]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/ktime.h
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / include / linux / ktime.h
1 /*
2 * include/linux/ktime.h
3 *
4 * ktime_t - nanosecond-resolution time format.
5 *
6 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
8 *
9 * data type definitions, declarations, prototypes and macros.
10 *
11 * Started by: Thomas Gleixner and Ingo Molnar
12 *
13 * Credits:
14 *
15 * Roman Zippel provided the ideas and primary code snippets of
16 * the ktime_t union and further simplifications of the original
17 * code.
18 *
19 * For licencing details see kernel-base/COPYING
20 */
21 #ifndef _LINUX_KTIME_H
22 #define _LINUX_KTIME_H
23
24 #include <linux/time.h>
25 #include <linux/jiffies.h>
26
27 /* Nanosecond scalar representation for kernel time values */
28 typedef s64 ktime_t;
29
30 /**
31 * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
32 * @secs: seconds to set
33 * @nsecs: nanoseconds to set
34 *
35 * Return: The ktime_t representation of the value.
36 */
37 static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs)
38 {
39 if (unlikely(secs >= KTIME_SEC_MAX))
40 return KTIME_MAX;
41
42 return secs * NSEC_PER_SEC + (s64)nsecs;
43 }
44
45 /* Subtract two ktime_t variables. rem = lhs -rhs: */
46 #define ktime_sub(lhs, rhs) ((lhs) - (rhs))
47
48 /* Add two ktime_t variables. res = lhs + rhs: */
49 #define ktime_add(lhs, rhs) ((lhs) + (rhs))
50
51 /*
52 * Same as ktime_add(), but avoids undefined behaviour on overflow; however,
53 * this means that you must check the result for overflow yourself.
54 */
55 #define ktime_add_unsafe(lhs, rhs) ((u64) (lhs) + (rhs))
56
57 /*
58 * Add a ktime_t variable and a scalar nanosecond value.
59 * res = kt + nsval:
60 */
61 #define ktime_add_ns(kt, nsval) ((kt) + (nsval))
62
63 /*
64 * Subtract a scalar nanosecod from a ktime_t variable
65 * res = kt - nsval:
66 */
67 #define ktime_sub_ns(kt, nsval) ((kt) - (nsval))
68
69 /* convert a timespec to ktime_t format: */
70 static inline ktime_t timespec_to_ktime(struct timespec ts)
71 {
72 return ktime_set(ts.tv_sec, ts.tv_nsec);
73 }
74
75 /* convert a timespec64 to ktime_t format: */
76 static inline ktime_t timespec64_to_ktime(struct timespec64 ts)
77 {
78 return ktime_set(ts.tv_sec, ts.tv_nsec);
79 }
80
81 /* convert a timeval to ktime_t format: */
82 static inline ktime_t timeval_to_ktime(struct timeval tv)
83 {
84 return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
85 }
86
87 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
88 #define ktime_to_timespec(kt) ns_to_timespec((kt))
89
90 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
91 #define ktime_to_timespec64(kt) ns_to_timespec64((kt))
92
93 /* Map the ktime_t to timeval conversion to ns_to_timeval function */
94 #define ktime_to_timeval(kt) ns_to_timeval((kt))
95
96 /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
97 #define ktime_to_ns(kt) (kt)
98
99 /**
100 * ktime_compare - Compares two ktime_t variables for less, greater or equal
101 * @cmp1: comparable1
102 * @cmp2: comparable2
103 *
104 * Return: ...
105 * cmp1 < cmp2: return <0
106 * cmp1 == cmp2: return 0
107 * cmp1 > cmp2: return >0
108 */
109 static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2)
110 {
111 if (cmp1 < cmp2)
112 return -1;
113 if (cmp1 > cmp2)
114 return 1;
115 return 0;
116 }
117
118 /**
119 * ktime_after - Compare if a ktime_t value is bigger than another one.
120 * @cmp1: comparable1
121 * @cmp2: comparable2
122 *
123 * Return: true if cmp1 happened after cmp2.
124 */
125 static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2)
126 {
127 return ktime_compare(cmp1, cmp2) > 0;
128 }
129
130 /**
131 * ktime_before - Compare if a ktime_t value is smaller than another one.
132 * @cmp1: comparable1
133 * @cmp2: comparable2
134 *
135 * Return: true if cmp1 happened before cmp2.
136 */
137 static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2)
138 {
139 return ktime_compare(cmp1, cmp2) < 0;
140 }
141
142 #if BITS_PER_LONG < 64
143 extern s64 __ktime_divns(const ktime_t kt, s64 div);
144 static inline s64 ktime_divns(const ktime_t kt, s64 div)
145 {
146 /*
147 * Negative divisors could cause an inf loop,
148 * so bug out here.
149 */
150 BUG_ON(div < 0);
151 if (__builtin_constant_p(div) && !(div >> 32)) {
152 s64 ns = kt;
153 u64 tmp = ns < 0 ? -ns : ns;
154
155 do_div(tmp, div);
156 return ns < 0 ? -tmp : tmp;
157 } else {
158 return __ktime_divns(kt, div);
159 }
160 }
161 #else /* BITS_PER_LONG < 64 */
162 static inline s64 ktime_divns(const ktime_t kt, s64 div)
163 {
164 /*
165 * 32-bit implementation cannot handle negative divisors,
166 * so catch them on 64bit as well.
167 */
168 WARN_ON(div < 0);
169 return kt / div;
170 }
171 #endif
172
173 static inline s64 ktime_to_us(const ktime_t kt)
174 {
175 return ktime_divns(kt, NSEC_PER_USEC);
176 }
177
178 static inline s64 ktime_to_ms(const ktime_t kt)
179 {
180 return ktime_divns(kt, NSEC_PER_MSEC);
181 }
182
183 static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
184 {
185 return ktime_to_us(ktime_sub(later, earlier));
186 }
187
188 static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier)
189 {
190 return ktime_to_ms(ktime_sub(later, earlier));
191 }
192
193 static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
194 {
195 return ktime_add_ns(kt, usec * NSEC_PER_USEC);
196 }
197
198 static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec)
199 {
200 return ktime_add_ns(kt, msec * NSEC_PER_MSEC);
201 }
202
203 static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
204 {
205 return ktime_sub_ns(kt, usec * NSEC_PER_USEC);
206 }
207
208 static inline ktime_t ktime_sub_ms(const ktime_t kt, const u64 msec)
209 {
210 return ktime_sub_ns(kt, msec * NSEC_PER_MSEC);
211 }
212
213 extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs);
214
215 /**
216 * ktime_to_timespec_cond - convert a ktime_t variable to timespec
217 * format only if the variable contains data
218 * @kt: the ktime_t variable to convert
219 * @ts: the timespec variable to store the result in
220 *
221 * Return: %true if there was a successful conversion, %false if kt was 0.
222 */
223 static inline __must_check bool ktime_to_timespec_cond(const ktime_t kt,
224 struct timespec *ts)
225 {
226 if (kt) {
227 *ts = ktime_to_timespec(kt);
228 return true;
229 } else {
230 return false;
231 }
232 }
233
234 /**
235 * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64
236 * format only if the variable contains data
237 * @kt: the ktime_t variable to convert
238 * @ts: the timespec variable to store the result in
239 *
240 * Return: %true if there was a successful conversion, %false if kt was 0.
241 */
242 static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt,
243 struct timespec64 *ts)
244 {
245 if (kt) {
246 *ts = ktime_to_timespec64(kt);
247 return true;
248 } else {
249 return false;
250 }
251 }
252
253 /*
254 * The resolution of the clocks. The resolution value is returned in
255 * the clock_getres() system call to give application programmers an
256 * idea of the (in)accuracy of timers. Timer values are rounded up to
257 * this resolution values.
258 */
259 #define LOW_RES_NSEC TICK_NSEC
260 #define KTIME_LOW_RES (LOW_RES_NSEC)
261
262 static inline ktime_t ns_to_ktime(u64 ns)
263 {
264 return ns;
265 }
266
267 static inline ktime_t ms_to_ktime(u64 ms)
268 {
269 return ms * NSEC_PER_MSEC;
270 }
271
272 # include <linux/timekeeping.h>
273
274 #endif