]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/audit_tree.c
Merge tag 'for-linus-4.10-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / kernel / audit_tree.c
1 #include "audit.h"
2 #include <linux/fsnotify_backend.h>
3 #include <linux/namei.h>
4 #include <linux/mount.h>
5 #include <linux/kthread.h>
6 #include <linux/slab.h>
7
8 struct audit_tree;
9 struct audit_chunk;
10
11 struct audit_tree {
12 atomic_t count;
13 int goner;
14 struct audit_chunk *root;
15 struct list_head chunks;
16 struct list_head rules;
17 struct list_head list;
18 struct list_head same_root;
19 struct rcu_head head;
20 char pathname[];
21 };
22
23 struct audit_chunk {
24 struct list_head hash;
25 struct fsnotify_mark mark;
26 struct list_head trees; /* with root here */
27 int dead;
28 int count;
29 atomic_long_t refs;
30 struct rcu_head head;
31 struct node {
32 struct list_head list;
33 struct audit_tree *owner;
34 unsigned index; /* index; upper bit indicates 'will prune' */
35 } owners[];
36 };
37
38 static LIST_HEAD(tree_list);
39 static LIST_HEAD(prune_list);
40 static struct task_struct *prune_thread;
41
42 /*
43 * One struct chunk is attached to each inode of interest.
44 * We replace struct chunk on tagging/untagging.
45 * Rules have pointer to struct audit_tree.
46 * Rules have struct list_head rlist forming a list of rules over
47 * the same tree.
48 * References to struct chunk are collected at audit_inode{,_child}()
49 * time and used in AUDIT_TREE rule matching.
50 * These references are dropped at the same time we are calling
51 * audit_free_names(), etc.
52 *
53 * Cyclic lists galore:
54 * tree.chunks anchors chunk.owners[].list hash_lock
55 * tree.rules anchors rule.rlist audit_filter_mutex
56 * chunk.trees anchors tree.same_root hash_lock
57 * chunk.hash is a hash with middle bits of watch.inode as
58 * a hash function. RCU, hash_lock
59 *
60 * tree is refcounted; one reference for "some rules on rules_list refer to
61 * it", one for each chunk with pointer to it.
62 *
63 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
64 * of watch contributes 1 to .refs).
65 *
66 * node.index allows to get from node.list to containing chunk.
67 * MSB of that sucker is stolen to mark taggings that we might have to
68 * revert - several operations have very unpleasant cleanup logics and
69 * that makes a difference. Some.
70 */
71
72 static struct fsnotify_group *audit_tree_group;
73
74 static struct audit_tree *alloc_tree(const char *s)
75 {
76 struct audit_tree *tree;
77
78 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
79 if (tree) {
80 atomic_set(&tree->count, 1);
81 tree->goner = 0;
82 INIT_LIST_HEAD(&tree->chunks);
83 INIT_LIST_HEAD(&tree->rules);
84 INIT_LIST_HEAD(&tree->list);
85 INIT_LIST_HEAD(&tree->same_root);
86 tree->root = NULL;
87 strcpy(tree->pathname, s);
88 }
89 return tree;
90 }
91
92 static inline void get_tree(struct audit_tree *tree)
93 {
94 atomic_inc(&tree->count);
95 }
96
97 static inline void put_tree(struct audit_tree *tree)
98 {
99 if (atomic_dec_and_test(&tree->count))
100 kfree_rcu(tree, head);
101 }
102
103 /* to avoid bringing the entire thing in audit.h */
104 const char *audit_tree_path(struct audit_tree *tree)
105 {
106 return tree->pathname;
107 }
108
109 static void free_chunk(struct audit_chunk *chunk)
110 {
111 int i;
112
113 for (i = 0; i < chunk->count; i++) {
114 if (chunk->owners[i].owner)
115 put_tree(chunk->owners[i].owner);
116 }
117 kfree(chunk);
118 }
119
120 void audit_put_chunk(struct audit_chunk *chunk)
121 {
122 if (atomic_long_dec_and_test(&chunk->refs))
123 free_chunk(chunk);
124 }
125
126 static void __put_chunk(struct rcu_head *rcu)
127 {
128 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
129 audit_put_chunk(chunk);
130 }
131
132 static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
133 {
134 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
135 call_rcu(&chunk->head, __put_chunk);
136 }
137
138 static struct audit_chunk *alloc_chunk(int count)
139 {
140 struct audit_chunk *chunk;
141 size_t size;
142 int i;
143
144 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
145 chunk = kzalloc(size, GFP_KERNEL);
146 if (!chunk)
147 return NULL;
148
149 INIT_LIST_HEAD(&chunk->hash);
150 INIT_LIST_HEAD(&chunk->trees);
151 chunk->count = count;
152 atomic_long_set(&chunk->refs, 1);
153 for (i = 0; i < count; i++) {
154 INIT_LIST_HEAD(&chunk->owners[i].list);
155 chunk->owners[i].index = i;
156 }
157 fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
158 chunk->mark.mask = FS_IN_IGNORED;
159 return chunk;
160 }
161
162 enum {HASH_SIZE = 128};
163 static struct list_head chunk_hash_heads[HASH_SIZE];
164 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
165
166 static inline struct list_head *chunk_hash(const struct inode *inode)
167 {
168 unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
169 return chunk_hash_heads + n % HASH_SIZE;
170 }
171
172 /* hash_lock & entry->lock is held by caller */
173 static void insert_hash(struct audit_chunk *chunk)
174 {
175 struct fsnotify_mark *entry = &chunk->mark;
176 struct list_head *list;
177
178 if (!entry->inode)
179 return;
180 list = chunk_hash(entry->inode);
181 list_add_rcu(&chunk->hash, list);
182 }
183
184 /* called under rcu_read_lock */
185 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
186 {
187 struct list_head *list = chunk_hash(inode);
188 struct audit_chunk *p;
189
190 list_for_each_entry_rcu(p, list, hash) {
191 /* mark.inode may have gone NULL, but who cares? */
192 if (p->mark.inode == inode) {
193 atomic_long_inc(&p->refs);
194 return p;
195 }
196 }
197 return NULL;
198 }
199
200 bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
201 {
202 int n;
203 for (n = 0; n < chunk->count; n++)
204 if (chunk->owners[n].owner == tree)
205 return true;
206 return false;
207 }
208
209 /* tagging and untagging inodes with trees */
210
211 static struct audit_chunk *find_chunk(struct node *p)
212 {
213 int index = p->index & ~(1U<<31);
214 p -= index;
215 return container_of(p, struct audit_chunk, owners[0]);
216 }
217
218 static void untag_chunk(struct node *p)
219 {
220 struct audit_chunk *chunk = find_chunk(p);
221 struct fsnotify_mark *entry = &chunk->mark;
222 struct audit_chunk *new = NULL;
223 struct audit_tree *owner;
224 int size = chunk->count - 1;
225 int i, j;
226
227 fsnotify_get_mark(entry);
228
229 spin_unlock(&hash_lock);
230
231 if (size)
232 new = alloc_chunk(size);
233
234 mutex_lock(&entry->group->mark_mutex);
235 spin_lock(&entry->lock);
236 if (chunk->dead || !entry->inode) {
237 spin_unlock(&entry->lock);
238 mutex_unlock(&entry->group->mark_mutex);
239 if (new)
240 free_chunk(new);
241 goto out;
242 }
243
244 owner = p->owner;
245
246 if (!size) {
247 chunk->dead = 1;
248 spin_lock(&hash_lock);
249 list_del_init(&chunk->trees);
250 if (owner->root == chunk)
251 owner->root = NULL;
252 list_del_init(&p->list);
253 list_del_rcu(&chunk->hash);
254 spin_unlock(&hash_lock);
255 spin_unlock(&entry->lock);
256 mutex_unlock(&entry->group->mark_mutex);
257 fsnotify_destroy_mark(entry, audit_tree_group);
258 goto out;
259 }
260
261 if (!new)
262 goto Fallback;
263
264 if (fsnotify_add_mark_locked(&new->mark, entry->group, entry->inode,
265 NULL, 1)) {
266 fsnotify_put_mark(&new->mark);
267 goto Fallback;
268 }
269
270 chunk->dead = 1;
271 spin_lock(&hash_lock);
272 list_replace_init(&chunk->trees, &new->trees);
273 if (owner->root == chunk) {
274 list_del_init(&owner->same_root);
275 owner->root = NULL;
276 }
277
278 for (i = j = 0; j <= size; i++, j++) {
279 struct audit_tree *s;
280 if (&chunk->owners[j] == p) {
281 list_del_init(&p->list);
282 i--;
283 continue;
284 }
285 s = chunk->owners[j].owner;
286 new->owners[i].owner = s;
287 new->owners[i].index = chunk->owners[j].index - j + i;
288 if (!s) /* result of earlier fallback */
289 continue;
290 get_tree(s);
291 list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
292 }
293
294 list_replace_rcu(&chunk->hash, &new->hash);
295 list_for_each_entry(owner, &new->trees, same_root)
296 owner->root = new;
297 spin_unlock(&hash_lock);
298 spin_unlock(&entry->lock);
299 mutex_unlock(&entry->group->mark_mutex);
300 fsnotify_destroy_mark(entry, audit_tree_group);
301 fsnotify_put_mark(&new->mark); /* drop initial reference */
302 goto out;
303
304 Fallback:
305 // do the best we can
306 spin_lock(&hash_lock);
307 if (owner->root == chunk) {
308 list_del_init(&owner->same_root);
309 owner->root = NULL;
310 }
311 list_del_init(&p->list);
312 p->owner = NULL;
313 put_tree(owner);
314 spin_unlock(&hash_lock);
315 spin_unlock(&entry->lock);
316 mutex_unlock(&entry->group->mark_mutex);
317 out:
318 fsnotify_put_mark(entry);
319 spin_lock(&hash_lock);
320 }
321
322 static int create_chunk(struct inode *inode, struct audit_tree *tree)
323 {
324 struct fsnotify_mark *entry;
325 struct audit_chunk *chunk = alloc_chunk(1);
326 if (!chunk)
327 return -ENOMEM;
328
329 entry = &chunk->mark;
330 if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
331 fsnotify_put_mark(entry);
332 return -ENOSPC;
333 }
334
335 spin_lock(&entry->lock);
336 spin_lock(&hash_lock);
337 if (tree->goner) {
338 spin_unlock(&hash_lock);
339 chunk->dead = 1;
340 spin_unlock(&entry->lock);
341 fsnotify_destroy_mark(entry, audit_tree_group);
342 fsnotify_put_mark(entry);
343 return 0;
344 }
345 chunk->owners[0].index = (1U << 31);
346 chunk->owners[0].owner = tree;
347 get_tree(tree);
348 list_add(&chunk->owners[0].list, &tree->chunks);
349 if (!tree->root) {
350 tree->root = chunk;
351 list_add(&tree->same_root, &chunk->trees);
352 }
353 insert_hash(chunk);
354 spin_unlock(&hash_lock);
355 spin_unlock(&entry->lock);
356 fsnotify_put_mark(entry); /* drop initial reference */
357 return 0;
358 }
359
360 /* the first tagged inode becomes root of tree */
361 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
362 {
363 struct fsnotify_mark *old_entry, *chunk_entry;
364 struct audit_tree *owner;
365 struct audit_chunk *chunk, *old;
366 struct node *p;
367 int n;
368
369 old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
370 if (!old_entry)
371 return create_chunk(inode, tree);
372
373 old = container_of(old_entry, struct audit_chunk, mark);
374
375 /* are we already there? */
376 spin_lock(&hash_lock);
377 for (n = 0; n < old->count; n++) {
378 if (old->owners[n].owner == tree) {
379 spin_unlock(&hash_lock);
380 fsnotify_put_mark(old_entry);
381 return 0;
382 }
383 }
384 spin_unlock(&hash_lock);
385
386 chunk = alloc_chunk(old->count + 1);
387 if (!chunk) {
388 fsnotify_put_mark(old_entry);
389 return -ENOMEM;
390 }
391
392 chunk_entry = &chunk->mark;
393
394 mutex_lock(&old_entry->group->mark_mutex);
395 spin_lock(&old_entry->lock);
396 if (!old_entry->inode) {
397 /* old_entry is being shot, lets just lie */
398 spin_unlock(&old_entry->lock);
399 mutex_unlock(&old_entry->group->mark_mutex);
400 fsnotify_put_mark(old_entry);
401 free_chunk(chunk);
402 return -ENOENT;
403 }
404
405 if (fsnotify_add_mark_locked(chunk_entry, old_entry->group,
406 old_entry->inode, NULL, 1)) {
407 spin_unlock(&old_entry->lock);
408 mutex_unlock(&old_entry->group->mark_mutex);
409 fsnotify_put_mark(chunk_entry);
410 fsnotify_put_mark(old_entry);
411 return -ENOSPC;
412 }
413
414 /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
415 spin_lock(&chunk_entry->lock);
416 spin_lock(&hash_lock);
417
418 /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
419 if (tree->goner) {
420 spin_unlock(&hash_lock);
421 chunk->dead = 1;
422 spin_unlock(&chunk_entry->lock);
423 spin_unlock(&old_entry->lock);
424 mutex_unlock(&old_entry->group->mark_mutex);
425
426 fsnotify_destroy_mark(chunk_entry, audit_tree_group);
427
428 fsnotify_put_mark(chunk_entry);
429 fsnotify_put_mark(old_entry);
430 return 0;
431 }
432 list_replace_init(&old->trees, &chunk->trees);
433 for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
434 struct audit_tree *s = old->owners[n].owner;
435 p->owner = s;
436 p->index = old->owners[n].index;
437 if (!s) /* result of fallback in untag */
438 continue;
439 get_tree(s);
440 list_replace_init(&old->owners[n].list, &p->list);
441 }
442 p->index = (chunk->count - 1) | (1U<<31);
443 p->owner = tree;
444 get_tree(tree);
445 list_add(&p->list, &tree->chunks);
446 list_replace_rcu(&old->hash, &chunk->hash);
447 list_for_each_entry(owner, &chunk->trees, same_root)
448 owner->root = chunk;
449 old->dead = 1;
450 if (!tree->root) {
451 tree->root = chunk;
452 list_add(&tree->same_root, &chunk->trees);
453 }
454 spin_unlock(&hash_lock);
455 spin_unlock(&chunk_entry->lock);
456 spin_unlock(&old_entry->lock);
457 mutex_unlock(&old_entry->group->mark_mutex);
458 fsnotify_destroy_mark(old_entry, audit_tree_group);
459 fsnotify_put_mark(chunk_entry); /* drop initial reference */
460 fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
461 return 0;
462 }
463
464 static void audit_tree_log_remove_rule(struct audit_krule *rule)
465 {
466 struct audit_buffer *ab;
467
468 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
469 if (unlikely(!ab))
470 return;
471 audit_log_format(ab, "op=remove_rule");
472 audit_log_format(ab, " dir=");
473 audit_log_untrustedstring(ab, rule->tree->pathname);
474 audit_log_key(ab, rule->filterkey);
475 audit_log_format(ab, " list=%d res=1", rule->listnr);
476 audit_log_end(ab);
477 }
478
479 static void kill_rules(struct audit_tree *tree)
480 {
481 struct audit_krule *rule, *next;
482 struct audit_entry *entry;
483
484 list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
485 entry = container_of(rule, struct audit_entry, rule);
486
487 list_del_init(&rule->rlist);
488 if (rule->tree) {
489 /* not a half-baked one */
490 audit_tree_log_remove_rule(rule);
491 if (entry->rule.exe)
492 audit_remove_mark(entry->rule.exe);
493 rule->tree = NULL;
494 list_del_rcu(&entry->list);
495 list_del(&entry->rule.list);
496 call_rcu(&entry->rcu, audit_free_rule_rcu);
497 }
498 }
499 }
500
501 /*
502 * finish killing struct audit_tree
503 */
504 static void prune_one(struct audit_tree *victim)
505 {
506 spin_lock(&hash_lock);
507 while (!list_empty(&victim->chunks)) {
508 struct node *p;
509
510 p = list_entry(victim->chunks.next, struct node, list);
511
512 untag_chunk(p);
513 }
514 spin_unlock(&hash_lock);
515 put_tree(victim);
516 }
517
518 /* trim the uncommitted chunks from tree */
519
520 static void trim_marked(struct audit_tree *tree)
521 {
522 struct list_head *p, *q;
523 spin_lock(&hash_lock);
524 if (tree->goner) {
525 spin_unlock(&hash_lock);
526 return;
527 }
528 /* reorder */
529 for (p = tree->chunks.next; p != &tree->chunks; p = q) {
530 struct node *node = list_entry(p, struct node, list);
531 q = p->next;
532 if (node->index & (1U<<31)) {
533 list_del_init(p);
534 list_add(p, &tree->chunks);
535 }
536 }
537
538 while (!list_empty(&tree->chunks)) {
539 struct node *node;
540
541 node = list_entry(tree->chunks.next, struct node, list);
542
543 /* have we run out of marked? */
544 if (!(node->index & (1U<<31)))
545 break;
546
547 untag_chunk(node);
548 }
549 if (!tree->root && !tree->goner) {
550 tree->goner = 1;
551 spin_unlock(&hash_lock);
552 mutex_lock(&audit_filter_mutex);
553 kill_rules(tree);
554 list_del_init(&tree->list);
555 mutex_unlock(&audit_filter_mutex);
556 prune_one(tree);
557 } else {
558 spin_unlock(&hash_lock);
559 }
560 }
561
562 static void audit_schedule_prune(void);
563
564 /* called with audit_filter_mutex */
565 int audit_remove_tree_rule(struct audit_krule *rule)
566 {
567 struct audit_tree *tree;
568 tree = rule->tree;
569 if (tree) {
570 spin_lock(&hash_lock);
571 list_del_init(&rule->rlist);
572 if (list_empty(&tree->rules) && !tree->goner) {
573 tree->root = NULL;
574 list_del_init(&tree->same_root);
575 tree->goner = 1;
576 list_move(&tree->list, &prune_list);
577 rule->tree = NULL;
578 spin_unlock(&hash_lock);
579 audit_schedule_prune();
580 return 1;
581 }
582 rule->tree = NULL;
583 spin_unlock(&hash_lock);
584 return 1;
585 }
586 return 0;
587 }
588
589 static int compare_root(struct vfsmount *mnt, void *arg)
590 {
591 return d_backing_inode(mnt->mnt_root) == arg;
592 }
593
594 void audit_trim_trees(void)
595 {
596 struct list_head cursor;
597
598 mutex_lock(&audit_filter_mutex);
599 list_add(&cursor, &tree_list);
600 while (cursor.next != &tree_list) {
601 struct audit_tree *tree;
602 struct path path;
603 struct vfsmount *root_mnt;
604 struct node *node;
605 int err;
606
607 tree = container_of(cursor.next, struct audit_tree, list);
608 get_tree(tree);
609 list_del(&cursor);
610 list_add(&cursor, &tree->list);
611 mutex_unlock(&audit_filter_mutex);
612
613 err = kern_path(tree->pathname, 0, &path);
614 if (err)
615 goto skip_it;
616
617 root_mnt = collect_mounts(&path);
618 path_put(&path);
619 if (IS_ERR(root_mnt))
620 goto skip_it;
621
622 spin_lock(&hash_lock);
623 list_for_each_entry(node, &tree->chunks, list) {
624 struct audit_chunk *chunk = find_chunk(node);
625 /* this could be NULL if the watch is dying else where... */
626 struct inode *inode = chunk->mark.inode;
627 node->index |= 1U<<31;
628 if (iterate_mounts(compare_root, inode, root_mnt))
629 node->index &= ~(1U<<31);
630 }
631 spin_unlock(&hash_lock);
632 trim_marked(tree);
633 drop_collected_mounts(root_mnt);
634 skip_it:
635 put_tree(tree);
636 mutex_lock(&audit_filter_mutex);
637 }
638 list_del(&cursor);
639 mutex_unlock(&audit_filter_mutex);
640 }
641
642 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
643 {
644
645 if (pathname[0] != '/' ||
646 rule->listnr != AUDIT_FILTER_EXIT ||
647 op != Audit_equal ||
648 rule->inode_f || rule->watch || rule->tree)
649 return -EINVAL;
650 rule->tree = alloc_tree(pathname);
651 if (!rule->tree)
652 return -ENOMEM;
653 return 0;
654 }
655
656 void audit_put_tree(struct audit_tree *tree)
657 {
658 put_tree(tree);
659 }
660
661 static int tag_mount(struct vfsmount *mnt, void *arg)
662 {
663 return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
664 }
665
666 /*
667 * That gets run when evict_chunk() ends up needing to kill audit_tree.
668 * Runs from a separate thread.
669 */
670 static int prune_tree_thread(void *unused)
671 {
672 for (;;) {
673 if (list_empty(&prune_list)) {
674 set_current_state(TASK_INTERRUPTIBLE);
675 schedule();
676 }
677
678 mutex_lock(&audit_cmd_mutex);
679 mutex_lock(&audit_filter_mutex);
680
681 while (!list_empty(&prune_list)) {
682 struct audit_tree *victim;
683
684 victim = list_entry(prune_list.next,
685 struct audit_tree, list);
686 list_del_init(&victim->list);
687
688 mutex_unlock(&audit_filter_mutex);
689
690 prune_one(victim);
691
692 mutex_lock(&audit_filter_mutex);
693 }
694
695 mutex_unlock(&audit_filter_mutex);
696 mutex_unlock(&audit_cmd_mutex);
697 }
698 return 0;
699 }
700
701 static int audit_launch_prune(void)
702 {
703 if (prune_thread)
704 return 0;
705 prune_thread = kthread_run(prune_tree_thread, NULL,
706 "audit_prune_tree");
707 if (IS_ERR(prune_thread)) {
708 pr_err("cannot start thread audit_prune_tree");
709 prune_thread = NULL;
710 return -ENOMEM;
711 }
712 return 0;
713 }
714
715 /* called with audit_filter_mutex */
716 int audit_add_tree_rule(struct audit_krule *rule)
717 {
718 struct audit_tree *seed = rule->tree, *tree;
719 struct path path;
720 struct vfsmount *mnt;
721 int err;
722
723 rule->tree = NULL;
724 list_for_each_entry(tree, &tree_list, list) {
725 if (!strcmp(seed->pathname, tree->pathname)) {
726 put_tree(seed);
727 rule->tree = tree;
728 list_add(&rule->rlist, &tree->rules);
729 return 0;
730 }
731 }
732 tree = seed;
733 list_add(&tree->list, &tree_list);
734 list_add(&rule->rlist, &tree->rules);
735 /* do not set rule->tree yet */
736 mutex_unlock(&audit_filter_mutex);
737
738 if (unlikely(!prune_thread)) {
739 err = audit_launch_prune();
740 if (err)
741 goto Err;
742 }
743
744 err = kern_path(tree->pathname, 0, &path);
745 if (err)
746 goto Err;
747 mnt = collect_mounts(&path);
748 path_put(&path);
749 if (IS_ERR(mnt)) {
750 err = PTR_ERR(mnt);
751 goto Err;
752 }
753
754 get_tree(tree);
755 err = iterate_mounts(tag_mount, tree, mnt);
756 drop_collected_mounts(mnt);
757
758 if (!err) {
759 struct node *node;
760 spin_lock(&hash_lock);
761 list_for_each_entry(node, &tree->chunks, list)
762 node->index &= ~(1U<<31);
763 spin_unlock(&hash_lock);
764 } else {
765 trim_marked(tree);
766 goto Err;
767 }
768
769 mutex_lock(&audit_filter_mutex);
770 if (list_empty(&rule->rlist)) {
771 put_tree(tree);
772 return -ENOENT;
773 }
774 rule->tree = tree;
775 put_tree(tree);
776
777 return 0;
778 Err:
779 mutex_lock(&audit_filter_mutex);
780 list_del_init(&tree->list);
781 list_del_init(&tree->rules);
782 put_tree(tree);
783 return err;
784 }
785
786 int audit_tag_tree(char *old, char *new)
787 {
788 struct list_head cursor, barrier;
789 int failed = 0;
790 struct path path1, path2;
791 struct vfsmount *tagged;
792 int err;
793
794 err = kern_path(new, 0, &path2);
795 if (err)
796 return err;
797 tagged = collect_mounts(&path2);
798 path_put(&path2);
799 if (IS_ERR(tagged))
800 return PTR_ERR(tagged);
801
802 err = kern_path(old, 0, &path1);
803 if (err) {
804 drop_collected_mounts(tagged);
805 return err;
806 }
807
808 mutex_lock(&audit_filter_mutex);
809 list_add(&barrier, &tree_list);
810 list_add(&cursor, &barrier);
811
812 while (cursor.next != &tree_list) {
813 struct audit_tree *tree;
814 int good_one = 0;
815
816 tree = container_of(cursor.next, struct audit_tree, list);
817 get_tree(tree);
818 list_del(&cursor);
819 list_add(&cursor, &tree->list);
820 mutex_unlock(&audit_filter_mutex);
821
822 err = kern_path(tree->pathname, 0, &path2);
823 if (!err) {
824 good_one = path_is_under(&path1, &path2);
825 path_put(&path2);
826 }
827
828 if (!good_one) {
829 put_tree(tree);
830 mutex_lock(&audit_filter_mutex);
831 continue;
832 }
833
834 failed = iterate_mounts(tag_mount, tree, tagged);
835 if (failed) {
836 put_tree(tree);
837 mutex_lock(&audit_filter_mutex);
838 break;
839 }
840
841 mutex_lock(&audit_filter_mutex);
842 spin_lock(&hash_lock);
843 if (!tree->goner) {
844 list_del(&tree->list);
845 list_add(&tree->list, &tree_list);
846 }
847 spin_unlock(&hash_lock);
848 put_tree(tree);
849 }
850
851 while (barrier.prev != &tree_list) {
852 struct audit_tree *tree;
853
854 tree = container_of(barrier.prev, struct audit_tree, list);
855 get_tree(tree);
856 list_del(&tree->list);
857 list_add(&tree->list, &barrier);
858 mutex_unlock(&audit_filter_mutex);
859
860 if (!failed) {
861 struct node *node;
862 spin_lock(&hash_lock);
863 list_for_each_entry(node, &tree->chunks, list)
864 node->index &= ~(1U<<31);
865 spin_unlock(&hash_lock);
866 } else {
867 trim_marked(tree);
868 }
869
870 put_tree(tree);
871 mutex_lock(&audit_filter_mutex);
872 }
873 list_del(&barrier);
874 list_del(&cursor);
875 mutex_unlock(&audit_filter_mutex);
876 path_put(&path1);
877 drop_collected_mounts(tagged);
878 return failed;
879 }
880
881
882 static void audit_schedule_prune(void)
883 {
884 wake_up_process(prune_thread);
885 }
886
887 /*
888 * ... and that one is done if evict_chunk() decides to delay until the end
889 * of syscall. Runs synchronously.
890 */
891 void audit_kill_trees(struct list_head *list)
892 {
893 mutex_lock(&audit_cmd_mutex);
894 mutex_lock(&audit_filter_mutex);
895
896 while (!list_empty(list)) {
897 struct audit_tree *victim;
898
899 victim = list_entry(list->next, struct audit_tree, list);
900 kill_rules(victim);
901 list_del_init(&victim->list);
902
903 mutex_unlock(&audit_filter_mutex);
904
905 prune_one(victim);
906
907 mutex_lock(&audit_filter_mutex);
908 }
909
910 mutex_unlock(&audit_filter_mutex);
911 mutex_unlock(&audit_cmd_mutex);
912 }
913
914 /*
915 * Here comes the stuff asynchronous to auditctl operations
916 */
917
918 static void evict_chunk(struct audit_chunk *chunk)
919 {
920 struct audit_tree *owner;
921 struct list_head *postponed = audit_killed_trees();
922 int need_prune = 0;
923 int n;
924
925 if (chunk->dead)
926 return;
927
928 chunk->dead = 1;
929 mutex_lock(&audit_filter_mutex);
930 spin_lock(&hash_lock);
931 while (!list_empty(&chunk->trees)) {
932 owner = list_entry(chunk->trees.next,
933 struct audit_tree, same_root);
934 owner->goner = 1;
935 owner->root = NULL;
936 list_del_init(&owner->same_root);
937 spin_unlock(&hash_lock);
938 if (!postponed) {
939 kill_rules(owner);
940 list_move(&owner->list, &prune_list);
941 need_prune = 1;
942 } else {
943 list_move(&owner->list, postponed);
944 }
945 spin_lock(&hash_lock);
946 }
947 list_del_rcu(&chunk->hash);
948 for (n = 0; n < chunk->count; n++)
949 list_del_init(&chunk->owners[n].list);
950 spin_unlock(&hash_lock);
951 mutex_unlock(&audit_filter_mutex);
952 if (need_prune)
953 audit_schedule_prune();
954 }
955
956 static int audit_tree_handle_event(struct fsnotify_group *group,
957 struct inode *to_tell,
958 struct fsnotify_mark *inode_mark,
959 struct fsnotify_mark *vfsmount_mark,
960 u32 mask, const void *data, int data_type,
961 const unsigned char *file_name, u32 cookie)
962 {
963 return 0;
964 }
965
966 static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
967 {
968 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
969
970 evict_chunk(chunk);
971
972 /*
973 * We are guaranteed to have at least one reference to the mark from
974 * either the inode or the caller of fsnotify_destroy_mark().
975 */
976 BUG_ON(atomic_read(&entry->refcnt) < 1);
977 }
978
979 static const struct fsnotify_ops audit_tree_ops = {
980 .handle_event = audit_tree_handle_event,
981 .freeing_mark = audit_tree_freeing_mark,
982 };
983
984 static int __init audit_tree_init(void)
985 {
986 int i;
987
988 audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
989 if (IS_ERR(audit_tree_group))
990 audit_panic("cannot initialize fsnotify group for rectree watches");
991
992 for (i = 0; i < HASH_SIZE; i++)
993 INIT_LIST_HEAD(&chunk_hash_heads[i]);
994
995 return 0;
996 }
997 __initcall(audit_tree_init);