]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/gup.c
mm/mempolicy.c: fix error handling in set_mempolicy and mbind.
[mirror_ubuntu-zesty-kernel.git] / mm / gup.c
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12
13 #include <linux/sched.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
16
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
20
21 #include "internal.h"
22
23 static struct page *no_page_table(struct vm_area_struct *vma,
24 unsigned int flags)
25 {
26 /*
27 * When core dumping an enormous anonymous area that nobody
28 * has touched so far, we don't want to allocate unnecessary pages or
29 * page tables. Return error instead of NULL to skip handle_mm_fault,
30 * then get_dump_page() will return NULL to leave a hole in the dump.
31 * But we can only make this optimization where a hole would surely
32 * be zero-filled if handle_mm_fault() actually did handle it.
33 */
34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 return ERR_PTR(-EFAULT);
36 return NULL;
37 }
38
39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 pte_t *pte, unsigned int flags)
41 {
42 /* No page to get reference */
43 if (flags & FOLL_GET)
44 return -EFAULT;
45
46 if (flags & FOLL_TOUCH) {
47 pte_t entry = *pte;
48
49 if (flags & FOLL_WRITE)
50 entry = pte_mkdirty(entry);
51 entry = pte_mkyoung(entry);
52
53 if (!pte_same(*pte, entry)) {
54 set_pte_at(vma->vm_mm, address, pte, entry);
55 update_mmu_cache(vma, address, pte);
56 }
57 }
58
59 /* Proper page table entry exists, but no corresponding struct page */
60 return -EEXIST;
61 }
62
63 /*
64 * FOLL_FORCE can write to even unwritable pte's, but only
65 * after we've gone through a COW cycle and they are dirty.
66 */
67 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
68 {
69 return pte_write(pte) ||
70 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
71 }
72
73 static struct page *follow_page_pte(struct vm_area_struct *vma,
74 unsigned long address, pmd_t *pmd, unsigned int flags)
75 {
76 struct mm_struct *mm = vma->vm_mm;
77 struct dev_pagemap *pgmap = NULL;
78 struct page *page;
79 spinlock_t *ptl;
80 pte_t *ptep, pte;
81
82 retry:
83 if (unlikely(pmd_bad(*pmd)))
84 return no_page_table(vma, flags);
85
86 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
87 pte = *ptep;
88 if (!pte_present(pte)) {
89 swp_entry_t entry;
90 /*
91 * KSM's break_ksm() relies upon recognizing a ksm page
92 * even while it is being migrated, so for that case we
93 * need migration_entry_wait().
94 */
95 if (likely(!(flags & FOLL_MIGRATION)))
96 goto no_page;
97 if (pte_none(pte))
98 goto no_page;
99 entry = pte_to_swp_entry(pte);
100 if (!is_migration_entry(entry))
101 goto no_page;
102 pte_unmap_unlock(ptep, ptl);
103 migration_entry_wait(mm, pmd, address);
104 goto retry;
105 }
106 if ((flags & FOLL_NUMA) && pte_protnone(pte))
107 goto no_page;
108 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
109 pte_unmap_unlock(ptep, ptl);
110 return NULL;
111 }
112
113 page = vm_normal_page(vma, address, pte);
114 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
115 /*
116 * Only return device mapping pages in the FOLL_GET case since
117 * they are only valid while holding the pgmap reference.
118 */
119 pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
120 if (pgmap)
121 page = pte_page(pte);
122 else
123 goto no_page;
124 } else if (unlikely(!page)) {
125 if (flags & FOLL_DUMP) {
126 /* Avoid special (like zero) pages in core dumps */
127 page = ERR_PTR(-EFAULT);
128 goto out;
129 }
130
131 if (is_zero_pfn(pte_pfn(pte))) {
132 page = pte_page(pte);
133 } else {
134 int ret;
135
136 ret = follow_pfn_pte(vma, address, ptep, flags);
137 page = ERR_PTR(ret);
138 goto out;
139 }
140 }
141
142 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
143 int ret;
144 get_page(page);
145 pte_unmap_unlock(ptep, ptl);
146 lock_page(page);
147 ret = split_huge_page(page);
148 unlock_page(page);
149 put_page(page);
150 if (ret)
151 return ERR_PTR(ret);
152 goto retry;
153 }
154
155 if (flags & FOLL_GET) {
156 get_page(page);
157
158 /* drop the pgmap reference now that we hold the page */
159 if (pgmap) {
160 put_dev_pagemap(pgmap);
161 pgmap = NULL;
162 }
163 }
164 if (flags & FOLL_TOUCH) {
165 if ((flags & FOLL_WRITE) &&
166 !pte_dirty(pte) && !PageDirty(page))
167 set_page_dirty(page);
168 /*
169 * pte_mkyoung() would be more correct here, but atomic care
170 * is needed to avoid losing the dirty bit: it is easier to use
171 * mark_page_accessed().
172 */
173 mark_page_accessed(page);
174 }
175 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
176 /* Do not mlock pte-mapped THP */
177 if (PageTransCompound(page))
178 goto out;
179
180 /*
181 * The preliminary mapping check is mainly to avoid the
182 * pointless overhead of lock_page on the ZERO_PAGE
183 * which might bounce very badly if there is contention.
184 *
185 * If the page is already locked, we don't need to
186 * handle it now - vmscan will handle it later if and
187 * when it attempts to reclaim the page.
188 */
189 if (page->mapping && trylock_page(page)) {
190 lru_add_drain(); /* push cached pages to LRU */
191 /*
192 * Because we lock page here, and migration is
193 * blocked by the pte's page reference, and we
194 * know the page is still mapped, we don't even
195 * need to check for file-cache page truncation.
196 */
197 mlock_vma_page(page);
198 unlock_page(page);
199 }
200 }
201 out:
202 pte_unmap_unlock(ptep, ptl);
203 return page;
204 no_page:
205 pte_unmap_unlock(ptep, ptl);
206 if (!pte_none(pte))
207 return NULL;
208 return no_page_table(vma, flags);
209 }
210
211 /**
212 * follow_page_mask - look up a page descriptor from a user-virtual address
213 * @vma: vm_area_struct mapping @address
214 * @address: virtual address to look up
215 * @flags: flags modifying lookup behaviour
216 * @page_mask: on output, *page_mask is set according to the size of the page
217 *
218 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
219 *
220 * Returns the mapped (struct page *), %NULL if no mapping exists, or
221 * an error pointer if there is a mapping to something not represented
222 * by a page descriptor (see also vm_normal_page()).
223 */
224 struct page *follow_page_mask(struct vm_area_struct *vma,
225 unsigned long address, unsigned int flags,
226 unsigned int *page_mask)
227 {
228 pgd_t *pgd;
229 pud_t *pud;
230 pmd_t *pmd;
231 spinlock_t *ptl;
232 struct page *page;
233 struct mm_struct *mm = vma->vm_mm;
234
235 *page_mask = 0;
236
237 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
238 if (!IS_ERR(page)) {
239 BUG_ON(flags & FOLL_GET);
240 return page;
241 }
242
243 pgd = pgd_offset(mm, address);
244 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
245 return no_page_table(vma, flags);
246
247 pud = pud_offset(pgd, address);
248 if (pud_none(*pud))
249 return no_page_table(vma, flags);
250 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
251 page = follow_huge_pud(mm, address, pud, flags);
252 if (page)
253 return page;
254 return no_page_table(vma, flags);
255 }
256 if (unlikely(pud_bad(*pud)))
257 return no_page_table(vma, flags);
258
259 pmd = pmd_offset(pud, address);
260 if (pmd_none(*pmd))
261 return no_page_table(vma, flags);
262 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
263 page = follow_huge_pmd(mm, address, pmd, flags);
264 if (page)
265 return page;
266 return no_page_table(vma, flags);
267 }
268 if (pmd_devmap(*pmd)) {
269 ptl = pmd_lock(mm, pmd);
270 page = follow_devmap_pmd(vma, address, pmd, flags);
271 spin_unlock(ptl);
272 if (page)
273 return page;
274 }
275 if (likely(!pmd_trans_huge(*pmd)))
276 return follow_page_pte(vma, address, pmd, flags);
277
278 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
279 return no_page_table(vma, flags);
280
281 ptl = pmd_lock(mm, pmd);
282 if (unlikely(!pmd_trans_huge(*pmd))) {
283 spin_unlock(ptl);
284 return follow_page_pte(vma, address, pmd, flags);
285 }
286 if (flags & FOLL_SPLIT) {
287 int ret;
288 page = pmd_page(*pmd);
289 if (is_huge_zero_page(page)) {
290 spin_unlock(ptl);
291 ret = 0;
292 split_huge_pmd(vma, pmd, address);
293 if (pmd_trans_unstable(pmd))
294 ret = -EBUSY;
295 } else {
296 get_page(page);
297 spin_unlock(ptl);
298 lock_page(page);
299 ret = split_huge_page(page);
300 unlock_page(page);
301 put_page(page);
302 if (pmd_none(*pmd))
303 return no_page_table(vma, flags);
304 }
305
306 return ret ? ERR_PTR(ret) :
307 follow_page_pte(vma, address, pmd, flags);
308 }
309
310 page = follow_trans_huge_pmd(vma, address, pmd, flags);
311 spin_unlock(ptl);
312 *page_mask = HPAGE_PMD_NR - 1;
313 return page;
314 }
315
316 static int get_gate_page(struct mm_struct *mm, unsigned long address,
317 unsigned int gup_flags, struct vm_area_struct **vma,
318 struct page **page)
319 {
320 pgd_t *pgd;
321 pud_t *pud;
322 pmd_t *pmd;
323 pte_t *pte;
324 int ret = -EFAULT;
325
326 /* user gate pages are read-only */
327 if (gup_flags & FOLL_WRITE)
328 return -EFAULT;
329 if (address > TASK_SIZE)
330 pgd = pgd_offset_k(address);
331 else
332 pgd = pgd_offset_gate(mm, address);
333 BUG_ON(pgd_none(*pgd));
334 pud = pud_offset(pgd, address);
335 BUG_ON(pud_none(*pud));
336 pmd = pmd_offset(pud, address);
337 if (pmd_none(*pmd))
338 return -EFAULT;
339 VM_BUG_ON(pmd_trans_huge(*pmd));
340 pte = pte_offset_map(pmd, address);
341 if (pte_none(*pte))
342 goto unmap;
343 *vma = get_gate_vma(mm);
344 if (!page)
345 goto out;
346 *page = vm_normal_page(*vma, address, *pte);
347 if (!*page) {
348 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
349 goto unmap;
350 *page = pte_page(*pte);
351 }
352 get_page(*page);
353 out:
354 ret = 0;
355 unmap:
356 pte_unmap(pte);
357 return ret;
358 }
359
360 /*
361 * mmap_sem must be held on entry. If @nonblocking != NULL and
362 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
363 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
364 */
365 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
366 unsigned long address, unsigned int *flags, int *nonblocking)
367 {
368 unsigned int fault_flags = 0;
369 int ret;
370
371 /* mlock all present pages, but do not fault in new pages */
372 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
373 return -ENOENT;
374 /* For mm_populate(), just skip the stack guard page. */
375 if ((*flags & FOLL_POPULATE) &&
376 (stack_guard_page_start(vma, address) ||
377 stack_guard_page_end(vma, address + PAGE_SIZE)))
378 return -ENOENT;
379 if (*flags & FOLL_WRITE)
380 fault_flags |= FAULT_FLAG_WRITE;
381 if (*flags & FOLL_REMOTE)
382 fault_flags |= FAULT_FLAG_REMOTE;
383 if (nonblocking)
384 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
385 if (*flags & FOLL_NOWAIT)
386 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
387 if (*flags & FOLL_TRIED) {
388 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
389 fault_flags |= FAULT_FLAG_TRIED;
390 }
391
392 ret = handle_mm_fault(vma, address, fault_flags);
393 if (ret & VM_FAULT_ERROR) {
394 if (ret & VM_FAULT_OOM)
395 return -ENOMEM;
396 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
397 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
398 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
399 return -EFAULT;
400 BUG();
401 }
402
403 if (tsk) {
404 if (ret & VM_FAULT_MAJOR)
405 tsk->maj_flt++;
406 else
407 tsk->min_flt++;
408 }
409
410 if (ret & VM_FAULT_RETRY) {
411 if (nonblocking)
412 *nonblocking = 0;
413 return -EBUSY;
414 }
415
416 /*
417 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
418 * necessary, even if maybe_mkwrite decided not to set pte_write. We
419 * can thus safely do subsequent page lookups as if they were reads.
420 * But only do so when looping for pte_write is futile: in some cases
421 * userspace may also be wanting to write to the gotten user page,
422 * which a read fault here might prevent (a readonly page might get
423 * reCOWed by userspace write).
424 */
425 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
426 *flags |= FOLL_COW;
427 return 0;
428 }
429
430 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
431 {
432 vm_flags_t vm_flags = vma->vm_flags;
433 int write = (gup_flags & FOLL_WRITE);
434 int foreign = (gup_flags & FOLL_REMOTE);
435
436 if (vm_flags & (VM_IO | VM_PFNMAP))
437 return -EFAULT;
438
439 if (write) {
440 if (!(vm_flags & VM_WRITE)) {
441 if (!(gup_flags & FOLL_FORCE))
442 return -EFAULT;
443 /*
444 * We used to let the write,force case do COW in a
445 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
446 * set a breakpoint in a read-only mapping of an
447 * executable, without corrupting the file (yet only
448 * when that file had been opened for writing!).
449 * Anon pages in shared mappings are surprising: now
450 * just reject it.
451 */
452 if (!is_cow_mapping(vm_flags))
453 return -EFAULT;
454 }
455 } else if (!(vm_flags & VM_READ)) {
456 if (!(gup_flags & FOLL_FORCE))
457 return -EFAULT;
458 /*
459 * Is there actually any vma we can reach here which does not
460 * have VM_MAYREAD set?
461 */
462 if (!(vm_flags & VM_MAYREAD))
463 return -EFAULT;
464 }
465 /*
466 * gups are always data accesses, not instruction
467 * fetches, so execute=false here
468 */
469 if (!arch_vma_access_permitted(vma, write, false, foreign))
470 return -EFAULT;
471 return 0;
472 }
473
474 /**
475 * __get_user_pages() - pin user pages in memory
476 * @tsk: task_struct of target task
477 * @mm: mm_struct of target mm
478 * @start: starting user address
479 * @nr_pages: number of pages from start to pin
480 * @gup_flags: flags modifying pin behaviour
481 * @pages: array that receives pointers to the pages pinned.
482 * Should be at least nr_pages long. Or NULL, if caller
483 * only intends to ensure the pages are faulted in.
484 * @vmas: array of pointers to vmas corresponding to each page.
485 * Or NULL if the caller does not require them.
486 * @nonblocking: whether waiting for disk IO or mmap_sem contention
487 *
488 * Returns number of pages pinned. This may be fewer than the number
489 * requested. If nr_pages is 0 or negative, returns 0. If no pages
490 * were pinned, returns -errno. Each page returned must be released
491 * with a put_page() call when it is finished with. vmas will only
492 * remain valid while mmap_sem is held.
493 *
494 * Must be called with mmap_sem held. It may be released. See below.
495 *
496 * __get_user_pages walks a process's page tables and takes a reference to
497 * each struct page that each user address corresponds to at a given
498 * instant. That is, it takes the page that would be accessed if a user
499 * thread accesses the given user virtual address at that instant.
500 *
501 * This does not guarantee that the page exists in the user mappings when
502 * __get_user_pages returns, and there may even be a completely different
503 * page there in some cases (eg. if mmapped pagecache has been invalidated
504 * and subsequently re faulted). However it does guarantee that the page
505 * won't be freed completely. And mostly callers simply care that the page
506 * contains data that was valid *at some point in time*. Typically, an IO
507 * or similar operation cannot guarantee anything stronger anyway because
508 * locks can't be held over the syscall boundary.
509 *
510 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
511 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
512 * appropriate) must be called after the page is finished with, and
513 * before put_page is called.
514 *
515 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
516 * or mmap_sem contention, and if waiting is needed to pin all pages,
517 * *@nonblocking will be set to 0. Further, if @gup_flags does not
518 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
519 * this case.
520 *
521 * A caller using such a combination of @nonblocking and @gup_flags
522 * must therefore hold the mmap_sem for reading only, and recognize
523 * when it's been released. Otherwise, it must be held for either
524 * reading or writing and will not be released.
525 *
526 * In most cases, get_user_pages or get_user_pages_fast should be used
527 * instead of __get_user_pages. __get_user_pages should be used only if
528 * you need some special @gup_flags.
529 */
530 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
531 unsigned long start, unsigned long nr_pages,
532 unsigned int gup_flags, struct page **pages,
533 struct vm_area_struct **vmas, int *nonblocking)
534 {
535 long i = 0;
536 unsigned int page_mask;
537 struct vm_area_struct *vma = NULL;
538
539 if (!nr_pages)
540 return 0;
541
542 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
543
544 /*
545 * If FOLL_FORCE is set then do not force a full fault as the hinting
546 * fault information is unrelated to the reference behaviour of a task
547 * using the address space
548 */
549 if (!(gup_flags & FOLL_FORCE))
550 gup_flags |= FOLL_NUMA;
551
552 do {
553 struct page *page;
554 unsigned int foll_flags = gup_flags;
555 unsigned int page_increm;
556
557 /* first iteration or cross vma bound */
558 if (!vma || start >= vma->vm_end) {
559 vma = find_extend_vma(mm, start);
560 if (!vma && in_gate_area(mm, start)) {
561 int ret;
562 ret = get_gate_page(mm, start & PAGE_MASK,
563 gup_flags, &vma,
564 pages ? &pages[i] : NULL);
565 if (ret)
566 return i ? : ret;
567 page_mask = 0;
568 goto next_page;
569 }
570
571 if (!vma || check_vma_flags(vma, gup_flags))
572 return i ? : -EFAULT;
573 if (is_vm_hugetlb_page(vma)) {
574 i = follow_hugetlb_page(mm, vma, pages, vmas,
575 &start, &nr_pages, i,
576 gup_flags);
577 continue;
578 }
579 }
580 retry:
581 /*
582 * If we have a pending SIGKILL, don't keep faulting pages and
583 * potentially allocating memory.
584 */
585 if (unlikely(fatal_signal_pending(current)))
586 return i ? i : -ERESTARTSYS;
587 cond_resched();
588 page = follow_page_mask(vma, start, foll_flags, &page_mask);
589 if (!page) {
590 int ret;
591 ret = faultin_page(tsk, vma, start, &foll_flags,
592 nonblocking);
593 switch (ret) {
594 case 0:
595 goto retry;
596 case -EFAULT:
597 case -ENOMEM:
598 case -EHWPOISON:
599 return i ? i : ret;
600 case -EBUSY:
601 return i;
602 case -ENOENT:
603 goto next_page;
604 }
605 BUG();
606 } else if (PTR_ERR(page) == -EEXIST) {
607 /*
608 * Proper page table entry exists, but no corresponding
609 * struct page.
610 */
611 goto next_page;
612 } else if (IS_ERR(page)) {
613 return i ? i : PTR_ERR(page);
614 }
615 if (pages) {
616 pages[i] = page;
617 flush_anon_page(vma, page, start);
618 flush_dcache_page(page);
619 page_mask = 0;
620 }
621 next_page:
622 if (vmas) {
623 vmas[i] = vma;
624 page_mask = 0;
625 }
626 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
627 if (page_increm > nr_pages)
628 page_increm = nr_pages;
629 i += page_increm;
630 start += page_increm * PAGE_SIZE;
631 nr_pages -= page_increm;
632 } while (nr_pages);
633 return i;
634 }
635
636 static bool vma_permits_fault(struct vm_area_struct *vma,
637 unsigned int fault_flags)
638 {
639 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
640 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
641 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
642
643 if (!(vm_flags & vma->vm_flags))
644 return false;
645
646 /*
647 * The architecture might have a hardware protection
648 * mechanism other than read/write that can deny access.
649 *
650 * gup always represents data access, not instruction
651 * fetches, so execute=false here:
652 */
653 if (!arch_vma_access_permitted(vma, write, false, foreign))
654 return false;
655
656 return true;
657 }
658
659 /*
660 * fixup_user_fault() - manually resolve a user page fault
661 * @tsk: the task_struct to use for page fault accounting, or
662 * NULL if faults are not to be recorded.
663 * @mm: mm_struct of target mm
664 * @address: user address
665 * @fault_flags:flags to pass down to handle_mm_fault()
666 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
667 * does not allow retry
668 *
669 * This is meant to be called in the specific scenario where for locking reasons
670 * we try to access user memory in atomic context (within a pagefault_disable()
671 * section), this returns -EFAULT, and we want to resolve the user fault before
672 * trying again.
673 *
674 * Typically this is meant to be used by the futex code.
675 *
676 * The main difference with get_user_pages() is that this function will
677 * unconditionally call handle_mm_fault() which will in turn perform all the
678 * necessary SW fixup of the dirty and young bits in the PTE, while
679 * get_user_pages() only guarantees to update these in the struct page.
680 *
681 * This is important for some architectures where those bits also gate the
682 * access permission to the page because they are maintained in software. On
683 * such architectures, gup() will not be enough to make a subsequent access
684 * succeed.
685 *
686 * This function will not return with an unlocked mmap_sem. So it has not the
687 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
688 */
689 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
690 unsigned long address, unsigned int fault_flags,
691 bool *unlocked)
692 {
693 struct vm_area_struct *vma;
694 int ret, major = 0;
695
696 if (unlocked)
697 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
698
699 retry:
700 vma = find_extend_vma(mm, address);
701 if (!vma || address < vma->vm_start)
702 return -EFAULT;
703
704 if (!vma_permits_fault(vma, fault_flags))
705 return -EFAULT;
706
707 ret = handle_mm_fault(vma, address, fault_flags);
708 major |= ret & VM_FAULT_MAJOR;
709 if (ret & VM_FAULT_ERROR) {
710 if (ret & VM_FAULT_OOM)
711 return -ENOMEM;
712 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
713 return -EHWPOISON;
714 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
715 return -EFAULT;
716 BUG();
717 }
718
719 if (ret & VM_FAULT_RETRY) {
720 down_read(&mm->mmap_sem);
721 if (!(fault_flags & FAULT_FLAG_TRIED)) {
722 *unlocked = true;
723 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
724 fault_flags |= FAULT_FLAG_TRIED;
725 goto retry;
726 }
727 }
728
729 if (tsk) {
730 if (major)
731 tsk->maj_flt++;
732 else
733 tsk->min_flt++;
734 }
735 return 0;
736 }
737 EXPORT_SYMBOL_GPL(fixup_user_fault);
738
739 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
740 struct mm_struct *mm,
741 unsigned long start,
742 unsigned long nr_pages,
743 struct page **pages,
744 struct vm_area_struct **vmas,
745 int *locked, bool notify_drop,
746 unsigned int flags)
747 {
748 long ret, pages_done;
749 bool lock_dropped;
750
751 if (locked) {
752 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
753 BUG_ON(vmas);
754 /* check caller initialized locked */
755 BUG_ON(*locked != 1);
756 }
757
758 if (pages)
759 flags |= FOLL_GET;
760
761 pages_done = 0;
762 lock_dropped = false;
763 for (;;) {
764 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
765 vmas, locked);
766 if (!locked)
767 /* VM_FAULT_RETRY couldn't trigger, bypass */
768 return ret;
769
770 /* VM_FAULT_RETRY cannot return errors */
771 if (!*locked) {
772 BUG_ON(ret < 0);
773 BUG_ON(ret >= nr_pages);
774 }
775
776 if (!pages)
777 /* If it's a prefault don't insist harder */
778 return ret;
779
780 if (ret > 0) {
781 nr_pages -= ret;
782 pages_done += ret;
783 if (!nr_pages)
784 break;
785 }
786 if (*locked) {
787 /* VM_FAULT_RETRY didn't trigger */
788 if (!pages_done)
789 pages_done = ret;
790 break;
791 }
792 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
793 pages += ret;
794 start += ret << PAGE_SHIFT;
795
796 /*
797 * Repeat on the address that fired VM_FAULT_RETRY
798 * without FAULT_FLAG_ALLOW_RETRY but with
799 * FAULT_FLAG_TRIED.
800 */
801 *locked = 1;
802 lock_dropped = true;
803 down_read(&mm->mmap_sem);
804 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
805 pages, NULL, NULL);
806 if (ret != 1) {
807 BUG_ON(ret > 1);
808 if (!pages_done)
809 pages_done = ret;
810 break;
811 }
812 nr_pages--;
813 pages_done++;
814 if (!nr_pages)
815 break;
816 pages++;
817 start += PAGE_SIZE;
818 }
819 if (notify_drop && lock_dropped && *locked) {
820 /*
821 * We must let the caller know we temporarily dropped the lock
822 * and so the critical section protected by it was lost.
823 */
824 up_read(&mm->mmap_sem);
825 *locked = 0;
826 }
827 return pages_done;
828 }
829
830 /*
831 * We can leverage the VM_FAULT_RETRY functionality in the page fault
832 * paths better by using either get_user_pages_locked() or
833 * get_user_pages_unlocked().
834 *
835 * get_user_pages_locked() is suitable to replace the form:
836 *
837 * down_read(&mm->mmap_sem);
838 * do_something()
839 * get_user_pages(tsk, mm, ..., pages, NULL);
840 * up_read(&mm->mmap_sem);
841 *
842 * to:
843 *
844 * int locked = 1;
845 * down_read(&mm->mmap_sem);
846 * do_something()
847 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
848 * if (locked)
849 * up_read(&mm->mmap_sem);
850 */
851 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
852 unsigned int gup_flags, struct page **pages,
853 int *locked)
854 {
855 return __get_user_pages_locked(current, current->mm, start, nr_pages,
856 pages, NULL, locked, true,
857 gup_flags | FOLL_TOUCH);
858 }
859 EXPORT_SYMBOL(get_user_pages_locked);
860
861 /*
862 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for
863 * tsk, mm to be specified.
864 *
865 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
866 * caller if required (just like with __get_user_pages). "FOLL_GET"
867 * is set implicitly if "pages" is non-NULL.
868 */
869 static __always_inline long __get_user_pages_unlocked(struct task_struct *tsk,
870 struct mm_struct *mm, unsigned long start,
871 unsigned long nr_pages, struct page **pages,
872 unsigned int gup_flags)
873 {
874 long ret;
875 int locked = 1;
876
877 down_read(&mm->mmap_sem);
878 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL,
879 &locked, false, gup_flags);
880 if (locked)
881 up_read(&mm->mmap_sem);
882 return ret;
883 }
884
885 /*
886 * get_user_pages_unlocked() is suitable to replace the form:
887 *
888 * down_read(&mm->mmap_sem);
889 * get_user_pages(tsk, mm, ..., pages, NULL);
890 * up_read(&mm->mmap_sem);
891 *
892 * with:
893 *
894 * get_user_pages_unlocked(tsk, mm, ..., pages);
895 *
896 * It is functionally equivalent to get_user_pages_fast so
897 * get_user_pages_fast should be used instead if specific gup_flags
898 * (e.g. FOLL_FORCE) are not required.
899 */
900 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
901 struct page **pages, unsigned int gup_flags)
902 {
903 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
904 pages, gup_flags | FOLL_TOUCH);
905 }
906 EXPORT_SYMBOL(get_user_pages_unlocked);
907
908 /*
909 * get_user_pages_remote() - pin user pages in memory
910 * @tsk: the task_struct to use for page fault accounting, or
911 * NULL if faults are not to be recorded.
912 * @mm: mm_struct of target mm
913 * @start: starting user address
914 * @nr_pages: number of pages from start to pin
915 * @gup_flags: flags modifying lookup behaviour
916 * @pages: array that receives pointers to the pages pinned.
917 * Should be at least nr_pages long. Or NULL, if caller
918 * only intends to ensure the pages are faulted in.
919 * @vmas: array of pointers to vmas corresponding to each page.
920 * Or NULL if the caller does not require them.
921 * @locked: pointer to lock flag indicating whether lock is held and
922 * subsequently whether VM_FAULT_RETRY functionality can be
923 * utilised. Lock must initially be held.
924 *
925 * Returns number of pages pinned. This may be fewer than the number
926 * requested. If nr_pages is 0 or negative, returns 0. If no pages
927 * were pinned, returns -errno. Each page returned must be released
928 * with a put_page() call when it is finished with. vmas will only
929 * remain valid while mmap_sem is held.
930 *
931 * Must be called with mmap_sem held for read or write.
932 *
933 * get_user_pages walks a process's page tables and takes a reference to
934 * each struct page that each user address corresponds to at a given
935 * instant. That is, it takes the page that would be accessed if a user
936 * thread accesses the given user virtual address at that instant.
937 *
938 * This does not guarantee that the page exists in the user mappings when
939 * get_user_pages returns, and there may even be a completely different
940 * page there in some cases (eg. if mmapped pagecache has been invalidated
941 * and subsequently re faulted). However it does guarantee that the page
942 * won't be freed completely. And mostly callers simply care that the page
943 * contains data that was valid *at some point in time*. Typically, an IO
944 * or similar operation cannot guarantee anything stronger anyway because
945 * locks can't be held over the syscall boundary.
946 *
947 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
948 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
949 * be called after the page is finished with, and before put_page is called.
950 *
951 * get_user_pages is typically used for fewer-copy IO operations, to get a
952 * handle on the memory by some means other than accesses via the user virtual
953 * addresses. The pages may be submitted for DMA to devices or accessed via
954 * their kernel linear mapping (via the kmap APIs). Care should be taken to
955 * use the correct cache flushing APIs.
956 *
957 * See also get_user_pages_fast, for performance critical applications.
958 *
959 * get_user_pages should be phased out in favor of
960 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
961 * should use get_user_pages because it cannot pass
962 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
963 */
964 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
965 unsigned long start, unsigned long nr_pages,
966 unsigned int gup_flags, struct page **pages,
967 struct vm_area_struct **vmas, int *locked)
968 {
969 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
970 locked, true,
971 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
972 }
973 EXPORT_SYMBOL(get_user_pages_remote);
974
975 /*
976 * This is the same as get_user_pages_remote(), just with a
977 * less-flexible calling convention where we assume that the task
978 * and mm being operated on are the current task's and don't allow
979 * passing of a locked parameter. We also obviously don't pass
980 * FOLL_REMOTE in here.
981 */
982 long get_user_pages(unsigned long start, unsigned long nr_pages,
983 unsigned int gup_flags, struct page **pages,
984 struct vm_area_struct **vmas)
985 {
986 return __get_user_pages_locked(current, current->mm, start, nr_pages,
987 pages, vmas, NULL, false,
988 gup_flags | FOLL_TOUCH);
989 }
990 EXPORT_SYMBOL(get_user_pages);
991
992 /**
993 * populate_vma_page_range() - populate a range of pages in the vma.
994 * @vma: target vma
995 * @start: start address
996 * @end: end address
997 * @nonblocking:
998 *
999 * This takes care of mlocking the pages too if VM_LOCKED is set.
1000 *
1001 * return 0 on success, negative error code on error.
1002 *
1003 * vma->vm_mm->mmap_sem must be held.
1004 *
1005 * If @nonblocking is NULL, it may be held for read or write and will
1006 * be unperturbed.
1007 *
1008 * If @nonblocking is non-NULL, it must held for read only and may be
1009 * released. If it's released, *@nonblocking will be set to 0.
1010 */
1011 long populate_vma_page_range(struct vm_area_struct *vma,
1012 unsigned long start, unsigned long end, int *nonblocking)
1013 {
1014 struct mm_struct *mm = vma->vm_mm;
1015 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1016 int gup_flags;
1017
1018 VM_BUG_ON(start & ~PAGE_MASK);
1019 VM_BUG_ON(end & ~PAGE_MASK);
1020 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1021 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1022 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1023
1024 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1025 if (vma->vm_flags & VM_LOCKONFAULT)
1026 gup_flags &= ~FOLL_POPULATE;
1027 /*
1028 * We want to touch writable mappings with a write fault in order
1029 * to break COW, except for shared mappings because these don't COW
1030 * and we would not want to dirty them for nothing.
1031 */
1032 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1033 gup_flags |= FOLL_WRITE;
1034
1035 /*
1036 * We want mlock to succeed for regions that have any permissions
1037 * other than PROT_NONE.
1038 */
1039 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1040 gup_flags |= FOLL_FORCE;
1041
1042 /*
1043 * We made sure addr is within a VMA, so the following will
1044 * not result in a stack expansion that recurses back here.
1045 */
1046 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1047 NULL, NULL, nonblocking);
1048 }
1049
1050 /*
1051 * __mm_populate - populate and/or mlock pages within a range of address space.
1052 *
1053 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1054 * flags. VMAs must be already marked with the desired vm_flags, and
1055 * mmap_sem must not be held.
1056 */
1057 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1058 {
1059 struct mm_struct *mm = current->mm;
1060 unsigned long end, nstart, nend;
1061 struct vm_area_struct *vma = NULL;
1062 int locked = 0;
1063 long ret = 0;
1064
1065 VM_BUG_ON(start & ~PAGE_MASK);
1066 VM_BUG_ON(len != PAGE_ALIGN(len));
1067 end = start + len;
1068
1069 for (nstart = start; nstart < end; nstart = nend) {
1070 /*
1071 * We want to fault in pages for [nstart; end) address range.
1072 * Find first corresponding VMA.
1073 */
1074 if (!locked) {
1075 locked = 1;
1076 down_read(&mm->mmap_sem);
1077 vma = find_vma(mm, nstart);
1078 } else if (nstart >= vma->vm_end)
1079 vma = vma->vm_next;
1080 if (!vma || vma->vm_start >= end)
1081 break;
1082 /*
1083 * Set [nstart; nend) to intersection of desired address
1084 * range with the first VMA. Also, skip undesirable VMA types.
1085 */
1086 nend = min(end, vma->vm_end);
1087 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1088 continue;
1089 if (nstart < vma->vm_start)
1090 nstart = vma->vm_start;
1091 /*
1092 * Now fault in a range of pages. populate_vma_page_range()
1093 * double checks the vma flags, so that it won't mlock pages
1094 * if the vma was already munlocked.
1095 */
1096 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1097 if (ret < 0) {
1098 if (ignore_errors) {
1099 ret = 0;
1100 continue; /* continue at next VMA */
1101 }
1102 break;
1103 }
1104 nend = nstart + ret * PAGE_SIZE;
1105 ret = 0;
1106 }
1107 if (locked)
1108 up_read(&mm->mmap_sem);
1109 return ret; /* 0 or negative error code */
1110 }
1111
1112 /**
1113 * get_dump_page() - pin user page in memory while writing it to core dump
1114 * @addr: user address
1115 *
1116 * Returns struct page pointer of user page pinned for dump,
1117 * to be freed afterwards by put_page().
1118 *
1119 * Returns NULL on any kind of failure - a hole must then be inserted into
1120 * the corefile, to preserve alignment with its headers; and also returns
1121 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1122 * allowing a hole to be left in the corefile to save diskspace.
1123 *
1124 * Called without mmap_sem, but after all other threads have been killed.
1125 */
1126 #ifdef CONFIG_ELF_CORE
1127 struct page *get_dump_page(unsigned long addr)
1128 {
1129 struct vm_area_struct *vma;
1130 struct page *page;
1131
1132 if (__get_user_pages(current, current->mm, addr, 1,
1133 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1134 NULL) < 1)
1135 return NULL;
1136 flush_cache_page(vma, addr, page_to_pfn(page));
1137 return page;
1138 }
1139 #endif /* CONFIG_ELF_CORE */
1140
1141 /*
1142 * Generic RCU Fast GUP
1143 *
1144 * get_user_pages_fast attempts to pin user pages by walking the page
1145 * tables directly and avoids taking locks. Thus the walker needs to be
1146 * protected from page table pages being freed from under it, and should
1147 * block any THP splits.
1148 *
1149 * One way to achieve this is to have the walker disable interrupts, and
1150 * rely on IPIs from the TLB flushing code blocking before the page table
1151 * pages are freed. This is unsuitable for architectures that do not need
1152 * to broadcast an IPI when invalidating TLBs.
1153 *
1154 * Another way to achieve this is to batch up page table containing pages
1155 * belonging to more than one mm_user, then rcu_sched a callback to free those
1156 * pages. Disabling interrupts will allow the fast_gup walker to both block
1157 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1158 * (which is a relatively rare event). The code below adopts this strategy.
1159 *
1160 * Before activating this code, please be aware that the following assumptions
1161 * are currently made:
1162 *
1163 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1164 * pages containing page tables.
1165 *
1166 * *) ptes can be read atomically by the architecture.
1167 *
1168 * *) access_ok is sufficient to validate userspace address ranges.
1169 *
1170 * The last two assumptions can be relaxed by the addition of helper functions.
1171 *
1172 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1173 */
1174 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1175
1176 #ifdef __HAVE_ARCH_PTE_SPECIAL
1177 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1178 int write, struct page **pages, int *nr)
1179 {
1180 pte_t *ptep, *ptem;
1181 int ret = 0;
1182
1183 ptem = ptep = pte_offset_map(&pmd, addr);
1184 do {
1185 /*
1186 * In the line below we are assuming that the pte can be read
1187 * atomically. If this is not the case for your architecture,
1188 * please wrap this in a helper function!
1189 *
1190 * for an example see gup_get_pte in arch/x86/mm/gup.c
1191 */
1192 pte_t pte = READ_ONCE(*ptep);
1193 struct page *head, *page;
1194
1195 /*
1196 * Similar to the PMD case below, NUMA hinting must take slow
1197 * path using the pte_protnone check.
1198 */
1199 if (!pte_present(pte) || pte_special(pte) ||
1200 pte_protnone(pte) || (write && !pte_write(pte)))
1201 goto pte_unmap;
1202
1203 if (!arch_pte_access_permitted(pte, write))
1204 goto pte_unmap;
1205
1206 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1207 page = pte_page(pte);
1208 head = compound_head(page);
1209
1210 if (!page_cache_get_speculative(head))
1211 goto pte_unmap;
1212
1213 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1214 put_page(head);
1215 goto pte_unmap;
1216 }
1217
1218 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1219 pages[*nr] = page;
1220 (*nr)++;
1221
1222 } while (ptep++, addr += PAGE_SIZE, addr != end);
1223
1224 ret = 1;
1225
1226 pte_unmap:
1227 pte_unmap(ptem);
1228 return ret;
1229 }
1230 #else
1231
1232 /*
1233 * If we can't determine whether or not a pte is special, then fail immediately
1234 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1235 * to be special.
1236 *
1237 * For a futex to be placed on a THP tail page, get_futex_key requires a
1238 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1239 * useful to have gup_huge_pmd even if we can't operate on ptes.
1240 */
1241 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1242 int write, struct page **pages, int *nr)
1243 {
1244 return 0;
1245 }
1246 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1247
1248 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1249 unsigned long end, int write, struct page **pages, int *nr)
1250 {
1251 struct page *head, *page;
1252 int refs;
1253
1254 if (write && !pmd_write(orig))
1255 return 0;
1256
1257 refs = 0;
1258 head = pmd_page(orig);
1259 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1260 do {
1261 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1262 pages[*nr] = page;
1263 (*nr)++;
1264 page++;
1265 refs++;
1266 } while (addr += PAGE_SIZE, addr != end);
1267
1268 if (!page_cache_add_speculative(head, refs)) {
1269 *nr -= refs;
1270 return 0;
1271 }
1272
1273 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1274 *nr -= refs;
1275 while (refs--)
1276 put_page(head);
1277 return 0;
1278 }
1279
1280 return 1;
1281 }
1282
1283 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1284 unsigned long end, int write, struct page **pages, int *nr)
1285 {
1286 struct page *head, *page;
1287 int refs;
1288
1289 if (write && !pud_write(orig))
1290 return 0;
1291
1292 refs = 0;
1293 head = pud_page(orig);
1294 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1295 do {
1296 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1297 pages[*nr] = page;
1298 (*nr)++;
1299 page++;
1300 refs++;
1301 } while (addr += PAGE_SIZE, addr != end);
1302
1303 if (!page_cache_add_speculative(head, refs)) {
1304 *nr -= refs;
1305 return 0;
1306 }
1307
1308 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1309 *nr -= refs;
1310 while (refs--)
1311 put_page(head);
1312 return 0;
1313 }
1314
1315 return 1;
1316 }
1317
1318 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1319 unsigned long end, int write,
1320 struct page **pages, int *nr)
1321 {
1322 int refs;
1323 struct page *head, *page;
1324
1325 if (write && !pgd_write(orig))
1326 return 0;
1327
1328 refs = 0;
1329 head = pgd_page(orig);
1330 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1331 do {
1332 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1333 pages[*nr] = page;
1334 (*nr)++;
1335 page++;
1336 refs++;
1337 } while (addr += PAGE_SIZE, addr != end);
1338
1339 if (!page_cache_add_speculative(head, refs)) {
1340 *nr -= refs;
1341 return 0;
1342 }
1343
1344 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1345 *nr -= refs;
1346 while (refs--)
1347 put_page(head);
1348 return 0;
1349 }
1350
1351 return 1;
1352 }
1353
1354 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1355 int write, struct page **pages, int *nr)
1356 {
1357 unsigned long next;
1358 pmd_t *pmdp;
1359
1360 pmdp = pmd_offset(&pud, addr);
1361 do {
1362 pmd_t pmd = READ_ONCE(*pmdp);
1363
1364 next = pmd_addr_end(addr, end);
1365 if (pmd_none(pmd))
1366 return 0;
1367
1368 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1369 /*
1370 * NUMA hinting faults need to be handled in the GUP
1371 * slowpath for accounting purposes and so that they
1372 * can be serialised against THP migration.
1373 */
1374 if (pmd_protnone(pmd))
1375 return 0;
1376
1377 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1378 pages, nr))
1379 return 0;
1380
1381 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1382 /*
1383 * architecture have different format for hugetlbfs
1384 * pmd format and THP pmd format
1385 */
1386 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1387 PMD_SHIFT, next, write, pages, nr))
1388 return 0;
1389 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1390 return 0;
1391 } while (pmdp++, addr = next, addr != end);
1392
1393 return 1;
1394 }
1395
1396 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1397 int write, struct page **pages, int *nr)
1398 {
1399 unsigned long next;
1400 pud_t *pudp;
1401
1402 pudp = pud_offset(&pgd, addr);
1403 do {
1404 pud_t pud = READ_ONCE(*pudp);
1405
1406 next = pud_addr_end(addr, end);
1407 if (pud_none(pud))
1408 return 0;
1409 if (unlikely(pud_huge(pud))) {
1410 if (!gup_huge_pud(pud, pudp, addr, next, write,
1411 pages, nr))
1412 return 0;
1413 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1414 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1415 PUD_SHIFT, next, write, pages, nr))
1416 return 0;
1417 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1418 return 0;
1419 } while (pudp++, addr = next, addr != end);
1420
1421 return 1;
1422 }
1423
1424 /*
1425 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1426 * the regular GUP. It will only return non-negative values.
1427 */
1428 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1429 struct page **pages)
1430 {
1431 struct mm_struct *mm = current->mm;
1432 unsigned long addr, len, end;
1433 unsigned long next, flags;
1434 pgd_t *pgdp;
1435 int nr = 0;
1436
1437 start &= PAGE_MASK;
1438 addr = start;
1439 len = (unsigned long) nr_pages << PAGE_SHIFT;
1440 end = start + len;
1441
1442 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1443 start, len)))
1444 return 0;
1445
1446 /*
1447 * Disable interrupts. We use the nested form as we can already have
1448 * interrupts disabled by get_futex_key.
1449 *
1450 * With interrupts disabled, we block page table pages from being
1451 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1452 * for more details.
1453 *
1454 * We do not adopt an rcu_read_lock(.) here as we also want to
1455 * block IPIs that come from THPs splitting.
1456 */
1457
1458 local_irq_save(flags);
1459 pgdp = pgd_offset(mm, addr);
1460 do {
1461 pgd_t pgd = READ_ONCE(*pgdp);
1462
1463 next = pgd_addr_end(addr, end);
1464 if (pgd_none(pgd))
1465 break;
1466 if (unlikely(pgd_huge(pgd))) {
1467 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1468 pages, &nr))
1469 break;
1470 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1471 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1472 PGDIR_SHIFT, next, write, pages, &nr))
1473 break;
1474 } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
1475 break;
1476 } while (pgdp++, addr = next, addr != end);
1477 local_irq_restore(flags);
1478
1479 return nr;
1480 }
1481
1482 /**
1483 * get_user_pages_fast() - pin user pages in memory
1484 * @start: starting user address
1485 * @nr_pages: number of pages from start to pin
1486 * @write: whether pages will be written to
1487 * @pages: array that receives pointers to the pages pinned.
1488 * Should be at least nr_pages long.
1489 *
1490 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1491 * If not successful, it will fall back to taking the lock and
1492 * calling get_user_pages().
1493 *
1494 * Returns number of pages pinned. This may be fewer than the number
1495 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1496 * were pinned, returns -errno.
1497 */
1498 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1499 struct page **pages)
1500 {
1501 int nr, ret;
1502
1503 start &= PAGE_MASK;
1504 nr = __get_user_pages_fast(start, nr_pages, write, pages);
1505 ret = nr;
1506
1507 if (nr < nr_pages) {
1508 /* Try to get the remaining pages with get_user_pages */
1509 start += nr << PAGE_SHIFT;
1510 pages += nr;
1511
1512 ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1513 write ? FOLL_WRITE : 0);
1514
1515 /* Have to be a bit careful with return values */
1516 if (nr > 0) {
1517 if (ret < 0)
1518 ret = nr;
1519 else
1520 ret += nr;
1521 }
1522 }
1523
1524 return ret;
1525 }
1526
1527 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */