }
116
117 /**
118 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
119 * context.
120 * @ctx: [in] Pointer to the userfaultfd context.
121 *
122 * Returns: In case of success, returns not zero.
123 */
124 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
125 {
126 if (!atomic_inc_not_zero(&ctx->refcount))
127 BUG();
128 }
129
130 /**
131 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
132 * context.
133 * @ctx: [in] Pointer to userfaultfd context.
134 *
135 * The userfaultfd context reference must have been previously acquired either
136 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
137 */
138 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
139 {
140 if (atomic_dec_and_test(&ctx->refcount)) {
141 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
142 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
143 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
144 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
145 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
146 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
147 mmdrop(ctx->mm);
148 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
149 }
150 }
151
152 static inline void msg_init(struct uffd_msg *msg)
153 {
154 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
155 /*
156 * Must use memset to zero out the paddings or kernel data is
157 * leaked to userland.
158 */
159 memset(msg, 0, sizeof(struct uffd_msg));
160 }
161
162 static inline struct uffd_msg userfault_msg(unsigned long address,
163 unsigned int flags,
164 unsigned long reason)
165 {
166 struct uffd_msg msg;
167 msg_init(&msg);
168 msg.event = UFFD_EVENT_PAGEFAULT;
169 msg.arg.pagefault.address = address;
170 if (flags & FAULT_FLAG_WRITE)
171 /*
172 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the
173 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
174 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
175 * was a read fault, otherwise if set it means it's
176 * a write fault.
177 */
178 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
179 if (reason & VM_UFFD_WP)
180 /*
181 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
182 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
183 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
184 * a missing fault, otherwise if set it means it's a
185 * write protect fault.
186 */
187 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
188 return msg;
189 }
190
191 /*
192 * Verify the pagetables are still not ok after having reigstered into
193 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
194 * userfault that has already been resolved, if userfaultfd_read and
195 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
196 * threads.
197 */
198 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
199 unsigned long address,
200 unsigned long flags,
201 unsigned long reason)
202 {
203 struct mm_struct *mm = ctx->mm;
204 pgd_t *pgd;
205 pud_t *pud;
206 pmd_t *pmd, _pmd;
207 pte_t *pte;
208 bool ret = true;
209
210 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
211
212 pgd = pgd_offset(mm, address);
213 if (!pgd_present(*pgd))
214 goto out;
215 pud = pud_offset(pgd, address);
216 if (!pud_present(*pud))
217 goto out;
218 pmd = pmd_offset(pud, address);
219 /*
220 * READ_ONCE must function as a barrier with narrower scope
221 * and it must be equivalent to:
222 * _pmd = *pmd; barrier();
223 *
224 * This is to deal with the instability (as in
225 * pmd_trans_unstable) of the pmd.
226 */
227 _pmd = READ_ONCE(*pmd);
228 if (!pmd_present(_pmd))
229 goto out;
230
231 ret = false;
232 if (pmd_trans_huge(_pmd))
233 goto out;
234
235 /*
236 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
237 * and use the standard pte_offset_map() instead of parsing _pmd.
238 */
239 pte = pte_offset_map(pmd, address);
240 /*
241 * Lockless access: we're in a wait_event so it's ok if it
242 * changes under us.
243 */
244 if (pte_none(*pte))
245 ret = true;
246 pte_unmap(pte);
247
248 out:
249 return ret;
250 }
251
252 /*
253 * The locking rules involved in returning VM_FAULT_RETRY depending on
254 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
255 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
256 * recommendation in __lock_page_or_retry is not an understatement.
257 *
258 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
259 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
260 * not set.
261 *
262 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
263 * set, VM_FAULT_RETRY can still be returned if and only if there are
264 * fatal_signal_pending()s, and the mmap_sem must be released before
265 * returning it.
266 */
267 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
268 {
269 struct mm_struct *mm = vmf->vma->vm_mm;
270 struct userfaultfd_ctx *ctx;
271 struct userfaultfd_wait_queue uwq;
272 int ret;
273 bool must_wait, return_to_userland;
274 long blocking_state;
275
276 BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
277
278 ret = VM_FAULT_SIGBUS;
279 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
280 if (!ctx)
281 goto out;
282
283 BUG_ON(ctx->mm != mm);
284
285 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
286 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
287
288 /*
289 * If it's already released don't get it. This avoids to loop
290 * in __get_user_pages if userfaultfd_release waits on the
291 * caller of handle_userfault to release the mmap_sem.
292 */
293 if (unlikely(ACCESS_ONCE(ctx->released)))
294 goto out;
295
296 /*
297 * We don't do userfault handling for the final child pid update.
298 */
299 if (current->flags & PF_EXITING)
300 goto out;
301
302 /*
303 * Check that we can return VM_FAULT_RETRY.
304 *
305 * NOTE: it should become possible to return VM_FAULT_RETRY
306 * even if FAULT_FLAG_TRIED is set without leading to gup()
307 * -EBUSY failures, if the userfaultfd is to be extended for
308 * VM_UFFD_WP tracking and we intend to arm the userfault
309 * without first stopping userland access to the memory. For
310 * VM_UFFD_MISSING userfaults this is enough for now.
311 */
312 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
313 /*
314 * Validate the invariant that nowait must allow retry
315 * to be sure not to return SIGBUS erroneously on
316 * nowait invocations.
317 */
318 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
319 #ifdef CONFIG_DEBUG_VM
320 if (printk_ratelimit()) {
321 printk(KERN_WARNING
322 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
323 vmf->flags);
324 dump_stack();
325 }
326 #endif
327 goto out;
328 }
329
330 /*
331 * Handle nowait, not much to do other than tell it to retry
332 * and wait.
333 */
334 ret = VM_FAULT_RETRY;
335 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
336 goto out;
337
338 /* take the reference before dropping the mmap_sem */
339 userfaultfd_ctx_get(ctx);
340
341 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
342 uwq.wq.private = current;
343 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
344 uwq.ctx = ctx;
345 uwq.waken = false;
346
347 return_to_userland =
348 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
349 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
350 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
351 TASK_KILLABLE;
352
353 spin_lock(&ctx->fault_pending_wqh.lock);
354 /*
355 * After the __add_wait_queue the uwq is visible to userland
356 * through poll/read().
357 */
358 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
359 /*
360 * The smp_mb() after __set_current_state prevents the reads
361 * following the spin_unlock to happen before the list_add in
362 * __add_wait_queue.
363 */
364 set_current_state(blocking_state);
365 spin_unlock(&ctx->fault_pending_wqh.lock);
366
367 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
368 reason);
369 up_read(&mm->mmap_sem);
370
371 if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
372 (return_to_userland ? !signal_pending(current) :
373 !fatal_signal_pending(current)))) {
374 wake_up_poll(&ctx->fd_wqh, POLLIN);
375 schedule();
376 ret |= VM_FAULT_MAJOR;
377
378 /*
379 * False wakeups can orginate even from rwsem before
380 * up_read() however userfaults will wait either for a
381 * targeted wakeup on the specific uwq waitqueue from
382 * wake_userfault() or for signals or for uffd
383 * release.
384 */
385 while (!READ_ONCE(uwq.waken)) {
386 /*
387 * This needs the full smp_store_mb()
388 * guarantee as the state write must be
389 * visible to other CPUs before reading
390 * uwq.waken from other CPUs.
391 */
392 set_current_state(blocking_state);
393 if (READ_ONCE(uwq.waken) ||
394 READ_ONCE(ctx->released) ||
395 (return_to_userland ? signal_pending(current) :
396 fatal_signal_pending(current)))
397 break;
398 schedule();
399 }
400 }
401
402 __set_current_state(TASK_RUNNING);
403
404 if (return_to_userland) {
405 if (signal_pending(current) &&
406 !fatal_signal_pending(current)) {
407 /*
408 * If we got a SIGSTOP or SIGCONT and this is
409 * a normal userland page fault, just let
410 * userland return so the signal will be
411 * handled and gdb debugging works. The page
412 * fault code immediately after we return from
413 * this function is going to release the
414 * mmap_sem and it's not depending on it
415 * (unlike gup would if we were not to return
416 * VM_FAULT_RETRY).
417 *
418 * If a fatal signal is pending we still take
419 * the streamlined VM_FAULT_RETRY failure path
420 * and there's no need to retake the mmap_sem
421 * in such case.
422 */
423 down_read(&mm->mmap_sem);
424 ret = 0;
425 }
426 }
427
428 /*
429 * Here we race with the list_del; list_add in
430 * userfaultfd_ctx_read(), however because we don't ever run
431 * list_del_init() to refile across the two lists, the prev
432 * and next pointers will never point to self. list_add also
433 * would never let any of the two pointers to point to
434 * self. So list_empty_careful won't risk to see both pointers
435 * pointing to self at any time during the list refile. The
436 * only case where list_del_init() is called is the full
437 * removal in the wake function and there we don't re-list_add
438 * and it's fine not to block on the spinlock. The uwq on this
439 * kernel stack can be released after the list_del_init.
440 */
441 if (!list_empty_careful(&uwq.wq.task_list)) {
442 spin_lock(&ctx->fault_pending_wqh.lock);
443 /*
444 * No need of list_del_init(), the uwq on the stack
445 * will be freed shortly anyway.
446 */
447 list_del(&uwq.wq.task_list);
448 spin_unlock(&ctx->fault_pending_wqh.lock);
449 }
450
451 /*
452 * ctx may go away after this if the userfault pseudo fd is
453 * already released.
454 */
455 userfaultfd_ctx_put(ctx);
456
457 out:
458 return ret;
459 }
460
461 static int userfaultfd_release(struct inode *inode, struct file *file)
462 {
463 struct userfaultfd_ctx *ctx = file->private_data;
464 struct mm_struct *mm = ctx->mm;
465 struct vm_area_struct *vma, *prev;
466 /* len == 0 means wake all */
467 struct userfaultfd_wake_range range = { .len = 0, };
468 unsigned long new_flags;
469
470 ACCESS_ONCE(ctx->released) = true;
471
472 if (!mmget_not_zero(mm))
473 goto wakeup;
474
475 /*
476 * Flush page faults out of all CPUs. NOTE: all page faults
477 * must be retried without returning VM_FAULT_SIGBUS if
478 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
479 * changes while handle_userfault released the mmap_sem. So
480 * it's critical that released is set to true (above), before
481 * taking the mmap_sem for writing.
482 */
483 down_write(&mm->mmap_sem);
484 prev = NULL;
485 for (vma = mm->mmap; vma; vma = vma->vm_next) {
486 cond_resched();
487 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
488 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
489 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
490 prev = vma;
491 continue;
492 }
493 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
494 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
495 new_flags, vma->anon_vma,
496 vma->vm_file, vma->vm_pgoff,
497 vma_policy(vma),
498 NULL_VM_UFFD_CTX);
499 if (prev)
500 vma = prev;
501 else
502 prev = vma;
503 vma->vm_flags = new_flags;
504 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
505 }
506 up_write(&mm->mmap_sem);
507 mmput(mm);
508 wakeup:
509 /*
510 * After no new page faults can wait on this fault_*wqh, flush
511 * the last page faults that may have been already waiting on
512 * the fault_*wqh.
513 */
514 spin_lock(&ctx->fault_pending_wqh.lock);
515 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
516 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
517 spin_unlock(&ctx->fault_pending_wqh.lock);
518
519 wake_up_poll(&ctx->fd_wqh, POLLHUP);
520 userfaultfd_ctx_put(ctx);
521 return 0;
522 }
523
524 /* fault_pending_wqh.lock must be hold by the caller */
525 static inline struct userfaultfd_wait_queue *find_userfault(
526 struct userfaultfd_ctx *ctx)
527 {
528 wait_queue_t *wq;
529 struct userfaultfd_wait_queue *uwq;
530
531 VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock));
532
533 uwq = NULL;
534 if (!waitqueue_active(&ctx->fault_pending_wqh))
535 goto out;
536 /* walk in reverse to provide FIFO behavior to read userfaults */
537 wq = list_last_entry(&ctx->fault_pending_wqh.task_list,
538 typeof(*wq), task_list);
539 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
540 out:
541 return uwq;
542 }
543
544 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
545 {
546 struct userfaultfd_ctx *ctx = file->private_data;
547 unsigned int ret;
548
549 poll_wait(file, &ctx->fd_wqh, wait);
550
551 switch (ctx->state) {
552 case UFFD_STATE_WAIT_API:
553 return POLLERR;
554 case UFFD_STATE_RUNNING:
555 /*
556 * poll() never guarantees that read won't block.
557 * userfaults can be waken before they're read().
558 */
559 if (unlikely(!(file->f_flags & O_NONBLOCK)))
560 return POLLERR;
561 /*
562 * lockless access to see if there are pending faults
563 * __pollwait last action is the add_wait_queue but
564 * the spin_unlock would allow the waitqueue_active to
565 * pass above the actual list_add inside
566 * add_wait_queue critical section. So use a full
567 * memory barrier to serialize the list_add write of
568 * add_wait_queue() with the waitqueue_active read
569 * below.
570 */
571 ret = 0;
572 smp_mb();
573 if (waitqueue_active(&ctx->fault_pending_wqh))
574 ret = POLLIN;
575 return ret;
576 default:
577 BUG();
578 }
579 }
580
581 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
582 struct uffd_msg *msg)
583 {
584 ssize_t ret;
585 DECLARE_WAITQUEUE(wait, current);
586 struct userfaultfd_wait_queue *uwq;
587
588 /* always take the fd_wqh lock before the fault_pending_wqh lock */
589 spin_lock(&ctx->fd_wqh.lock);
590 __add_wait_queue(&ctx->fd_wqh, &wait);
591 for (;;) {
592 set_current_state(TASK_INTERRUPTIBLE);
593 spin_lock(&ctx->fault_pending_wqh.lock);
594 uwq = find_userfault(ctx);
595 if (uwq) {
596 /*
597 * Use a seqcount to repeat the lockless check
598 * in wake_userfault() to avoid missing
599 * wakeups because during the refile both
600 * waitqueue could become empty if this is the
601 * only userfault.
602 */
603 write_seqcount_begin(&ctx->refile_seq);
604
605 /*
606 * The fault_pending_wqh.lock prevents the uwq
607 * to disappear from under us.
608 *
609 * Refile this userfault from
610 * fault_pending_wqh to fault_wqh, it's not
611 * pending anymore after we read it.
612 *
613 * Use list_del() by hand (as
614 * userfaultfd_wake_function also uses
615 * list_del_init() by hand) to be sure nobody
616 * changes __remove_wait_queue() to use
617 * list_del_init() in turn breaking the
618 * !list_empty_careful() check in
619 * handle_userfault(). The uwq->wq.task_list
620 * must never be empty at any time during the
621 * refile, or the waitqueue could disappear
622 * from under us. The "wait_queue_head_t"
623 * parameter of __remove_wait_queue() is unused
624 * anyway.
625 */
626 list_del(&uwq->wq.task_list);
627 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
628
629 write_seqcount_end(&ctx->refile_seq);
630
631 /* careful to always initialize msg if ret == 0 */
632 *msg = uwq->msg;
633 spin_unlock(&ctx->fault_pending_wqh.lock);
634 ret = 0;
635 break;
636 }
637 spin_unlock(&ctx->fault_pending_wqh.lock);
638 if (signal_pending(current)) {
639 ret = -ERESTARTSYS;
640 break;
641 }
642 if (no_wait) {
643 ret = -EAGAIN;
644 break;
645 }
646 spin_unlock(&ctx->fd_wqh.lock);
647 schedule();
648 spin_lock(&ctx->fd_wqh.lock);
649 }
650 __remove_wait_queue(&ctx->fd_wqh, &wait);
651 __set_current_state(TASK_RUNNING);
652 spin_unlock(&ctx->fd_wqh.lock);
653
654 return ret;
655 }
656
657 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
658 size_t count, loff_t *ppos)
659 {
660 struct userfaultfd_ctx *ctx = file->private_data;
661 ssize_t _ret, ret = 0;
662 struct uffd_msg msg;
663 int no_wait = file->f_flags & O_NONBLOCK;
664
665 if (ctx->state == UFFD_STATE_WAIT_API)
666 return -EINVAL;
667
668 for (;;) {
669 if (count < sizeof(msg))
670 return ret ? ret : -EINVAL;
671 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
672 if (_ret < 0)
673 return ret ? ret : _ret;
674 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
675 return ret ? ret : -EFAULT;
676 ret += sizeof(msg);
677 buf += sizeof(msg);
678 count -= sizeof(msg);
679 /*
680 * Allow to read more than one fault at time but only
681 * block if waiting for the very first one.
682 */
683 no_wait = O_NONBLOCK;
684 }
685 }
686
687 static void __wake_userfault(struct userfaultfd_ctx *ctx,
688 struct userfaultfd_wake_range *range)
689 {
690 unsigned long start, end;
691
692 start = range->start;
693 end = range->start + range->len;
694
695 spin_lock(&ctx->fault_pending_wqh.lock);
696 /* wake all in the range and autoremove */
697 if (waitqueue_active(&ctx->fault_pending_wqh))
698 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
699 range);
700 if (waitqueue_active(&ctx->fault_wqh))
701 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
702 spin_unlock(&ctx->fault_pending_wqh.lock);
703 }
704
705 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
706 struct userfaultfd_wake_range *range)
707 {
708 unsigned seq;
709 bool need_wakeup;
710
711 /*
712 * To be sure waitqueue_active() is not reordered by the CPU
713 * before the pagetable update, use an explicit SMP memory
714 * barrier here. PT lock release or up_read(mmap_sem) still
715 * have release semantics that can allow the
716 * waitqueue_active() to be reordered before the pte update.
717 */
718 smp_mb();
719
720 /*
721 * Use waitqueue_active because it's very frequent to
722 * change the address space atomically even if there are no
723 * userfaults yet. So we take the spinlock only when we're
724 * sure we've userfaults to wake.
725 */
726 do {
727 seq = read_seqcount_begin(&ctx->refile_seq);
728 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
729 waitqueue_active(&ctx->fault_wqh);
730 cond_resched();
731 } while (read_seqcount_retry(&ctx->refile_seq, seq));
732 if (need_wakeup)
733 __wake_userfault(ctx, range);
734 }
735
736 static __always_inline int validate_range(struct mm_struct *mm,
737 __u64 start, __u64 len)
738 {
739 __u64 task_size = mm->task_size;
740
741 if (start & ~PAGE_MASK)
742 return -EINVAL;
743 if (len & ~PAGE_MASK)
744 return -EINVAL;
745 if (!len)
746 return -EINVAL;
747 if (start < mmap_min_addr)
748 return -EINVAL;
749 if (start >= task_size)
750 return -EINVAL;
751 if (len > task_size - start)
752 return -EINVAL;
753 return 0;
754 }
755
756 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
757 unsigned long arg)
758 {
759 struct mm_struct *mm = ctx->mm;
760 struct vm_area_struct *vma, *prev, *cur;
761 int ret;
762 struct uffdio_register uffdio_register;
763 struct uffdio_register __user *user_uffdio_register;
764 unsigned long vm_flags, new_flags;
765 bool found;
766 unsigned long start, end, vma_end;
767
768 user_uffdio_register = (struct uffdio_register __user *) arg;
769
770 ret = -EFAULT;
771 if (copy_from_user(&uffdio_register, user_uffdio_register,
772 sizeof(uffdio_register)-sizeof(__u64)))
773 goto out;
774
775 ret = -EINVAL;
776 if (!uffdio_register.mode)
777 goto out;
778 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
779 UFFDIO_REGISTER_MODE_WP))
780 goto out;
781 vm_flags = 0;
782 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
783 vm_flags |= VM_UFFD_MISSING;
784 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
785 vm_flags |= VM_UFFD_WP;
786 /*
787 * FIXME: remove the below error constraint by
788 * implementing the wprotect tracking mode.
789 */
790 ret = -EINVAL;
791 goto out;
792 }
793
794 ret = validate_range(mm, uffdio_register.range.start,
795 uffdio_register.range.len);
796 if (ret)
797 goto out;
798
799 start = uffdio_register.range.start;
800 end = start + uffdio_register.range.len;
801
802 ret = -ENOMEM;
803 if (!mmget_not_zero(mm))
804 goto out;
805
806 down_write(&mm->mmap_sem);
807 vma = find_vma_prev(mm, start, &prev);
808 if (!vma)
809 goto out_unlock;
810
811 /* check that there's at least one vma in the range */
812 ret = -EINVAL;
813 if (vma->vm_start >= end)
814 goto out_unlock;
815
816 /*
817 * Search for not compatible vmas.
818 *
819 * FIXME: this shall be relaxed later so that it doesn't fail
820 * on tmpfs backed vmas (in addition to the current allowance
821 * on anonymous vmas).
822 */
823 found = false;
824 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
825 cond_resched();
826
827 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
828 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
829
830 /* check not compatible vmas */
831 ret = -EINVAL;
832 if (cur->vm_ops)
833 goto out_unlock;
834
835 /*
836 * Check that this vma isn't already owned by a
837 * different userfaultfd. We can't allow more than one
838 * userfaultfd to own a single vma simultaneously or we
839 * wouldn't know which one to deliver the userfaults to.
840 */
841 ret = -EBUSY;
842 if (cur->vm_userfaultfd_ctx.ctx &&
843 cur->vm_userfaultfd_ctx.ctx != ctx)
844 goto out_unlock;
845
846 found = true;
847 }
848 BUG_ON(!found);
849
850 if (vma->vm_start < start)
851 prev = vma;
852
853 ret = 0;
854 do {
855 cond_resched();
856
857 BUG_ON(vma->vm_ops);
858 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
859 vma->vm_userfaultfd_ctx.ctx != ctx);
860
861 /*
862 * Nothing to do: this vma is already registered into this
863 * userfaultfd and with the right tracking mode too.
864 */
865 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
866 (vma->vm_flags & vm_flags) == vm_flags)
867 goto skip;
868
869 if (vma->vm_start > start)
870 start = vma->vm_start;
871 vma_end = min(end, vma->vm_end);
872
873 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
874 prev = vma_merge(mm, prev, start, vma_end, new_flags,
875 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
876 vma_policy(vma),
877 ((struct vm_userfaultfd_ctx){ ctx }));
878 if (prev) {
879 vma = prev;
880 goto next;
881 }
882 if (vma->vm_start < start) {
883 ret = split_vma(mm, vma, start, 1);
884 if (ret)
885 break;
886 }
887 if (vma->vm_end > end) {
888 ret = split_vma(mm, vma, end, 0);
889 if (ret)
890 break;
891 }
892 next:
893 /*
894 * In the vma_merge() successful mprotect-like case 8:
895 * the next vma was merged into the current one and
896 * the current one has not been updated yet.
897 */
898 vma->vm_flags = new_flags;
899 vma->vm_userfaultfd_ctx.ctx = ctx;
900
901 skip:
902 prev = vma;
903 start = vma->vm_end;
904 vma = vma->vm_next;
905 } while (vma && vma->vm_start < end);
906 out_unlock:
907 up_write(&mm->mmap_sem);
908 mmput(mm);
909 if (!ret) {
910 /*
911 * Now that we scanned all vmas we can already tell
912 * userland which ioctls methods are guaranteed to
913 * succeed on this range.
914 */
915 if (put_user(UFFD_API_RANGE_IOCTLS,
916 &user_uffdio_register->ioctls))
917 ret = -EFAULT;
918 }
919 out:
920 return ret;
921 }
922
923 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
924 unsigned long arg)
925 {
926 struct mm_struct *mm = ctx->mm;
927 struct vm_area_struct *vma, *prev, *cur;
928 int ret;
929 struct uffdio_range uffdio_unregister;
930 unsigned long new_flags;
931 bool found;
932 unsigned long start, end, vma_end;
933 const void __user *buf = (void __user *)arg;
934
935 ret = -EFAULT;
936 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
937 goto out;
938
939 ret = validate_range(mm, uffdio_unregister.start,
940 uffdio_unregister.len);
941 if (ret)
942 goto out;
943
944 start = uffdio_unregister.start;
945 end = start + uffdio_unregister.len;
946
947 ret = -ENOMEM;
948 if (!mmget_not_zero(mm))
949 goto out;
950
951 down_write(&mm->mmap_sem);
952 vma = find_vma_prev(mm, start, &prev);
953 if (!vma)
954 goto out_unlock;
955
956 /* check that there's at least one vma in the range */
957 ret = -EINVAL;
958 if (vma->vm_start >= end)
959 goto out_unlock;
960
961 /*
962 * Search for not compatible vmas.
963 *
964 * FIXME: this shall be relaxed later so that it doesn't fail
965 * on tmpfs backed vmas (in addition to the current allowance
966 * on anonymous vmas).
967 */
968 found = false;
969 ret = -EINVAL;
970 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
971 cond_resched();
972
973 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
974 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
975
976 /*
977 * Check not compatible vmas, not strictly required
978 * here as not compatible vmas cannot have an
979 * userfaultfd_ctx registered on them, but this
980 * provides for more strict behavior to notice
981 * unregistration errors.
982 */
983 if (cur->vm_ops)
984 goto out_unlock;
985
986 found = true;
987 }
988 BUG_ON(!found);
989
990 if (vma->vm_start < start)
991 prev = vma;
992
993 ret = 0;
994 do {
995 cond_resched();
996
997 BUG_ON(vma->vm_ops);
998
999 /*
1000 * Nothing to do: this vma is already registered into this
1001 * userfaultfd and with the right tracking mode too.
1002 */
1003 if (!vma->vm_userfaultfd_ctx.ctx)
1004 goto skip;
1005
1006 if (vma->vm_start > start)
1007 start = vma->vm_start;
1008 vma_end = min(end, vma->vm_end);
1009
1010 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1011 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1012 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1013 vma_policy(vma),
1014 NULL_VM_UFFD_CTX);
1015 if (prev) {
1016 vma = prev;
1017 goto next;
1018 }
1019 if (vma->vm_start < start) {
1020 ret = split_vma(mm, vma, start, 1);
1021 if (ret)
1022 break;
1023 }
1024 if (vma->vm_end > end) {
1025 ret = split_vma(mm, vma, end, 0);
1026 if (ret)
1027 break;
1028 }
1029 next:
1030 /*
1031 * In the vma_merge() successful mprotect-like case 8:
1032 * the next vma was merged into the current one and
1033 * the current one has not been updated yet.
1034 */
1035 vma->vm_flags = new_flags;
1036 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1037
1038 skip:
1039 prev = vma;
1040 start = vma->vm_end;
1041 vma = vma->vm_next;
1042 } while (vma && vma->vm_start < end);
1043 out_unlock:
1044 up_write(&mm->mmap_sem);
1045 mmput(mm);
1046 out:
1047 return ret;
1048 }
1049
1050 /*
1051 * userfaultfd_wake may be used in combination with the
1052 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1053 */
1054 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1055 unsigned long arg)
1056 {
1057 int ret;
1058 struct uffdio_range uffdio_wake;
1059 struct userfaultfd_wake_range range;
1060 const void __user *buf = (void __user *)arg;
1061
1062 ret = -EFAULT;
1063 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1064 goto out;
1065
1066 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1067 if (ret)
1068 goto out;
1069
1070 range.start = uffdio_wake.start;
1071 range.len = uffdio_wake.len;
1072
1073 /*
1074 * len == 0 means wake all and we don't want to wake all here,
1075 * so check it again to be sure.
1076 */
1077 VM_BUG_ON(!range.len);
1078
1079 wake_userfault(ctx, &range);
1080 ret = 0;
1081
1082 out:
1083 return ret;
1084 }
1085
1086 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1087 unsigned long arg)
1088 {
1089 __s64 ret;
1090 struct uffdio_copy uffdio_copy;
1091 struct uffdio_copy __user *user_uffdio_copy;
1092 struct userfaultfd_wake_range range;
1093
1094 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1095
1096 ret = -EFAULT;
1097 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1098 /* don't copy "copy" last field */
1099 sizeof(uffdio_copy)-sizeof(__s64)))
1100 goto out;
1101
1102 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1103 if (ret)
1104 goto out;
1105 /*
1106 * double check for wraparound just in case. copy_from_user()
1107 * will later check uffdio_copy.src + uffdio_copy.len to fit
1108 * in the userland range.
1109 */
1110 ret = -EINVAL;
1111 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1112 goto out;
1113 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1114 goto out;
1115 if (mmget_not_zero(ctx->mm)) {
1116 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1117 uffdio_copy.len);
1118 mmput(ctx->mm);
1119 }
1120 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1121 return -EFAULT;
1122 if (ret < 0)
1123 goto out;
1124 BUG_ON(!ret);
1125 /* len == 0 would wake all */
1126 range.len = ret;
1127 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1128 range.start = uffdio_copy.dst;
1129 wake_userfault(ctx, &range);
1130 }
1131 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1132 out:
1133 return ret;
1134 }
1135
1136 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1137 unsigned long arg)
1138 {
1139 __s64 ret;
1140 struct uffdio_zeropage uffdio_zeropage;
1141 struct uffdio_zeropage __user *user_uffdio_zeropage;
1142 struct userfaultfd_wake_range range;
1143
1144 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1145
1146 ret = -EFAULT;
1147 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1148 /* don't copy "zeropage" last field */
1149 sizeof(uffdio_zeropage)-sizeof(__s64)))
1150 goto out;
1151
1152 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1153 uffdio_zeropage.range.len);
1154 if (ret)
1155 goto out;
1156 ret = -EINVAL;
1157 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1158 goto out;
1159
1160 if (mmget_not_zero(ctx->mm)) {
1161 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1162 uffdio_zeropage.range.len);
1163 mmput(ctx->mm);
1164 }
1165 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1166 return -EFAULT;
1167 if (ret < 0)
1168 goto out;
1169 /* len == 0 would wake all */
1170 BUG_ON(!ret);
1171 range.len = ret;
1172 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1173 range.start = uffdio_zeropage.range.start;
1174 wake_userfault(ctx, &range);
1175 }
1176 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1177 out:
1178 return ret;
1179 }
1180
1181 /*
1182 * userland asks for a certain API version and we return which bits
1183 * and ioctl commands are implemented in this kernel for such API
1184 * version or -EINVAL if unknown.
1185 */
1186 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1187 unsigned long arg)
1188 {
1189 struct uffdio_api uffdio_api;
1190 void __user *buf = (void __user *)arg;
1191 int ret;
1192
1193 ret = -EINVAL;
1194 if (ctx->state != UFFD_STATE_WAIT_API)
1195 goto out;
1196 ret = -EFAULT;
1197 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1198 goto out;
1199 if (uffdio_api.api != UFFD_API || uffdio_api.features) {
1200 memset(&uffdio_api, 0, sizeof(uffdio_api));
1201 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1202 goto out;
1203 ret = -EINVAL;
1204 goto out;
1205 }
1206 uffdio_api.features = UFFD_API_FEATURES;
1207 uffdio_api.ioctls = UFFD_API_IOCTLS;
1208 ret = -EFAULT;
1209 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1210 goto out;
1211 ctx->state = UFFD_STATE_RUNNING;
1212 ret = 0;
1213 out:
1214 return ret;
1215 }
1216
1217 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1218 unsigned long arg)
1219 {
1220 int ret = -EINVAL;
1221 struct userfaultfd_ctx *ctx = file->private_data;
1222
1223 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1224 return -EINVAL;
1225
1226 switch(cmd) {
1227 case UFFDIO_API:
1228 ret = userfaultfd_api(ctx, arg);
1229 break;
1230 case UFFDIO_REGISTER:
1231 ret = userfaultfd_register(ctx, arg);
1232 break;
1233 case UFFDIO_UNREGISTER:
1234 ret = userfaultfd_unregister(ctx, arg);
1235 break;
1236 case UFFDIO_WAKE:
1237 ret = userfaultfd_wake(ctx, arg);
1238 break;
1239 case UFFDIO_COPY:
1240 ret = userfaultfd_copy(ctx, arg);
1241 break;
1242 case UFFDIO_ZEROPAGE:
1243 ret = userfaultfd_zeropage(ctx, arg);
1244 break;
1245 }
1246 return ret;
1247 }
1248
1249 #ifdef CONFIG_PROC_FS
1250 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1251 {
1252 struct userfaultfd_ctx *ctx = f->private_data;
1253 wait_queue_t *wq;
1254 struct userfaultfd_wait_queue *uwq;
1255 unsigned long pending = 0, total = 0;
1256
1257 spin_lock(&ctx->fault_pending_wqh.lock);
1258 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1259 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1260 pending++;
1261 total++;
1262 }
1263 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1264 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1265 total++;
1266 }
1267 spin_unlock(&ctx->fault_pending_wqh.lock);
1268
1269 /*
1270 * If more protocols will be added, there will be all shown
1271 * separated by a space. Like this:
1272 * protocols: aa:... bb:...
1273 */
1274 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1275 pending, total, UFFD_API, UFFD_API_FEATURES,
1276 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1277 }
1278 #endif
1279
1280 static const struct file_operations userfaultfd_fops = {
1281 #ifdef CONFIG_PROC_FS
1282 .show_fdinfo = userfaultfd_show_fdinfo,
1283 #endif
1284 .release = userfaultfd_release,
1285 .poll = userfaultfd_poll,
1286 .read = userfaultfd_read,
1287 .unlocked_ioctl = userfaultfd_ioctl,
1288 .compat_ioctl = userfaultfd_ioctl,
1289 .llseek = noop_llseek,
1290 };
1291
1292 static void init_once_userfaultfd_ctx(void *mem)
1293 {
1294 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1295
1296 init_waitqueue_head(&ctx->fault_pending_wqh);
1297 init_waitqueue_head(&ctx->fault_wqh);
1298 init_waitqueue_head(&ctx->fd_wqh);
1299 seqcount_init(&ctx->refile_seq);
1300 }
1301
1302 /**
1303 * userfaultfd_file_create - Creates an userfaultfd file pointer.
1304 * @flags: Flags for the userfaultfd file.
1305 *
1306 * This function creates an userfaultfd file pointer, w/out installing
1307 * it into the fd table. This is useful when the userfaultfd file is
1308 * used during the initialization of data structures that require
1309 * extra setup after the userfaultfd creation. So the userfaultfd
1310 * creation is split into the file pointer creation phase, and the
1311 * file descriptor installation phase. In this way races with
1312 * userspace closing the newly installed file descriptor can be
1313 * avoided. Returns an userfaultfd file pointer, or a proper error
1314 * pointer.
1315 */
1316 static struct file *userfaultfd_file_create(int flags)
1317 {
1318 struct file *file;
1319 struct userfaultfd_ctx *ctx;
1320
1321 BUG_ON(!current->mm);
1322
1323 /* Check the UFFD_* constants for consistency. */
1324 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1325 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1326
1327 file = ERR_PTR(-EINVAL);
1328 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1329 goto out;
1330
1331 file = ERR_PTR(-ENOMEM);
1332 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1333 if (!ctx)
1334 goto out;
1335
1336 atomic_set(&ctx->refcount, 1);
1337 ctx->flags = flags;
1338 ctx->state = UFFD_STATE_WAIT_API;
1339 ctx->released = false;
1340 ctx->mm = current->mm;
1341 /* prevent the mm struct to be freed */
1342 atomic_inc(&ctx->mm->mm_count);
1343
1344 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1345 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1346 if (IS_ERR(file)) {
1347 mmdrop(ctx->mm);
1348 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1349 }
1350 out:
1351 return file;
1352 }
1353
1354 SYSCALL_DEFINE1(userfaultfd, int, flags)
1355 {
1356 int fd, error;
1357 struct file *file;
1358
1359 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1360 if (error < 0)
1361 return error;
1362 fd = error;
1363
1364 file = userfaultfd_file_create(flags);
1365 if (IS_ERR(file)) {
1366 error = PTR_ERR(file);
1367 goto err_put_unused_fd;
1368 }
1369 fd_install(fd, file);
1370
1371 return fd;
1372
1373 err_put_unused_fd:
1374 put_unused_fd(fd);
1375
1376 return error;
1377 }
1378
1379 static int __init userfaultfd_init(void)
1380 {
1381 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1382 sizeof(struct userfaultfd_ctx),
1383 0,
1384 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1385 init_once_userfaultfd_ctx);
1386 return 0;
1387 }
1388 __initcall(userfaultfd_init);