]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/net/sock.h
sock: add sk_dst_pending_confirm flag
[mirror_ubuntu-zesty-kernel.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67
68 #include <linux/atomic.h>
69 #include <net/dst.h>
70 #include <net/checksum.h>
71 #include <net/tcp_states.h>
72 #include <linux/net_tstamp.h>
73
74 /*
75 * This structure really needs to be cleaned up.
76 * Most of it is for TCP, and not used by any of
77 * the other protocols.
78 */
79
80 /* Define this to get the SOCK_DBG debugging facility. */
81 #define SOCK_DEBUGGING
82 #ifdef SOCK_DEBUGGING
83 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
84 printk(KERN_DEBUG msg); } while (0)
85 #else
86 /* Validate arguments and do nothing */
87 static inline __printf(2, 3)
88 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
89 {
90 }
91 #endif
92
93 /* This is the per-socket lock. The spinlock provides a synchronization
94 * between user contexts and software interrupt processing, whereas the
95 * mini-semaphore synchronizes multiple users amongst themselves.
96 */
97 typedef struct {
98 spinlock_t slock;
99 int owned;
100 wait_queue_head_t wq;
101 /*
102 * We express the mutex-alike socket_lock semantics
103 * to the lock validator by explicitly managing
104 * the slock as a lock variant (in addition to
105 * the slock itself):
106 */
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 struct lockdep_map dep_map;
109 #endif
110 } socket_lock_t;
111
112 struct sock;
113 struct proto;
114 struct net;
115
116 typedef __u32 __bitwise __portpair;
117 typedef __u64 __bitwise __addrpair;
118
119 /**
120 * struct sock_common - minimal network layer representation of sockets
121 * @skc_daddr: Foreign IPv4 addr
122 * @skc_rcv_saddr: Bound local IPv4 addr
123 * @skc_hash: hash value used with various protocol lookup tables
124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
125 * @skc_dport: placeholder for inet_dport/tw_dport
126 * @skc_num: placeholder for inet_num/tw_num
127 * @skc_family: network address family
128 * @skc_state: Connection state
129 * @skc_reuse: %SO_REUSEADDR setting
130 * @skc_reuseport: %SO_REUSEPORT setting
131 * @skc_bound_dev_if: bound device index if != 0
132 * @skc_bind_node: bind hash linkage for various protocol lookup tables
133 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
134 * @skc_prot: protocol handlers inside a network family
135 * @skc_net: reference to the network namespace of this socket
136 * @skc_node: main hash linkage for various protocol lookup tables
137 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
138 * @skc_tx_queue_mapping: tx queue number for this connection
139 * @skc_flags: place holder for sk_flags
140 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
141 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
142 * @skc_incoming_cpu: record/match cpu processing incoming packets
143 * @skc_refcnt: reference count
144 *
145 * This is the minimal network layer representation of sockets, the header
146 * for struct sock and struct inet_timewait_sock.
147 */
148 struct sock_common {
149 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
150 * address on 64bit arches : cf INET_MATCH()
151 */
152 union {
153 __addrpair skc_addrpair;
154 struct {
155 __be32 skc_daddr;
156 __be32 skc_rcv_saddr;
157 };
158 };
159 union {
160 unsigned int skc_hash;
161 __u16 skc_u16hashes[2];
162 };
163 /* skc_dport && skc_num must be grouped as well */
164 union {
165 __portpair skc_portpair;
166 struct {
167 __be16 skc_dport;
168 __u16 skc_num;
169 };
170 };
171
172 unsigned short skc_family;
173 volatile unsigned char skc_state;
174 unsigned char skc_reuse:4;
175 unsigned char skc_reuseport:1;
176 unsigned char skc_ipv6only:1;
177 unsigned char skc_net_refcnt:1;
178 int skc_bound_dev_if;
179 union {
180 struct hlist_node skc_bind_node;
181 struct hlist_node skc_portaddr_node;
182 };
183 struct proto *skc_prot;
184 possible_net_t skc_net;
185
186 #if IS_ENABLED(CONFIG_IPV6)
187 struct in6_addr skc_v6_daddr;
188 struct in6_addr skc_v6_rcv_saddr;
189 #endif
190
191 atomic64_t skc_cookie;
192
193 /* following fields are padding to force
194 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
195 * assuming IPV6 is enabled. We use this padding differently
196 * for different kind of 'sockets'
197 */
198 union {
199 unsigned long skc_flags;
200 struct sock *skc_listener; /* request_sock */
201 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
202 };
203 /*
204 * fields between dontcopy_begin/dontcopy_end
205 * are not copied in sock_copy()
206 */
207 /* private: */
208 int skc_dontcopy_begin[0];
209 /* public: */
210 union {
211 struct hlist_node skc_node;
212 struct hlist_nulls_node skc_nulls_node;
213 };
214 int skc_tx_queue_mapping;
215 union {
216 int skc_incoming_cpu;
217 u32 skc_rcv_wnd;
218 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
219 };
220
221 atomic_t skc_refcnt;
222 /* private: */
223 int skc_dontcopy_end[0];
224 union {
225 u32 skc_rxhash;
226 u32 skc_window_clamp;
227 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
228 };
229 /* public: */
230 };
231
232 /**
233 * struct sock - network layer representation of sockets
234 * @__sk_common: shared layout with inet_timewait_sock
235 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
236 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
237 * @sk_lock: synchronizer
238 * @sk_rcvbuf: size of receive buffer in bytes
239 * @sk_wq: sock wait queue and async head
240 * @sk_rx_dst: receive input route used by early demux
241 * @sk_dst_cache: destination cache
242 * @sk_dst_pending_confirm: need to confirm neighbour
243 * @sk_policy: flow policy
244 * @sk_receive_queue: incoming packets
245 * @sk_wmem_alloc: transmit queue bytes committed
246 * @sk_write_queue: Packet sending queue
247 * @sk_omem_alloc: "o" is "option" or "other"
248 * @sk_wmem_queued: persistent queue size
249 * @sk_forward_alloc: space allocated forward
250 * @sk_napi_id: id of the last napi context to receive data for sk
251 * @sk_ll_usec: usecs to busypoll when there is no data
252 * @sk_allocation: allocation mode
253 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
254 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
255 * @sk_sndbuf: size of send buffer in bytes
256 * @sk_padding: unused element for alignment
257 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
258 * @sk_no_check_rx: allow zero checksum in RX packets
259 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
260 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
261 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
262 * @sk_gso_max_size: Maximum GSO segment size to build
263 * @sk_gso_max_segs: Maximum number of GSO segments
264 * @sk_lingertime: %SO_LINGER l_linger setting
265 * @sk_backlog: always used with the per-socket spinlock held
266 * @sk_callback_lock: used with the callbacks in the end of this struct
267 * @sk_error_queue: rarely used
268 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
269 * IPV6_ADDRFORM for instance)
270 * @sk_err: last error
271 * @sk_err_soft: errors that don't cause failure but are the cause of a
272 * persistent failure not just 'timed out'
273 * @sk_drops: raw/udp drops counter
274 * @sk_ack_backlog: current listen backlog
275 * @sk_max_ack_backlog: listen backlog set in listen()
276 * @sk_priority: %SO_PRIORITY setting
277 * @sk_type: socket type (%SOCK_STREAM, etc)
278 * @sk_protocol: which protocol this socket belongs in this network family
279 * @sk_peer_pid: &struct pid for this socket's peer
280 * @sk_peer_cred: %SO_PEERCRED setting
281 * @sk_rcvlowat: %SO_RCVLOWAT setting
282 * @sk_rcvtimeo: %SO_RCVTIMEO setting
283 * @sk_sndtimeo: %SO_SNDTIMEO setting
284 * @sk_txhash: computed flow hash for use on transmit
285 * @sk_filter: socket filtering instructions
286 * @sk_timer: sock cleanup timer
287 * @sk_stamp: time stamp of last packet received
288 * @sk_tsflags: SO_TIMESTAMPING socket options
289 * @sk_tskey: counter to disambiguate concurrent tstamp requests
290 * @sk_socket: Identd and reporting IO signals
291 * @sk_user_data: RPC layer private data
292 * @sk_frag: cached page frag
293 * @sk_peek_off: current peek_offset value
294 * @sk_send_head: front of stuff to transmit
295 * @sk_security: used by security modules
296 * @sk_mark: generic packet mark
297 * @sk_cgrp_data: cgroup data for this cgroup
298 * @sk_memcg: this socket's memory cgroup association
299 * @sk_write_pending: a write to stream socket waits to start
300 * @sk_state_change: callback to indicate change in the state of the sock
301 * @sk_data_ready: callback to indicate there is data to be processed
302 * @sk_write_space: callback to indicate there is bf sending space available
303 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
304 * @sk_backlog_rcv: callback to process the backlog
305 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
306 * @sk_reuseport_cb: reuseport group container
307 * @sk_rcu: used during RCU grace period
308 */
309 struct sock {
310 /*
311 * Now struct inet_timewait_sock also uses sock_common, so please just
312 * don't add nothing before this first member (__sk_common) --acme
313 */
314 struct sock_common __sk_common;
315 #define sk_node __sk_common.skc_node
316 #define sk_nulls_node __sk_common.skc_nulls_node
317 #define sk_refcnt __sk_common.skc_refcnt
318 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
319
320 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
321 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
322 #define sk_hash __sk_common.skc_hash
323 #define sk_portpair __sk_common.skc_portpair
324 #define sk_num __sk_common.skc_num
325 #define sk_dport __sk_common.skc_dport
326 #define sk_addrpair __sk_common.skc_addrpair
327 #define sk_daddr __sk_common.skc_daddr
328 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
329 #define sk_family __sk_common.skc_family
330 #define sk_state __sk_common.skc_state
331 #define sk_reuse __sk_common.skc_reuse
332 #define sk_reuseport __sk_common.skc_reuseport
333 #define sk_ipv6only __sk_common.skc_ipv6only
334 #define sk_net_refcnt __sk_common.skc_net_refcnt
335 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
336 #define sk_bind_node __sk_common.skc_bind_node
337 #define sk_prot __sk_common.skc_prot
338 #define sk_net __sk_common.skc_net
339 #define sk_v6_daddr __sk_common.skc_v6_daddr
340 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
341 #define sk_cookie __sk_common.skc_cookie
342 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
343 #define sk_flags __sk_common.skc_flags
344 #define sk_rxhash __sk_common.skc_rxhash
345
346 socket_lock_t sk_lock;
347 atomic_t sk_drops;
348 int sk_rcvlowat;
349 struct sk_buff_head sk_error_queue;
350 struct sk_buff_head sk_receive_queue;
351 /*
352 * The backlog queue is special, it is always used with
353 * the per-socket spinlock held and requires low latency
354 * access. Therefore we special case it's implementation.
355 * Note : rmem_alloc is in this structure to fill a hole
356 * on 64bit arches, not because its logically part of
357 * backlog.
358 */
359 struct {
360 atomic_t rmem_alloc;
361 int len;
362 struct sk_buff *head;
363 struct sk_buff *tail;
364 } sk_backlog;
365 #define sk_rmem_alloc sk_backlog.rmem_alloc
366
367 int sk_forward_alloc;
368 #ifdef CONFIG_NET_RX_BUSY_POLL
369 unsigned int sk_ll_usec;
370 /* ===== mostly read cache line ===== */
371 unsigned int sk_napi_id;
372 #endif
373 int sk_rcvbuf;
374
375 struct sk_filter __rcu *sk_filter;
376 union {
377 struct socket_wq __rcu *sk_wq;
378 struct socket_wq *sk_wq_raw;
379 };
380 #ifdef CONFIG_XFRM
381 struct xfrm_policy __rcu *sk_policy[2];
382 #endif
383 struct dst_entry *sk_rx_dst;
384 struct dst_entry __rcu *sk_dst_cache;
385 atomic_t sk_omem_alloc;
386 int sk_sndbuf;
387
388 /* ===== cache line for TX ===== */
389 int sk_wmem_queued;
390 atomic_t sk_wmem_alloc;
391 unsigned long sk_tsq_flags;
392 struct sk_buff *sk_send_head;
393 struct sk_buff_head sk_write_queue;
394 __s32 sk_peek_off;
395 int sk_write_pending;
396 __u32 sk_dst_pending_confirm;
397 /* Note: 32bit hole on 64bit arches */
398 long sk_sndtimeo;
399 struct timer_list sk_timer;
400 __u32 sk_priority;
401 __u32 sk_mark;
402 u32 sk_pacing_rate; /* bytes per second */
403 u32 sk_max_pacing_rate;
404 struct page_frag sk_frag;
405 netdev_features_t sk_route_caps;
406 netdev_features_t sk_route_nocaps;
407 int sk_gso_type;
408 unsigned int sk_gso_max_size;
409 gfp_t sk_allocation;
410 __u32 sk_txhash;
411
412 /*
413 * Because of non atomicity rules, all
414 * changes are protected by socket lock.
415 */
416 unsigned int __sk_flags_offset[0];
417 #ifdef __BIG_ENDIAN_BITFIELD
418 #define SK_FL_PROTO_SHIFT 16
419 #define SK_FL_PROTO_MASK 0x00ff0000
420
421 #define SK_FL_TYPE_SHIFT 0
422 #define SK_FL_TYPE_MASK 0x0000ffff
423 #else
424 #define SK_FL_PROTO_SHIFT 8
425 #define SK_FL_PROTO_MASK 0x0000ff00
426
427 #define SK_FL_TYPE_SHIFT 16
428 #define SK_FL_TYPE_MASK 0xffff0000
429 #endif
430
431 kmemcheck_bitfield_begin(flags);
432 unsigned int sk_padding : 2,
433 sk_no_check_tx : 1,
434 sk_no_check_rx : 1,
435 sk_userlocks : 4,
436 sk_protocol : 8,
437 sk_type : 16;
438 #define SK_PROTOCOL_MAX U8_MAX
439 kmemcheck_bitfield_end(flags);
440
441 u16 sk_gso_max_segs;
442 unsigned long sk_lingertime;
443 struct proto *sk_prot_creator;
444 rwlock_t sk_callback_lock;
445 int sk_err,
446 sk_err_soft;
447 u32 sk_ack_backlog;
448 u32 sk_max_ack_backlog;
449 kuid_t sk_uid;
450 struct pid *sk_peer_pid;
451 const struct cred *sk_peer_cred;
452 long sk_rcvtimeo;
453 ktime_t sk_stamp;
454 u16 sk_tsflags;
455 u8 sk_shutdown;
456 u32 sk_tskey;
457 struct socket *sk_socket;
458 void *sk_user_data;
459 #ifdef CONFIG_SECURITY
460 void *sk_security;
461 #endif
462 struct sock_cgroup_data sk_cgrp_data;
463 struct mem_cgroup *sk_memcg;
464 void (*sk_state_change)(struct sock *sk);
465 void (*sk_data_ready)(struct sock *sk);
466 void (*sk_write_space)(struct sock *sk);
467 void (*sk_error_report)(struct sock *sk);
468 int (*sk_backlog_rcv)(struct sock *sk,
469 struct sk_buff *skb);
470 void (*sk_destruct)(struct sock *sk);
471 struct sock_reuseport __rcu *sk_reuseport_cb;
472 struct rcu_head sk_rcu;
473 };
474
475 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
476
477 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
478 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
479
480 /*
481 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
482 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
483 * on a socket means that the socket will reuse everybody else's port
484 * without looking at the other's sk_reuse value.
485 */
486
487 #define SK_NO_REUSE 0
488 #define SK_CAN_REUSE 1
489 #define SK_FORCE_REUSE 2
490
491 int sk_set_peek_off(struct sock *sk, int val);
492
493 static inline int sk_peek_offset(struct sock *sk, int flags)
494 {
495 if (unlikely(flags & MSG_PEEK)) {
496 s32 off = READ_ONCE(sk->sk_peek_off);
497 if (off >= 0)
498 return off;
499 }
500
501 return 0;
502 }
503
504 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
505 {
506 s32 off = READ_ONCE(sk->sk_peek_off);
507
508 if (unlikely(off >= 0)) {
509 off = max_t(s32, off - val, 0);
510 WRITE_ONCE(sk->sk_peek_off, off);
511 }
512 }
513
514 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
515 {
516 sk_peek_offset_bwd(sk, -val);
517 }
518
519 /*
520 * Hashed lists helper routines
521 */
522 static inline struct sock *sk_entry(const struct hlist_node *node)
523 {
524 return hlist_entry(node, struct sock, sk_node);
525 }
526
527 static inline struct sock *__sk_head(const struct hlist_head *head)
528 {
529 return hlist_entry(head->first, struct sock, sk_node);
530 }
531
532 static inline struct sock *sk_head(const struct hlist_head *head)
533 {
534 return hlist_empty(head) ? NULL : __sk_head(head);
535 }
536
537 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
538 {
539 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
540 }
541
542 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
543 {
544 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
545 }
546
547 static inline struct sock *sk_next(const struct sock *sk)
548 {
549 return sk->sk_node.next ?
550 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
551 }
552
553 static inline struct sock *sk_nulls_next(const struct sock *sk)
554 {
555 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
556 hlist_nulls_entry(sk->sk_nulls_node.next,
557 struct sock, sk_nulls_node) :
558 NULL;
559 }
560
561 static inline bool sk_unhashed(const struct sock *sk)
562 {
563 return hlist_unhashed(&sk->sk_node);
564 }
565
566 static inline bool sk_hashed(const struct sock *sk)
567 {
568 return !sk_unhashed(sk);
569 }
570
571 static inline void sk_node_init(struct hlist_node *node)
572 {
573 node->pprev = NULL;
574 }
575
576 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
577 {
578 node->pprev = NULL;
579 }
580
581 static inline void __sk_del_node(struct sock *sk)
582 {
583 __hlist_del(&sk->sk_node);
584 }
585
586 /* NB: equivalent to hlist_del_init_rcu */
587 static inline bool __sk_del_node_init(struct sock *sk)
588 {
589 if (sk_hashed(sk)) {
590 __sk_del_node(sk);
591 sk_node_init(&sk->sk_node);
592 return true;
593 }
594 return false;
595 }
596
597 /* Grab socket reference count. This operation is valid only
598 when sk is ALREADY grabbed f.e. it is found in hash table
599 or a list and the lookup is made under lock preventing hash table
600 modifications.
601 */
602
603 static __always_inline void sock_hold(struct sock *sk)
604 {
605 atomic_inc(&sk->sk_refcnt);
606 }
607
608 /* Ungrab socket in the context, which assumes that socket refcnt
609 cannot hit zero, f.e. it is true in context of any socketcall.
610 */
611 static __always_inline void __sock_put(struct sock *sk)
612 {
613 atomic_dec(&sk->sk_refcnt);
614 }
615
616 static inline bool sk_del_node_init(struct sock *sk)
617 {
618 bool rc = __sk_del_node_init(sk);
619
620 if (rc) {
621 /* paranoid for a while -acme */
622 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
623 __sock_put(sk);
624 }
625 return rc;
626 }
627 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
628
629 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
630 {
631 if (sk_hashed(sk)) {
632 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
633 return true;
634 }
635 return false;
636 }
637
638 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
639 {
640 bool rc = __sk_nulls_del_node_init_rcu(sk);
641
642 if (rc) {
643 /* paranoid for a while -acme */
644 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
645 __sock_put(sk);
646 }
647 return rc;
648 }
649
650 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
651 {
652 hlist_add_head(&sk->sk_node, list);
653 }
654
655 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
656 {
657 sock_hold(sk);
658 __sk_add_node(sk, list);
659 }
660
661 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
662 {
663 sock_hold(sk);
664 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
665 sk->sk_family == AF_INET6)
666 hlist_add_tail_rcu(&sk->sk_node, list);
667 else
668 hlist_add_head_rcu(&sk->sk_node, list);
669 }
670
671 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
672 {
673 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
674 sk->sk_family == AF_INET6)
675 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
676 else
677 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
678 }
679
680 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
681 {
682 sock_hold(sk);
683 __sk_nulls_add_node_rcu(sk, list);
684 }
685
686 static inline void __sk_del_bind_node(struct sock *sk)
687 {
688 __hlist_del(&sk->sk_bind_node);
689 }
690
691 static inline void sk_add_bind_node(struct sock *sk,
692 struct hlist_head *list)
693 {
694 hlist_add_head(&sk->sk_bind_node, list);
695 }
696
697 #define sk_for_each(__sk, list) \
698 hlist_for_each_entry(__sk, list, sk_node)
699 #define sk_for_each_rcu(__sk, list) \
700 hlist_for_each_entry_rcu(__sk, list, sk_node)
701 #define sk_nulls_for_each(__sk, node, list) \
702 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
703 #define sk_nulls_for_each_rcu(__sk, node, list) \
704 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
705 #define sk_for_each_from(__sk) \
706 hlist_for_each_entry_from(__sk, sk_node)
707 #define sk_nulls_for_each_from(__sk, node) \
708 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
709 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
710 #define sk_for_each_safe(__sk, tmp, list) \
711 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
712 #define sk_for_each_bound(__sk, list) \
713 hlist_for_each_entry(__sk, list, sk_bind_node)
714
715 /**
716 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
717 * @tpos: the type * to use as a loop cursor.
718 * @pos: the &struct hlist_node to use as a loop cursor.
719 * @head: the head for your list.
720 * @offset: offset of hlist_node within the struct.
721 *
722 */
723 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
724 for (pos = rcu_dereference((head)->first); \
725 pos != NULL && \
726 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
727 pos = rcu_dereference(pos->next))
728
729 static inline struct user_namespace *sk_user_ns(struct sock *sk)
730 {
731 /* Careful only use this in a context where these parameters
732 * can not change and must all be valid, such as recvmsg from
733 * userspace.
734 */
735 return sk->sk_socket->file->f_cred->user_ns;
736 }
737
738 /* Sock flags */
739 enum sock_flags {
740 SOCK_DEAD,
741 SOCK_DONE,
742 SOCK_URGINLINE,
743 SOCK_KEEPOPEN,
744 SOCK_LINGER,
745 SOCK_DESTROY,
746 SOCK_BROADCAST,
747 SOCK_TIMESTAMP,
748 SOCK_ZAPPED,
749 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
750 SOCK_DBG, /* %SO_DEBUG setting */
751 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
752 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
753 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
754 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
755 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
756 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
757 SOCK_FASYNC, /* fasync() active */
758 SOCK_RXQ_OVFL,
759 SOCK_ZEROCOPY, /* buffers from userspace */
760 SOCK_WIFI_STATUS, /* push wifi status to userspace */
761 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
762 * Will use last 4 bytes of packet sent from
763 * user-space instead.
764 */
765 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
766 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
767 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
768 };
769
770 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
771
772 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
773 {
774 nsk->sk_flags = osk->sk_flags;
775 }
776
777 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
778 {
779 __set_bit(flag, &sk->sk_flags);
780 }
781
782 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
783 {
784 __clear_bit(flag, &sk->sk_flags);
785 }
786
787 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
788 {
789 return test_bit(flag, &sk->sk_flags);
790 }
791
792 #ifdef CONFIG_NET
793 extern struct static_key memalloc_socks;
794 static inline int sk_memalloc_socks(void)
795 {
796 return static_key_false(&memalloc_socks);
797 }
798 #else
799
800 static inline int sk_memalloc_socks(void)
801 {
802 return 0;
803 }
804
805 #endif
806
807 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
808 {
809 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
810 }
811
812 static inline void sk_acceptq_removed(struct sock *sk)
813 {
814 sk->sk_ack_backlog--;
815 }
816
817 static inline void sk_acceptq_added(struct sock *sk)
818 {
819 sk->sk_ack_backlog++;
820 }
821
822 static inline bool sk_acceptq_is_full(const struct sock *sk)
823 {
824 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
825 }
826
827 /*
828 * Compute minimal free write space needed to queue new packets.
829 */
830 static inline int sk_stream_min_wspace(const struct sock *sk)
831 {
832 return sk->sk_wmem_queued >> 1;
833 }
834
835 static inline int sk_stream_wspace(const struct sock *sk)
836 {
837 return sk->sk_sndbuf - sk->sk_wmem_queued;
838 }
839
840 void sk_stream_write_space(struct sock *sk);
841
842 /* OOB backlog add */
843 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
844 {
845 /* dont let skb dst not refcounted, we are going to leave rcu lock */
846 skb_dst_force_safe(skb);
847
848 if (!sk->sk_backlog.tail)
849 sk->sk_backlog.head = skb;
850 else
851 sk->sk_backlog.tail->next = skb;
852
853 sk->sk_backlog.tail = skb;
854 skb->next = NULL;
855 }
856
857 /*
858 * Take into account size of receive queue and backlog queue
859 * Do not take into account this skb truesize,
860 * to allow even a single big packet to come.
861 */
862 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
863 {
864 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
865
866 return qsize > limit;
867 }
868
869 /* The per-socket spinlock must be held here. */
870 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
871 unsigned int limit)
872 {
873 if (sk_rcvqueues_full(sk, limit))
874 return -ENOBUFS;
875
876 /*
877 * If the skb was allocated from pfmemalloc reserves, only
878 * allow SOCK_MEMALLOC sockets to use it as this socket is
879 * helping free memory
880 */
881 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
882 return -ENOMEM;
883
884 __sk_add_backlog(sk, skb);
885 sk->sk_backlog.len += skb->truesize;
886 return 0;
887 }
888
889 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
890
891 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
892 {
893 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
894 return __sk_backlog_rcv(sk, skb);
895
896 return sk->sk_backlog_rcv(sk, skb);
897 }
898
899 static inline void sk_incoming_cpu_update(struct sock *sk)
900 {
901 sk->sk_incoming_cpu = raw_smp_processor_id();
902 }
903
904 static inline void sock_rps_record_flow_hash(__u32 hash)
905 {
906 #ifdef CONFIG_RPS
907 struct rps_sock_flow_table *sock_flow_table;
908
909 rcu_read_lock();
910 sock_flow_table = rcu_dereference(rps_sock_flow_table);
911 rps_record_sock_flow(sock_flow_table, hash);
912 rcu_read_unlock();
913 #endif
914 }
915
916 static inline void sock_rps_record_flow(const struct sock *sk)
917 {
918 #ifdef CONFIG_RPS
919 if (static_key_false(&rfs_needed)) {
920 /* Reading sk->sk_rxhash might incur an expensive cache line
921 * miss.
922 *
923 * TCP_ESTABLISHED does cover almost all states where RFS
924 * might be useful, and is cheaper [1] than testing :
925 * IPv4: inet_sk(sk)->inet_daddr
926 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
927 * OR an additional socket flag
928 * [1] : sk_state and sk_prot are in the same cache line.
929 */
930 if (sk->sk_state == TCP_ESTABLISHED)
931 sock_rps_record_flow_hash(sk->sk_rxhash);
932 }
933 #endif
934 }
935
936 static inline void sock_rps_save_rxhash(struct sock *sk,
937 const struct sk_buff *skb)
938 {
939 #ifdef CONFIG_RPS
940 if (unlikely(sk->sk_rxhash != skb->hash))
941 sk->sk_rxhash = skb->hash;
942 #endif
943 }
944
945 static inline void sock_rps_reset_rxhash(struct sock *sk)
946 {
947 #ifdef CONFIG_RPS
948 sk->sk_rxhash = 0;
949 #endif
950 }
951
952 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
953 ({ int __rc; \
954 release_sock(__sk); \
955 __rc = __condition; \
956 if (!__rc) { \
957 *(__timeo) = wait_woken(__wait, \
958 TASK_INTERRUPTIBLE, \
959 *(__timeo)); \
960 } \
961 sched_annotate_sleep(); \
962 lock_sock(__sk); \
963 __rc = __condition; \
964 __rc; \
965 })
966
967 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
968 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
969 void sk_stream_wait_close(struct sock *sk, long timeo_p);
970 int sk_stream_error(struct sock *sk, int flags, int err);
971 void sk_stream_kill_queues(struct sock *sk);
972 void sk_set_memalloc(struct sock *sk);
973 void sk_clear_memalloc(struct sock *sk);
974
975 void __sk_flush_backlog(struct sock *sk);
976
977 static inline bool sk_flush_backlog(struct sock *sk)
978 {
979 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
980 __sk_flush_backlog(sk);
981 return true;
982 }
983 return false;
984 }
985
986 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
987
988 struct request_sock_ops;
989 struct timewait_sock_ops;
990 struct inet_hashinfo;
991 struct raw_hashinfo;
992 struct module;
993
994 /*
995 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
996 * un-modified. Special care is taken when initializing object to zero.
997 */
998 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
999 {
1000 if (offsetof(struct sock, sk_node.next) != 0)
1001 memset(sk, 0, offsetof(struct sock, sk_node.next));
1002 memset(&sk->sk_node.pprev, 0,
1003 size - offsetof(struct sock, sk_node.pprev));
1004 }
1005
1006 /* Networking protocol blocks we attach to sockets.
1007 * socket layer -> transport layer interface
1008 */
1009 struct proto {
1010 void (*close)(struct sock *sk,
1011 long timeout);
1012 int (*connect)(struct sock *sk,
1013 struct sockaddr *uaddr,
1014 int addr_len);
1015 int (*disconnect)(struct sock *sk, int flags);
1016
1017 struct sock * (*accept)(struct sock *sk, int flags, int *err);
1018
1019 int (*ioctl)(struct sock *sk, int cmd,
1020 unsigned long arg);
1021 int (*init)(struct sock *sk);
1022 void (*destroy)(struct sock *sk);
1023 void (*shutdown)(struct sock *sk, int how);
1024 int (*setsockopt)(struct sock *sk, int level,
1025 int optname, char __user *optval,
1026 unsigned int optlen);
1027 int (*getsockopt)(struct sock *sk, int level,
1028 int optname, char __user *optval,
1029 int __user *option);
1030 #ifdef CONFIG_COMPAT
1031 int (*compat_setsockopt)(struct sock *sk,
1032 int level,
1033 int optname, char __user *optval,
1034 unsigned int optlen);
1035 int (*compat_getsockopt)(struct sock *sk,
1036 int level,
1037 int optname, char __user *optval,
1038 int __user *option);
1039 int (*compat_ioctl)(struct sock *sk,
1040 unsigned int cmd, unsigned long arg);
1041 #endif
1042 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1043 size_t len);
1044 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1045 size_t len, int noblock, int flags,
1046 int *addr_len);
1047 int (*sendpage)(struct sock *sk, struct page *page,
1048 int offset, size_t size, int flags);
1049 int (*bind)(struct sock *sk,
1050 struct sockaddr *uaddr, int addr_len);
1051
1052 int (*backlog_rcv) (struct sock *sk,
1053 struct sk_buff *skb);
1054
1055 void (*release_cb)(struct sock *sk);
1056
1057 /* Keeping track of sk's, looking them up, and port selection methods. */
1058 int (*hash)(struct sock *sk);
1059 void (*unhash)(struct sock *sk);
1060 void (*rehash)(struct sock *sk);
1061 int (*get_port)(struct sock *sk, unsigned short snum);
1062
1063 /* Keeping track of sockets in use */
1064 #ifdef CONFIG_PROC_FS
1065 unsigned int inuse_idx;
1066 #endif
1067
1068 bool (*stream_memory_free)(const struct sock *sk);
1069 /* Memory pressure */
1070 void (*enter_memory_pressure)(struct sock *sk);
1071 atomic_long_t *memory_allocated; /* Current allocated memory. */
1072 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1073 /*
1074 * Pressure flag: try to collapse.
1075 * Technical note: it is used by multiple contexts non atomically.
1076 * All the __sk_mem_schedule() is of this nature: accounting
1077 * is strict, actions are advisory and have some latency.
1078 */
1079 int *memory_pressure;
1080 long *sysctl_mem;
1081 int *sysctl_wmem;
1082 int *sysctl_rmem;
1083 int max_header;
1084 bool no_autobind;
1085
1086 struct kmem_cache *slab;
1087 unsigned int obj_size;
1088 int slab_flags;
1089
1090 struct percpu_counter *orphan_count;
1091
1092 struct request_sock_ops *rsk_prot;
1093 struct timewait_sock_ops *twsk_prot;
1094
1095 union {
1096 struct inet_hashinfo *hashinfo;
1097 struct udp_table *udp_table;
1098 struct raw_hashinfo *raw_hash;
1099 } h;
1100
1101 struct module *owner;
1102
1103 char name[32];
1104
1105 struct list_head node;
1106 #ifdef SOCK_REFCNT_DEBUG
1107 atomic_t socks;
1108 #endif
1109 int (*diag_destroy)(struct sock *sk, int err);
1110 };
1111
1112 int proto_register(struct proto *prot, int alloc_slab);
1113 void proto_unregister(struct proto *prot);
1114
1115 #ifdef SOCK_REFCNT_DEBUG
1116 static inline void sk_refcnt_debug_inc(struct sock *sk)
1117 {
1118 atomic_inc(&sk->sk_prot->socks);
1119 }
1120
1121 static inline void sk_refcnt_debug_dec(struct sock *sk)
1122 {
1123 atomic_dec(&sk->sk_prot->socks);
1124 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1125 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1126 }
1127
1128 static inline void sk_refcnt_debug_release(const struct sock *sk)
1129 {
1130 if (atomic_read(&sk->sk_refcnt) != 1)
1131 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1132 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1133 }
1134 #else /* SOCK_REFCNT_DEBUG */
1135 #define sk_refcnt_debug_inc(sk) do { } while (0)
1136 #define sk_refcnt_debug_dec(sk) do { } while (0)
1137 #define sk_refcnt_debug_release(sk) do { } while (0)
1138 #endif /* SOCK_REFCNT_DEBUG */
1139
1140 static inline bool sk_stream_memory_free(const struct sock *sk)
1141 {
1142 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1143 return false;
1144
1145 return sk->sk_prot->stream_memory_free ?
1146 sk->sk_prot->stream_memory_free(sk) : true;
1147 }
1148
1149 static inline bool sk_stream_is_writeable(const struct sock *sk)
1150 {
1151 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1152 sk_stream_memory_free(sk);
1153 }
1154
1155 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1156 struct cgroup *ancestor)
1157 {
1158 #ifdef CONFIG_SOCK_CGROUP_DATA
1159 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1160 ancestor);
1161 #else
1162 return -ENOTSUPP;
1163 #endif
1164 }
1165
1166 static inline bool sk_has_memory_pressure(const struct sock *sk)
1167 {
1168 return sk->sk_prot->memory_pressure != NULL;
1169 }
1170
1171 static inline bool sk_under_memory_pressure(const struct sock *sk)
1172 {
1173 if (!sk->sk_prot->memory_pressure)
1174 return false;
1175
1176 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1177 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1178 return true;
1179
1180 return !!*sk->sk_prot->memory_pressure;
1181 }
1182
1183 static inline void sk_leave_memory_pressure(struct sock *sk)
1184 {
1185 int *memory_pressure = sk->sk_prot->memory_pressure;
1186
1187 if (!memory_pressure)
1188 return;
1189
1190 if (*memory_pressure)
1191 *memory_pressure = 0;
1192 }
1193
1194 static inline void sk_enter_memory_pressure(struct sock *sk)
1195 {
1196 if (!sk->sk_prot->enter_memory_pressure)
1197 return;
1198
1199 sk->sk_prot->enter_memory_pressure(sk);
1200 }
1201
1202 static inline long
1203 sk_memory_allocated(const struct sock *sk)
1204 {
1205 return atomic_long_read(sk->sk_prot->memory_allocated);
1206 }
1207
1208 static inline long
1209 sk_memory_allocated_add(struct sock *sk, int amt)
1210 {
1211 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1212 }
1213
1214 static inline void
1215 sk_memory_allocated_sub(struct sock *sk, int amt)
1216 {
1217 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1218 }
1219
1220 static inline void sk_sockets_allocated_dec(struct sock *sk)
1221 {
1222 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1223 }
1224
1225 static inline void sk_sockets_allocated_inc(struct sock *sk)
1226 {
1227 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1228 }
1229
1230 static inline int
1231 sk_sockets_allocated_read_positive(struct sock *sk)
1232 {
1233 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1234 }
1235
1236 static inline int
1237 proto_sockets_allocated_sum_positive(struct proto *prot)
1238 {
1239 return percpu_counter_sum_positive(prot->sockets_allocated);
1240 }
1241
1242 static inline long
1243 proto_memory_allocated(struct proto *prot)
1244 {
1245 return atomic_long_read(prot->memory_allocated);
1246 }
1247
1248 static inline bool
1249 proto_memory_pressure(struct proto *prot)
1250 {
1251 if (!prot->memory_pressure)
1252 return false;
1253 return !!*prot->memory_pressure;
1254 }
1255
1256
1257 #ifdef CONFIG_PROC_FS
1258 /* Called with local bh disabled */
1259 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1260 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1261 #else
1262 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1263 int inc)
1264 {
1265 }
1266 #endif
1267
1268
1269 /* With per-bucket locks this operation is not-atomic, so that
1270 * this version is not worse.
1271 */
1272 static inline int __sk_prot_rehash(struct sock *sk)
1273 {
1274 sk->sk_prot->unhash(sk);
1275 return sk->sk_prot->hash(sk);
1276 }
1277
1278 /* About 10 seconds */
1279 #define SOCK_DESTROY_TIME (10*HZ)
1280
1281 /* Sockets 0-1023 can't be bound to unless you are superuser */
1282 #define PROT_SOCK 1024
1283
1284 #define SHUTDOWN_MASK 3
1285 #define RCV_SHUTDOWN 1
1286 #define SEND_SHUTDOWN 2
1287
1288 #define SOCK_SNDBUF_LOCK 1
1289 #define SOCK_RCVBUF_LOCK 2
1290 #define SOCK_BINDADDR_LOCK 4
1291 #define SOCK_BINDPORT_LOCK 8
1292
1293 struct socket_alloc {
1294 struct socket socket;
1295 struct inode vfs_inode;
1296 };
1297
1298 static inline struct socket *SOCKET_I(struct inode *inode)
1299 {
1300 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1301 }
1302
1303 static inline struct inode *SOCK_INODE(struct socket *socket)
1304 {
1305 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1306 }
1307
1308 /*
1309 * Functions for memory accounting
1310 */
1311 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1312 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1313 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1314 void __sk_mem_reclaim(struct sock *sk, int amount);
1315
1316 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1317 * do not necessarily have 16x time more memory than 4KB ones.
1318 */
1319 #define SK_MEM_QUANTUM 4096
1320 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1321 #define SK_MEM_SEND 0
1322 #define SK_MEM_RECV 1
1323
1324 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1325 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1326 {
1327 long val = sk->sk_prot->sysctl_mem[index];
1328
1329 #if PAGE_SIZE > SK_MEM_QUANTUM
1330 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1331 #elif PAGE_SIZE < SK_MEM_QUANTUM
1332 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1333 #endif
1334 return val;
1335 }
1336
1337 static inline int sk_mem_pages(int amt)
1338 {
1339 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1340 }
1341
1342 static inline bool sk_has_account(struct sock *sk)
1343 {
1344 /* return true if protocol supports memory accounting */
1345 return !!sk->sk_prot->memory_allocated;
1346 }
1347
1348 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1349 {
1350 if (!sk_has_account(sk))
1351 return true;
1352 return size <= sk->sk_forward_alloc ||
1353 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1354 }
1355
1356 static inline bool
1357 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1358 {
1359 if (!sk_has_account(sk))
1360 return true;
1361 return size<= sk->sk_forward_alloc ||
1362 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1363 skb_pfmemalloc(skb);
1364 }
1365
1366 static inline void sk_mem_reclaim(struct sock *sk)
1367 {
1368 if (!sk_has_account(sk))
1369 return;
1370 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1371 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1372 }
1373
1374 static inline void sk_mem_reclaim_partial(struct sock *sk)
1375 {
1376 if (!sk_has_account(sk))
1377 return;
1378 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1379 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1380 }
1381
1382 static inline void sk_mem_charge(struct sock *sk, int size)
1383 {
1384 if (!sk_has_account(sk))
1385 return;
1386 sk->sk_forward_alloc -= size;
1387 }
1388
1389 static inline void sk_mem_uncharge(struct sock *sk, int size)
1390 {
1391 if (!sk_has_account(sk))
1392 return;
1393 sk->sk_forward_alloc += size;
1394
1395 /* Avoid a possible overflow.
1396 * TCP send queues can make this happen, if sk_mem_reclaim()
1397 * is not called and more than 2 GBytes are released at once.
1398 *
1399 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1400 * no need to hold that much forward allocation anyway.
1401 */
1402 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1403 __sk_mem_reclaim(sk, 1 << 20);
1404 }
1405
1406 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1407 {
1408 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1409 sk->sk_wmem_queued -= skb->truesize;
1410 sk_mem_uncharge(sk, skb->truesize);
1411 __kfree_skb(skb);
1412 }
1413
1414 static inline void sock_release_ownership(struct sock *sk)
1415 {
1416 if (sk->sk_lock.owned) {
1417 sk->sk_lock.owned = 0;
1418
1419 /* The sk_lock has mutex_unlock() semantics: */
1420 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1421 }
1422 }
1423
1424 /*
1425 * Macro so as to not evaluate some arguments when
1426 * lockdep is not enabled.
1427 *
1428 * Mark both the sk_lock and the sk_lock.slock as a
1429 * per-address-family lock class.
1430 */
1431 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1432 do { \
1433 sk->sk_lock.owned = 0; \
1434 init_waitqueue_head(&sk->sk_lock.wq); \
1435 spin_lock_init(&(sk)->sk_lock.slock); \
1436 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1437 sizeof((sk)->sk_lock)); \
1438 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1439 (skey), (sname)); \
1440 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1441 } while (0)
1442
1443 #ifdef CONFIG_LOCKDEP
1444 static inline bool lockdep_sock_is_held(const struct sock *csk)
1445 {
1446 struct sock *sk = (struct sock *)csk;
1447
1448 return lockdep_is_held(&sk->sk_lock) ||
1449 lockdep_is_held(&sk->sk_lock.slock);
1450 }
1451 #endif
1452
1453 void lock_sock_nested(struct sock *sk, int subclass);
1454
1455 static inline void lock_sock(struct sock *sk)
1456 {
1457 lock_sock_nested(sk, 0);
1458 }
1459
1460 void release_sock(struct sock *sk);
1461
1462 /* BH context may only use the following locking interface. */
1463 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1464 #define bh_lock_sock_nested(__sk) \
1465 spin_lock_nested(&((__sk)->sk_lock.slock), \
1466 SINGLE_DEPTH_NESTING)
1467 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1468
1469 bool lock_sock_fast(struct sock *sk);
1470 /**
1471 * unlock_sock_fast - complement of lock_sock_fast
1472 * @sk: socket
1473 * @slow: slow mode
1474 *
1475 * fast unlock socket for user context.
1476 * If slow mode is on, we call regular release_sock()
1477 */
1478 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1479 {
1480 if (slow)
1481 release_sock(sk);
1482 else
1483 spin_unlock_bh(&sk->sk_lock.slock);
1484 }
1485
1486 /* Used by processes to "lock" a socket state, so that
1487 * interrupts and bottom half handlers won't change it
1488 * from under us. It essentially blocks any incoming
1489 * packets, so that we won't get any new data or any
1490 * packets that change the state of the socket.
1491 *
1492 * While locked, BH processing will add new packets to
1493 * the backlog queue. This queue is processed by the
1494 * owner of the socket lock right before it is released.
1495 *
1496 * Since ~2.3.5 it is also exclusive sleep lock serializing
1497 * accesses from user process context.
1498 */
1499
1500 static inline void sock_owned_by_me(const struct sock *sk)
1501 {
1502 #ifdef CONFIG_LOCKDEP
1503 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1504 #endif
1505 }
1506
1507 static inline bool sock_owned_by_user(const struct sock *sk)
1508 {
1509 sock_owned_by_me(sk);
1510 return sk->sk_lock.owned;
1511 }
1512
1513 /* no reclassification while locks are held */
1514 static inline bool sock_allow_reclassification(const struct sock *csk)
1515 {
1516 struct sock *sk = (struct sock *)csk;
1517
1518 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1519 }
1520
1521 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1522 struct proto *prot, int kern);
1523 void sk_free(struct sock *sk);
1524 void sk_destruct(struct sock *sk);
1525 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1526
1527 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1528 gfp_t priority);
1529 void __sock_wfree(struct sk_buff *skb);
1530 void sock_wfree(struct sk_buff *skb);
1531 void skb_orphan_partial(struct sk_buff *skb);
1532 void sock_rfree(struct sk_buff *skb);
1533 void sock_efree(struct sk_buff *skb);
1534 #ifdef CONFIG_INET
1535 void sock_edemux(struct sk_buff *skb);
1536 #else
1537 #define sock_edemux(skb) sock_efree(skb)
1538 #endif
1539
1540 int sock_setsockopt(struct socket *sock, int level, int op,
1541 char __user *optval, unsigned int optlen);
1542
1543 int sock_getsockopt(struct socket *sock, int level, int op,
1544 char __user *optval, int __user *optlen);
1545 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1546 int noblock, int *errcode);
1547 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1548 unsigned long data_len, int noblock,
1549 int *errcode, int max_page_order);
1550 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1551 void sock_kfree_s(struct sock *sk, void *mem, int size);
1552 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1553 void sk_send_sigurg(struct sock *sk);
1554
1555 struct sockcm_cookie {
1556 u32 mark;
1557 u16 tsflags;
1558 };
1559
1560 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1561 struct sockcm_cookie *sockc);
1562 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1563 struct sockcm_cookie *sockc);
1564
1565 /*
1566 * Functions to fill in entries in struct proto_ops when a protocol
1567 * does not implement a particular function.
1568 */
1569 int sock_no_bind(struct socket *, struct sockaddr *, int);
1570 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1571 int sock_no_socketpair(struct socket *, struct socket *);
1572 int sock_no_accept(struct socket *, struct socket *, int);
1573 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1574 unsigned int sock_no_poll(struct file *, struct socket *,
1575 struct poll_table_struct *);
1576 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1577 int sock_no_listen(struct socket *, int);
1578 int sock_no_shutdown(struct socket *, int);
1579 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1580 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1581 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1582 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1583 int sock_no_mmap(struct file *file, struct socket *sock,
1584 struct vm_area_struct *vma);
1585 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1586 size_t size, int flags);
1587
1588 /*
1589 * Functions to fill in entries in struct proto_ops when a protocol
1590 * uses the inet style.
1591 */
1592 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1593 char __user *optval, int __user *optlen);
1594 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1595 int flags);
1596 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1597 char __user *optval, unsigned int optlen);
1598 int compat_sock_common_getsockopt(struct socket *sock, int level,
1599 int optname, char __user *optval, int __user *optlen);
1600 int compat_sock_common_setsockopt(struct socket *sock, int level,
1601 int optname, char __user *optval, unsigned int optlen);
1602
1603 void sk_common_release(struct sock *sk);
1604
1605 /*
1606 * Default socket callbacks and setup code
1607 */
1608
1609 /* Initialise core socket variables */
1610 void sock_init_data(struct socket *sock, struct sock *sk);
1611
1612 /*
1613 * Socket reference counting postulates.
1614 *
1615 * * Each user of socket SHOULD hold a reference count.
1616 * * Each access point to socket (an hash table bucket, reference from a list,
1617 * running timer, skb in flight MUST hold a reference count.
1618 * * When reference count hits 0, it means it will never increase back.
1619 * * When reference count hits 0, it means that no references from
1620 * outside exist to this socket and current process on current CPU
1621 * is last user and may/should destroy this socket.
1622 * * sk_free is called from any context: process, BH, IRQ. When
1623 * it is called, socket has no references from outside -> sk_free
1624 * may release descendant resources allocated by the socket, but
1625 * to the time when it is called, socket is NOT referenced by any
1626 * hash tables, lists etc.
1627 * * Packets, delivered from outside (from network or from another process)
1628 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1629 * when they sit in queue. Otherwise, packets will leak to hole, when
1630 * socket is looked up by one cpu and unhasing is made by another CPU.
1631 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1632 * (leak to backlog). Packet socket does all the processing inside
1633 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1634 * use separate SMP lock, so that they are prone too.
1635 */
1636
1637 /* Ungrab socket and destroy it, if it was the last reference. */
1638 static inline void sock_put(struct sock *sk)
1639 {
1640 if (atomic_dec_and_test(&sk->sk_refcnt))
1641 sk_free(sk);
1642 }
1643 /* Generic version of sock_put(), dealing with all sockets
1644 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1645 */
1646 void sock_gen_put(struct sock *sk);
1647
1648 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1649 unsigned int trim_cap, bool refcounted);
1650 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1651 const int nested)
1652 {
1653 return __sk_receive_skb(sk, skb, nested, 1, true);
1654 }
1655
1656 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1657 {
1658 sk->sk_tx_queue_mapping = tx_queue;
1659 }
1660
1661 static inline void sk_tx_queue_clear(struct sock *sk)
1662 {
1663 sk->sk_tx_queue_mapping = -1;
1664 }
1665
1666 static inline int sk_tx_queue_get(const struct sock *sk)
1667 {
1668 return sk ? sk->sk_tx_queue_mapping : -1;
1669 }
1670
1671 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1672 {
1673 sk_tx_queue_clear(sk);
1674 sk->sk_socket = sock;
1675 }
1676
1677 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1678 {
1679 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1680 return &rcu_dereference_raw(sk->sk_wq)->wait;
1681 }
1682 /* Detach socket from process context.
1683 * Announce socket dead, detach it from wait queue and inode.
1684 * Note that parent inode held reference count on this struct sock,
1685 * we do not release it in this function, because protocol
1686 * probably wants some additional cleanups or even continuing
1687 * to work with this socket (TCP).
1688 */
1689 static inline void sock_orphan(struct sock *sk)
1690 {
1691 write_lock_bh(&sk->sk_callback_lock);
1692 sock_set_flag(sk, SOCK_DEAD);
1693 sk_set_socket(sk, NULL);
1694 sk->sk_wq = NULL;
1695 write_unlock_bh(&sk->sk_callback_lock);
1696 }
1697
1698 static inline void sock_graft(struct sock *sk, struct socket *parent)
1699 {
1700 write_lock_bh(&sk->sk_callback_lock);
1701 sk->sk_wq = parent->wq;
1702 parent->sk = sk;
1703 sk_set_socket(sk, parent);
1704 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1705 security_sock_graft(sk, parent);
1706 write_unlock_bh(&sk->sk_callback_lock);
1707 }
1708
1709 kuid_t sock_i_uid(struct sock *sk);
1710 unsigned long sock_i_ino(struct sock *sk);
1711
1712 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1713 {
1714 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1715 }
1716
1717 static inline u32 net_tx_rndhash(void)
1718 {
1719 u32 v = prandom_u32();
1720
1721 return v ?: 1;
1722 }
1723
1724 static inline void sk_set_txhash(struct sock *sk)
1725 {
1726 sk->sk_txhash = net_tx_rndhash();
1727 }
1728
1729 static inline void sk_rethink_txhash(struct sock *sk)
1730 {
1731 if (sk->sk_txhash)
1732 sk_set_txhash(sk);
1733 }
1734
1735 static inline struct dst_entry *
1736 __sk_dst_get(struct sock *sk)
1737 {
1738 return rcu_dereference_check(sk->sk_dst_cache,
1739 lockdep_sock_is_held(sk));
1740 }
1741
1742 static inline struct dst_entry *
1743 sk_dst_get(struct sock *sk)
1744 {
1745 struct dst_entry *dst;
1746
1747 rcu_read_lock();
1748 dst = rcu_dereference(sk->sk_dst_cache);
1749 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1750 dst = NULL;
1751 rcu_read_unlock();
1752 return dst;
1753 }
1754
1755 static inline void dst_negative_advice(struct sock *sk)
1756 {
1757 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1758
1759 sk_rethink_txhash(sk);
1760
1761 if (dst && dst->ops->negative_advice) {
1762 ndst = dst->ops->negative_advice(dst);
1763
1764 if (ndst != dst) {
1765 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1766 sk_tx_queue_clear(sk);
1767 sk->sk_dst_pending_confirm = 0;
1768 }
1769 }
1770 }
1771
1772 static inline void
1773 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1774 {
1775 struct dst_entry *old_dst;
1776
1777 sk_tx_queue_clear(sk);
1778 sk->sk_dst_pending_confirm = 0;
1779 /*
1780 * This can be called while sk is owned by the caller only,
1781 * with no state that can be checked in a rcu_dereference_check() cond
1782 */
1783 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1784 rcu_assign_pointer(sk->sk_dst_cache, dst);
1785 dst_release(old_dst);
1786 }
1787
1788 static inline void
1789 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1790 {
1791 struct dst_entry *old_dst;
1792
1793 sk_tx_queue_clear(sk);
1794 sk->sk_dst_pending_confirm = 0;
1795 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1796 dst_release(old_dst);
1797 }
1798
1799 static inline void
1800 __sk_dst_reset(struct sock *sk)
1801 {
1802 __sk_dst_set(sk, NULL);
1803 }
1804
1805 static inline void
1806 sk_dst_reset(struct sock *sk)
1807 {
1808 sk_dst_set(sk, NULL);
1809 }
1810
1811 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1812
1813 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1814
1815 static inline void sk_dst_confirm(struct sock *sk)
1816 {
1817 if (!sk->sk_dst_pending_confirm)
1818 sk->sk_dst_pending_confirm = 1;
1819 }
1820
1821 bool sk_mc_loop(struct sock *sk);
1822
1823 static inline bool sk_can_gso(const struct sock *sk)
1824 {
1825 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1826 }
1827
1828 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1829
1830 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1831 {
1832 sk->sk_route_nocaps |= flags;
1833 sk->sk_route_caps &= ~flags;
1834 }
1835
1836 static inline bool sk_check_csum_caps(struct sock *sk)
1837 {
1838 return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1839 (sk->sk_family == PF_INET &&
1840 (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1841 (sk->sk_family == PF_INET6 &&
1842 (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1843 }
1844
1845 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1846 struct iov_iter *from, char *to,
1847 int copy, int offset)
1848 {
1849 if (skb->ip_summed == CHECKSUM_NONE) {
1850 __wsum csum = 0;
1851 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1852 return -EFAULT;
1853 skb->csum = csum_block_add(skb->csum, csum, offset);
1854 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1855 if (!copy_from_iter_full_nocache(to, copy, from))
1856 return -EFAULT;
1857 } else if (!copy_from_iter_full(to, copy, from))
1858 return -EFAULT;
1859
1860 return 0;
1861 }
1862
1863 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1864 struct iov_iter *from, int copy)
1865 {
1866 int err, offset = skb->len;
1867
1868 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1869 copy, offset);
1870 if (err)
1871 __skb_trim(skb, offset);
1872
1873 return err;
1874 }
1875
1876 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1877 struct sk_buff *skb,
1878 struct page *page,
1879 int off, int copy)
1880 {
1881 int err;
1882
1883 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1884 copy, skb->len);
1885 if (err)
1886 return err;
1887
1888 skb->len += copy;
1889 skb->data_len += copy;
1890 skb->truesize += copy;
1891 sk->sk_wmem_queued += copy;
1892 sk_mem_charge(sk, copy);
1893 return 0;
1894 }
1895
1896 /**
1897 * sk_wmem_alloc_get - returns write allocations
1898 * @sk: socket
1899 *
1900 * Returns sk_wmem_alloc minus initial offset of one
1901 */
1902 static inline int sk_wmem_alloc_get(const struct sock *sk)
1903 {
1904 return atomic_read(&sk->sk_wmem_alloc) - 1;
1905 }
1906
1907 /**
1908 * sk_rmem_alloc_get - returns read allocations
1909 * @sk: socket
1910 *
1911 * Returns sk_rmem_alloc
1912 */
1913 static inline int sk_rmem_alloc_get(const struct sock *sk)
1914 {
1915 return atomic_read(&sk->sk_rmem_alloc);
1916 }
1917
1918 /**
1919 * sk_has_allocations - check if allocations are outstanding
1920 * @sk: socket
1921 *
1922 * Returns true if socket has write or read allocations
1923 */
1924 static inline bool sk_has_allocations(const struct sock *sk)
1925 {
1926 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1927 }
1928
1929 /**
1930 * skwq_has_sleeper - check if there are any waiting processes
1931 * @wq: struct socket_wq
1932 *
1933 * Returns true if socket_wq has waiting processes
1934 *
1935 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1936 * barrier call. They were added due to the race found within the tcp code.
1937 *
1938 * Consider following tcp code paths:
1939 *
1940 * CPU1 CPU2
1941 *
1942 * sys_select receive packet
1943 * ... ...
1944 * __add_wait_queue update tp->rcv_nxt
1945 * ... ...
1946 * tp->rcv_nxt check sock_def_readable
1947 * ... {
1948 * schedule rcu_read_lock();
1949 * wq = rcu_dereference(sk->sk_wq);
1950 * if (wq && waitqueue_active(&wq->wait))
1951 * wake_up_interruptible(&wq->wait)
1952 * ...
1953 * }
1954 *
1955 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1956 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1957 * could then endup calling schedule and sleep forever if there are no more
1958 * data on the socket.
1959 *
1960 */
1961 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1962 {
1963 return wq && wq_has_sleeper(&wq->wait);
1964 }
1965
1966 /**
1967 * sock_poll_wait - place memory barrier behind the poll_wait call.
1968 * @filp: file
1969 * @wait_address: socket wait queue
1970 * @p: poll_table
1971 *
1972 * See the comments in the wq_has_sleeper function.
1973 */
1974 static inline void sock_poll_wait(struct file *filp,
1975 wait_queue_head_t *wait_address, poll_table *p)
1976 {
1977 if (!poll_does_not_wait(p) && wait_address) {
1978 poll_wait(filp, wait_address, p);
1979 /* We need to be sure we are in sync with the
1980 * socket flags modification.
1981 *
1982 * This memory barrier is paired in the wq_has_sleeper.
1983 */
1984 smp_mb();
1985 }
1986 }
1987
1988 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1989 {
1990 if (sk->sk_txhash) {
1991 skb->l4_hash = 1;
1992 skb->hash = sk->sk_txhash;
1993 }
1994 }
1995
1996 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1997
1998 /*
1999 * Queue a received datagram if it will fit. Stream and sequenced
2000 * protocols can't normally use this as they need to fit buffers in
2001 * and play with them.
2002 *
2003 * Inlined as it's very short and called for pretty much every
2004 * packet ever received.
2005 */
2006 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2007 {
2008 skb_orphan(skb);
2009 skb->sk = sk;
2010 skb->destructor = sock_rfree;
2011 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2012 sk_mem_charge(sk, skb->truesize);
2013 }
2014
2015 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2016 unsigned long expires);
2017
2018 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2019
2020 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff *skb,
2021 unsigned int flags,
2022 void (*destructor)(struct sock *sk,
2023 struct sk_buff *skb));
2024 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2025 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2026
2027 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2028 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2029
2030 /*
2031 * Recover an error report and clear atomically
2032 */
2033
2034 static inline int sock_error(struct sock *sk)
2035 {
2036 int err;
2037 if (likely(!sk->sk_err))
2038 return 0;
2039 err = xchg(&sk->sk_err, 0);
2040 return -err;
2041 }
2042
2043 static inline unsigned long sock_wspace(struct sock *sk)
2044 {
2045 int amt = 0;
2046
2047 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2048 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2049 if (amt < 0)
2050 amt = 0;
2051 }
2052 return amt;
2053 }
2054
2055 /* Note:
2056 * We use sk->sk_wq_raw, from contexts knowing this
2057 * pointer is not NULL and cannot disappear/change.
2058 */
2059 static inline void sk_set_bit(int nr, struct sock *sk)
2060 {
2061 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2062 !sock_flag(sk, SOCK_FASYNC))
2063 return;
2064
2065 set_bit(nr, &sk->sk_wq_raw->flags);
2066 }
2067
2068 static inline void sk_clear_bit(int nr, struct sock *sk)
2069 {
2070 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2071 !sock_flag(sk, SOCK_FASYNC))
2072 return;
2073
2074 clear_bit(nr, &sk->sk_wq_raw->flags);
2075 }
2076
2077 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2078 {
2079 if (sock_flag(sk, SOCK_FASYNC)) {
2080 rcu_read_lock();
2081 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2082 rcu_read_unlock();
2083 }
2084 }
2085
2086 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2087 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2088 * Note: for send buffers, TCP works better if we can build two skbs at
2089 * minimum.
2090 */
2091 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2092
2093 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2094 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2095
2096 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2097 {
2098 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2099 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2100 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2101 }
2102 }
2103
2104 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2105 bool force_schedule);
2106
2107 /**
2108 * sk_page_frag - return an appropriate page_frag
2109 * @sk: socket
2110 *
2111 * If socket allocation mode allows current thread to sleep, it means its
2112 * safe to use the per task page_frag instead of the per socket one.
2113 */
2114 static inline struct page_frag *sk_page_frag(struct sock *sk)
2115 {
2116 if (gfpflags_allow_blocking(sk->sk_allocation))
2117 return &current->task_frag;
2118
2119 return &sk->sk_frag;
2120 }
2121
2122 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2123
2124 /*
2125 * Default write policy as shown to user space via poll/select/SIGIO
2126 */
2127 static inline bool sock_writeable(const struct sock *sk)
2128 {
2129 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2130 }
2131
2132 static inline gfp_t gfp_any(void)
2133 {
2134 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2135 }
2136
2137 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2138 {
2139 return noblock ? 0 : sk->sk_rcvtimeo;
2140 }
2141
2142 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2143 {
2144 return noblock ? 0 : sk->sk_sndtimeo;
2145 }
2146
2147 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2148 {
2149 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2150 }
2151
2152 /* Alas, with timeout socket operations are not restartable.
2153 * Compare this to poll().
2154 */
2155 static inline int sock_intr_errno(long timeo)
2156 {
2157 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2158 }
2159
2160 struct sock_skb_cb {
2161 u32 dropcount;
2162 };
2163
2164 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2165 * using skb->cb[] would keep using it directly and utilize its
2166 * alignement guarantee.
2167 */
2168 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2169 sizeof(struct sock_skb_cb)))
2170
2171 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2172 SOCK_SKB_CB_OFFSET))
2173
2174 #define sock_skb_cb_check_size(size) \
2175 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2176
2177 static inline void
2178 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2179 {
2180 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2181 atomic_read(&sk->sk_drops) : 0;
2182 }
2183
2184 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2185 {
2186 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2187
2188 atomic_add(segs, &sk->sk_drops);
2189 }
2190
2191 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2192 struct sk_buff *skb);
2193 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2194 struct sk_buff *skb);
2195
2196 static inline void
2197 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2198 {
2199 ktime_t kt = skb->tstamp;
2200 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2201
2202 /*
2203 * generate control messages if
2204 * - receive time stamping in software requested
2205 * - software time stamp available and wanted
2206 * - hardware time stamps available and wanted
2207 */
2208 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2209 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2210 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2211 (hwtstamps->hwtstamp &&
2212 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2213 __sock_recv_timestamp(msg, sk, skb);
2214 else
2215 sk->sk_stamp = kt;
2216
2217 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2218 __sock_recv_wifi_status(msg, sk, skb);
2219 }
2220
2221 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2222 struct sk_buff *skb);
2223
2224 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2225 struct sk_buff *skb)
2226 {
2227 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2228 (1UL << SOCK_RCVTSTAMP))
2229 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2230 SOF_TIMESTAMPING_RAW_HARDWARE)
2231
2232 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2233 __sock_recv_ts_and_drops(msg, sk, skb);
2234 else
2235 sk->sk_stamp = skb->tstamp;
2236 }
2237
2238 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2239
2240 /**
2241 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2242 * @sk: socket sending this packet
2243 * @tsflags: timestamping flags to use
2244 * @tx_flags: completed with instructions for time stamping
2245 *
2246 * Note : callers should take care of initial *tx_flags value (usually 0)
2247 */
2248 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2249 __u8 *tx_flags)
2250 {
2251 if (unlikely(tsflags))
2252 __sock_tx_timestamp(tsflags, tx_flags);
2253 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2254 *tx_flags |= SKBTX_WIFI_STATUS;
2255 }
2256
2257 /**
2258 * sk_eat_skb - Release a skb if it is no longer needed
2259 * @sk: socket to eat this skb from
2260 * @skb: socket buffer to eat
2261 *
2262 * This routine must be called with interrupts disabled or with the socket
2263 * locked so that the sk_buff queue operation is ok.
2264 */
2265 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2266 {
2267 __skb_unlink(skb, &sk->sk_receive_queue);
2268 __kfree_skb(skb);
2269 }
2270
2271 static inline
2272 struct net *sock_net(const struct sock *sk)
2273 {
2274 return read_pnet(&sk->sk_net);
2275 }
2276
2277 static inline
2278 void sock_net_set(struct sock *sk, struct net *net)
2279 {
2280 write_pnet(&sk->sk_net, net);
2281 }
2282
2283 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2284 {
2285 if (skb->sk) {
2286 struct sock *sk = skb->sk;
2287
2288 skb->destructor = NULL;
2289 skb->sk = NULL;
2290 return sk;
2291 }
2292 return NULL;
2293 }
2294
2295 /* This helper checks if a socket is a full socket,
2296 * ie _not_ a timewait or request socket.
2297 */
2298 static inline bool sk_fullsock(const struct sock *sk)
2299 {
2300 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2301 }
2302
2303 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2304 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2305 */
2306 static inline bool sk_listener(const struct sock *sk)
2307 {
2308 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2309 }
2310
2311 /**
2312 * sk_state_load - read sk->sk_state for lockless contexts
2313 * @sk: socket pointer
2314 *
2315 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2316 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2317 */
2318 static inline int sk_state_load(const struct sock *sk)
2319 {
2320 return smp_load_acquire(&sk->sk_state);
2321 }
2322
2323 /**
2324 * sk_state_store - update sk->sk_state
2325 * @sk: socket pointer
2326 * @newstate: new state
2327 *
2328 * Paired with sk_state_load(). Should be used in contexts where
2329 * state change might impact lockless readers.
2330 */
2331 static inline void sk_state_store(struct sock *sk, int newstate)
2332 {
2333 smp_store_release(&sk->sk_state, newstate);
2334 }
2335
2336 void sock_enable_timestamp(struct sock *sk, int flag);
2337 int sock_get_timestamp(struct sock *, struct timeval __user *);
2338 int sock_get_timestampns(struct sock *, struct timespec __user *);
2339 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2340 int type);
2341
2342 bool sk_ns_capable(const struct sock *sk,
2343 struct user_namespace *user_ns, int cap);
2344 bool sk_capable(const struct sock *sk, int cap);
2345 bool sk_net_capable(const struct sock *sk, int cap);
2346
2347 extern __u32 sysctl_wmem_max;
2348 extern __u32 sysctl_rmem_max;
2349
2350 extern int sysctl_tstamp_allow_data;
2351 extern int sysctl_optmem_max;
2352
2353 extern __u32 sysctl_wmem_default;
2354 extern __u32 sysctl_rmem_default;
2355
2356 #endif /* _SOCK_H */