]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/audit.c
KVM: PPC: Use preregistered memory API to access TCE list
[mirror_ubuntu-zesty-kernel.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57 #include <linux/spinlock.h>
58 #include <linux/rcupdate.h>
59 #include <linux/mutex.h>
60 #include <linux/gfp.h>
61
62 #include <linux/audit.h>
63
64 #include <net/sock.h>
65 #include <net/netlink.h>
66 #include <linux/skbuff.h>
67 #ifdef CONFIG_SECURITY
68 #include <linux/security.h>
69 #endif
70 #include <linux/freezer.h>
71 #include <linux/pid_namespace.h>
72 #include <net/netns/generic.h>
73
74 #include "audit.h"
75
76 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
77 * (Initialization happens after skb_init is called.) */
78 #define AUDIT_DISABLED -1
79 #define AUDIT_UNINITIALIZED 0
80 #define AUDIT_INITIALIZED 1
81 static int audit_initialized;
82
83 #define AUDIT_OFF 0
84 #define AUDIT_ON 1
85 #define AUDIT_LOCKED 2
86 u32 audit_enabled;
87 u32 audit_ever_enabled;
88
89 EXPORT_SYMBOL_GPL(audit_enabled);
90
91 /* Default state when kernel boots without any parameters. */
92 static u32 audit_default;
93
94 /* If auditing cannot proceed, audit_failure selects what happens. */
95 static u32 audit_failure = AUDIT_FAIL_PRINTK;
96
97 /* private audit network namespace index */
98 static unsigned int audit_net_id;
99
100 /**
101 * struct audit_net - audit private network namespace data
102 * @sk: communication socket
103 */
104 struct audit_net {
105 struct sock *sk;
106 };
107
108 /**
109 * struct auditd_connection - kernel/auditd connection state
110 * @pid: auditd PID
111 * @portid: netlink portid
112 * @net: the associated network namespace
113 * @lock: spinlock to protect write access
114 *
115 * Description:
116 * This struct is RCU protected; you must either hold the RCU lock for reading
117 * or the included spinlock for writing.
118 */
119 static struct auditd_connection {
120 int pid;
121 u32 portid;
122 struct net *net;
123 spinlock_t lock;
124 } auditd_conn;
125
126 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
127 * to that number per second. This prevents DoS attacks, but results in
128 * audit records being dropped. */
129 static u32 audit_rate_limit;
130
131 /* Number of outstanding audit_buffers allowed.
132 * When set to zero, this means unlimited. */
133 static u32 audit_backlog_limit = 64;
134 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
135 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
136
137 /* The identity of the user shutting down the audit system. */
138 kuid_t audit_sig_uid = INVALID_UID;
139 pid_t audit_sig_pid = -1;
140 u32 audit_sig_sid = 0;
141
142 /* Records can be lost in several ways:
143 0) [suppressed in audit_alloc]
144 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
145 2) out of memory in audit_log_move [alloc_skb]
146 3) suppressed due to audit_rate_limit
147 4) suppressed due to audit_backlog_limit
148 */
149 static atomic_t audit_lost = ATOMIC_INIT(0);
150
151 /* Hash for inode-based rules */
152 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
153
154 /* The audit_freelist is a list of pre-allocated audit buffers (if more
155 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
156 * being placed on the freelist). */
157 static DEFINE_SPINLOCK(audit_freelist_lock);
158 static int audit_freelist_count;
159 static LIST_HEAD(audit_freelist);
160
161 /* queue msgs to send via kauditd_task */
162 static struct sk_buff_head audit_queue;
163 /* queue msgs due to temporary unicast send problems */
164 static struct sk_buff_head audit_retry_queue;
165 /* queue msgs waiting for new auditd connection */
166 static struct sk_buff_head audit_hold_queue;
167
168 /* queue servicing thread */
169 static struct task_struct *kauditd_task;
170 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
171
172 /* waitqueue for callers who are blocked on the audit backlog */
173 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
174
175 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
176 .mask = -1,
177 .features = 0,
178 .lock = 0,};
179
180 static char *audit_feature_names[2] = {
181 "only_unset_loginuid",
182 "loginuid_immutable",
183 };
184
185
186 /* Serialize requests from userspace. */
187 DEFINE_MUTEX(audit_cmd_mutex);
188
189 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
190 * audit records. Since printk uses a 1024 byte buffer, this buffer
191 * should be at least that large. */
192 #define AUDIT_BUFSIZ 1024
193
194 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
195 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
196 #define AUDIT_MAXFREE (2*NR_CPUS)
197
198 /* The audit_buffer is used when formatting an audit record. The caller
199 * locks briefly to get the record off the freelist or to allocate the
200 * buffer, and locks briefly to send the buffer to the netlink layer or
201 * to place it on a transmit queue. Multiple audit_buffers can be in
202 * use simultaneously. */
203 struct audit_buffer {
204 struct list_head list;
205 struct sk_buff *skb; /* formatted skb ready to send */
206 struct audit_context *ctx; /* NULL or associated context */
207 gfp_t gfp_mask;
208 };
209
210 struct audit_reply {
211 __u32 portid;
212 struct net *net;
213 struct sk_buff *skb;
214 };
215
216 /**
217 * auditd_test_task - Check to see if a given task is an audit daemon
218 * @task: the task to check
219 *
220 * Description:
221 * Return 1 if the task is a registered audit daemon, 0 otherwise.
222 */
223 int auditd_test_task(const struct task_struct *task)
224 {
225 int rc;
226
227 rcu_read_lock();
228 rc = (auditd_conn.pid && task->tgid == auditd_conn.pid ? 1 : 0);
229 rcu_read_unlock();
230
231 return rc;
232 }
233
234 /**
235 * audit_get_sk - Return the audit socket for the given network namespace
236 * @net: the destination network namespace
237 *
238 * Description:
239 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
240 * that a reference is held for the network namespace while the sock is in use.
241 */
242 static struct sock *audit_get_sk(const struct net *net)
243 {
244 struct audit_net *aunet;
245
246 if (!net)
247 return NULL;
248
249 aunet = net_generic(net, audit_net_id);
250 return aunet->sk;
251 }
252
253 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
254 {
255 if (ab) {
256 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
257 nlh->nlmsg_pid = portid;
258 }
259 }
260
261 void audit_panic(const char *message)
262 {
263 switch (audit_failure) {
264 case AUDIT_FAIL_SILENT:
265 break;
266 case AUDIT_FAIL_PRINTK:
267 if (printk_ratelimit())
268 pr_err("%s\n", message);
269 break;
270 case AUDIT_FAIL_PANIC:
271 panic("audit: %s\n", message);
272 break;
273 }
274 }
275
276 static inline int audit_rate_check(void)
277 {
278 static unsigned long last_check = 0;
279 static int messages = 0;
280 static DEFINE_SPINLOCK(lock);
281 unsigned long flags;
282 unsigned long now;
283 unsigned long elapsed;
284 int retval = 0;
285
286 if (!audit_rate_limit) return 1;
287
288 spin_lock_irqsave(&lock, flags);
289 if (++messages < audit_rate_limit) {
290 retval = 1;
291 } else {
292 now = jiffies;
293 elapsed = now - last_check;
294 if (elapsed > HZ) {
295 last_check = now;
296 messages = 0;
297 retval = 1;
298 }
299 }
300 spin_unlock_irqrestore(&lock, flags);
301
302 return retval;
303 }
304
305 /**
306 * audit_log_lost - conditionally log lost audit message event
307 * @message: the message stating reason for lost audit message
308 *
309 * Emit at least 1 message per second, even if audit_rate_check is
310 * throttling.
311 * Always increment the lost messages counter.
312 */
313 void audit_log_lost(const char *message)
314 {
315 static unsigned long last_msg = 0;
316 static DEFINE_SPINLOCK(lock);
317 unsigned long flags;
318 unsigned long now;
319 int print;
320
321 atomic_inc(&audit_lost);
322
323 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
324
325 if (!print) {
326 spin_lock_irqsave(&lock, flags);
327 now = jiffies;
328 if (now - last_msg > HZ) {
329 print = 1;
330 last_msg = now;
331 }
332 spin_unlock_irqrestore(&lock, flags);
333 }
334
335 if (print) {
336 if (printk_ratelimit())
337 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
338 atomic_read(&audit_lost),
339 audit_rate_limit,
340 audit_backlog_limit);
341 audit_panic(message);
342 }
343 }
344
345 static int audit_log_config_change(char *function_name, u32 new, u32 old,
346 int allow_changes)
347 {
348 struct audit_buffer *ab;
349 int rc = 0;
350
351 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
352 if (unlikely(!ab))
353 return rc;
354 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
355 audit_log_session_info(ab);
356 rc = audit_log_task_context(ab);
357 if (rc)
358 allow_changes = 0; /* Something weird, deny request */
359 audit_log_format(ab, " res=%d", allow_changes);
360 audit_log_end(ab);
361 return rc;
362 }
363
364 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
365 {
366 int allow_changes, rc = 0;
367 u32 old = *to_change;
368
369 /* check if we are locked */
370 if (audit_enabled == AUDIT_LOCKED)
371 allow_changes = 0;
372 else
373 allow_changes = 1;
374
375 if (audit_enabled != AUDIT_OFF) {
376 rc = audit_log_config_change(function_name, new, old, allow_changes);
377 if (rc)
378 allow_changes = 0;
379 }
380
381 /* If we are allowed, make the change */
382 if (allow_changes == 1)
383 *to_change = new;
384 /* Not allowed, update reason */
385 else if (rc == 0)
386 rc = -EPERM;
387 return rc;
388 }
389
390 static int audit_set_rate_limit(u32 limit)
391 {
392 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
393 }
394
395 static int audit_set_backlog_limit(u32 limit)
396 {
397 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
398 }
399
400 static int audit_set_backlog_wait_time(u32 timeout)
401 {
402 return audit_do_config_change("audit_backlog_wait_time",
403 &audit_backlog_wait_time, timeout);
404 }
405
406 static int audit_set_enabled(u32 state)
407 {
408 int rc;
409 if (state > AUDIT_LOCKED)
410 return -EINVAL;
411
412 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
413 if (!rc)
414 audit_ever_enabled |= !!state;
415
416 return rc;
417 }
418
419 static int audit_set_failure(u32 state)
420 {
421 if (state != AUDIT_FAIL_SILENT
422 && state != AUDIT_FAIL_PRINTK
423 && state != AUDIT_FAIL_PANIC)
424 return -EINVAL;
425
426 return audit_do_config_change("audit_failure", &audit_failure, state);
427 }
428
429 /**
430 * auditd_set - Set/Reset the auditd connection state
431 * @pid: auditd PID
432 * @portid: auditd netlink portid
433 * @net: auditd network namespace pointer
434 *
435 * Description:
436 * This function will obtain and drop network namespace references as
437 * necessary.
438 */
439 static void auditd_set(int pid, u32 portid, struct net *net)
440 {
441 unsigned long flags;
442
443 spin_lock_irqsave(&auditd_conn.lock, flags);
444 auditd_conn.pid = pid;
445 auditd_conn.portid = portid;
446 if (auditd_conn.net)
447 put_net(auditd_conn.net);
448 if (net)
449 auditd_conn.net = get_net(net);
450 else
451 auditd_conn.net = NULL;
452 spin_unlock_irqrestore(&auditd_conn.lock, flags);
453 }
454
455 /**
456 * kauditd_print_skb - Print the audit record to the ring buffer
457 * @skb: audit record
458 *
459 * Whatever the reason, this packet may not make it to the auditd connection
460 * so write it via printk so the information isn't completely lost.
461 */
462 static void kauditd_printk_skb(struct sk_buff *skb)
463 {
464 struct nlmsghdr *nlh = nlmsg_hdr(skb);
465 char *data = nlmsg_data(nlh);
466
467 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
468 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
469 }
470
471 /**
472 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
473 * @skb: audit record
474 *
475 * Description:
476 * This should only be used by the kauditd_thread when it fails to flush the
477 * hold queue.
478 */
479 static void kauditd_rehold_skb(struct sk_buff *skb)
480 {
481 /* put the record back in the queue at the same place */
482 skb_queue_head(&audit_hold_queue, skb);
483 }
484
485 /**
486 * kauditd_hold_skb - Queue an audit record, waiting for auditd
487 * @skb: audit record
488 *
489 * Description:
490 * Queue the audit record, waiting for an instance of auditd. When this
491 * function is called we haven't given up yet on sending the record, but things
492 * are not looking good. The first thing we want to do is try to write the
493 * record via printk and then see if we want to try and hold on to the record
494 * and queue it, if we have room. If we want to hold on to the record, but we
495 * don't have room, record a record lost message.
496 */
497 static void kauditd_hold_skb(struct sk_buff *skb)
498 {
499 /* at this point it is uncertain if we will ever send this to auditd so
500 * try to send the message via printk before we go any further */
501 kauditd_printk_skb(skb);
502
503 /* can we just silently drop the message? */
504 if (!audit_default) {
505 kfree_skb(skb);
506 return;
507 }
508
509 /* if we have room, queue the message */
510 if (!audit_backlog_limit ||
511 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
512 skb_queue_tail(&audit_hold_queue, skb);
513 return;
514 }
515
516 /* we have no other options - drop the message */
517 audit_log_lost("kauditd hold queue overflow");
518 kfree_skb(skb);
519 }
520
521 /**
522 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
523 * @skb: audit record
524 *
525 * Description:
526 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
527 * but for some reason we are having problems sending it audit records so
528 * queue the given record and attempt to resend.
529 */
530 static void kauditd_retry_skb(struct sk_buff *skb)
531 {
532 /* NOTE: because records should only live in the retry queue for a
533 * short period of time, before either being sent or moved to the hold
534 * queue, we don't currently enforce a limit on this queue */
535 skb_queue_tail(&audit_retry_queue, skb);
536 }
537
538 /**
539 * auditd_reset - Disconnect the auditd connection
540 *
541 * Description:
542 * Break the auditd/kauditd connection and move all the queued records into the
543 * hold queue in case auditd reconnects.
544 */
545 static void auditd_reset(void)
546 {
547 struct sk_buff *skb;
548
549 /* if it isn't already broken, break the connection */
550 rcu_read_lock();
551 if (auditd_conn.pid)
552 auditd_set(0, 0, NULL);
553 rcu_read_unlock();
554
555 /* flush all of the main and retry queues to the hold queue */
556 while ((skb = skb_dequeue(&audit_retry_queue)))
557 kauditd_hold_skb(skb);
558 while ((skb = skb_dequeue(&audit_queue)))
559 kauditd_hold_skb(skb);
560 }
561
562 /**
563 * auditd_send_unicast_skb - Send a record via unicast to auditd
564 * @skb: audit record
565 *
566 * Description:
567 * Send a skb to the audit daemon, returns positive/zero values on success and
568 * negative values on failure; in all cases the skb will be consumed by this
569 * function. If the send results in -ECONNREFUSED the connection with auditd
570 * will be reset. This function may sleep so callers should not hold any locks
571 * where this would cause a problem.
572 */
573 static int auditd_send_unicast_skb(struct sk_buff *skb)
574 {
575 int rc;
576 u32 portid;
577 struct net *net;
578 struct sock *sk;
579
580 /* NOTE: we can't call netlink_unicast while in the RCU section so
581 * take a reference to the network namespace and grab local
582 * copies of the namespace, the sock, and the portid; the
583 * namespace and sock aren't going to go away while we hold a
584 * reference and if the portid does become invalid after the RCU
585 * section netlink_unicast() should safely return an error */
586
587 rcu_read_lock();
588 if (!auditd_conn.pid) {
589 rcu_read_unlock();
590 rc = -ECONNREFUSED;
591 goto err;
592 }
593 net = auditd_conn.net;
594 get_net(net);
595 sk = audit_get_sk(net);
596 portid = auditd_conn.portid;
597 rcu_read_unlock();
598
599 rc = netlink_unicast(sk, skb, portid, 0);
600 put_net(net);
601 if (rc < 0)
602 goto err;
603
604 return rc;
605
606 err:
607 if (rc == -ECONNREFUSED)
608 auditd_reset();
609 return rc;
610 }
611
612 /**
613 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
614 * @sk: the sending sock
615 * @portid: the netlink destination
616 * @queue: the skb queue to process
617 * @retry_limit: limit on number of netlink unicast failures
618 * @skb_hook: per-skb hook for additional processing
619 * @err_hook: hook called if the skb fails the netlink unicast send
620 *
621 * Description:
622 * Run through the given queue and attempt to send the audit records to auditd,
623 * returns zero on success, negative values on failure. It is up to the caller
624 * to ensure that the @sk is valid for the duration of this function.
625 *
626 */
627 static int kauditd_send_queue(struct sock *sk, u32 portid,
628 struct sk_buff_head *queue,
629 unsigned int retry_limit,
630 void (*skb_hook)(struct sk_buff *skb),
631 void (*err_hook)(struct sk_buff *skb))
632 {
633 int rc = 0;
634 struct sk_buff *skb;
635 static unsigned int failed = 0;
636
637 /* NOTE: kauditd_thread takes care of all our locking, we just use
638 * the netlink info passed to us (e.g. sk and portid) */
639
640 while ((skb = skb_dequeue(queue))) {
641 /* call the skb_hook for each skb we touch */
642 if (skb_hook)
643 (*skb_hook)(skb);
644
645 /* can we send to anyone via unicast? */
646 if (!sk) {
647 if (err_hook)
648 (*err_hook)(skb);
649 continue;
650 }
651
652 /* grab an extra skb reference in case of error */
653 skb_get(skb);
654 rc = netlink_unicast(sk, skb, portid, 0);
655 if (rc < 0) {
656 /* fatal failure for our queue flush attempt? */
657 if (++failed >= retry_limit ||
658 rc == -ECONNREFUSED || rc == -EPERM) {
659 /* yes - error processing for the queue */
660 sk = NULL;
661 if (err_hook)
662 (*err_hook)(skb);
663 if (!skb_hook)
664 goto out;
665 /* keep processing with the skb_hook */
666 continue;
667 } else
668 /* no - requeue to preserve ordering */
669 skb_queue_head(queue, skb);
670 } else {
671 /* it worked - drop the extra reference and continue */
672 consume_skb(skb);
673 failed = 0;
674 }
675 }
676
677 out:
678 return (rc >= 0 ? 0 : rc);
679 }
680
681 /*
682 * kauditd_send_multicast_skb - Send a record to any multicast listeners
683 * @skb: audit record
684 *
685 * Description:
686 * Write a multicast message to anyone listening in the initial network
687 * namespace. This function doesn't consume an skb as might be expected since
688 * it has to copy it anyways.
689 */
690 static void kauditd_send_multicast_skb(struct sk_buff *skb)
691 {
692 struct sk_buff *copy;
693 struct sock *sock = audit_get_sk(&init_net);
694 struct nlmsghdr *nlh;
695
696 /* NOTE: we are not taking an additional reference for init_net since
697 * we don't have to worry about it going away */
698
699 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
700 return;
701
702 /*
703 * The seemingly wasteful skb_copy() rather than bumping the refcount
704 * using skb_get() is necessary because non-standard mods are made to
705 * the skb by the original kaudit unicast socket send routine. The
706 * existing auditd daemon assumes this breakage. Fixing this would
707 * require co-ordinating a change in the established protocol between
708 * the kaudit kernel subsystem and the auditd userspace code. There is
709 * no reason for new multicast clients to continue with this
710 * non-compliance.
711 */
712 copy = skb_copy(skb, GFP_KERNEL);
713 if (!copy)
714 return;
715 nlh = nlmsg_hdr(copy);
716 nlh->nlmsg_len = skb->len;
717
718 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
719 }
720
721 /**
722 * kauditd_thread - Worker thread to send audit records to userspace
723 * @dummy: unused
724 */
725 static int kauditd_thread(void *dummy)
726 {
727 int rc;
728 u32 portid = 0;
729 struct net *net = NULL;
730 struct sock *sk = NULL;
731
732 #define UNICAST_RETRIES 5
733
734 set_freezable();
735 while (!kthread_should_stop()) {
736 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
737 rcu_read_lock();
738 if (!auditd_conn.pid) {
739 rcu_read_unlock();
740 goto main_queue;
741 }
742 net = auditd_conn.net;
743 get_net(net);
744 sk = audit_get_sk(net);
745 portid = auditd_conn.portid;
746 rcu_read_unlock();
747
748 /* attempt to flush the hold queue */
749 rc = kauditd_send_queue(sk, portid,
750 &audit_hold_queue, UNICAST_RETRIES,
751 NULL, kauditd_rehold_skb);
752 if (rc < 0) {
753 sk = NULL;
754 auditd_reset();
755 goto main_queue;
756 }
757
758 /* attempt to flush the retry queue */
759 rc = kauditd_send_queue(sk, portid,
760 &audit_retry_queue, UNICAST_RETRIES,
761 NULL, kauditd_hold_skb);
762 if (rc < 0) {
763 sk = NULL;
764 auditd_reset();
765 goto main_queue;
766 }
767
768 main_queue:
769 /* process the main queue - do the multicast send and attempt
770 * unicast, dump failed record sends to the retry queue; if
771 * sk == NULL due to previous failures we will just do the
772 * multicast send and move the record to the retry queue */
773 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
774 kauditd_send_multicast_skb,
775 kauditd_retry_skb);
776 if (sk == NULL || rc < 0)
777 auditd_reset();
778 sk = NULL;
779
780 /* drop our netns reference, no auditd sends past this line */
781 if (net) {
782 put_net(net);
783 net = NULL;
784 }
785
786 /* we have processed all the queues so wake everyone */
787 wake_up(&audit_backlog_wait);
788
789 /* NOTE: we want to wake up if there is anything on the queue,
790 * regardless of if an auditd is connected, as we need to
791 * do the multicast send and rotate records from the
792 * main queue to the retry/hold queues */
793 wait_event_freezable(kauditd_wait,
794 (skb_queue_len(&audit_queue) ? 1 : 0));
795 }
796
797 return 0;
798 }
799
800 int audit_send_list(void *_dest)
801 {
802 struct audit_netlink_list *dest = _dest;
803 struct sk_buff *skb;
804 struct sock *sk = audit_get_sk(dest->net);
805
806 /* wait for parent to finish and send an ACK */
807 mutex_lock(&audit_cmd_mutex);
808 mutex_unlock(&audit_cmd_mutex);
809
810 while ((skb = __skb_dequeue(&dest->q)) != NULL)
811 netlink_unicast(sk, skb, dest->portid, 0);
812
813 put_net(dest->net);
814 kfree(dest);
815
816 return 0;
817 }
818
819 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
820 int multi, const void *payload, int size)
821 {
822 struct sk_buff *skb;
823 struct nlmsghdr *nlh;
824 void *data;
825 int flags = multi ? NLM_F_MULTI : 0;
826 int t = done ? NLMSG_DONE : type;
827
828 skb = nlmsg_new(size, GFP_KERNEL);
829 if (!skb)
830 return NULL;
831
832 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
833 if (!nlh)
834 goto out_kfree_skb;
835 data = nlmsg_data(nlh);
836 memcpy(data, payload, size);
837 return skb;
838
839 out_kfree_skb:
840 kfree_skb(skb);
841 return NULL;
842 }
843
844 static int audit_send_reply_thread(void *arg)
845 {
846 struct audit_reply *reply = (struct audit_reply *)arg;
847 struct sock *sk = audit_get_sk(reply->net);
848
849 mutex_lock(&audit_cmd_mutex);
850 mutex_unlock(&audit_cmd_mutex);
851
852 /* Ignore failure. It'll only happen if the sender goes away,
853 because our timeout is set to infinite. */
854 netlink_unicast(sk, reply->skb, reply->portid, 0);
855 put_net(reply->net);
856 kfree(reply);
857 return 0;
858 }
859
860 /**
861 * audit_send_reply - send an audit reply message via netlink
862 * @request_skb: skb of request we are replying to (used to target the reply)
863 * @seq: sequence number
864 * @type: audit message type
865 * @done: done (last) flag
866 * @multi: multi-part message flag
867 * @payload: payload data
868 * @size: payload size
869 *
870 * Allocates an skb, builds the netlink message, and sends it to the port id.
871 * No failure notifications.
872 */
873 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
874 int multi, const void *payload, int size)
875 {
876 u32 portid = NETLINK_CB(request_skb).portid;
877 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
878 struct sk_buff *skb;
879 struct task_struct *tsk;
880 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
881 GFP_KERNEL);
882
883 if (!reply)
884 return;
885
886 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
887 if (!skb)
888 goto out;
889
890 reply->net = get_net(net);
891 reply->portid = portid;
892 reply->skb = skb;
893
894 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
895 if (!IS_ERR(tsk))
896 return;
897 kfree_skb(skb);
898 out:
899 kfree(reply);
900 }
901
902 /*
903 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
904 * control messages.
905 */
906 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
907 {
908 int err = 0;
909
910 /* Only support initial user namespace for now. */
911 /*
912 * We return ECONNREFUSED because it tricks userspace into thinking
913 * that audit was not configured into the kernel. Lots of users
914 * configure their PAM stack (because that's what the distro does)
915 * to reject login if unable to send messages to audit. If we return
916 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
917 * configured in and will let login proceed. If we return EPERM
918 * userspace will reject all logins. This should be removed when we
919 * support non init namespaces!!
920 */
921 if (current_user_ns() != &init_user_ns)
922 return -ECONNREFUSED;
923
924 switch (msg_type) {
925 case AUDIT_LIST:
926 case AUDIT_ADD:
927 case AUDIT_DEL:
928 return -EOPNOTSUPP;
929 case AUDIT_GET:
930 case AUDIT_SET:
931 case AUDIT_GET_FEATURE:
932 case AUDIT_SET_FEATURE:
933 case AUDIT_LIST_RULES:
934 case AUDIT_ADD_RULE:
935 case AUDIT_DEL_RULE:
936 case AUDIT_SIGNAL_INFO:
937 case AUDIT_TTY_GET:
938 case AUDIT_TTY_SET:
939 case AUDIT_TRIM:
940 case AUDIT_MAKE_EQUIV:
941 /* Only support auditd and auditctl in initial pid namespace
942 * for now. */
943 if (task_active_pid_ns(current) != &init_pid_ns)
944 return -EPERM;
945
946 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
947 err = -EPERM;
948 break;
949 case AUDIT_USER:
950 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
951 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
952 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
953 err = -EPERM;
954 break;
955 default: /* bad msg */
956 err = -EINVAL;
957 }
958
959 return err;
960 }
961
962 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
963 {
964 uid_t uid = from_kuid(&init_user_ns, current_uid());
965 pid_t pid = task_tgid_nr(current);
966
967 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
968 *ab = NULL;
969 return;
970 }
971
972 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
973 if (unlikely(!*ab))
974 return;
975 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
976 audit_log_session_info(*ab);
977 audit_log_task_context(*ab);
978 }
979
980 int is_audit_feature_set(int i)
981 {
982 return af.features & AUDIT_FEATURE_TO_MASK(i);
983 }
984
985
986 static int audit_get_feature(struct sk_buff *skb)
987 {
988 u32 seq;
989
990 seq = nlmsg_hdr(skb)->nlmsg_seq;
991
992 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
993
994 return 0;
995 }
996
997 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
998 u32 old_lock, u32 new_lock, int res)
999 {
1000 struct audit_buffer *ab;
1001
1002 if (audit_enabled == AUDIT_OFF)
1003 return;
1004
1005 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1006 audit_log_task_info(ab, current);
1007 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1008 audit_feature_names[which], !!old_feature, !!new_feature,
1009 !!old_lock, !!new_lock, res);
1010 audit_log_end(ab);
1011 }
1012
1013 static int audit_set_feature(struct sk_buff *skb)
1014 {
1015 struct audit_features *uaf;
1016 int i;
1017
1018 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1019 uaf = nlmsg_data(nlmsg_hdr(skb));
1020
1021 /* if there is ever a version 2 we should handle that here */
1022
1023 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1024 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1025 u32 old_feature, new_feature, old_lock, new_lock;
1026
1027 /* if we are not changing this feature, move along */
1028 if (!(feature & uaf->mask))
1029 continue;
1030
1031 old_feature = af.features & feature;
1032 new_feature = uaf->features & feature;
1033 new_lock = (uaf->lock | af.lock) & feature;
1034 old_lock = af.lock & feature;
1035
1036 /* are we changing a locked feature? */
1037 if (old_lock && (new_feature != old_feature)) {
1038 audit_log_feature_change(i, old_feature, new_feature,
1039 old_lock, new_lock, 0);
1040 return -EPERM;
1041 }
1042 }
1043 /* nothing invalid, do the changes */
1044 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1045 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1046 u32 old_feature, new_feature, old_lock, new_lock;
1047
1048 /* if we are not changing this feature, move along */
1049 if (!(feature & uaf->mask))
1050 continue;
1051
1052 old_feature = af.features & feature;
1053 new_feature = uaf->features & feature;
1054 old_lock = af.lock & feature;
1055 new_lock = (uaf->lock | af.lock) & feature;
1056
1057 if (new_feature != old_feature)
1058 audit_log_feature_change(i, old_feature, new_feature,
1059 old_lock, new_lock, 1);
1060
1061 if (new_feature)
1062 af.features |= feature;
1063 else
1064 af.features &= ~feature;
1065 af.lock |= new_lock;
1066 }
1067
1068 return 0;
1069 }
1070
1071 static int audit_replace(pid_t pid)
1072 {
1073 struct sk_buff *skb;
1074
1075 skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0, &pid, sizeof(pid));
1076 if (!skb)
1077 return -ENOMEM;
1078 return auditd_send_unicast_skb(skb);
1079 }
1080
1081 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1082 {
1083 u32 seq;
1084 void *data;
1085 int err;
1086 struct audit_buffer *ab;
1087 u16 msg_type = nlh->nlmsg_type;
1088 struct audit_sig_info *sig_data;
1089 char *ctx = NULL;
1090 u32 len;
1091
1092 err = audit_netlink_ok(skb, msg_type);
1093 if (err)
1094 return err;
1095
1096 seq = nlh->nlmsg_seq;
1097 data = nlmsg_data(nlh);
1098
1099 switch (msg_type) {
1100 case AUDIT_GET: {
1101 struct audit_status s;
1102 memset(&s, 0, sizeof(s));
1103 s.enabled = audit_enabled;
1104 s.failure = audit_failure;
1105 rcu_read_lock();
1106 s.pid = auditd_conn.pid;
1107 rcu_read_unlock();
1108 s.rate_limit = audit_rate_limit;
1109 s.backlog_limit = audit_backlog_limit;
1110 s.lost = atomic_read(&audit_lost);
1111 s.backlog = skb_queue_len(&audit_queue);
1112 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1113 s.backlog_wait_time = audit_backlog_wait_time;
1114 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1115 break;
1116 }
1117 case AUDIT_SET: {
1118 struct audit_status s;
1119 memset(&s, 0, sizeof(s));
1120 /* guard against past and future API changes */
1121 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1122 if (s.mask & AUDIT_STATUS_ENABLED) {
1123 err = audit_set_enabled(s.enabled);
1124 if (err < 0)
1125 return err;
1126 }
1127 if (s.mask & AUDIT_STATUS_FAILURE) {
1128 err = audit_set_failure(s.failure);
1129 if (err < 0)
1130 return err;
1131 }
1132 if (s.mask & AUDIT_STATUS_PID) {
1133 /* NOTE: we are using task_tgid_vnr() below because
1134 * the s.pid value is relative to the namespace
1135 * of the caller; at present this doesn't matter
1136 * much since you can really only run auditd
1137 * from the initial pid namespace, but something
1138 * to keep in mind if this changes */
1139 int new_pid = s.pid;
1140 pid_t auditd_pid;
1141 pid_t requesting_pid = task_tgid_vnr(current);
1142
1143 /* test the auditd connection */
1144 audit_replace(requesting_pid);
1145
1146 rcu_read_lock();
1147 auditd_pid = auditd_conn.pid;
1148 /* only the current auditd can unregister itself */
1149 if ((!new_pid) && (requesting_pid != auditd_pid)) {
1150 rcu_read_unlock();
1151 audit_log_config_change("audit_pid", new_pid,
1152 auditd_pid, 0);
1153 return -EACCES;
1154 }
1155 /* replacing a healthy auditd is not allowed */
1156 if (auditd_pid && new_pid) {
1157 rcu_read_unlock();
1158 audit_log_config_change("audit_pid", new_pid,
1159 auditd_pid, 0);
1160 return -EEXIST;
1161 }
1162 rcu_read_unlock();
1163
1164 if (audit_enabled != AUDIT_OFF)
1165 audit_log_config_change("audit_pid", new_pid,
1166 auditd_pid, 1);
1167
1168 if (new_pid) {
1169 /* register a new auditd connection */
1170 auditd_set(new_pid,
1171 NETLINK_CB(skb).portid,
1172 sock_net(NETLINK_CB(skb).sk));
1173 /* try to process any backlog */
1174 wake_up_interruptible(&kauditd_wait);
1175 } else
1176 /* unregister the auditd connection */
1177 auditd_reset();
1178 }
1179 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1180 err = audit_set_rate_limit(s.rate_limit);
1181 if (err < 0)
1182 return err;
1183 }
1184 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1185 err = audit_set_backlog_limit(s.backlog_limit);
1186 if (err < 0)
1187 return err;
1188 }
1189 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1190 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1191 return -EINVAL;
1192 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1193 return -EINVAL;
1194 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1195 if (err < 0)
1196 return err;
1197 }
1198 break;
1199 }
1200 case AUDIT_GET_FEATURE:
1201 err = audit_get_feature(skb);
1202 if (err)
1203 return err;
1204 break;
1205 case AUDIT_SET_FEATURE:
1206 err = audit_set_feature(skb);
1207 if (err)
1208 return err;
1209 break;
1210 case AUDIT_USER:
1211 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1212 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1213 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1214 return 0;
1215
1216 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1217 if (err == 1) { /* match or error */
1218 err = 0;
1219 if (msg_type == AUDIT_USER_TTY) {
1220 err = tty_audit_push();
1221 if (err)
1222 break;
1223 }
1224 audit_log_common_recv_msg(&ab, msg_type);
1225 if (msg_type != AUDIT_USER_TTY)
1226 audit_log_format(ab, " msg='%.*s'",
1227 AUDIT_MESSAGE_TEXT_MAX,
1228 (char *)data);
1229 else {
1230 int size;
1231
1232 audit_log_format(ab, " data=");
1233 size = nlmsg_len(nlh);
1234 if (size > 0 &&
1235 ((unsigned char *)data)[size - 1] == '\0')
1236 size--;
1237 audit_log_n_untrustedstring(ab, data, size);
1238 }
1239 audit_set_portid(ab, NETLINK_CB(skb).portid);
1240 audit_log_end(ab);
1241 }
1242 break;
1243 case AUDIT_ADD_RULE:
1244 case AUDIT_DEL_RULE:
1245 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1246 return -EINVAL;
1247 if (audit_enabled == AUDIT_LOCKED) {
1248 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1249 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
1250 audit_log_end(ab);
1251 return -EPERM;
1252 }
1253 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
1254 seq, data, nlmsg_len(nlh));
1255 break;
1256 case AUDIT_LIST_RULES:
1257 err = audit_list_rules_send(skb, seq);
1258 break;
1259 case AUDIT_TRIM:
1260 audit_trim_trees();
1261 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1262 audit_log_format(ab, " op=trim res=1");
1263 audit_log_end(ab);
1264 break;
1265 case AUDIT_MAKE_EQUIV: {
1266 void *bufp = data;
1267 u32 sizes[2];
1268 size_t msglen = nlmsg_len(nlh);
1269 char *old, *new;
1270
1271 err = -EINVAL;
1272 if (msglen < 2 * sizeof(u32))
1273 break;
1274 memcpy(sizes, bufp, 2 * sizeof(u32));
1275 bufp += 2 * sizeof(u32);
1276 msglen -= 2 * sizeof(u32);
1277 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1278 if (IS_ERR(old)) {
1279 err = PTR_ERR(old);
1280 break;
1281 }
1282 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1283 if (IS_ERR(new)) {
1284 err = PTR_ERR(new);
1285 kfree(old);
1286 break;
1287 }
1288 /* OK, here comes... */
1289 err = audit_tag_tree(old, new);
1290
1291 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1292
1293 audit_log_format(ab, " op=make_equiv old=");
1294 audit_log_untrustedstring(ab, old);
1295 audit_log_format(ab, " new=");
1296 audit_log_untrustedstring(ab, new);
1297 audit_log_format(ab, " res=%d", !err);
1298 audit_log_end(ab);
1299 kfree(old);
1300 kfree(new);
1301 break;
1302 }
1303 case AUDIT_SIGNAL_INFO:
1304 len = 0;
1305 if (audit_sig_sid) {
1306 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1307 if (err)
1308 return err;
1309 }
1310 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1311 if (!sig_data) {
1312 if (audit_sig_sid)
1313 security_release_secctx(ctx, len);
1314 return -ENOMEM;
1315 }
1316 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1317 sig_data->pid = audit_sig_pid;
1318 if (audit_sig_sid) {
1319 memcpy(sig_data->ctx, ctx, len);
1320 security_release_secctx(ctx, len);
1321 }
1322 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1323 sig_data, sizeof(*sig_data) + len);
1324 kfree(sig_data);
1325 break;
1326 case AUDIT_TTY_GET: {
1327 struct audit_tty_status s;
1328 unsigned int t;
1329
1330 t = READ_ONCE(current->signal->audit_tty);
1331 s.enabled = t & AUDIT_TTY_ENABLE;
1332 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1333
1334 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1335 break;
1336 }
1337 case AUDIT_TTY_SET: {
1338 struct audit_tty_status s, old;
1339 struct audit_buffer *ab;
1340 unsigned int t;
1341
1342 memset(&s, 0, sizeof(s));
1343 /* guard against past and future API changes */
1344 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1345 /* check if new data is valid */
1346 if ((s.enabled != 0 && s.enabled != 1) ||
1347 (s.log_passwd != 0 && s.log_passwd != 1))
1348 err = -EINVAL;
1349
1350 if (err)
1351 t = READ_ONCE(current->signal->audit_tty);
1352 else {
1353 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1354 t = xchg(&current->signal->audit_tty, t);
1355 }
1356 old.enabled = t & AUDIT_TTY_ENABLE;
1357 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1358
1359 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1360 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1361 " old-log_passwd=%d new-log_passwd=%d res=%d",
1362 old.enabled, s.enabled, old.log_passwd,
1363 s.log_passwd, !err);
1364 audit_log_end(ab);
1365 break;
1366 }
1367 default:
1368 err = -EINVAL;
1369 break;
1370 }
1371
1372 return err < 0 ? err : 0;
1373 }
1374
1375 /*
1376 * Get message from skb. Each message is processed by audit_receive_msg.
1377 * Malformed skbs with wrong length are discarded silently.
1378 */
1379 static void audit_receive_skb(struct sk_buff *skb)
1380 {
1381 struct nlmsghdr *nlh;
1382 /*
1383 * len MUST be signed for nlmsg_next to be able to dec it below 0
1384 * if the nlmsg_len was not aligned
1385 */
1386 int len;
1387 int err;
1388
1389 nlh = nlmsg_hdr(skb);
1390 len = skb->len;
1391
1392 while (nlmsg_ok(nlh, len)) {
1393 err = audit_receive_msg(skb, nlh);
1394 /* if err or if this message says it wants a response */
1395 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1396 netlink_ack(skb, nlh, err);
1397
1398 nlh = nlmsg_next(nlh, &len);
1399 }
1400 }
1401
1402 /* Receive messages from netlink socket. */
1403 static void audit_receive(struct sk_buff *skb)
1404 {
1405 mutex_lock(&audit_cmd_mutex);
1406 audit_receive_skb(skb);
1407 mutex_unlock(&audit_cmd_mutex);
1408 }
1409
1410 /* Run custom bind function on netlink socket group connect or bind requests. */
1411 static int audit_bind(struct net *net, int group)
1412 {
1413 if (!capable(CAP_AUDIT_READ))
1414 return -EPERM;
1415
1416 return 0;
1417 }
1418
1419 static int __net_init audit_net_init(struct net *net)
1420 {
1421 struct netlink_kernel_cfg cfg = {
1422 .input = audit_receive,
1423 .bind = audit_bind,
1424 .flags = NL_CFG_F_NONROOT_RECV,
1425 .groups = AUDIT_NLGRP_MAX,
1426 };
1427
1428 struct audit_net *aunet = net_generic(net, audit_net_id);
1429
1430 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1431 if (aunet->sk == NULL) {
1432 audit_panic("cannot initialize netlink socket in namespace");
1433 return -ENOMEM;
1434 }
1435 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1436
1437 return 0;
1438 }
1439
1440 static void __net_exit audit_net_exit(struct net *net)
1441 {
1442 struct audit_net *aunet = net_generic(net, audit_net_id);
1443
1444 rcu_read_lock();
1445 if (net == auditd_conn.net)
1446 auditd_reset();
1447 rcu_read_unlock();
1448
1449 netlink_kernel_release(aunet->sk);
1450 }
1451
1452 static struct pernet_operations audit_net_ops __net_initdata = {
1453 .init = audit_net_init,
1454 .exit = audit_net_exit,
1455 .id = &audit_net_id,
1456 .size = sizeof(struct audit_net),
1457 };
1458
1459 /* Initialize audit support at boot time. */
1460 static int __init audit_init(void)
1461 {
1462 int i;
1463
1464 if (audit_initialized == AUDIT_DISABLED)
1465 return 0;
1466
1467 memset(&auditd_conn, 0, sizeof(auditd_conn));
1468 spin_lock_init(&auditd_conn.lock);
1469
1470 skb_queue_head_init(&audit_queue);
1471 skb_queue_head_init(&audit_retry_queue);
1472 skb_queue_head_init(&audit_hold_queue);
1473
1474 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1475 INIT_LIST_HEAD(&audit_inode_hash[i]);
1476
1477 pr_info("initializing netlink subsys (%s)\n",
1478 audit_default ? "enabled" : "disabled");
1479 register_pernet_subsys(&audit_net_ops);
1480
1481 audit_initialized = AUDIT_INITIALIZED;
1482 audit_enabled = audit_default;
1483 audit_ever_enabled |= !!audit_default;
1484
1485 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1486 if (IS_ERR(kauditd_task)) {
1487 int err = PTR_ERR(kauditd_task);
1488 panic("audit: failed to start the kauditd thread (%d)\n", err);
1489 }
1490
1491 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1492
1493 return 0;
1494 }
1495 __initcall(audit_init);
1496
1497 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1498 static int __init audit_enable(char *str)
1499 {
1500 audit_default = !!simple_strtol(str, NULL, 0);
1501 if (!audit_default)
1502 audit_initialized = AUDIT_DISABLED;
1503
1504 pr_info("%s\n", audit_default ?
1505 "enabled (after initialization)" : "disabled (until reboot)");
1506
1507 return 1;
1508 }
1509 __setup("audit=", audit_enable);
1510
1511 /* Process kernel command-line parameter at boot time.
1512 * audit_backlog_limit=<n> */
1513 static int __init audit_backlog_limit_set(char *str)
1514 {
1515 u32 audit_backlog_limit_arg;
1516
1517 pr_info("audit_backlog_limit: ");
1518 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1519 pr_cont("using default of %u, unable to parse %s\n",
1520 audit_backlog_limit, str);
1521 return 1;
1522 }
1523
1524 audit_backlog_limit = audit_backlog_limit_arg;
1525 pr_cont("%d\n", audit_backlog_limit);
1526
1527 return 1;
1528 }
1529 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1530
1531 static void audit_buffer_free(struct audit_buffer *ab)
1532 {
1533 unsigned long flags;
1534
1535 if (!ab)
1536 return;
1537
1538 kfree_skb(ab->skb);
1539 spin_lock_irqsave(&audit_freelist_lock, flags);
1540 if (audit_freelist_count > AUDIT_MAXFREE)
1541 kfree(ab);
1542 else {
1543 audit_freelist_count++;
1544 list_add(&ab->list, &audit_freelist);
1545 }
1546 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1547 }
1548
1549 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1550 gfp_t gfp_mask, int type)
1551 {
1552 unsigned long flags;
1553 struct audit_buffer *ab = NULL;
1554 struct nlmsghdr *nlh;
1555
1556 spin_lock_irqsave(&audit_freelist_lock, flags);
1557 if (!list_empty(&audit_freelist)) {
1558 ab = list_entry(audit_freelist.next,
1559 struct audit_buffer, list);
1560 list_del(&ab->list);
1561 --audit_freelist_count;
1562 }
1563 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1564
1565 if (!ab) {
1566 ab = kmalloc(sizeof(*ab), gfp_mask);
1567 if (!ab)
1568 goto err;
1569 }
1570
1571 ab->ctx = ctx;
1572 ab->gfp_mask = gfp_mask;
1573
1574 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1575 if (!ab->skb)
1576 goto err;
1577
1578 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1579 if (!nlh)
1580 goto out_kfree_skb;
1581
1582 return ab;
1583
1584 out_kfree_skb:
1585 kfree_skb(ab->skb);
1586 ab->skb = NULL;
1587 err:
1588 audit_buffer_free(ab);
1589 return NULL;
1590 }
1591
1592 /**
1593 * audit_serial - compute a serial number for the audit record
1594 *
1595 * Compute a serial number for the audit record. Audit records are
1596 * written to user-space as soon as they are generated, so a complete
1597 * audit record may be written in several pieces. The timestamp of the
1598 * record and this serial number are used by the user-space tools to
1599 * determine which pieces belong to the same audit record. The
1600 * (timestamp,serial) tuple is unique for each syscall and is live from
1601 * syscall entry to syscall exit.
1602 *
1603 * NOTE: Another possibility is to store the formatted records off the
1604 * audit context (for those records that have a context), and emit them
1605 * all at syscall exit. However, this could delay the reporting of
1606 * significant errors until syscall exit (or never, if the system
1607 * halts).
1608 */
1609 unsigned int audit_serial(void)
1610 {
1611 static atomic_t serial = ATOMIC_INIT(0);
1612
1613 return atomic_add_return(1, &serial);
1614 }
1615
1616 static inline void audit_get_stamp(struct audit_context *ctx,
1617 struct timespec *t, unsigned int *serial)
1618 {
1619 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1620 *t = CURRENT_TIME;
1621 *serial = audit_serial();
1622 }
1623 }
1624
1625 /**
1626 * audit_log_start - obtain an audit buffer
1627 * @ctx: audit_context (may be NULL)
1628 * @gfp_mask: type of allocation
1629 * @type: audit message type
1630 *
1631 * Returns audit_buffer pointer on success or NULL on error.
1632 *
1633 * Obtain an audit buffer. This routine does locking to obtain the
1634 * audit buffer, but then no locking is required for calls to
1635 * audit_log_*format. If the task (ctx) is a task that is currently in a
1636 * syscall, then the syscall is marked as auditable and an audit record
1637 * will be written at syscall exit. If there is no associated task, then
1638 * task context (ctx) should be NULL.
1639 */
1640 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1641 int type)
1642 {
1643 struct audit_buffer *ab;
1644 struct timespec t;
1645 unsigned int uninitialized_var(serial);
1646
1647 if (audit_initialized != AUDIT_INITIALIZED)
1648 return NULL;
1649
1650 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1651 return NULL;
1652
1653 /* NOTE: don't ever fail/sleep on these two conditions:
1654 * 1. auditd generated record - since we need auditd to drain the
1655 * queue; also, when we are checking for auditd, compare PIDs using
1656 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1657 * using a PID anchored in the caller's namespace
1658 * 2. generator holding the audit_cmd_mutex - we don't want to block
1659 * while holding the mutex */
1660 if (!(auditd_test_task(current) ||
1661 (current == __mutex_owner(&audit_cmd_mutex)))) {
1662 long stime = audit_backlog_wait_time;
1663
1664 while (audit_backlog_limit &&
1665 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1666 /* wake kauditd to try and flush the queue */
1667 wake_up_interruptible(&kauditd_wait);
1668
1669 /* sleep if we are allowed and we haven't exhausted our
1670 * backlog wait limit */
1671 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1672 DECLARE_WAITQUEUE(wait, current);
1673
1674 add_wait_queue_exclusive(&audit_backlog_wait,
1675 &wait);
1676 set_current_state(TASK_UNINTERRUPTIBLE);
1677 stime = schedule_timeout(stime);
1678 remove_wait_queue(&audit_backlog_wait, &wait);
1679 } else {
1680 if (audit_rate_check() && printk_ratelimit())
1681 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1682 skb_queue_len(&audit_queue),
1683 audit_backlog_limit);
1684 audit_log_lost("backlog limit exceeded");
1685 return NULL;
1686 }
1687 }
1688 }
1689
1690 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1691 if (!ab) {
1692 audit_log_lost("out of memory in audit_log_start");
1693 return NULL;
1694 }
1695
1696 audit_get_stamp(ab->ctx, &t, &serial);
1697 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1698 t.tv_sec, t.tv_nsec/1000000, serial);
1699
1700 return ab;
1701 }
1702
1703 /**
1704 * audit_expand - expand skb in the audit buffer
1705 * @ab: audit_buffer
1706 * @extra: space to add at tail of the skb
1707 *
1708 * Returns 0 (no space) on failed expansion, or available space if
1709 * successful.
1710 */
1711 static inline int audit_expand(struct audit_buffer *ab, int extra)
1712 {
1713 struct sk_buff *skb = ab->skb;
1714 int oldtail = skb_tailroom(skb);
1715 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1716 int newtail = skb_tailroom(skb);
1717
1718 if (ret < 0) {
1719 audit_log_lost("out of memory in audit_expand");
1720 return 0;
1721 }
1722
1723 skb->truesize += newtail - oldtail;
1724 return newtail;
1725 }
1726
1727 /*
1728 * Format an audit message into the audit buffer. If there isn't enough
1729 * room in the audit buffer, more room will be allocated and vsnprint
1730 * will be called a second time. Currently, we assume that a printk
1731 * can't format message larger than 1024 bytes, so we don't either.
1732 */
1733 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1734 va_list args)
1735 {
1736 int len, avail;
1737 struct sk_buff *skb;
1738 va_list args2;
1739
1740 if (!ab)
1741 return;
1742
1743 BUG_ON(!ab->skb);
1744 skb = ab->skb;
1745 avail = skb_tailroom(skb);
1746 if (avail == 0) {
1747 avail = audit_expand(ab, AUDIT_BUFSIZ);
1748 if (!avail)
1749 goto out;
1750 }
1751 va_copy(args2, args);
1752 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1753 if (len >= avail) {
1754 /* The printk buffer is 1024 bytes long, so if we get
1755 * here and AUDIT_BUFSIZ is at least 1024, then we can
1756 * log everything that printk could have logged. */
1757 avail = audit_expand(ab,
1758 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1759 if (!avail)
1760 goto out_va_end;
1761 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1762 }
1763 if (len > 0)
1764 skb_put(skb, len);
1765 out_va_end:
1766 va_end(args2);
1767 out:
1768 return;
1769 }
1770
1771 /**
1772 * audit_log_format - format a message into the audit buffer.
1773 * @ab: audit_buffer
1774 * @fmt: format string
1775 * @...: optional parameters matching @fmt string
1776 *
1777 * All the work is done in audit_log_vformat.
1778 */
1779 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1780 {
1781 va_list args;
1782
1783 if (!ab)
1784 return;
1785 va_start(args, fmt);
1786 audit_log_vformat(ab, fmt, args);
1787 va_end(args);
1788 }
1789
1790 /**
1791 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1792 * @ab: the audit_buffer
1793 * @buf: buffer to convert to hex
1794 * @len: length of @buf to be converted
1795 *
1796 * No return value; failure to expand is silently ignored.
1797 *
1798 * This function will take the passed buf and convert it into a string of
1799 * ascii hex digits. The new string is placed onto the skb.
1800 */
1801 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1802 size_t len)
1803 {
1804 int i, avail, new_len;
1805 unsigned char *ptr;
1806 struct sk_buff *skb;
1807
1808 if (!ab)
1809 return;
1810
1811 BUG_ON(!ab->skb);
1812 skb = ab->skb;
1813 avail = skb_tailroom(skb);
1814 new_len = len<<1;
1815 if (new_len >= avail) {
1816 /* Round the buffer request up to the next multiple */
1817 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1818 avail = audit_expand(ab, new_len);
1819 if (!avail)
1820 return;
1821 }
1822
1823 ptr = skb_tail_pointer(skb);
1824 for (i = 0; i < len; i++)
1825 ptr = hex_byte_pack_upper(ptr, buf[i]);
1826 *ptr = 0;
1827 skb_put(skb, len << 1); /* new string is twice the old string */
1828 }
1829
1830 /*
1831 * Format a string of no more than slen characters into the audit buffer,
1832 * enclosed in quote marks.
1833 */
1834 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1835 size_t slen)
1836 {
1837 int avail, new_len;
1838 unsigned char *ptr;
1839 struct sk_buff *skb;
1840
1841 if (!ab)
1842 return;
1843
1844 BUG_ON(!ab->skb);
1845 skb = ab->skb;
1846 avail = skb_tailroom(skb);
1847 new_len = slen + 3; /* enclosing quotes + null terminator */
1848 if (new_len > avail) {
1849 avail = audit_expand(ab, new_len);
1850 if (!avail)
1851 return;
1852 }
1853 ptr = skb_tail_pointer(skb);
1854 *ptr++ = '"';
1855 memcpy(ptr, string, slen);
1856 ptr += slen;
1857 *ptr++ = '"';
1858 *ptr = 0;
1859 skb_put(skb, slen + 2); /* don't include null terminator */
1860 }
1861
1862 /**
1863 * audit_string_contains_control - does a string need to be logged in hex
1864 * @string: string to be checked
1865 * @len: max length of the string to check
1866 */
1867 bool audit_string_contains_control(const char *string, size_t len)
1868 {
1869 const unsigned char *p;
1870 for (p = string; p < (const unsigned char *)string + len; p++) {
1871 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1872 return true;
1873 }
1874 return false;
1875 }
1876
1877 /**
1878 * audit_log_n_untrustedstring - log a string that may contain random characters
1879 * @ab: audit_buffer
1880 * @len: length of string (not including trailing null)
1881 * @string: string to be logged
1882 *
1883 * This code will escape a string that is passed to it if the string
1884 * contains a control character, unprintable character, double quote mark,
1885 * or a space. Unescaped strings will start and end with a double quote mark.
1886 * Strings that are escaped are printed in hex (2 digits per char).
1887 *
1888 * The caller specifies the number of characters in the string to log, which may
1889 * or may not be the entire string.
1890 */
1891 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1892 size_t len)
1893 {
1894 if (audit_string_contains_control(string, len))
1895 audit_log_n_hex(ab, string, len);
1896 else
1897 audit_log_n_string(ab, string, len);
1898 }
1899
1900 /**
1901 * audit_log_untrustedstring - log a string that may contain random characters
1902 * @ab: audit_buffer
1903 * @string: string to be logged
1904 *
1905 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1906 * determine string length.
1907 */
1908 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1909 {
1910 audit_log_n_untrustedstring(ab, string, strlen(string));
1911 }
1912
1913 /* This is a helper-function to print the escaped d_path */
1914 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1915 const struct path *path)
1916 {
1917 char *p, *pathname;
1918
1919 if (prefix)
1920 audit_log_format(ab, "%s", prefix);
1921
1922 /* We will allow 11 spaces for ' (deleted)' to be appended */
1923 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1924 if (!pathname) {
1925 audit_log_string(ab, "<no_memory>");
1926 return;
1927 }
1928 p = d_path(path, pathname, PATH_MAX+11);
1929 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1930 /* FIXME: can we save some information here? */
1931 audit_log_string(ab, "<too_long>");
1932 } else
1933 audit_log_untrustedstring(ab, p);
1934 kfree(pathname);
1935 }
1936
1937 void audit_log_session_info(struct audit_buffer *ab)
1938 {
1939 unsigned int sessionid = audit_get_sessionid(current);
1940 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1941
1942 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1943 }
1944
1945 void audit_log_key(struct audit_buffer *ab, char *key)
1946 {
1947 audit_log_format(ab, " key=");
1948 if (key)
1949 audit_log_untrustedstring(ab, key);
1950 else
1951 audit_log_format(ab, "(null)");
1952 }
1953
1954 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1955 {
1956 int i;
1957
1958 audit_log_format(ab, " %s=", prefix);
1959 CAP_FOR_EACH_U32(i) {
1960 audit_log_format(ab, "%08x",
1961 cap->cap[CAP_LAST_U32 - i]);
1962 }
1963 }
1964
1965 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1966 {
1967 kernel_cap_t *perm = &name->fcap.permitted;
1968 kernel_cap_t *inh = &name->fcap.inheritable;
1969 int log = 0;
1970
1971 if (!cap_isclear(*perm)) {
1972 audit_log_cap(ab, "cap_fp", perm);
1973 log = 1;
1974 }
1975 if (!cap_isclear(*inh)) {
1976 audit_log_cap(ab, "cap_fi", inh);
1977 log = 1;
1978 }
1979
1980 if (log)
1981 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1982 name->fcap.fE, name->fcap_ver);
1983 }
1984
1985 static inline int audit_copy_fcaps(struct audit_names *name,
1986 const struct dentry *dentry)
1987 {
1988 struct cpu_vfs_cap_data caps;
1989 int rc;
1990
1991 if (!dentry)
1992 return 0;
1993
1994 rc = get_vfs_caps_from_disk(dentry, &caps);
1995 if (rc)
1996 return rc;
1997
1998 name->fcap.permitted = caps.permitted;
1999 name->fcap.inheritable = caps.inheritable;
2000 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2001 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2002 VFS_CAP_REVISION_SHIFT;
2003
2004 return 0;
2005 }
2006
2007 /* Copy inode data into an audit_names. */
2008 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2009 struct inode *inode)
2010 {
2011 name->ino = inode->i_ino;
2012 name->dev = inode->i_sb->s_dev;
2013 name->mode = inode->i_mode;
2014 name->uid = inode->i_uid;
2015 name->gid = inode->i_gid;
2016 name->rdev = inode->i_rdev;
2017 security_inode_getsecid(inode, &name->osid);
2018 audit_copy_fcaps(name, dentry);
2019 }
2020
2021 /**
2022 * audit_log_name - produce AUDIT_PATH record from struct audit_names
2023 * @context: audit_context for the task
2024 * @n: audit_names structure with reportable details
2025 * @path: optional path to report instead of audit_names->name
2026 * @record_num: record number to report when handling a list of names
2027 * @call_panic: optional pointer to int that will be updated if secid fails
2028 */
2029 void audit_log_name(struct audit_context *context, struct audit_names *n,
2030 const struct path *path, int record_num, int *call_panic)
2031 {
2032 struct audit_buffer *ab;
2033 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2034 if (!ab)
2035 return;
2036
2037 audit_log_format(ab, "item=%d", record_num);
2038
2039 if (path)
2040 audit_log_d_path(ab, " name=", path);
2041 else if (n->name) {
2042 switch (n->name_len) {
2043 case AUDIT_NAME_FULL:
2044 /* log the full path */
2045 audit_log_format(ab, " name=");
2046 audit_log_untrustedstring(ab, n->name->name);
2047 break;
2048 case 0:
2049 /* name was specified as a relative path and the
2050 * directory component is the cwd */
2051 audit_log_d_path(ab, " name=", &context->pwd);
2052 break;
2053 default:
2054 /* log the name's directory component */
2055 audit_log_format(ab, " name=");
2056 audit_log_n_untrustedstring(ab, n->name->name,
2057 n->name_len);
2058 }
2059 } else
2060 audit_log_format(ab, " name=(null)");
2061
2062 if (n->ino != AUDIT_INO_UNSET)
2063 audit_log_format(ab, " inode=%lu"
2064 " dev=%02x:%02x mode=%#ho"
2065 " ouid=%u ogid=%u rdev=%02x:%02x",
2066 n->ino,
2067 MAJOR(n->dev),
2068 MINOR(n->dev),
2069 n->mode,
2070 from_kuid(&init_user_ns, n->uid),
2071 from_kgid(&init_user_ns, n->gid),
2072 MAJOR(n->rdev),
2073 MINOR(n->rdev));
2074 if (n->osid != 0) {
2075 char *ctx = NULL;
2076 u32 len;
2077 if (security_secid_to_secctx(
2078 n->osid, &ctx, &len)) {
2079 audit_log_format(ab, " osid=%u", n->osid);
2080 if (call_panic)
2081 *call_panic = 2;
2082 } else {
2083 audit_log_format(ab, " obj=%s", ctx);
2084 security_release_secctx(ctx, len);
2085 }
2086 }
2087
2088 /* log the audit_names record type */
2089 audit_log_format(ab, " nametype=");
2090 switch(n->type) {
2091 case AUDIT_TYPE_NORMAL:
2092 audit_log_format(ab, "NORMAL");
2093 break;
2094 case AUDIT_TYPE_PARENT:
2095 audit_log_format(ab, "PARENT");
2096 break;
2097 case AUDIT_TYPE_CHILD_DELETE:
2098 audit_log_format(ab, "DELETE");
2099 break;
2100 case AUDIT_TYPE_CHILD_CREATE:
2101 audit_log_format(ab, "CREATE");
2102 break;
2103 default:
2104 audit_log_format(ab, "UNKNOWN");
2105 break;
2106 }
2107
2108 audit_log_fcaps(ab, n);
2109 audit_log_end(ab);
2110 }
2111
2112 int audit_log_task_context(struct audit_buffer *ab)
2113 {
2114 char *ctx = NULL;
2115 unsigned len;
2116 int error;
2117 u32 sid;
2118
2119 security_task_getsecid(current, &sid);
2120 if (!sid)
2121 return 0;
2122
2123 error = security_secid_to_secctx(sid, &ctx, &len);
2124 if (error) {
2125 if (error != -EINVAL)
2126 goto error_path;
2127 return 0;
2128 }
2129
2130 audit_log_format(ab, " subj=%s", ctx);
2131 security_release_secctx(ctx, len);
2132 return 0;
2133
2134 error_path:
2135 audit_panic("error in audit_log_task_context");
2136 return error;
2137 }
2138 EXPORT_SYMBOL(audit_log_task_context);
2139
2140 void audit_log_d_path_exe(struct audit_buffer *ab,
2141 struct mm_struct *mm)
2142 {
2143 struct file *exe_file;
2144
2145 if (!mm)
2146 goto out_null;
2147
2148 exe_file = get_mm_exe_file(mm);
2149 if (!exe_file)
2150 goto out_null;
2151
2152 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2153 fput(exe_file);
2154 return;
2155 out_null:
2156 audit_log_format(ab, " exe=(null)");
2157 }
2158
2159 struct tty_struct *audit_get_tty(struct task_struct *tsk)
2160 {
2161 struct tty_struct *tty = NULL;
2162 unsigned long flags;
2163
2164 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2165 if (tsk->signal)
2166 tty = tty_kref_get(tsk->signal->tty);
2167 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2168 return tty;
2169 }
2170
2171 void audit_put_tty(struct tty_struct *tty)
2172 {
2173 tty_kref_put(tty);
2174 }
2175
2176 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2177 {
2178 const struct cred *cred;
2179 char comm[sizeof(tsk->comm)];
2180 struct tty_struct *tty;
2181
2182 if (!ab)
2183 return;
2184
2185 /* tsk == current */
2186 cred = current_cred();
2187 tty = audit_get_tty(tsk);
2188 audit_log_format(ab,
2189 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2190 " euid=%u suid=%u fsuid=%u"
2191 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2192 task_ppid_nr(tsk),
2193 task_tgid_nr(tsk),
2194 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2195 from_kuid(&init_user_ns, cred->uid),
2196 from_kgid(&init_user_ns, cred->gid),
2197 from_kuid(&init_user_ns, cred->euid),
2198 from_kuid(&init_user_ns, cred->suid),
2199 from_kuid(&init_user_ns, cred->fsuid),
2200 from_kgid(&init_user_ns, cred->egid),
2201 from_kgid(&init_user_ns, cred->sgid),
2202 from_kgid(&init_user_ns, cred->fsgid),
2203 tty ? tty_name(tty) : "(none)",
2204 audit_get_sessionid(tsk));
2205 audit_put_tty(tty);
2206 audit_log_format(ab, " comm=");
2207 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2208 audit_log_d_path_exe(ab, tsk->mm);
2209 audit_log_task_context(ab);
2210 }
2211 EXPORT_SYMBOL(audit_log_task_info);
2212
2213 /**
2214 * audit_log_link_denied - report a link restriction denial
2215 * @operation: specific link operation
2216 * @link: the path that triggered the restriction
2217 */
2218 void audit_log_link_denied(const char *operation, const struct path *link)
2219 {
2220 struct audit_buffer *ab;
2221 struct audit_names *name;
2222
2223 name = kzalloc(sizeof(*name), GFP_NOFS);
2224 if (!name)
2225 return;
2226
2227 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2228 ab = audit_log_start(current->audit_context, GFP_KERNEL,
2229 AUDIT_ANOM_LINK);
2230 if (!ab)
2231 goto out;
2232 audit_log_format(ab, "op=%s", operation);
2233 audit_log_task_info(ab, current);
2234 audit_log_format(ab, " res=0");
2235 audit_log_end(ab);
2236
2237 /* Generate AUDIT_PATH record with object. */
2238 name->type = AUDIT_TYPE_NORMAL;
2239 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
2240 audit_log_name(current->audit_context, name, link, 0, NULL);
2241 out:
2242 kfree(name);
2243 }
2244
2245 /**
2246 * audit_log_end - end one audit record
2247 * @ab: the audit_buffer
2248 *
2249 * We can not do a netlink send inside an irq context because it blocks (last
2250 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2251 * queue and a tasklet is scheduled to remove them from the queue outside the
2252 * irq context. May be called in any context.
2253 */
2254 void audit_log_end(struct audit_buffer *ab)
2255 {
2256 struct sk_buff *skb;
2257 struct nlmsghdr *nlh;
2258
2259 if (!ab)
2260 return;
2261
2262 if (audit_rate_check()) {
2263 skb = ab->skb;
2264 ab->skb = NULL;
2265
2266 /* setup the netlink header, see the comments in
2267 * kauditd_send_multicast_skb() for length quirks */
2268 nlh = nlmsg_hdr(skb);
2269 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2270
2271 /* queue the netlink packet and poke the kauditd thread */
2272 skb_queue_tail(&audit_queue, skb);
2273 wake_up_interruptible(&kauditd_wait);
2274 } else
2275 audit_log_lost("rate limit exceeded");
2276
2277 audit_buffer_free(ab);
2278 }
2279
2280 /**
2281 * audit_log - Log an audit record
2282 * @ctx: audit context
2283 * @gfp_mask: type of allocation
2284 * @type: audit message type
2285 * @fmt: format string to use
2286 * @...: variable parameters matching the format string
2287 *
2288 * This is a convenience function that calls audit_log_start,
2289 * audit_log_vformat, and audit_log_end. It may be called
2290 * in any context.
2291 */
2292 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2293 const char *fmt, ...)
2294 {
2295 struct audit_buffer *ab;
2296 va_list args;
2297
2298 ab = audit_log_start(ctx, gfp_mask, type);
2299 if (ab) {
2300 va_start(args, fmt);
2301 audit_log_vformat(ab, fmt, args);
2302 va_end(args);
2303 audit_log_end(ab);
2304 }
2305 }
2306
2307 #ifdef CONFIG_SECURITY
2308 /**
2309 * audit_log_secctx - Converts and logs SELinux context
2310 * @ab: audit_buffer
2311 * @secid: security number
2312 *
2313 * This is a helper function that calls security_secid_to_secctx to convert
2314 * secid to secctx and then adds the (converted) SELinux context to the audit
2315 * log by calling audit_log_format, thus also preventing leak of internal secid
2316 * to userspace. If secid cannot be converted audit_panic is called.
2317 */
2318 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2319 {
2320 u32 len;
2321 char *secctx;
2322
2323 if (security_secid_to_secctx(secid, &secctx, &len)) {
2324 audit_panic("Cannot convert secid to context");
2325 } else {
2326 audit_log_format(ab, " obj=%s", secctx);
2327 security_release_secctx(secctx, len);
2328 }
2329 }
2330 EXPORT_SYMBOL(audit_log_secctx);
2331 #endif
2332
2333 EXPORT_SYMBOL(audit_log_start);
2334 EXPORT_SYMBOL(audit_log_end);
2335 EXPORT_SYMBOL(audit_log_format);
2336 EXPORT_SYMBOL(audit_log);