]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/fork.c
fd15a2b1719805659b2ae8b08911097414f46240
[mirror_ubuntu-zesty-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86
87 #include <trace/events/sched.h>
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91 #ifdef CONFIG_USER_NS
92 extern int unprivileged_userns_clone;
93 #else
94 #define unprivileged_userns_clone 0
95 #endif
96
97 /*
98 * Minimum number of threads to boot the kernel
99 */
100 #define MIN_THREADS 20
101
102 /*
103 * Maximum number of threads
104 */
105 #define MAX_THREADS FUTEX_TID_MASK
106
107 /*
108 * Protected counters by write_lock_irq(&tasklist_lock)
109 */
110 unsigned long total_forks; /* Handle normal Linux uptimes. */
111 int nr_threads; /* The idle threads do not count.. */
112
113 int max_threads; /* tunable limit on nr_threads */
114
115 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
116
117 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
118
119 #ifdef CONFIG_PROVE_RCU
120 int lockdep_tasklist_lock_is_held(void)
121 {
122 return lockdep_is_held(&tasklist_lock);
123 }
124 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
125 #endif /* #ifdef CONFIG_PROVE_RCU */
126
127 int nr_processes(void)
128 {
129 int cpu;
130 int total = 0;
131
132 for_each_possible_cpu(cpu)
133 total += per_cpu(process_counts, cpu);
134
135 return total;
136 }
137
138 void __weak arch_release_task_struct(struct task_struct *tsk)
139 {
140 }
141
142 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
143 static struct kmem_cache *task_struct_cachep;
144
145 static inline struct task_struct *alloc_task_struct_node(int node)
146 {
147 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
148 }
149
150 static inline void free_task_struct(struct task_struct *tsk)
151 {
152 kmem_cache_free(task_struct_cachep, tsk);
153 }
154 #endif
155
156 void __weak arch_release_thread_stack(unsigned long *stack)
157 {
158 }
159
160 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
161
162 /*
163 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
164 * kmemcache based allocator.
165 */
166 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
167
168 #ifdef CONFIG_VMAP_STACK
169 /*
170 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
171 * flush. Try to minimize the number of calls by caching stacks.
172 */
173 #define NR_CACHED_STACKS 2
174 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
175 #endif
176
177 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
178 {
179 #ifdef CONFIG_VMAP_STACK
180 void *stack;
181 int i;
182
183 local_irq_disable();
184 for (i = 0; i < NR_CACHED_STACKS; i++) {
185 struct vm_struct *s = this_cpu_read(cached_stacks[i]);
186
187 if (!s)
188 continue;
189 this_cpu_write(cached_stacks[i], NULL);
190
191 tsk->stack_vm_area = s;
192 local_irq_enable();
193 return s->addr;
194 }
195 local_irq_enable();
196
197 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
198 VMALLOC_START, VMALLOC_END,
199 THREADINFO_GFP | __GFP_HIGHMEM,
200 PAGE_KERNEL,
201 0, node, __builtin_return_address(0));
202
203 /*
204 * We can't call find_vm_area() in interrupt context, and
205 * free_thread_stack() can be called in interrupt context,
206 * so cache the vm_struct.
207 */
208 if (stack)
209 tsk->stack_vm_area = find_vm_area(stack);
210 return stack;
211 #else
212 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
213 THREAD_SIZE_ORDER);
214
215 return page ? page_address(page) : NULL;
216 #endif
217 }
218
219 static inline void free_thread_stack(struct task_struct *tsk)
220 {
221 #ifdef CONFIG_VMAP_STACK
222 if (task_stack_vm_area(tsk)) {
223 unsigned long flags;
224 int i;
225
226 local_irq_save(flags);
227 for (i = 0; i < NR_CACHED_STACKS; i++) {
228 if (this_cpu_read(cached_stacks[i]))
229 continue;
230
231 this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
232 local_irq_restore(flags);
233 return;
234 }
235 local_irq_restore(flags);
236
237 vfree_atomic(tsk->stack);
238 return;
239 }
240 #endif
241
242 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
243 }
244 # else
245 static struct kmem_cache *thread_stack_cache;
246
247 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
248 int node)
249 {
250 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
251 }
252
253 static void free_thread_stack(struct task_struct *tsk)
254 {
255 kmem_cache_free(thread_stack_cache, tsk->stack);
256 }
257
258 void thread_stack_cache_init(void)
259 {
260 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
261 THREAD_SIZE, 0, NULL);
262 BUG_ON(thread_stack_cache == NULL);
263 }
264 # endif
265 #endif
266
267 /* SLAB cache for signal_struct structures (tsk->signal) */
268 static struct kmem_cache *signal_cachep;
269
270 /* SLAB cache for sighand_struct structures (tsk->sighand) */
271 struct kmem_cache *sighand_cachep;
272
273 /* SLAB cache for files_struct structures (tsk->files) */
274 struct kmem_cache *files_cachep;
275
276 /* SLAB cache for fs_struct structures (tsk->fs) */
277 struct kmem_cache *fs_cachep;
278
279 /* SLAB cache for vm_area_struct structures */
280 struct kmem_cache *vm_area_cachep;
281
282 /* SLAB cache for mm_struct structures (tsk->mm) */
283 static struct kmem_cache *mm_cachep;
284
285 static void account_kernel_stack(struct task_struct *tsk, int account)
286 {
287 void *stack = task_stack_page(tsk);
288 struct vm_struct *vm = task_stack_vm_area(tsk);
289
290 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
291
292 if (vm) {
293 int i;
294
295 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
296
297 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
298 mod_zone_page_state(page_zone(vm->pages[i]),
299 NR_KERNEL_STACK_KB,
300 PAGE_SIZE / 1024 * account);
301 }
302
303 /* All stack pages belong to the same memcg. */
304 memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
305 account * (THREAD_SIZE / 1024));
306 } else {
307 /*
308 * All stack pages are in the same zone and belong to the
309 * same memcg.
310 */
311 struct page *first_page = virt_to_page(stack);
312
313 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
314 THREAD_SIZE / 1024 * account);
315
316 memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
317 account * (THREAD_SIZE / 1024));
318 }
319 }
320
321 static void release_task_stack(struct task_struct *tsk)
322 {
323 if (WARN_ON(tsk->state != TASK_DEAD))
324 return; /* Better to leak the stack than to free prematurely */
325
326 account_kernel_stack(tsk, -1);
327 arch_release_thread_stack(tsk->stack);
328 free_thread_stack(tsk);
329 tsk->stack = NULL;
330 #ifdef CONFIG_VMAP_STACK
331 tsk->stack_vm_area = NULL;
332 #endif
333 }
334
335 #ifdef CONFIG_THREAD_INFO_IN_TASK
336 void put_task_stack(struct task_struct *tsk)
337 {
338 if (atomic_dec_and_test(&tsk->stack_refcount))
339 release_task_stack(tsk);
340 }
341 #endif
342
343 void free_task(struct task_struct *tsk)
344 {
345 #ifndef CONFIG_THREAD_INFO_IN_TASK
346 /*
347 * The task is finally done with both the stack and thread_info,
348 * so free both.
349 */
350 release_task_stack(tsk);
351 #else
352 /*
353 * If the task had a separate stack allocation, it should be gone
354 * by now.
355 */
356 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
357 #endif
358 rt_mutex_debug_task_free(tsk);
359 ftrace_graph_exit_task(tsk);
360 put_seccomp_filter(tsk);
361 arch_release_task_struct(tsk);
362 if (tsk->flags & PF_KTHREAD)
363 free_kthread_struct(tsk);
364 free_task_struct(tsk);
365 }
366 EXPORT_SYMBOL(free_task);
367
368 static inline void free_signal_struct(struct signal_struct *sig)
369 {
370 taskstats_tgid_free(sig);
371 sched_autogroup_exit(sig);
372 /*
373 * __mmdrop is not safe to call from softirq context on x86 due to
374 * pgd_dtor so postpone it to the async context
375 */
376 if (sig->oom_mm)
377 mmdrop_async(sig->oom_mm);
378 kmem_cache_free(signal_cachep, sig);
379 }
380
381 static inline void put_signal_struct(struct signal_struct *sig)
382 {
383 if (atomic_dec_and_test(&sig->sigcnt))
384 free_signal_struct(sig);
385 }
386
387 void __put_task_struct(struct task_struct *tsk)
388 {
389 WARN_ON(!tsk->exit_state);
390 WARN_ON(atomic_read(&tsk->usage));
391 WARN_ON(tsk == current);
392
393 cgroup_free(tsk);
394 task_numa_free(tsk);
395 security_task_free(tsk);
396 exit_creds(tsk);
397 delayacct_tsk_free(tsk);
398 put_signal_struct(tsk->signal);
399
400 if (!profile_handoff_task(tsk))
401 free_task(tsk);
402 }
403 EXPORT_SYMBOL_GPL(__put_task_struct);
404
405 void __init __weak arch_task_cache_init(void) { }
406
407 /*
408 * set_max_threads
409 */
410 static void set_max_threads(unsigned int max_threads_suggested)
411 {
412 u64 threads;
413
414 /*
415 * The number of threads shall be limited such that the thread
416 * structures may only consume a small part of the available memory.
417 */
418 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
419 threads = MAX_THREADS;
420 else
421 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
422 (u64) THREAD_SIZE * 8UL);
423
424 if (threads > max_threads_suggested)
425 threads = max_threads_suggested;
426
427 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
428 }
429
430 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
431 /* Initialized by the architecture: */
432 int arch_task_struct_size __read_mostly;
433 #endif
434
435 void __init fork_init(void)
436 {
437 int i;
438 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
439 #ifndef ARCH_MIN_TASKALIGN
440 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
441 #endif
442 /* create a slab on which task_structs can be allocated */
443 task_struct_cachep = kmem_cache_create("task_struct",
444 arch_task_struct_size, ARCH_MIN_TASKALIGN,
445 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
446 #endif
447
448 /* do the arch specific task caches init */
449 arch_task_cache_init();
450
451 set_max_threads(MAX_THREADS);
452
453 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
454 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
455 init_task.signal->rlim[RLIMIT_SIGPENDING] =
456 init_task.signal->rlim[RLIMIT_NPROC];
457
458 for (i = 0; i < UCOUNT_COUNTS; i++) {
459 init_user_ns.ucount_max[i] = max_threads/2;
460 }
461 }
462
463 int __weak arch_dup_task_struct(struct task_struct *dst,
464 struct task_struct *src)
465 {
466 *dst = *src;
467 return 0;
468 }
469
470 void set_task_stack_end_magic(struct task_struct *tsk)
471 {
472 unsigned long *stackend;
473
474 stackend = end_of_stack(tsk);
475 *stackend = STACK_END_MAGIC; /* for overflow detection */
476 }
477
478 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
479 {
480 struct task_struct *tsk;
481 unsigned long *stack;
482 struct vm_struct *stack_vm_area;
483 int err;
484
485 if (node == NUMA_NO_NODE)
486 node = tsk_fork_get_node(orig);
487 tsk = alloc_task_struct_node(node);
488 if (!tsk)
489 return NULL;
490
491 stack = alloc_thread_stack_node(tsk, node);
492 if (!stack)
493 goto free_tsk;
494
495 stack_vm_area = task_stack_vm_area(tsk);
496
497 err = arch_dup_task_struct(tsk, orig);
498
499 /*
500 * arch_dup_task_struct() clobbers the stack-related fields. Make
501 * sure they're properly initialized before using any stack-related
502 * functions again.
503 */
504 tsk->stack = stack;
505 #ifdef CONFIG_VMAP_STACK
506 tsk->stack_vm_area = stack_vm_area;
507 #endif
508 #ifdef CONFIG_THREAD_INFO_IN_TASK
509 atomic_set(&tsk->stack_refcount, 1);
510 #endif
511
512 if (err)
513 goto free_stack;
514
515 #ifdef CONFIG_SECCOMP
516 /*
517 * We must handle setting up seccomp filters once we're under
518 * the sighand lock in case orig has changed between now and
519 * then. Until then, filter must be NULL to avoid messing up
520 * the usage counts on the error path calling free_task.
521 */
522 tsk->seccomp.filter = NULL;
523 #endif
524
525 setup_thread_stack(tsk, orig);
526 clear_user_return_notifier(tsk);
527 clear_tsk_need_resched(tsk);
528 set_task_stack_end_magic(tsk);
529
530 #ifdef CONFIG_CC_STACKPROTECTOR
531 tsk->stack_canary = get_random_int();
532 #endif
533
534 /*
535 * One for us, one for whoever does the "release_task()" (usually
536 * parent)
537 */
538 atomic_set(&tsk->usage, 2);
539 #ifdef CONFIG_BLK_DEV_IO_TRACE
540 tsk->btrace_seq = 0;
541 #endif
542 tsk->splice_pipe = NULL;
543 tsk->task_frag.page = NULL;
544 tsk->wake_q.next = NULL;
545
546 account_kernel_stack(tsk, 1);
547
548 kcov_task_init(tsk);
549
550 return tsk;
551
552 free_stack:
553 free_thread_stack(tsk);
554 free_tsk:
555 free_task_struct(tsk);
556 return NULL;
557 }
558
559 #ifdef CONFIG_MMU
560 static __latent_entropy int dup_mmap(struct mm_struct *mm,
561 struct mm_struct *oldmm)
562 {
563 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
564 struct rb_node **rb_link, *rb_parent;
565 int retval;
566 unsigned long charge;
567
568 uprobe_start_dup_mmap();
569 if (down_write_killable(&oldmm->mmap_sem)) {
570 retval = -EINTR;
571 goto fail_uprobe_end;
572 }
573 flush_cache_dup_mm(oldmm);
574 uprobe_dup_mmap(oldmm, mm);
575 /*
576 * Not linked in yet - no deadlock potential:
577 */
578 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
579
580 /* No ordering required: file already has been exposed. */
581 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
582
583 mm->total_vm = oldmm->total_vm;
584 mm->data_vm = oldmm->data_vm;
585 mm->exec_vm = oldmm->exec_vm;
586 mm->stack_vm = oldmm->stack_vm;
587
588 rb_link = &mm->mm_rb.rb_node;
589 rb_parent = NULL;
590 pprev = &mm->mmap;
591 retval = ksm_fork(mm, oldmm);
592 if (retval)
593 goto out;
594 retval = khugepaged_fork(mm, oldmm);
595 if (retval)
596 goto out;
597
598 prev = NULL;
599 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
600 struct file *file;
601
602 if (mpnt->vm_flags & VM_DONTCOPY) {
603 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
604 continue;
605 }
606 charge = 0;
607 if (mpnt->vm_flags & VM_ACCOUNT) {
608 unsigned long len = vma_pages(mpnt);
609
610 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
611 goto fail_nomem;
612 charge = len;
613 }
614 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
615 if (!tmp)
616 goto fail_nomem;
617 *tmp = *mpnt;
618 INIT_LIST_HEAD(&tmp->anon_vma_chain);
619 retval = vma_dup_policy(mpnt, tmp);
620 if (retval)
621 goto fail_nomem_policy;
622 tmp->vm_mm = mm;
623 if (anon_vma_fork(tmp, mpnt))
624 goto fail_nomem_anon_vma_fork;
625 tmp->vm_flags &=
626 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
627 tmp->vm_next = tmp->vm_prev = NULL;
628 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
629 file = tmp->vm_file;
630 if (file) {
631 struct inode *inode = file_inode(file);
632 struct address_space *mapping = file->f_mapping;
633
634 get_file(file);
635 if (tmp->vm_flags & VM_DENYWRITE)
636 atomic_dec(&inode->i_writecount);
637 i_mmap_lock_write(mapping);
638 if (tmp->vm_flags & VM_SHARED)
639 atomic_inc(&mapping->i_mmap_writable);
640 flush_dcache_mmap_lock(mapping);
641 /* insert tmp into the share list, just after mpnt */
642 vma_interval_tree_insert_after(tmp, mpnt,
643 &mapping->i_mmap);
644 flush_dcache_mmap_unlock(mapping);
645 i_mmap_unlock_write(mapping);
646 }
647
648 /*
649 * Clear hugetlb-related page reserves for children. This only
650 * affects MAP_PRIVATE mappings. Faults generated by the child
651 * are not guaranteed to succeed, even if read-only
652 */
653 if (is_vm_hugetlb_page(tmp))
654 reset_vma_resv_huge_pages(tmp);
655
656 /*
657 * Link in the new vma and copy the page table entries.
658 */
659 *pprev = tmp;
660 pprev = &tmp->vm_next;
661 tmp->vm_prev = prev;
662 prev = tmp;
663
664 __vma_link_rb(mm, tmp, rb_link, rb_parent);
665 rb_link = &tmp->vm_rb.rb_right;
666 rb_parent = &tmp->vm_rb;
667
668 mm->map_count++;
669 retval = copy_page_range(mm, oldmm, mpnt);
670
671 if (tmp->vm_ops && tmp->vm_ops->open)
672 tmp->vm_ops->open(tmp);
673
674 if (retval)
675 goto out;
676 }
677 /* a new mm has just been created */
678 arch_dup_mmap(oldmm, mm);
679 retval = 0;
680 out:
681 up_write(&mm->mmap_sem);
682 flush_tlb_mm(oldmm);
683 up_write(&oldmm->mmap_sem);
684 fail_uprobe_end:
685 uprobe_end_dup_mmap();
686 return retval;
687 fail_nomem_anon_vma_fork:
688 mpol_put(vma_policy(tmp));
689 fail_nomem_policy:
690 kmem_cache_free(vm_area_cachep, tmp);
691 fail_nomem:
692 retval = -ENOMEM;
693 vm_unacct_memory(charge);
694 goto out;
695 }
696
697 static inline int mm_alloc_pgd(struct mm_struct *mm)
698 {
699 mm->pgd = pgd_alloc(mm);
700 if (unlikely(!mm->pgd))
701 return -ENOMEM;
702 return 0;
703 }
704
705 static inline void mm_free_pgd(struct mm_struct *mm)
706 {
707 pgd_free(mm, mm->pgd);
708 }
709 #else
710 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
711 {
712 down_write(&oldmm->mmap_sem);
713 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
714 up_write(&oldmm->mmap_sem);
715 return 0;
716 }
717 #define mm_alloc_pgd(mm) (0)
718 #define mm_free_pgd(mm)
719 #endif /* CONFIG_MMU */
720
721 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
722
723 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
724 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
725
726 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
727
728 static int __init coredump_filter_setup(char *s)
729 {
730 default_dump_filter =
731 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
732 MMF_DUMP_FILTER_MASK;
733 return 1;
734 }
735
736 __setup("coredump_filter=", coredump_filter_setup);
737
738 #include <linux/init_task.h>
739
740 static void mm_init_aio(struct mm_struct *mm)
741 {
742 #ifdef CONFIG_AIO
743 spin_lock_init(&mm->ioctx_lock);
744 mm->ioctx_table = NULL;
745 #endif
746 }
747
748 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
749 {
750 #ifdef CONFIG_MEMCG
751 mm->owner = p;
752 #endif
753 }
754
755 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
756 struct user_namespace *user_ns)
757 {
758 mm->mmap = NULL;
759 mm->mm_rb = RB_ROOT;
760 mm->vmacache_seqnum = 0;
761 atomic_set(&mm->mm_users, 1);
762 atomic_set(&mm->mm_count, 1);
763 init_rwsem(&mm->mmap_sem);
764 INIT_LIST_HEAD(&mm->mmlist);
765 mm->core_state = NULL;
766 atomic_long_set(&mm->nr_ptes, 0);
767 mm_nr_pmds_init(mm);
768 mm->map_count = 0;
769 mm->locked_vm = 0;
770 mm->pinned_vm = 0;
771 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
772 spin_lock_init(&mm->page_table_lock);
773 mm_init_cpumask(mm);
774 mm_init_aio(mm);
775 mm_init_owner(mm, p);
776 mmu_notifier_mm_init(mm);
777 clear_tlb_flush_pending(mm);
778 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
779 mm->pmd_huge_pte = NULL;
780 #endif
781
782 if (current->mm) {
783 mm->flags = current->mm->flags & MMF_INIT_MASK;
784 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
785 } else {
786 mm->flags = default_dump_filter;
787 mm->def_flags = 0;
788 }
789
790 if (mm_alloc_pgd(mm))
791 goto fail_nopgd;
792
793 if (init_new_context(p, mm))
794 goto fail_nocontext;
795
796 mm->user_ns = get_user_ns(user_ns);
797 return mm;
798
799 fail_nocontext:
800 mm_free_pgd(mm);
801 fail_nopgd:
802 free_mm(mm);
803 return NULL;
804 }
805
806 static void check_mm(struct mm_struct *mm)
807 {
808 int i;
809
810 for (i = 0; i < NR_MM_COUNTERS; i++) {
811 long x = atomic_long_read(&mm->rss_stat.count[i]);
812
813 if (unlikely(x))
814 printk(KERN_ALERT "BUG: Bad rss-counter state "
815 "mm:%p idx:%d val:%ld\n", mm, i, x);
816 }
817
818 if (atomic_long_read(&mm->nr_ptes))
819 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
820 atomic_long_read(&mm->nr_ptes));
821 if (mm_nr_pmds(mm))
822 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
823 mm_nr_pmds(mm));
824
825 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
826 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
827 #endif
828 }
829
830 /*
831 * Allocate and initialize an mm_struct.
832 */
833 struct mm_struct *mm_alloc(void)
834 {
835 struct mm_struct *mm;
836
837 mm = allocate_mm();
838 if (!mm)
839 return NULL;
840
841 memset(mm, 0, sizeof(*mm));
842 return mm_init(mm, current, current_user_ns());
843 }
844
845 /*
846 * Called when the last reference to the mm
847 * is dropped: either by a lazy thread or by
848 * mmput. Free the page directory and the mm.
849 */
850 void __mmdrop(struct mm_struct *mm)
851 {
852 BUG_ON(mm == &init_mm);
853 mm_free_pgd(mm);
854 destroy_context(mm);
855 mmu_notifier_mm_destroy(mm);
856 check_mm(mm);
857 put_user_ns(mm->user_ns);
858 free_mm(mm);
859 }
860 EXPORT_SYMBOL_GPL(__mmdrop);
861
862 static inline void __mmput(struct mm_struct *mm)
863 {
864 VM_BUG_ON(atomic_read(&mm->mm_users));
865
866 uprobe_clear_state(mm);
867 exit_aio(mm);
868 ksm_exit(mm);
869 khugepaged_exit(mm); /* must run before exit_mmap */
870 exit_mmap(mm);
871 mm_put_huge_zero_page(mm);
872 set_mm_exe_file(mm, NULL);
873 if (!list_empty(&mm->mmlist)) {
874 spin_lock(&mmlist_lock);
875 list_del(&mm->mmlist);
876 spin_unlock(&mmlist_lock);
877 }
878 if (mm->binfmt)
879 module_put(mm->binfmt->module);
880 set_bit(MMF_OOM_SKIP, &mm->flags);
881 mmdrop(mm);
882 }
883
884 /*
885 * Decrement the use count and release all resources for an mm.
886 */
887 void mmput(struct mm_struct *mm)
888 {
889 might_sleep();
890
891 if (atomic_dec_and_test(&mm->mm_users))
892 __mmput(mm);
893 }
894 EXPORT_SYMBOL_GPL(mmput);
895
896 #ifdef CONFIG_MMU
897 static void mmput_async_fn(struct work_struct *work)
898 {
899 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
900 __mmput(mm);
901 }
902
903 void mmput_async(struct mm_struct *mm)
904 {
905 if (atomic_dec_and_test(&mm->mm_users)) {
906 INIT_WORK(&mm->async_put_work, mmput_async_fn);
907 schedule_work(&mm->async_put_work);
908 }
909 }
910 #endif
911
912 /**
913 * set_mm_exe_file - change a reference to the mm's executable file
914 *
915 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
916 *
917 * Main users are mmput() and sys_execve(). Callers prevent concurrent
918 * invocations: in mmput() nobody alive left, in execve task is single
919 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
920 * mm->exe_file, but does so without using set_mm_exe_file() in order
921 * to do avoid the need for any locks.
922 */
923 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
924 {
925 struct file *old_exe_file;
926
927 /*
928 * It is safe to dereference the exe_file without RCU as
929 * this function is only called if nobody else can access
930 * this mm -- see comment above for justification.
931 */
932 old_exe_file = rcu_dereference_raw(mm->exe_file);
933
934 if (new_exe_file)
935 get_file(new_exe_file);
936 rcu_assign_pointer(mm->exe_file, new_exe_file);
937 if (old_exe_file)
938 fput(old_exe_file);
939 }
940
941 /**
942 * get_mm_exe_file - acquire a reference to the mm's executable file
943 *
944 * Returns %NULL if mm has no associated executable file.
945 * User must release file via fput().
946 */
947 struct file *get_mm_exe_file(struct mm_struct *mm)
948 {
949 struct file *exe_file;
950
951 rcu_read_lock();
952 exe_file = rcu_dereference(mm->exe_file);
953 if (exe_file && !get_file_rcu(exe_file))
954 exe_file = NULL;
955 rcu_read_unlock();
956 return exe_file;
957 }
958 EXPORT_SYMBOL(get_mm_exe_file);
959
960 /**
961 * get_task_exe_file - acquire a reference to the task's executable file
962 *
963 * Returns %NULL if task's mm (if any) has no associated executable file or
964 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
965 * User must release file via fput().
966 */
967 struct file *get_task_exe_file(struct task_struct *task)
968 {
969 struct file *exe_file = NULL;
970 struct mm_struct *mm;
971
972 task_lock(task);
973 mm = task->mm;
974 if (mm) {
975 if (!(task->flags & PF_KTHREAD))
976 exe_file = get_mm_exe_file(mm);
977 }
978 task_unlock(task);
979 return exe_file;
980 }
981 EXPORT_SYMBOL(get_task_exe_file);
982
983 /**
984 * get_task_mm - acquire a reference to the task's mm
985 *
986 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
987 * this kernel workthread has transiently adopted a user mm with use_mm,
988 * to do its AIO) is not set and if so returns a reference to it, after
989 * bumping up the use count. User must release the mm via mmput()
990 * after use. Typically used by /proc and ptrace.
991 */
992 struct mm_struct *get_task_mm(struct task_struct *task)
993 {
994 struct mm_struct *mm;
995
996 task_lock(task);
997 mm = task->mm;
998 if (mm) {
999 if (task->flags & PF_KTHREAD)
1000 mm = NULL;
1001 else
1002 atomic_inc(&mm->mm_users);
1003 }
1004 task_unlock(task);
1005 return mm;
1006 }
1007 EXPORT_SYMBOL_GPL(get_task_mm);
1008
1009 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1010 {
1011 struct mm_struct *mm;
1012 int err;
1013
1014 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1015 if (err)
1016 return ERR_PTR(err);
1017
1018 mm = get_task_mm(task);
1019 if (mm && mm != current->mm &&
1020 !ptrace_may_access(task, mode)) {
1021 mmput(mm);
1022 mm = ERR_PTR(-EACCES);
1023 }
1024 mutex_unlock(&task->signal->cred_guard_mutex);
1025
1026 return mm;
1027 }
1028
1029 static void complete_vfork_done(struct task_struct *tsk)
1030 {
1031 struct completion *vfork;
1032
1033 task_lock(tsk);
1034 vfork = tsk->vfork_done;
1035 if (likely(vfork)) {
1036 tsk->vfork_done = NULL;
1037 complete(vfork);
1038 }
1039 task_unlock(tsk);
1040 }
1041
1042 static int wait_for_vfork_done(struct task_struct *child,
1043 struct completion *vfork)
1044 {
1045 int killed;
1046
1047 freezer_do_not_count();
1048 killed = wait_for_completion_killable(vfork);
1049 freezer_count();
1050
1051 if (killed) {
1052 task_lock(child);
1053 child->vfork_done = NULL;
1054 task_unlock(child);
1055 }
1056
1057 put_task_struct(child);
1058 return killed;
1059 }
1060
1061 /* Please note the differences between mmput and mm_release.
1062 * mmput is called whenever we stop holding onto a mm_struct,
1063 * error success whatever.
1064 *
1065 * mm_release is called after a mm_struct has been removed
1066 * from the current process.
1067 *
1068 * This difference is important for error handling, when we
1069 * only half set up a mm_struct for a new process and need to restore
1070 * the old one. Because we mmput the new mm_struct before
1071 * restoring the old one. . .
1072 * Eric Biederman 10 January 1998
1073 */
1074 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1075 {
1076 /* Get rid of any futexes when releasing the mm */
1077 #ifdef CONFIG_FUTEX
1078 if (unlikely(tsk->robust_list)) {
1079 exit_robust_list(tsk);
1080 tsk->robust_list = NULL;
1081 }
1082 #ifdef CONFIG_COMPAT
1083 if (unlikely(tsk->compat_robust_list)) {
1084 compat_exit_robust_list(tsk);
1085 tsk->compat_robust_list = NULL;
1086 }
1087 #endif
1088 if (unlikely(!list_empty(&tsk->pi_state_list)))
1089 exit_pi_state_list(tsk);
1090 #endif
1091
1092 uprobe_free_utask(tsk);
1093
1094 /* Get rid of any cached register state */
1095 deactivate_mm(tsk, mm);
1096
1097 /*
1098 * Signal userspace if we're not exiting with a core dump
1099 * because we want to leave the value intact for debugging
1100 * purposes.
1101 */
1102 if (tsk->clear_child_tid) {
1103 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1104 atomic_read(&mm->mm_users) > 1) {
1105 /*
1106 * We don't check the error code - if userspace has
1107 * not set up a proper pointer then tough luck.
1108 */
1109 put_user(0, tsk->clear_child_tid);
1110 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1111 1, NULL, NULL, 0);
1112 }
1113 tsk->clear_child_tid = NULL;
1114 }
1115
1116 /*
1117 * All done, finally we can wake up parent and return this mm to him.
1118 * Also kthread_stop() uses this completion for synchronization.
1119 */
1120 if (tsk->vfork_done)
1121 complete_vfork_done(tsk);
1122 }
1123
1124 /*
1125 * Allocate a new mm structure and copy contents from the
1126 * mm structure of the passed in task structure.
1127 */
1128 static struct mm_struct *dup_mm(struct task_struct *tsk)
1129 {
1130 struct mm_struct *mm, *oldmm = current->mm;
1131 int err;
1132
1133 mm = allocate_mm();
1134 if (!mm)
1135 goto fail_nomem;
1136
1137 memcpy(mm, oldmm, sizeof(*mm));
1138
1139 if (!mm_init(mm, tsk, mm->user_ns))
1140 goto fail_nomem;
1141
1142 err = dup_mmap(mm, oldmm);
1143 if (err)
1144 goto free_pt;
1145
1146 mm->hiwater_rss = get_mm_rss(mm);
1147 mm->hiwater_vm = mm->total_vm;
1148
1149 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1150 goto free_pt;
1151
1152 return mm;
1153
1154 free_pt:
1155 /* don't put binfmt in mmput, we haven't got module yet */
1156 mm->binfmt = NULL;
1157 mmput(mm);
1158
1159 fail_nomem:
1160 return NULL;
1161 }
1162
1163 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1164 {
1165 struct mm_struct *mm, *oldmm;
1166 int retval;
1167
1168 tsk->min_flt = tsk->maj_flt = 0;
1169 tsk->nvcsw = tsk->nivcsw = 0;
1170 #ifdef CONFIG_DETECT_HUNG_TASK
1171 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1172 #endif
1173
1174 tsk->mm = NULL;
1175 tsk->active_mm = NULL;
1176
1177 /*
1178 * Are we cloning a kernel thread?
1179 *
1180 * We need to steal a active VM for that..
1181 */
1182 oldmm = current->mm;
1183 if (!oldmm)
1184 return 0;
1185
1186 /* initialize the new vmacache entries */
1187 vmacache_flush(tsk);
1188
1189 if (clone_flags & CLONE_VM) {
1190 atomic_inc(&oldmm->mm_users);
1191 mm = oldmm;
1192 goto good_mm;
1193 }
1194
1195 retval = -ENOMEM;
1196 mm = dup_mm(tsk);
1197 if (!mm)
1198 goto fail_nomem;
1199
1200 good_mm:
1201 tsk->mm = mm;
1202 tsk->active_mm = mm;
1203 return 0;
1204
1205 fail_nomem:
1206 return retval;
1207 }
1208
1209 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1210 {
1211 struct fs_struct *fs = current->fs;
1212 if (clone_flags & CLONE_FS) {
1213 /* tsk->fs is already what we want */
1214 spin_lock(&fs->lock);
1215 if (fs->in_exec) {
1216 spin_unlock(&fs->lock);
1217 return -EAGAIN;
1218 }
1219 fs->users++;
1220 spin_unlock(&fs->lock);
1221 return 0;
1222 }
1223 tsk->fs = copy_fs_struct(fs);
1224 if (!tsk->fs)
1225 return -ENOMEM;
1226 return 0;
1227 }
1228
1229 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1230 {
1231 struct files_struct *oldf, *newf;
1232 int error = 0;
1233
1234 /*
1235 * A background process may not have any files ...
1236 */
1237 oldf = current->files;
1238 if (!oldf)
1239 goto out;
1240
1241 if (clone_flags & CLONE_FILES) {
1242 atomic_inc(&oldf->count);
1243 goto out;
1244 }
1245
1246 newf = dup_fd(oldf, &error);
1247 if (!newf)
1248 goto out;
1249
1250 tsk->files = newf;
1251 error = 0;
1252 out:
1253 return error;
1254 }
1255
1256 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1257 {
1258 #ifdef CONFIG_BLOCK
1259 struct io_context *ioc = current->io_context;
1260 struct io_context *new_ioc;
1261
1262 if (!ioc)
1263 return 0;
1264 /*
1265 * Share io context with parent, if CLONE_IO is set
1266 */
1267 if (clone_flags & CLONE_IO) {
1268 ioc_task_link(ioc);
1269 tsk->io_context = ioc;
1270 } else if (ioprio_valid(ioc->ioprio)) {
1271 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1272 if (unlikely(!new_ioc))
1273 return -ENOMEM;
1274
1275 new_ioc->ioprio = ioc->ioprio;
1276 put_io_context(new_ioc);
1277 }
1278 #endif
1279 return 0;
1280 }
1281
1282 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1283 {
1284 struct sighand_struct *sig;
1285
1286 if (clone_flags & CLONE_SIGHAND) {
1287 atomic_inc(&current->sighand->count);
1288 return 0;
1289 }
1290 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1291 rcu_assign_pointer(tsk->sighand, sig);
1292 if (!sig)
1293 return -ENOMEM;
1294
1295 atomic_set(&sig->count, 1);
1296 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1297 return 0;
1298 }
1299
1300 void __cleanup_sighand(struct sighand_struct *sighand)
1301 {
1302 if (atomic_dec_and_test(&sighand->count)) {
1303 signalfd_cleanup(sighand);
1304 /*
1305 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1306 * without an RCU grace period, see __lock_task_sighand().
1307 */
1308 kmem_cache_free(sighand_cachep, sighand);
1309 }
1310 }
1311
1312 /*
1313 * Initialize POSIX timer handling for a thread group.
1314 */
1315 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1316 {
1317 unsigned long cpu_limit;
1318
1319 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1320 if (cpu_limit != RLIM_INFINITY) {
1321 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1322 sig->cputimer.running = true;
1323 }
1324
1325 /* The timer lists. */
1326 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1327 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1328 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1329 }
1330
1331 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1332 {
1333 struct signal_struct *sig;
1334
1335 if (clone_flags & CLONE_THREAD)
1336 return 0;
1337
1338 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1339 tsk->signal = sig;
1340 if (!sig)
1341 return -ENOMEM;
1342
1343 sig->nr_threads = 1;
1344 atomic_set(&sig->live, 1);
1345 atomic_set(&sig->sigcnt, 1);
1346
1347 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1348 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1349 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1350
1351 init_waitqueue_head(&sig->wait_chldexit);
1352 sig->curr_target = tsk;
1353 init_sigpending(&sig->shared_pending);
1354 INIT_LIST_HEAD(&sig->posix_timers);
1355 seqlock_init(&sig->stats_lock);
1356 prev_cputime_init(&sig->prev_cputime);
1357
1358 #ifdef CONFIG_POSIX_TIMERS
1359 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1360 sig->real_timer.function = it_real_fn;
1361 #endif
1362
1363 task_lock(current->group_leader);
1364 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1365 task_unlock(current->group_leader);
1366
1367 posix_cpu_timers_init_group(sig);
1368
1369 tty_audit_fork(sig);
1370 sched_autogroup_fork(sig);
1371
1372 sig->oom_score_adj = current->signal->oom_score_adj;
1373 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1374
1375 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1376 current->signal->is_child_subreaper;
1377
1378 mutex_init(&sig->cred_guard_mutex);
1379
1380 return 0;
1381 }
1382
1383 static void copy_seccomp(struct task_struct *p)
1384 {
1385 #ifdef CONFIG_SECCOMP
1386 /*
1387 * Must be called with sighand->lock held, which is common to
1388 * all threads in the group. Holding cred_guard_mutex is not
1389 * needed because this new task is not yet running and cannot
1390 * be racing exec.
1391 */
1392 assert_spin_locked(&current->sighand->siglock);
1393
1394 /* Ref-count the new filter user, and assign it. */
1395 get_seccomp_filter(current);
1396 p->seccomp = current->seccomp;
1397
1398 /*
1399 * Explicitly enable no_new_privs here in case it got set
1400 * between the task_struct being duplicated and holding the
1401 * sighand lock. The seccomp state and nnp must be in sync.
1402 */
1403 if (task_no_new_privs(current))
1404 task_set_no_new_privs(p);
1405
1406 /*
1407 * If the parent gained a seccomp mode after copying thread
1408 * flags and between before we held the sighand lock, we have
1409 * to manually enable the seccomp thread flag here.
1410 */
1411 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1412 set_tsk_thread_flag(p, TIF_SECCOMP);
1413 #endif
1414 }
1415
1416 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1417 {
1418 current->clear_child_tid = tidptr;
1419
1420 return task_pid_vnr(current);
1421 }
1422
1423 static void rt_mutex_init_task(struct task_struct *p)
1424 {
1425 raw_spin_lock_init(&p->pi_lock);
1426 #ifdef CONFIG_RT_MUTEXES
1427 p->pi_waiters = RB_ROOT;
1428 p->pi_waiters_leftmost = NULL;
1429 p->pi_blocked_on = NULL;
1430 #endif
1431 }
1432
1433 /*
1434 * Initialize POSIX timer handling for a single task.
1435 */
1436 static void posix_cpu_timers_init(struct task_struct *tsk)
1437 {
1438 tsk->cputime_expires.prof_exp = 0;
1439 tsk->cputime_expires.virt_exp = 0;
1440 tsk->cputime_expires.sched_exp = 0;
1441 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1442 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1443 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1444 }
1445
1446 static inline void
1447 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1448 {
1449 task->pids[type].pid = pid;
1450 }
1451
1452 /*
1453 * This creates a new process as a copy of the old one,
1454 * but does not actually start it yet.
1455 *
1456 * It copies the registers, and all the appropriate
1457 * parts of the process environment (as per the clone
1458 * flags). The actual kick-off is left to the caller.
1459 */
1460 static __latent_entropy struct task_struct *copy_process(
1461 unsigned long clone_flags,
1462 unsigned long stack_start,
1463 unsigned long stack_size,
1464 int __user *child_tidptr,
1465 struct pid *pid,
1466 int trace,
1467 unsigned long tls,
1468 int node)
1469 {
1470 int retval;
1471 struct task_struct *p;
1472
1473 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1474 return ERR_PTR(-EINVAL);
1475
1476 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1477 return ERR_PTR(-EINVAL);
1478
1479 if ((clone_flags & CLONE_NEWUSER) && !unprivileged_userns_clone)
1480 if (!capable(CAP_SYS_ADMIN))
1481 return ERR_PTR(-EPERM);
1482
1483 /*
1484 * Thread groups must share signals as well, and detached threads
1485 * can only be started up within the thread group.
1486 */
1487 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1488 return ERR_PTR(-EINVAL);
1489
1490 /*
1491 * Shared signal handlers imply shared VM. By way of the above,
1492 * thread groups also imply shared VM. Blocking this case allows
1493 * for various simplifications in other code.
1494 */
1495 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1496 return ERR_PTR(-EINVAL);
1497
1498 /*
1499 * Siblings of global init remain as zombies on exit since they are
1500 * not reaped by their parent (swapper). To solve this and to avoid
1501 * multi-rooted process trees, prevent global and container-inits
1502 * from creating siblings.
1503 */
1504 if ((clone_flags & CLONE_PARENT) &&
1505 current->signal->flags & SIGNAL_UNKILLABLE)
1506 return ERR_PTR(-EINVAL);
1507
1508 /*
1509 * If the new process will be in a different pid or user namespace
1510 * do not allow it to share a thread group with the forking task.
1511 */
1512 if (clone_flags & CLONE_THREAD) {
1513 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1514 (task_active_pid_ns(current) !=
1515 current->nsproxy->pid_ns_for_children))
1516 return ERR_PTR(-EINVAL);
1517 }
1518
1519 retval = security_task_create(clone_flags);
1520 if (retval)
1521 goto fork_out;
1522
1523 retval = -ENOMEM;
1524 p = dup_task_struct(current, node);
1525 if (!p)
1526 goto fork_out;
1527
1528 ftrace_graph_init_task(p);
1529
1530 rt_mutex_init_task(p);
1531
1532 #ifdef CONFIG_PROVE_LOCKING
1533 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1534 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1535 #endif
1536 retval = -EAGAIN;
1537 if (atomic_read(&p->real_cred->user->processes) >=
1538 task_rlimit(p, RLIMIT_NPROC)) {
1539 if (p->real_cred->user != INIT_USER &&
1540 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1541 goto bad_fork_free;
1542 }
1543 current->flags &= ~PF_NPROC_EXCEEDED;
1544
1545 retval = copy_creds(p, clone_flags);
1546 if (retval < 0)
1547 goto bad_fork_free;
1548
1549 /*
1550 * If multiple threads are within copy_process(), then this check
1551 * triggers too late. This doesn't hurt, the check is only there
1552 * to stop root fork bombs.
1553 */
1554 retval = -EAGAIN;
1555 if (nr_threads >= max_threads)
1556 goto bad_fork_cleanup_count;
1557
1558 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1559 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1560 p->flags |= PF_FORKNOEXEC;
1561 INIT_LIST_HEAD(&p->children);
1562 INIT_LIST_HEAD(&p->sibling);
1563 rcu_copy_process(p);
1564 p->vfork_done = NULL;
1565 spin_lock_init(&p->alloc_lock);
1566
1567 init_sigpending(&p->pending);
1568
1569 p->utime = p->stime = p->gtime = 0;
1570 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1571 p->utimescaled = p->stimescaled = 0;
1572 #endif
1573 prev_cputime_init(&p->prev_cputime);
1574
1575 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1576 seqcount_init(&p->vtime_seqcount);
1577 p->vtime_snap = 0;
1578 p->vtime_snap_whence = VTIME_INACTIVE;
1579 #endif
1580
1581 #if defined(SPLIT_RSS_COUNTING)
1582 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1583 #endif
1584
1585 p->default_timer_slack_ns = current->timer_slack_ns;
1586
1587 task_io_accounting_init(&p->ioac);
1588 acct_clear_integrals(p);
1589
1590 posix_cpu_timers_init(p);
1591
1592 p->start_time = ktime_get_ns();
1593 p->real_start_time = ktime_get_boot_ns();
1594 p->io_context = NULL;
1595 p->audit_context = NULL;
1596 cgroup_fork(p);
1597 #ifdef CONFIG_NUMA
1598 p->mempolicy = mpol_dup(p->mempolicy);
1599 if (IS_ERR(p->mempolicy)) {
1600 retval = PTR_ERR(p->mempolicy);
1601 p->mempolicy = NULL;
1602 goto bad_fork_cleanup_threadgroup_lock;
1603 }
1604 #endif
1605 #ifdef CONFIG_CPUSETS
1606 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1607 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1608 seqcount_init(&p->mems_allowed_seq);
1609 #endif
1610 #ifdef CONFIG_TRACE_IRQFLAGS
1611 p->irq_events = 0;
1612 p->hardirqs_enabled = 0;
1613 p->hardirq_enable_ip = 0;
1614 p->hardirq_enable_event = 0;
1615 p->hardirq_disable_ip = _THIS_IP_;
1616 p->hardirq_disable_event = 0;
1617 p->softirqs_enabled = 1;
1618 p->softirq_enable_ip = _THIS_IP_;
1619 p->softirq_enable_event = 0;
1620 p->softirq_disable_ip = 0;
1621 p->softirq_disable_event = 0;
1622 p->hardirq_context = 0;
1623 p->softirq_context = 0;
1624 #endif
1625
1626 p->pagefault_disabled = 0;
1627
1628 #ifdef CONFIG_LOCKDEP
1629 p->lockdep_depth = 0; /* no locks held yet */
1630 p->curr_chain_key = 0;
1631 p->lockdep_recursion = 0;
1632 #endif
1633
1634 #ifdef CONFIG_DEBUG_MUTEXES
1635 p->blocked_on = NULL; /* not blocked yet */
1636 #endif
1637 #ifdef CONFIG_BCACHE
1638 p->sequential_io = 0;
1639 p->sequential_io_avg = 0;
1640 #endif
1641
1642 /* Perform scheduler related setup. Assign this task to a CPU. */
1643 retval = sched_fork(clone_flags, p);
1644 if (retval)
1645 goto bad_fork_cleanup_policy;
1646
1647 retval = perf_event_init_task(p);
1648 if (retval)
1649 goto bad_fork_cleanup_policy;
1650 retval = audit_alloc(p);
1651 if (retval)
1652 goto bad_fork_cleanup_perf;
1653 /* copy all the process information */
1654 shm_init_task(p);
1655 retval = copy_semundo(clone_flags, p);
1656 if (retval)
1657 goto bad_fork_cleanup_audit;
1658 retval = copy_files(clone_flags, p);
1659 if (retval)
1660 goto bad_fork_cleanup_semundo;
1661 retval = copy_fs(clone_flags, p);
1662 if (retval)
1663 goto bad_fork_cleanup_files;
1664 retval = copy_sighand(clone_flags, p);
1665 if (retval)
1666 goto bad_fork_cleanup_fs;
1667 retval = copy_signal(clone_flags, p);
1668 if (retval)
1669 goto bad_fork_cleanup_sighand;
1670 retval = copy_mm(clone_flags, p);
1671 if (retval)
1672 goto bad_fork_cleanup_signal;
1673 retval = copy_namespaces(clone_flags, p);
1674 if (retval)
1675 goto bad_fork_cleanup_mm;
1676 retval = copy_io(clone_flags, p);
1677 if (retval)
1678 goto bad_fork_cleanup_namespaces;
1679 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1680 if (retval)
1681 goto bad_fork_cleanup_io;
1682
1683 if (pid != &init_struct_pid) {
1684 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1685 if (IS_ERR(pid)) {
1686 retval = PTR_ERR(pid);
1687 goto bad_fork_cleanup_thread;
1688 }
1689 }
1690
1691 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1692 /*
1693 * Clear TID on mm_release()?
1694 */
1695 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1696 #ifdef CONFIG_BLOCK
1697 p->plug = NULL;
1698 #endif
1699 #ifdef CONFIG_FUTEX
1700 p->robust_list = NULL;
1701 #ifdef CONFIG_COMPAT
1702 p->compat_robust_list = NULL;
1703 #endif
1704 INIT_LIST_HEAD(&p->pi_state_list);
1705 p->pi_state_cache = NULL;
1706 #endif
1707 /*
1708 * sigaltstack should be cleared when sharing the same VM
1709 */
1710 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1711 sas_ss_reset(p);
1712
1713 /*
1714 * Syscall tracing and stepping should be turned off in the
1715 * child regardless of CLONE_PTRACE.
1716 */
1717 user_disable_single_step(p);
1718 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1719 #ifdef TIF_SYSCALL_EMU
1720 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1721 #endif
1722 clear_all_latency_tracing(p);
1723
1724 /* ok, now we should be set up.. */
1725 p->pid = pid_nr(pid);
1726 if (clone_flags & CLONE_THREAD) {
1727 p->exit_signal = -1;
1728 p->group_leader = current->group_leader;
1729 p->tgid = current->tgid;
1730 } else {
1731 if (clone_flags & CLONE_PARENT)
1732 p->exit_signal = current->group_leader->exit_signal;
1733 else
1734 p->exit_signal = (clone_flags & CSIGNAL);
1735 p->group_leader = p;
1736 p->tgid = p->pid;
1737 }
1738
1739 p->nr_dirtied = 0;
1740 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1741 p->dirty_paused_when = 0;
1742
1743 p->pdeath_signal = 0;
1744 INIT_LIST_HEAD(&p->thread_group);
1745 p->task_works = NULL;
1746
1747 threadgroup_change_begin(current);
1748 /*
1749 * Ensure that the cgroup subsystem policies allow the new process to be
1750 * forked. It should be noted the the new process's css_set can be changed
1751 * between here and cgroup_post_fork() if an organisation operation is in
1752 * progress.
1753 */
1754 retval = cgroup_can_fork(p);
1755 if (retval)
1756 goto bad_fork_free_pid;
1757
1758 /*
1759 * Make it visible to the rest of the system, but dont wake it up yet.
1760 * Need tasklist lock for parent etc handling!
1761 */
1762 write_lock_irq(&tasklist_lock);
1763
1764 /* CLONE_PARENT re-uses the old parent */
1765 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1766 p->real_parent = current->real_parent;
1767 p->parent_exec_id = current->parent_exec_id;
1768 } else {
1769 p->real_parent = current;
1770 p->parent_exec_id = current->self_exec_id;
1771 }
1772
1773 spin_lock(&current->sighand->siglock);
1774
1775 /*
1776 * Copy seccomp details explicitly here, in case they were changed
1777 * before holding sighand lock.
1778 */
1779 copy_seccomp(p);
1780
1781 /*
1782 * Process group and session signals need to be delivered to just the
1783 * parent before the fork or both the parent and the child after the
1784 * fork. Restart if a signal comes in before we add the new process to
1785 * it's process group.
1786 * A fatal signal pending means that current will exit, so the new
1787 * thread can't slip out of an OOM kill (or normal SIGKILL).
1788 */
1789 recalc_sigpending();
1790 if (signal_pending(current)) {
1791 spin_unlock(&current->sighand->siglock);
1792 write_unlock_irq(&tasklist_lock);
1793 retval = -ERESTARTNOINTR;
1794 goto bad_fork_cancel_cgroup;
1795 }
1796
1797 if (likely(p->pid)) {
1798 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1799
1800 init_task_pid(p, PIDTYPE_PID, pid);
1801 if (thread_group_leader(p)) {
1802 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1803 init_task_pid(p, PIDTYPE_SID, task_session(current));
1804
1805 if (is_child_reaper(pid)) {
1806 ns_of_pid(pid)->child_reaper = p;
1807 p->signal->flags |= SIGNAL_UNKILLABLE;
1808 }
1809
1810 p->signal->leader_pid = pid;
1811 p->signal->tty = tty_kref_get(current->signal->tty);
1812 list_add_tail(&p->sibling, &p->real_parent->children);
1813 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1814 attach_pid(p, PIDTYPE_PGID);
1815 attach_pid(p, PIDTYPE_SID);
1816 __this_cpu_inc(process_counts);
1817 } else {
1818 current->signal->nr_threads++;
1819 atomic_inc(&current->signal->live);
1820 atomic_inc(&current->signal->sigcnt);
1821 list_add_tail_rcu(&p->thread_group,
1822 &p->group_leader->thread_group);
1823 list_add_tail_rcu(&p->thread_node,
1824 &p->signal->thread_head);
1825 }
1826 attach_pid(p, PIDTYPE_PID);
1827 nr_threads++;
1828 }
1829
1830 total_forks++;
1831 spin_unlock(&current->sighand->siglock);
1832 syscall_tracepoint_update(p);
1833 write_unlock_irq(&tasklist_lock);
1834
1835 proc_fork_connector(p);
1836 cgroup_post_fork(p);
1837 threadgroup_change_end(current);
1838 perf_event_fork(p);
1839
1840 trace_task_newtask(p, clone_flags);
1841 uprobe_copy_process(p, clone_flags);
1842
1843 return p;
1844
1845 bad_fork_cancel_cgroup:
1846 cgroup_cancel_fork(p);
1847 bad_fork_free_pid:
1848 threadgroup_change_end(current);
1849 if (pid != &init_struct_pid)
1850 free_pid(pid);
1851 bad_fork_cleanup_thread:
1852 exit_thread(p);
1853 bad_fork_cleanup_io:
1854 if (p->io_context)
1855 exit_io_context(p);
1856 bad_fork_cleanup_namespaces:
1857 exit_task_namespaces(p);
1858 bad_fork_cleanup_mm:
1859 if (p->mm)
1860 mmput(p->mm);
1861 bad_fork_cleanup_signal:
1862 if (!(clone_flags & CLONE_THREAD))
1863 free_signal_struct(p->signal);
1864 bad_fork_cleanup_sighand:
1865 __cleanup_sighand(p->sighand);
1866 bad_fork_cleanup_fs:
1867 exit_fs(p); /* blocking */
1868 bad_fork_cleanup_files:
1869 exit_files(p); /* blocking */
1870 bad_fork_cleanup_semundo:
1871 exit_sem(p);
1872 bad_fork_cleanup_audit:
1873 audit_free(p);
1874 bad_fork_cleanup_perf:
1875 perf_event_free_task(p);
1876 bad_fork_cleanup_policy:
1877 #ifdef CONFIG_NUMA
1878 mpol_put(p->mempolicy);
1879 bad_fork_cleanup_threadgroup_lock:
1880 #endif
1881 delayacct_tsk_free(p);
1882 bad_fork_cleanup_count:
1883 atomic_dec(&p->cred->user->processes);
1884 exit_creds(p);
1885 bad_fork_free:
1886 p->state = TASK_DEAD;
1887 put_task_stack(p);
1888 free_task(p);
1889 fork_out:
1890 return ERR_PTR(retval);
1891 }
1892
1893 static inline void init_idle_pids(struct pid_link *links)
1894 {
1895 enum pid_type type;
1896
1897 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1898 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1899 links[type].pid = &init_struct_pid;
1900 }
1901 }
1902
1903 struct task_struct *fork_idle(int cpu)
1904 {
1905 struct task_struct *task;
1906 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1907 cpu_to_node(cpu));
1908 if (!IS_ERR(task)) {
1909 init_idle_pids(task->pids);
1910 init_idle(task, cpu);
1911 }
1912
1913 return task;
1914 }
1915
1916 /*
1917 * Ok, this is the main fork-routine.
1918 *
1919 * It copies the process, and if successful kick-starts
1920 * it and waits for it to finish using the VM if required.
1921 */
1922 long _do_fork(unsigned long clone_flags,
1923 unsigned long stack_start,
1924 unsigned long stack_size,
1925 int __user *parent_tidptr,
1926 int __user *child_tidptr,
1927 unsigned long tls)
1928 {
1929 struct task_struct *p;
1930 int trace = 0;
1931 long nr;
1932
1933 /*
1934 * Determine whether and which event to report to ptracer. When
1935 * called from kernel_thread or CLONE_UNTRACED is explicitly
1936 * requested, no event is reported; otherwise, report if the event
1937 * for the type of forking is enabled.
1938 */
1939 if (!(clone_flags & CLONE_UNTRACED)) {
1940 if (clone_flags & CLONE_VFORK)
1941 trace = PTRACE_EVENT_VFORK;
1942 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1943 trace = PTRACE_EVENT_CLONE;
1944 else
1945 trace = PTRACE_EVENT_FORK;
1946
1947 if (likely(!ptrace_event_enabled(current, trace)))
1948 trace = 0;
1949 }
1950
1951 p = copy_process(clone_flags, stack_start, stack_size,
1952 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1953 add_latent_entropy();
1954 /*
1955 * Do this prior waking up the new thread - the thread pointer
1956 * might get invalid after that point, if the thread exits quickly.
1957 */
1958 if (!IS_ERR(p)) {
1959 struct completion vfork;
1960 struct pid *pid;
1961
1962 trace_sched_process_fork(current, p);
1963
1964 pid = get_task_pid(p, PIDTYPE_PID);
1965 nr = pid_vnr(pid);
1966
1967 if (clone_flags & CLONE_PARENT_SETTID)
1968 put_user(nr, parent_tidptr);
1969
1970 if (clone_flags & CLONE_VFORK) {
1971 p->vfork_done = &vfork;
1972 init_completion(&vfork);
1973 get_task_struct(p);
1974 }
1975
1976 wake_up_new_task(p);
1977
1978 /* forking complete and child started to run, tell ptracer */
1979 if (unlikely(trace))
1980 ptrace_event_pid(trace, pid);
1981
1982 if (clone_flags & CLONE_VFORK) {
1983 if (!wait_for_vfork_done(p, &vfork))
1984 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1985 }
1986
1987 put_pid(pid);
1988 } else {
1989 nr = PTR_ERR(p);
1990 }
1991 return nr;
1992 }
1993
1994 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1995 /* For compatibility with architectures that call do_fork directly rather than
1996 * using the syscall entry points below. */
1997 long do_fork(unsigned long clone_flags,
1998 unsigned long stack_start,
1999 unsigned long stack_size,
2000 int __user *parent_tidptr,
2001 int __user *child_tidptr)
2002 {
2003 return _do_fork(clone_flags, stack_start, stack_size,
2004 parent_tidptr, child_tidptr, 0);
2005 }
2006 #endif
2007
2008 /*
2009 * Create a kernel thread.
2010 */
2011 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2012 {
2013 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2014 (unsigned long)arg, NULL, NULL, 0);
2015 }
2016
2017 #ifdef __ARCH_WANT_SYS_FORK
2018 SYSCALL_DEFINE0(fork)
2019 {
2020 #ifdef CONFIG_MMU
2021 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2022 #else
2023 /* can not support in nommu mode */
2024 return -EINVAL;
2025 #endif
2026 }
2027 #endif
2028
2029 #ifdef __ARCH_WANT_SYS_VFORK
2030 SYSCALL_DEFINE0(vfork)
2031 {
2032 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2033 0, NULL, NULL, 0);
2034 }
2035 #endif
2036
2037 #ifdef __ARCH_WANT_SYS_CLONE
2038 #ifdef CONFIG_CLONE_BACKWARDS
2039 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2040 int __user *, parent_tidptr,
2041 unsigned long, tls,
2042 int __user *, child_tidptr)
2043 #elif defined(CONFIG_CLONE_BACKWARDS2)
2044 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2045 int __user *, parent_tidptr,
2046 int __user *, child_tidptr,
2047 unsigned long, tls)
2048 #elif defined(CONFIG_CLONE_BACKWARDS3)
2049 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2050 int, stack_size,
2051 int __user *, parent_tidptr,
2052 int __user *, child_tidptr,
2053 unsigned long, tls)
2054 #else
2055 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2056 int __user *, parent_tidptr,
2057 int __user *, child_tidptr,
2058 unsigned long, tls)
2059 #endif
2060 {
2061 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2062 }
2063 #endif
2064
2065 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2066 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2067 #endif
2068
2069 static void sighand_ctor(void *data)
2070 {
2071 struct sighand_struct *sighand = data;
2072
2073 spin_lock_init(&sighand->siglock);
2074 init_waitqueue_head(&sighand->signalfd_wqh);
2075 }
2076
2077 void __init proc_caches_init(void)
2078 {
2079 sighand_cachep = kmem_cache_create("sighand_cache",
2080 sizeof(struct sighand_struct), 0,
2081 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2082 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2083 signal_cachep = kmem_cache_create("signal_cache",
2084 sizeof(struct signal_struct), 0,
2085 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2086 NULL);
2087 files_cachep = kmem_cache_create("files_cache",
2088 sizeof(struct files_struct), 0,
2089 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2090 NULL);
2091 fs_cachep = kmem_cache_create("fs_cache",
2092 sizeof(struct fs_struct), 0,
2093 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2094 NULL);
2095 /*
2096 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2097 * whole struct cpumask for the OFFSTACK case. We could change
2098 * this to *only* allocate as much of it as required by the
2099 * maximum number of CPU's we can ever have. The cpumask_allocation
2100 * is at the end of the structure, exactly for that reason.
2101 */
2102 mm_cachep = kmem_cache_create("mm_struct",
2103 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2104 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2105 NULL);
2106 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2107 mmap_init();
2108 nsproxy_cache_init();
2109 }
2110
2111 /*
2112 * Check constraints on flags passed to the unshare system call.
2113 */
2114 static int check_unshare_flags(unsigned long unshare_flags)
2115 {
2116 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2117 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2118 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2119 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2120 return -EINVAL;
2121 /*
2122 * Not implemented, but pretend it works if there is nothing
2123 * to unshare. Note that unsharing the address space or the
2124 * signal handlers also need to unshare the signal queues (aka
2125 * CLONE_THREAD).
2126 */
2127 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2128 if (!thread_group_empty(current))
2129 return -EINVAL;
2130 }
2131 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2132 if (atomic_read(&current->sighand->count) > 1)
2133 return -EINVAL;
2134 }
2135 if (unshare_flags & CLONE_VM) {
2136 if (!current_is_single_threaded())
2137 return -EINVAL;
2138 }
2139
2140 return 0;
2141 }
2142
2143 /*
2144 * Unshare the filesystem structure if it is being shared
2145 */
2146 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2147 {
2148 struct fs_struct *fs = current->fs;
2149
2150 if (!(unshare_flags & CLONE_FS) || !fs)
2151 return 0;
2152
2153 /* don't need lock here; in the worst case we'll do useless copy */
2154 if (fs->users == 1)
2155 return 0;
2156
2157 *new_fsp = copy_fs_struct(fs);
2158 if (!*new_fsp)
2159 return -ENOMEM;
2160
2161 return 0;
2162 }
2163
2164 /*
2165 * Unshare file descriptor table if it is being shared
2166 */
2167 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2168 {
2169 struct files_struct *fd = current->files;
2170 int error = 0;
2171
2172 if ((unshare_flags & CLONE_FILES) &&
2173 (fd && atomic_read(&fd->count) > 1)) {
2174 *new_fdp = dup_fd(fd, &error);
2175 if (!*new_fdp)
2176 return error;
2177 }
2178
2179 return 0;
2180 }
2181
2182 /*
2183 * unshare allows a process to 'unshare' part of the process
2184 * context which was originally shared using clone. copy_*
2185 * functions used by do_fork() cannot be used here directly
2186 * because they modify an inactive task_struct that is being
2187 * constructed. Here we are modifying the current, active,
2188 * task_struct.
2189 */
2190 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2191 {
2192 struct fs_struct *fs, *new_fs = NULL;
2193 struct files_struct *fd, *new_fd = NULL;
2194 struct cred *new_cred = NULL;
2195 struct nsproxy *new_nsproxy = NULL;
2196 int do_sysvsem = 0;
2197 int err;
2198
2199 /*
2200 * If unsharing a user namespace must also unshare the thread group
2201 * and unshare the filesystem root and working directories.
2202 */
2203 if (unshare_flags & CLONE_NEWUSER)
2204 unshare_flags |= CLONE_THREAD | CLONE_FS;
2205 /*
2206 * If unsharing vm, must also unshare signal handlers.
2207 */
2208 if (unshare_flags & CLONE_VM)
2209 unshare_flags |= CLONE_SIGHAND;
2210 /*
2211 * If unsharing a signal handlers, must also unshare the signal queues.
2212 */
2213 if (unshare_flags & CLONE_SIGHAND)
2214 unshare_flags |= CLONE_THREAD;
2215 /*
2216 * If unsharing namespace, must also unshare filesystem information.
2217 */
2218 if (unshare_flags & CLONE_NEWNS)
2219 unshare_flags |= CLONE_FS;
2220
2221 if ((unshare_flags & CLONE_NEWUSER) && !unprivileged_userns_clone) {
2222 err = -EPERM;
2223 if (!capable(CAP_SYS_ADMIN))
2224 goto bad_unshare_out;
2225 }
2226
2227 err = check_unshare_flags(unshare_flags);
2228 if (err)
2229 goto bad_unshare_out;
2230 /*
2231 * CLONE_NEWIPC must also detach from the undolist: after switching
2232 * to a new ipc namespace, the semaphore arrays from the old
2233 * namespace are unreachable.
2234 */
2235 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2236 do_sysvsem = 1;
2237 err = unshare_fs(unshare_flags, &new_fs);
2238 if (err)
2239 goto bad_unshare_out;
2240 err = unshare_fd(unshare_flags, &new_fd);
2241 if (err)
2242 goto bad_unshare_cleanup_fs;
2243 err = unshare_userns(unshare_flags, &new_cred);
2244 if (err)
2245 goto bad_unshare_cleanup_fd;
2246 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2247 new_cred, new_fs);
2248 if (err)
2249 goto bad_unshare_cleanup_cred;
2250
2251 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2252 if (do_sysvsem) {
2253 /*
2254 * CLONE_SYSVSEM is equivalent to sys_exit().
2255 */
2256 exit_sem(current);
2257 }
2258 if (unshare_flags & CLONE_NEWIPC) {
2259 /* Orphan segments in old ns (see sem above). */
2260 exit_shm(current);
2261 shm_init_task(current);
2262 }
2263
2264 if (new_nsproxy)
2265 switch_task_namespaces(current, new_nsproxy);
2266
2267 task_lock(current);
2268
2269 if (new_fs) {
2270 fs = current->fs;
2271 spin_lock(&fs->lock);
2272 current->fs = new_fs;
2273 if (--fs->users)
2274 new_fs = NULL;
2275 else
2276 new_fs = fs;
2277 spin_unlock(&fs->lock);
2278 }
2279
2280 if (new_fd) {
2281 fd = current->files;
2282 current->files = new_fd;
2283 new_fd = fd;
2284 }
2285
2286 task_unlock(current);
2287
2288 if (new_cred) {
2289 /* Install the new user namespace */
2290 commit_creds(new_cred);
2291 new_cred = NULL;
2292 }
2293 }
2294
2295 bad_unshare_cleanup_cred:
2296 if (new_cred)
2297 put_cred(new_cred);
2298 bad_unshare_cleanup_fd:
2299 if (new_fd)
2300 put_files_struct(new_fd);
2301
2302 bad_unshare_cleanup_fs:
2303 if (new_fs)
2304 free_fs_struct(new_fs);
2305
2306 bad_unshare_out:
2307 return err;
2308 }
2309
2310 /*
2311 * Helper to unshare the files of the current task.
2312 * We don't want to expose copy_files internals to
2313 * the exec layer of the kernel.
2314 */
2315
2316 int unshare_files(struct files_struct **displaced)
2317 {
2318 struct task_struct *task = current;
2319 struct files_struct *copy = NULL;
2320 int error;
2321
2322 error = unshare_fd(CLONE_FILES, &copy);
2323 if (error || !copy) {
2324 *displaced = NULL;
2325 return error;
2326 }
2327 *displaced = task->files;
2328 task_lock(task);
2329 task->files = copy;
2330 task_unlock(task);
2331 return 0;
2332 }
2333
2334 int sysctl_max_threads(struct ctl_table *table, int write,
2335 void __user *buffer, size_t *lenp, loff_t *ppos)
2336 {
2337 struct ctl_table t;
2338 int ret;
2339 int threads = max_threads;
2340 int min = MIN_THREADS;
2341 int max = MAX_THREADS;
2342
2343 t = *table;
2344 t.data = &threads;
2345 t.extra1 = &min;
2346 t.extra2 = &max;
2347
2348 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2349 if (ret || !write)
2350 return ret;
2351
2352 set_max_threads(threads);
2353
2354 return 0;
2355 }