]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/huge_memory.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 /*
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
45 */
46 unsigned long transparent_hugepage_flags __read_mostly =
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 #endif
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52 #endif
53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
56
57 static struct shrinker deferred_split_shrinker;
58
59 static atomic_t huge_zero_refcount;
60 struct page *huge_zero_page __read_mostly;
61
62 static struct page *get_huge_zero_page(void)
63 {
64 struct page *zero_page;
65 retry:
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67 return READ_ONCE(huge_zero_page);
68
69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70 HPAGE_PMD_ORDER);
71 if (!zero_page) {
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73 return NULL;
74 }
75 count_vm_event(THP_ZERO_PAGE_ALLOC);
76 preempt_disable();
77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78 preempt_enable();
79 __free_pages(zero_page, compound_order(zero_page));
80 goto retry;
81 }
82
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount, 2);
85 preempt_enable();
86 return READ_ONCE(huge_zero_page);
87 }
88
89 static void put_huge_zero_page(void)
90 {
91 /*
92 * Counter should never go to zero here. Only shrinker can put
93 * last reference.
94 */
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 }
97
98 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
99 {
100 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
101 return READ_ONCE(huge_zero_page);
102
103 if (!get_huge_zero_page())
104 return NULL;
105
106 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
107 put_huge_zero_page();
108
109 return READ_ONCE(huge_zero_page);
110 }
111
112 void mm_put_huge_zero_page(struct mm_struct *mm)
113 {
114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 put_huge_zero_page();
116 }
117
118 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
119 struct shrink_control *sc)
120 {
121 /* we can free zero page only if last reference remains */
122 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
123 }
124
125 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
126 struct shrink_control *sc)
127 {
128 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
129 struct page *zero_page = xchg(&huge_zero_page, NULL);
130 BUG_ON(zero_page == NULL);
131 __free_pages(zero_page, compound_order(zero_page));
132 return HPAGE_PMD_NR;
133 }
134
135 return 0;
136 }
137
138 static struct shrinker huge_zero_page_shrinker = {
139 .count_objects = shrink_huge_zero_page_count,
140 .scan_objects = shrink_huge_zero_page_scan,
141 .seeks = DEFAULT_SEEKS,
142 };
143
144 #ifdef CONFIG_SYSFS
145
146 static ssize_t triple_flag_store(struct kobject *kobj,
147 struct kobj_attribute *attr,
148 const char *buf, size_t count,
149 enum transparent_hugepage_flag enabled,
150 enum transparent_hugepage_flag deferred,
151 enum transparent_hugepage_flag req_madv)
152 {
153 if (!memcmp("defer", buf,
154 min(sizeof("defer")-1, count))) {
155 if (enabled == deferred)
156 return -EINVAL;
157 clear_bit(enabled, &transparent_hugepage_flags);
158 clear_bit(req_madv, &transparent_hugepage_flags);
159 set_bit(deferred, &transparent_hugepage_flags);
160 } else if (!memcmp("always", buf,
161 min(sizeof("always")-1, count))) {
162 clear_bit(deferred, &transparent_hugepage_flags);
163 clear_bit(req_madv, &transparent_hugepage_flags);
164 set_bit(enabled, &transparent_hugepage_flags);
165 } else if (!memcmp("madvise", buf,
166 min(sizeof("madvise")-1, count))) {
167 clear_bit(enabled, &transparent_hugepage_flags);
168 clear_bit(deferred, &transparent_hugepage_flags);
169 set_bit(req_madv, &transparent_hugepage_flags);
170 } else if (!memcmp("never", buf,
171 min(sizeof("never")-1, count))) {
172 clear_bit(enabled, &transparent_hugepage_flags);
173 clear_bit(req_madv, &transparent_hugepage_flags);
174 clear_bit(deferred, &transparent_hugepage_flags);
175 } else
176 return -EINVAL;
177
178 return count;
179 }
180
181 static ssize_t enabled_show(struct kobject *kobj,
182 struct kobj_attribute *attr, char *buf)
183 {
184 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
185 return sprintf(buf, "[always] madvise never\n");
186 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
187 return sprintf(buf, "always [madvise] never\n");
188 else
189 return sprintf(buf, "always madvise [never]\n");
190 }
191
192 static ssize_t enabled_store(struct kobject *kobj,
193 struct kobj_attribute *attr,
194 const char *buf, size_t count)
195 {
196 ssize_t ret;
197
198 ret = triple_flag_store(kobj, attr, buf, count,
199 TRANSPARENT_HUGEPAGE_FLAG,
200 TRANSPARENT_HUGEPAGE_FLAG,
201 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
202
203 if (ret > 0) {
204 int err = start_stop_khugepaged();
205 if (err)
206 ret = err;
207 }
208
209 return ret;
210 }
211 static struct kobj_attribute enabled_attr =
212 __ATTR(enabled, 0644, enabled_show, enabled_store);
213
214 ssize_t single_hugepage_flag_show(struct kobject *kobj,
215 struct kobj_attribute *attr, char *buf,
216 enum transparent_hugepage_flag flag)
217 {
218 return sprintf(buf, "%d\n",
219 !!test_bit(flag, &transparent_hugepage_flags));
220 }
221
222 ssize_t single_hugepage_flag_store(struct kobject *kobj,
223 struct kobj_attribute *attr,
224 const char *buf, size_t count,
225 enum transparent_hugepage_flag flag)
226 {
227 unsigned long value;
228 int ret;
229
230 ret = kstrtoul(buf, 10, &value);
231 if (ret < 0)
232 return ret;
233 if (value > 1)
234 return -EINVAL;
235
236 if (value)
237 set_bit(flag, &transparent_hugepage_flags);
238 else
239 clear_bit(flag, &transparent_hugepage_flags);
240
241 return count;
242 }
243
244 /*
245 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
246 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
247 * memory just to allocate one more hugepage.
248 */
249 static ssize_t defrag_show(struct kobject *kobj,
250 struct kobj_attribute *attr, char *buf)
251 {
252 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
253 return sprintf(buf, "[always] defer madvise never\n");
254 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
255 return sprintf(buf, "always [defer] madvise never\n");
256 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
257 return sprintf(buf, "always defer [madvise] never\n");
258 else
259 return sprintf(buf, "always defer madvise [never]\n");
260
261 }
262 static ssize_t defrag_store(struct kobject *kobj,
263 struct kobj_attribute *attr,
264 const char *buf, size_t count)
265 {
266 return triple_flag_store(kobj, attr, buf, count,
267 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
268 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
269 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
270 }
271 static struct kobj_attribute defrag_attr =
272 __ATTR(defrag, 0644, defrag_show, defrag_store);
273
274 static ssize_t use_zero_page_show(struct kobject *kobj,
275 struct kobj_attribute *attr, char *buf)
276 {
277 return single_hugepage_flag_show(kobj, attr, buf,
278 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
279 }
280 static ssize_t use_zero_page_store(struct kobject *kobj,
281 struct kobj_attribute *attr, const char *buf, size_t count)
282 {
283 return single_hugepage_flag_store(kobj, attr, buf, count,
284 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
285 }
286 static struct kobj_attribute use_zero_page_attr =
287 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
288
289 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
290 struct kobj_attribute *attr, char *buf)
291 {
292 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
293 }
294 static struct kobj_attribute hpage_pmd_size_attr =
295 __ATTR_RO(hpage_pmd_size);
296
297 #ifdef CONFIG_DEBUG_VM
298 static ssize_t debug_cow_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300 {
301 return single_hugepage_flag_show(kobj, attr, buf,
302 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
303 }
304 static ssize_t debug_cow_store(struct kobject *kobj,
305 struct kobj_attribute *attr,
306 const char *buf, size_t count)
307 {
308 return single_hugepage_flag_store(kobj, attr, buf, count,
309 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
310 }
311 static struct kobj_attribute debug_cow_attr =
312 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313 #endif /* CONFIG_DEBUG_VM */
314
315 static struct attribute *hugepage_attr[] = {
316 &enabled_attr.attr,
317 &defrag_attr.attr,
318 &use_zero_page_attr.attr,
319 &hpage_pmd_size_attr.attr,
320 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
321 &shmem_enabled_attr.attr,
322 #endif
323 #ifdef CONFIG_DEBUG_VM
324 &debug_cow_attr.attr,
325 #endif
326 NULL,
327 };
328
329 static struct attribute_group hugepage_attr_group = {
330 .attrs = hugepage_attr,
331 };
332
333 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
334 {
335 int err;
336
337 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
338 if (unlikely(!*hugepage_kobj)) {
339 pr_err("failed to create transparent hugepage kobject\n");
340 return -ENOMEM;
341 }
342
343 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
344 if (err) {
345 pr_err("failed to register transparent hugepage group\n");
346 goto delete_obj;
347 }
348
349 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
350 if (err) {
351 pr_err("failed to register transparent hugepage group\n");
352 goto remove_hp_group;
353 }
354
355 return 0;
356
357 remove_hp_group:
358 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
359 delete_obj:
360 kobject_put(*hugepage_kobj);
361 return err;
362 }
363
364 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
365 {
366 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
367 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
368 kobject_put(hugepage_kobj);
369 }
370 #else
371 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
372 {
373 return 0;
374 }
375
376 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
377 {
378 }
379 #endif /* CONFIG_SYSFS */
380
381 static int __init hugepage_init(void)
382 {
383 int err;
384 struct kobject *hugepage_kobj;
385
386 if (!has_transparent_hugepage()) {
387 transparent_hugepage_flags = 0;
388 return -EINVAL;
389 }
390
391 /*
392 * hugepages can't be allocated by the buddy allocator
393 */
394 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
395 /*
396 * we use page->mapping and page->index in second tail page
397 * as list_head: assuming THP order >= 2
398 */
399 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
400
401 err = hugepage_init_sysfs(&hugepage_kobj);
402 if (err)
403 goto err_sysfs;
404
405 err = khugepaged_init();
406 if (err)
407 goto err_slab;
408
409 err = register_shrinker(&huge_zero_page_shrinker);
410 if (err)
411 goto err_hzp_shrinker;
412 err = register_shrinker(&deferred_split_shrinker);
413 if (err)
414 goto err_split_shrinker;
415
416 /*
417 * By default disable transparent hugepages on smaller systems,
418 * where the extra memory used could hurt more than TLB overhead
419 * is likely to save. The admin can still enable it through /sys.
420 */
421 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
422 transparent_hugepage_flags = 0;
423 return 0;
424 }
425
426 err = start_stop_khugepaged();
427 if (err)
428 goto err_khugepaged;
429
430 return 0;
431 err_khugepaged:
432 unregister_shrinker(&deferred_split_shrinker);
433 err_split_shrinker:
434 unregister_shrinker(&huge_zero_page_shrinker);
435 err_hzp_shrinker:
436 khugepaged_destroy();
437 err_slab:
438 hugepage_exit_sysfs(hugepage_kobj);
439 err_sysfs:
440 return err;
441 }
442 subsys_initcall(hugepage_init);
443
444 static int __init setup_transparent_hugepage(char *str)
445 {
446 int ret = 0;
447 if (!str)
448 goto out;
449 if (!strcmp(str, "always")) {
450 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
451 &transparent_hugepage_flags);
452 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
453 &transparent_hugepage_flags);
454 ret = 1;
455 } else if (!strcmp(str, "madvise")) {
456 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
457 &transparent_hugepage_flags);
458 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
459 &transparent_hugepage_flags);
460 ret = 1;
461 } else if (!strcmp(str, "never")) {
462 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
463 &transparent_hugepage_flags);
464 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465 &transparent_hugepage_flags);
466 ret = 1;
467 }
468 out:
469 if (!ret)
470 pr_warn("transparent_hugepage= cannot parse, ignored\n");
471 return ret;
472 }
473 __setup("transparent_hugepage=", setup_transparent_hugepage);
474
475 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
476 {
477 if (likely(vma->vm_flags & VM_WRITE))
478 pmd = pmd_mkwrite(pmd);
479 return pmd;
480 }
481
482 static inline struct list_head *page_deferred_list(struct page *page)
483 {
484 /*
485 * ->lru in the tail pages is occupied by compound_head.
486 * Let's use ->mapping + ->index in the second tail page as list_head.
487 */
488 return (struct list_head *)&page[2].mapping;
489 }
490
491 void prep_transhuge_page(struct page *page)
492 {
493 /*
494 * we use page->mapping and page->indexlru in second tail page
495 * as list_head: assuming THP order >= 2
496 */
497
498 INIT_LIST_HEAD(page_deferred_list(page));
499 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
500 }
501
502 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
503 loff_t off, unsigned long flags, unsigned long size)
504 {
505 unsigned long addr;
506 loff_t off_end = off + len;
507 loff_t off_align = round_up(off, size);
508 unsigned long len_pad;
509
510 if (off_end <= off_align || (off_end - off_align) < size)
511 return 0;
512
513 len_pad = len + size;
514 if (len_pad < len || (off + len_pad) < off)
515 return 0;
516
517 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
518 off >> PAGE_SHIFT, flags);
519 if (IS_ERR_VALUE(addr))
520 return 0;
521
522 addr += (off - addr) & (size - 1);
523 return addr;
524 }
525
526 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
527 unsigned long len, unsigned long pgoff, unsigned long flags)
528 {
529 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
530
531 if (addr)
532 goto out;
533 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
534 goto out;
535
536 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
537 if (addr)
538 return addr;
539
540 out:
541 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
542 }
543 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
544
545 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
546 gfp_t gfp)
547 {
548 struct vm_area_struct *vma = vmf->vma;
549 struct mem_cgroup *memcg;
550 pgtable_t pgtable;
551 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
552
553 VM_BUG_ON_PAGE(!PageCompound(page), page);
554
555 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
556 put_page(page);
557 count_vm_event(THP_FAULT_FALLBACK);
558 return VM_FAULT_FALLBACK;
559 }
560
561 pgtable = pte_alloc_one(vma->vm_mm, haddr);
562 if (unlikely(!pgtable)) {
563 mem_cgroup_cancel_charge(page, memcg, true);
564 put_page(page);
565 return VM_FAULT_OOM;
566 }
567
568 clear_huge_page(page, haddr, HPAGE_PMD_NR);
569 /*
570 * The memory barrier inside __SetPageUptodate makes sure that
571 * clear_huge_page writes become visible before the set_pmd_at()
572 * write.
573 */
574 __SetPageUptodate(page);
575
576 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
577 if (unlikely(!pmd_none(*vmf->pmd))) {
578 spin_unlock(vmf->ptl);
579 mem_cgroup_cancel_charge(page, memcg, true);
580 put_page(page);
581 pte_free(vma->vm_mm, pgtable);
582 } else {
583 pmd_t entry;
584
585 /* Deliver the page fault to userland */
586 if (userfaultfd_missing(vma)) {
587 int ret;
588
589 spin_unlock(vmf->ptl);
590 mem_cgroup_cancel_charge(page, memcg, true);
591 put_page(page);
592 pte_free(vma->vm_mm, pgtable);
593 ret = handle_userfault(vmf, VM_UFFD_MISSING);
594 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
595 return ret;
596 }
597
598 entry = mk_huge_pmd(page, vma->vm_page_prot);
599 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
600 page_add_new_anon_rmap(page, vma, haddr, true);
601 mem_cgroup_commit_charge(page, memcg, false, true);
602 lru_cache_add_active_or_unevictable(page, vma);
603 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
604 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
605 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
606 atomic_long_inc(&vma->vm_mm->nr_ptes);
607 spin_unlock(vmf->ptl);
608 count_vm_event(THP_FAULT_ALLOC);
609 }
610
611 return 0;
612 }
613
614 /*
615 * If THP defrag is set to always then directly reclaim/compact as necessary
616 * If set to defer then do only background reclaim/compact and defer to khugepaged
617 * If set to madvise and the VMA is flagged then directly reclaim/compact
618 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
619 */
620 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
621 {
622 bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
623
624 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
625 &transparent_hugepage_flags) && vma_madvised)
626 return GFP_TRANSHUGE;
627 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
628 &transparent_hugepage_flags))
629 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
630 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
631 &transparent_hugepage_flags))
632 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
633
634 return GFP_TRANSHUGE_LIGHT;
635 }
636
637 /* Caller must hold page table lock. */
638 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
639 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
640 struct page *zero_page)
641 {
642 pmd_t entry;
643 if (!pmd_none(*pmd))
644 return false;
645 entry = mk_pmd(zero_page, vma->vm_page_prot);
646 entry = pmd_mkhuge(entry);
647 if (pgtable)
648 pgtable_trans_huge_deposit(mm, pmd, pgtable);
649 set_pmd_at(mm, haddr, pmd, entry);
650 atomic_long_inc(&mm->nr_ptes);
651 return true;
652 }
653
654 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
655 {
656 struct vm_area_struct *vma = vmf->vma;
657 gfp_t gfp;
658 struct page *page;
659 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
660
661 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
662 return VM_FAULT_FALLBACK;
663 if (unlikely(anon_vma_prepare(vma)))
664 return VM_FAULT_OOM;
665 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
666 return VM_FAULT_OOM;
667 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
668 !mm_forbids_zeropage(vma->vm_mm) &&
669 transparent_hugepage_use_zero_page()) {
670 pgtable_t pgtable;
671 struct page *zero_page;
672 bool set;
673 int ret;
674 pgtable = pte_alloc_one(vma->vm_mm, haddr);
675 if (unlikely(!pgtable))
676 return VM_FAULT_OOM;
677 zero_page = mm_get_huge_zero_page(vma->vm_mm);
678 if (unlikely(!zero_page)) {
679 pte_free(vma->vm_mm, pgtable);
680 count_vm_event(THP_FAULT_FALLBACK);
681 return VM_FAULT_FALLBACK;
682 }
683 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
684 ret = 0;
685 set = false;
686 if (pmd_none(*vmf->pmd)) {
687 if (userfaultfd_missing(vma)) {
688 spin_unlock(vmf->ptl);
689 ret = handle_userfault(vmf, VM_UFFD_MISSING);
690 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
691 } else {
692 set_huge_zero_page(pgtable, vma->vm_mm, vma,
693 haddr, vmf->pmd, zero_page);
694 spin_unlock(vmf->ptl);
695 set = true;
696 }
697 } else
698 spin_unlock(vmf->ptl);
699 if (!set)
700 pte_free(vma->vm_mm, pgtable);
701 return ret;
702 }
703 gfp = alloc_hugepage_direct_gfpmask(vma);
704 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
705 if (unlikely(!page)) {
706 count_vm_event(THP_FAULT_FALLBACK);
707 return VM_FAULT_FALLBACK;
708 }
709 prep_transhuge_page(page);
710 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
711 }
712
713 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
714 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
715 {
716 struct mm_struct *mm = vma->vm_mm;
717 pmd_t entry;
718 spinlock_t *ptl;
719
720 ptl = pmd_lock(mm, pmd);
721 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
722 if (pfn_t_devmap(pfn))
723 entry = pmd_mkdevmap(entry);
724 if (write) {
725 entry = pmd_mkyoung(pmd_mkdirty(entry));
726 entry = maybe_pmd_mkwrite(entry, vma);
727 }
728 set_pmd_at(mm, addr, pmd, entry);
729 update_mmu_cache_pmd(vma, addr, pmd);
730 spin_unlock(ptl);
731 }
732
733 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
734 pmd_t *pmd, pfn_t pfn, bool write)
735 {
736 pgprot_t pgprot = vma->vm_page_prot;
737 /*
738 * If we had pmd_special, we could avoid all these restrictions,
739 * but we need to be consistent with PTEs and architectures that
740 * can't support a 'special' bit.
741 */
742 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
743 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
744 (VM_PFNMAP|VM_MIXEDMAP));
745 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
746 BUG_ON(!pfn_t_devmap(pfn));
747
748 if (addr < vma->vm_start || addr >= vma->vm_end)
749 return VM_FAULT_SIGBUS;
750
751 track_pfn_insert(vma, &pgprot, pfn);
752
753 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
754 return VM_FAULT_NOPAGE;
755 }
756 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
757
758 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
759 pmd_t *pmd)
760 {
761 pmd_t _pmd;
762
763 /*
764 * We should set the dirty bit only for FOLL_WRITE but for now
765 * the dirty bit in the pmd is meaningless. And if the dirty
766 * bit will become meaningful and we'll only set it with
767 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
768 * set the young bit, instead of the current set_pmd_at.
769 */
770 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
771 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
772 pmd, _pmd, 1))
773 update_mmu_cache_pmd(vma, addr, pmd);
774 }
775
776 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
777 pmd_t *pmd, int flags)
778 {
779 unsigned long pfn = pmd_pfn(*pmd);
780 struct mm_struct *mm = vma->vm_mm;
781 struct dev_pagemap *pgmap;
782 struct page *page;
783
784 assert_spin_locked(pmd_lockptr(mm, pmd));
785
786 /*
787 * When we COW a devmap PMD entry, we split it into PTEs, so we should
788 * not be in this function with `flags & FOLL_COW` set.
789 */
790 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
791
792 if (flags & FOLL_WRITE && !pmd_write(*pmd))
793 return NULL;
794
795 if (pmd_present(*pmd) && pmd_devmap(*pmd))
796 /* pass */;
797 else
798 return NULL;
799
800 if (flags & FOLL_TOUCH)
801 touch_pmd(vma, addr, pmd);
802
803 /*
804 * device mapped pages can only be returned if the
805 * caller will manage the page reference count.
806 */
807 if (!(flags & FOLL_GET))
808 return ERR_PTR(-EEXIST);
809
810 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
811 pgmap = get_dev_pagemap(pfn, NULL);
812 if (!pgmap)
813 return ERR_PTR(-EFAULT);
814 page = pfn_to_page(pfn);
815 get_page(page);
816 put_dev_pagemap(pgmap);
817
818 return page;
819 }
820
821 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
822 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
823 struct vm_area_struct *vma)
824 {
825 spinlock_t *dst_ptl, *src_ptl;
826 struct page *src_page;
827 pmd_t pmd;
828 pgtable_t pgtable = NULL;
829 int ret = -ENOMEM;
830
831 /* Skip if can be re-fill on fault */
832 if (!vma_is_anonymous(vma))
833 return 0;
834
835 pgtable = pte_alloc_one(dst_mm, addr);
836 if (unlikely(!pgtable))
837 goto out;
838
839 dst_ptl = pmd_lock(dst_mm, dst_pmd);
840 src_ptl = pmd_lockptr(src_mm, src_pmd);
841 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
842
843 ret = -EAGAIN;
844 pmd = *src_pmd;
845 if (unlikely(!pmd_trans_huge(pmd))) {
846 pte_free(dst_mm, pgtable);
847 goto out_unlock;
848 }
849 /*
850 * When page table lock is held, the huge zero pmd should not be
851 * under splitting since we don't split the page itself, only pmd to
852 * a page table.
853 */
854 if (is_huge_zero_pmd(pmd)) {
855 struct page *zero_page;
856 /*
857 * get_huge_zero_page() will never allocate a new page here,
858 * since we already have a zero page to copy. It just takes a
859 * reference.
860 */
861 zero_page = mm_get_huge_zero_page(dst_mm);
862 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
863 zero_page);
864 ret = 0;
865 goto out_unlock;
866 }
867
868 src_page = pmd_page(pmd);
869 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
870 get_page(src_page);
871 page_dup_rmap(src_page, true);
872 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
873 atomic_long_inc(&dst_mm->nr_ptes);
874 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
875
876 pmdp_set_wrprotect(src_mm, addr, src_pmd);
877 pmd = pmd_mkold(pmd_wrprotect(pmd));
878 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
879
880 ret = 0;
881 out_unlock:
882 spin_unlock(src_ptl);
883 spin_unlock(dst_ptl);
884 out:
885 return ret;
886 }
887
888 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
889 {
890 pmd_t entry;
891 unsigned long haddr;
892 bool write = vmf->flags & FAULT_FLAG_WRITE;
893
894 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
895 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
896 goto unlock;
897
898 entry = pmd_mkyoung(orig_pmd);
899 if (write)
900 entry = pmd_mkdirty(entry);
901 haddr = vmf->address & HPAGE_PMD_MASK;
902 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
903 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
904
905 unlock:
906 spin_unlock(vmf->ptl);
907 }
908
909 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
910 struct page *page)
911 {
912 struct vm_area_struct *vma = vmf->vma;
913 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
914 struct mem_cgroup *memcg;
915 pgtable_t pgtable;
916 pmd_t _pmd;
917 int ret = 0, i;
918 struct page **pages;
919 unsigned long mmun_start; /* For mmu_notifiers */
920 unsigned long mmun_end; /* For mmu_notifiers */
921
922 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
923 GFP_KERNEL);
924 if (unlikely(!pages)) {
925 ret |= VM_FAULT_OOM;
926 goto out;
927 }
928
929 for (i = 0; i < HPAGE_PMD_NR; i++) {
930 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
931 vmf->address, page_to_nid(page));
932 if (unlikely(!pages[i] ||
933 mem_cgroup_try_charge(pages[i], vma->vm_mm,
934 GFP_KERNEL, &memcg, false))) {
935 if (pages[i])
936 put_page(pages[i]);
937 while (--i >= 0) {
938 memcg = (void *)page_private(pages[i]);
939 set_page_private(pages[i], 0);
940 mem_cgroup_cancel_charge(pages[i], memcg,
941 false);
942 put_page(pages[i]);
943 }
944 kfree(pages);
945 ret |= VM_FAULT_OOM;
946 goto out;
947 }
948 set_page_private(pages[i], (unsigned long)memcg);
949 }
950
951 for (i = 0; i < HPAGE_PMD_NR; i++) {
952 copy_user_highpage(pages[i], page + i,
953 haddr + PAGE_SIZE * i, vma);
954 __SetPageUptodate(pages[i]);
955 cond_resched();
956 }
957
958 mmun_start = haddr;
959 mmun_end = haddr + HPAGE_PMD_SIZE;
960 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
961
962 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
963 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
964 goto out_free_pages;
965 VM_BUG_ON_PAGE(!PageHead(page), page);
966
967 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
968 /* leave pmd empty until pte is filled */
969
970 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
971 pmd_populate(vma->vm_mm, &_pmd, pgtable);
972
973 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
974 pte_t entry;
975 entry = mk_pte(pages[i], vma->vm_page_prot);
976 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
977 memcg = (void *)page_private(pages[i]);
978 set_page_private(pages[i], 0);
979 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
980 mem_cgroup_commit_charge(pages[i], memcg, false, false);
981 lru_cache_add_active_or_unevictable(pages[i], vma);
982 vmf->pte = pte_offset_map(&_pmd, haddr);
983 VM_BUG_ON(!pte_none(*vmf->pte));
984 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
985 pte_unmap(vmf->pte);
986 }
987 kfree(pages);
988
989 smp_wmb(); /* make pte visible before pmd */
990 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
991 page_remove_rmap(page, true);
992 spin_unlock(vmf->ptl);
993
994 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
995
996 ret |= VM_FAULT_WRITE;
997 put_page(page);
998
999 out:
1000 return ret;
1001
1002 out_free_pages:
1003 spin_unlock(vmf->ptl);
1004 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1005 for (i = 0; i < HPAGE_PMD_NR; i++) {
1006 memcg = (void *)page_private(pages[i]);
1007 set_page_private(pages[i], 0);
1008 mem_cgroup_cancel_charge(pages[i], memcg, false);
1009 put_page(pages[i]);
1010 }
1011 kfree(pages);
1012 goto out;
1013 }
1014
1015 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1016 {
1017 struct vm_area_struct *vma = vmf->vma;
1018 struct page *page = NULL, *new_page;
1019 struct mem_cgroup *memcg;
1020 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1021 unsigned long mmun_start; /* For mmu_notifiers */
1022 unsigned long mmun_end; /* For mmu_notifiers */
1023 gfp_t huge_gfp; /* for allocation and charge */
1024 int ret = 0;
1025
1026 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1027 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1028 if (is_huge_zero_pmd(orig_pmd))
1029 goto alloc;
1030 spin_lock(vmf->ptl);
1031 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1032 goto out_unlock;
1033
1034 page = pmd_page(orig_pmd);
1035 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1036 /*
1037 * We can only reuse the page if nobody else maps the huge page or it's
1038 * part.
1039 */
1040 if (page_trans_huge_mapcount(page, NULL) == 1) {
1041 pmd_t entry;
1042 entry = pmd_mkyoung(orig_pmd);
1043 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1044 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1045 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1046 ret |= VM_FAULT_WRITE;
1047 goto out_unlock;
1048 }
1049 get_page(page);
1050 spin_unlock(vmf->ptl);
1051 alloc:
1052 if (transparent_hugepage_enabled(vma) &&
1053 !transparent_hugepage_debug_cow()) {
1054 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1055 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1056 } else
1057 new_page = NULL;
1058
1059 if (likely(new_page)) {
1060 prep_transhuge_page(new_page);
1061 } else {
1062 if (!page) {
1063 split_huge_pmd(vma, vmf->pmd, vmf->address);
1064 ret |= VM_FAULT_FALLBACK;
1065 } else {
1066 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1067 if (ret & VM_FAULT_OOM) {
1068 split_huge_pmd(vma, vmf->pmd, vmf->address);
1069 ret |= VM_FAULT_FALLBACK;
1070 }
1071 put_page(page);
1072 }
1073 count_vm_event(THP_FAULT_FALLBACK);
1074 goto out;
1075 }
1076
1077 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1078 huge_gfp, &memcg, true))) {
1079 put_page(new_page);
1080 split_huge_pmd(vma, vmf->pmd, vmf->address);
1081 if (page)
1082 put_page(page);
1083 ret |= VM_FAULT_FALLBACK;
1084 count_vm_event(THP_FAULT_FALLBACK);
1085 goto out;
1086 }
1087
1088 count_vm_event(THP_FAULT_ALLOC);
1089
1090 if (!page)
1091 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1092 else
1093 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1094 __SetPageUptodate(new_page);
1095
1096 mmun_start = haddr;
1097 mmun_end = haddr + HPAGE_PMD_SIZE;
1098 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1099
1100 spin_lock(vmf->ptl);
1101 if (page)
1102 put_page(page);
1103 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1104 spin_unlock(vmf->ptl);
1105 mem_cgroup_cancel_charge(new_page, memcg, true);
1106 put_page(new_page);
1107 goto out_mn;
1108 } else {
1109 pmd_t entry;
1110 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1111 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1112 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1113 page_add_new_anon_rmap(new_page, vma, haddr, true);
1114 mem_cgroup_commit_charge(new_page, memcg, false, true);
1115 lru_cache_add_active_or_unevictable(new_page, vma);
1116 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1117 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1118 if (!page) {
1119 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1120 } else {
1121 VM_BUG_ON_PAGE(!PageHead(page), page);
1122 page_remove_rmap(page, true);
1123 put_page(page);
1124 }
1125 ret |= VM_FAULT_WRITE;
1126 }
1127 spin_unlock(vmf->ptl);
1128 out_mn:
1129 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1130 out:
1131 return ret;
1132 out_unlock:
1133 spin_unlock(vmf->ptl);
1134 return ret;
1135 }
1136
1137 /*
1138 * FOLL_FORCE can write to even unwritable pmd's, but only
1139 * after we've gone through a COW cycle and they are dirty.
1140 */
1141 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1142 {
1143 return pmd_write(pmd) ||
1144 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1145 }
1146
1147 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1148 unsigned long addr,
1149 pmd_t *pmd,
1150 unsigned int flags)
1151 {
1152 struct mm_struct *mm = vma->vm_mm;
1153 struct page *page = NULL;
1154
1155 assert_spin_locked(pmd_lockptr(mm, pmd));
1156
1157 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1158 goto out;
1159
1160 /* Avoid dumping huge zero page */
1161 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1162 return ERR_PTR(-EFAULT);
1163
1164 /* Full NUMA hinting faults to serialise migration in fault paths */
1165 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1166 goto out;
1167
1168 page = pmd_page(*pmd);
1169 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1170 if (flags & FOLL_TOUCH)
1171 touch_pmd(vma, addr, pmd);
1172 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1173 /*
1174 * We don't mlock() pte-mapped THPs. This way we can avoid
1175 * leaking mlocked pages into non-VM_LOCKED VMAs.
1176 *
1177 * For anon THP:
1178 *
1179 * In most cases the pmd is the only mapping of the page as we
1180 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1181 * writable private mappings in populate_vma_page_range().
1182 *
1183 * The only scenario when we have the page shared here is if we
1184 * mlocking read-only mapping shared over fork(). We skip
1185 * mlocking such pages.
1186 *
1187 * For file THP:
1188 *
1189 * We can expect PageDoubleMap() to be stable under page lock:
1190 * for file pages we set it in page_add_file_rmap(), which
1191 * requires page to be locked.
1192 */
1193
1194 if (PageAnon(page) && compound_mapcount(page) != 1)
1195 goto skip_mlock;
1196 if (PageDoubleMap(page) || !page->mapping)
1197 goto skip_mlock;
1198 if (!trylock_page(page))
1199 goto skip_mlock;
1200 lru_add_drain();
1201 if (page->mapping && !PageDoubleMap(page))
1202 mlock_vma_page(page);
1203 unlock_page(page);
1204 }
1205 skip_mlock:
1206 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1207 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1208 if (flags & FOLL_GET)
1209 get_page(page);
1210
1211 out:
1212 return page;
1213 }
1214
1215 /* NUMA hinting page fault entry point for trans huge pmds */
1216 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1217 {
1218 struct vm_area_struct *vma = vmf->vma;
1219 struct anon_vma *anon_vma = NULL;
1220 struct page *page;
1221 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1222 int page_nid = -1, this_nid = numa_node_id();
1223 int target_nid, last_cpupid = -1;
1224 bool page_locked;
1225 bool migrated = false;
1226 bool was_writable;
1227 int flags = 0;
1228
1229 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1230 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1231 goto out_unlock;
1232
1233 /*
1234 * If there are potential migrations, wait for completion and retry
1235 * without disrupting NUMA hinting information. Do not relock and
1236 * check_same as the page may no longer be mapped.
1237 */
1238 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1239 page = pmd_page(*vmf->pmd);
1240 spin_unlock(vmf->ptl);
1241 wait_on_page_locked(page);
1242 goto out;
1243 }
1244
1245 page = pmd_page(pmd);
1246 BUG_ON(is_huge_zero_page(page));
1247 page_nid = page_to_nid(page);
1248 last_cpupid = page_cpupid_last(page);
1249 count_vm_numa_event(NUMA_HINT_FAULTS);
1250 if (page_nid == this_nid) {
1251 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1252 flags |= TNF_FAULT_LOCAL;
1253 }
1254
1255 /* See similar comment in do_numa_page for explanation */
1256 if (!pmd_savedwrite(pmd))
1257 flags |= TNF_NO_GROUP;
1258
1259 /*
1260 * Acquire the page lock to serialise THP migrations but avoid dropping
1261 * page_table_lock if at all possible
1262 */
1263 page_locked = trylock_page(page);
1264 target_nid = mpol_misplaced(page, vma, haddr);
1265 if (target_nid == -1) {
1266 /* If the page was locked, there are no parallel migrations */
1267 if (page_locked)
1268 goto clear_pmdnuma;
1269 }
1270
1271 /* Migration could have started since the pmd_trans_migrating check */
1272 if (!page_locked) {
1273 spin_unlock(vmf->ptl);
1274 wait_on_page_locked(page);
1275 page_nid = -1;
1276 goto out;
1277 }
1278
1279 /*
1280 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1281 * to serialises splits
1282 */
1283 get_page(page);
1284 spin_unlock(vmf->ptl);
1285 anon_vma = page_lock_anon_vma_read(page);
1286
1287 /* Confirm the PMD did not change while page_table_lock was released */
1288 spin_lock(vmf->ptl);
1289 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1290 unlock_page(page);
1291 put_page(page);
1292 page_nid = -1;
1293 goto out_unlock;
1294 }
1295
1296 /* Bail if we fail to protect against THP splits for any reason */
1297 if (unlikely(!anon_vma)) {
1298 put_page(page);
1299 page_nid = -1;
1300 goto clear_pmdnuma;
1301 }
1302
1303 /*
1304 * Migrate the THP to the requested node, returns with page unlocked
1305 * and access rights restored.
1306 */
1307 spin_unlock(vmf->ptl);
1308 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1309 vmf->pmd, pmd, vmf->address, page, target_nid);
1310 if (migrated) {
1311 flags |= TNF_MIGRATED;
1312 page_nid = target_nid;
1313 } else
1314 flags |= TNF_MIGRATE_FAIL;
1315
1316 goto out;
1317 clear_pmdnuma:
1318 BUG_ON(!PageLocked(page));
1319 was_writable = pmd_savedwrite(pmd);
1320 pmd = pmd_modify(pmd, vma->vm_page_prot);
1321 pmd = pmd_mkyoung(pmd);
1322 if (was_writable)
1323 pmd = pmd_mkwrite(pmd);
1324 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1325 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1326 unlock_page(page);
1327 out_unlock:
1328 spin_unlock(vmf->ptl);
1329
1330 out:
1331 if (anon_vma)
1332 page_unlock_anon_vma_read(anon_vma);
1333
1334 if (page_nid != -1)
1335 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1336 flags);
1337
1338 return 0;
1339 }
1340
1341 /*
1342 * Return true if we do MADV_FREE successfully on entire pmd page.
1343 * Otherwise, return false.
1344 */
1345 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1346 pmd_t *pmd, unsigned long addr, unsigned long next)
1347 {
1348 spinlock_t *ptl;
1349 pmd_t orig_pmd;
1350 struct page *page;
1351 struct mm_struct *mm = tlb->mm;
1352 bool ret = false;
1353
1354 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1355
1356 ptl = pmd_trans_huge_lock(pmd, vma);
1357 if (!ptl)
1358 goto out_unlocked;
1359
1360 orig_pmd = *pmd;
1361 if (is_huge_zero_pmd(orig_pmd))
1362 goto out;
1363
1364 page = pmd_page(orig_pmd);
1365 /*
1366 * If other processes are mapping this page, we couldn't discard
1367 * the page unless they all do MADV_FREE so let's skip the page.
1368 */
1369 if (page_mapcount(page) != 1)
1370 goto out;
1371
1372 if (!trylock_page(page))
1373 goto out;
1374
1375 /*
1376 * If user want to discard part-pages of THP, split it so MADV_FREE
1377 * will deactivate only them.
1378 */
1379 if (next - addr != HPAGE_PMD_SIZE) {
1380 get_page(page);
1381 spin_unlock(ptl);
1382 split_huge_page(page);
1383 put_page(page);
1384 unlock_page(page);
1385 goto out_unlocked;
1386 }
1387
1388 if (PageDirty(page))
1389 ClearPageDirty(page);
1390 unlock_page(page);
1391
1392 if (PageActive(page))
1393 deactivate_page(page);
1394
1395 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1396 pmdp_invalidate(vma, addr, pmd);
1397 orig_pmd = pmd_mkold(orig_pmd);
1398 orig_pmd = pmd_mkclean(orig_pmd);
1399
1400 set_pmd_at(mm, addr, pmd, orig_pmd);
1401 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1402 }
1403 ret = true;
1404 out:
1405 spin_unlock(ptl);
1406 out_unlocked:
1407 return ret;
1408 }
1409
1410 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1411 {
1412 pgtable_t pgtable;
1413
1414 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1415 pte_free(mm, pgtable);
1416 atomic_long_dec(&mm->nr_ptes);
1417 }
1418
1419 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1420 pmd_t *pmd, unsigned long addr)
1421 {
1422 pmd_t orig_pmd;
1423 spinlock_t *ptl;
1424
1425 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1426
1427 ptl = __pmd_trans_huge_lock(pmd, vma);
1428 if (!ptl)
1429 return 0;
1430 /*
1431 * For architectures like ppc64 we look at deposited pgtable
1432 * when calling pmdp_huge_get_and_clear. So do the
1433 * pgtable_trans_huge_withdraw after finishing pmdp related
1434 * operations.
1435 */
1436 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1437 tlb->fullmm);
1438 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1439 if (vma_is_dax(vma)) {
1440 spin_unlock(ptl);
1441 if (is_huge_zero_pmd(orig_pmd))
1442 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1443 } else if (is_huge_zero_pmd(orig_pmd)) {
1444 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1445 atomic_long_dec(&tlb->mm->nr_ptes);
1446 spin_unlock(ptl);
1447 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1448 } else {
1449 struct page *page = pmd_page(orig_pmd);
1450 page_remove_rmap(page, true);
1451 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1452 VM_BUG_ON_PAGE(!PageHead(page), page);
1453 if (PageAnon(page)) {
1454 pgtable_t pgtable;
1455 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1456 pte_free(tlb->mm, pgtable);
1457 atomic_long_dec(&tlb->mm->nr_ptes);
1458 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1459 } else {
1460 if (arch_needs_pgtable_deposit())
1461 zap_deposited_table(tlb->mm, pmd);
1462 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1463 }
1464 spin_unlock(ptl);
1465 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1466 }
1467 return 1;
1468 }
1469
1470 #ifndef pmd_move_must_withdraw
1471 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1472 spinlock_t *old_pmd_ptl,
1473 struct vm_area_struct *vma)
1474 {
1475 /*
1476 * With split pmd lock we also need to move preallocated
1477 * PTE page table if new_pmd is on different PMD page table.
1478 *
1479 * We also don't deposit and withdraw tables for file pages.
1480 */
1481 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1482 }
1483 #endif
1484
1485 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1486 unsigned long new_addr, unsigned long old_end,
1487 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1488 {
1489 spinlock_t *old_ptl, *new_ptl;
1490 pmd_t pmd;
1491 struct mm_struct *mm = vma->vm_mm;
1492 bool force_flush = false;
1493
1494 if ((old_addr & ~HPAGE_PMD_MASK) ||
1495 (new_addr & ~HPAGE_PMD_MASK) ||
1496 old_end - old_addr < HPAGE_PMD_SIZE)
1497 return false;
1498
1499 /*
1500 * The destination pmd shouldn't be established, free_pgtables()
1501 * should have release it.
1502 */
1503 if (WARN_ON(!pmd_none(*new_pmd))) {
1504 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1505 return false;
1506 }
1507
1508 /*
1509 * We don't have to worry about the ordering of src and dst
1510 * ptlocks because exclusive mmap_sem prevents deadlock.
1511 */
1512 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1513 if (old_ptl) {
1514 new_ptl = pmd_lockptr(mm, new_pmd);
1515 if (new_ptl != old_ptl)
1516 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1517 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1518 if (pmd_present(pmd) && pmd_dirty(pmd))
1519 force_flush = true;
1520 VM_BUG_ON(!pmd_none(*new_pmd));
1521
1522 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1523 pgtable_t pgtable;
1524 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1525 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1526 }
1527 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1528 if (new_ptl != old_ptl)
1529 spin_unlock(new_ptl);
1530 if (force_flush)
1531 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1532 else
1533 *need_flush = true;
1534 spin_unlock(old_ptl);
1535 return true;
1536 }
1537 return false;
1538 }
1539
1540 /*
1541 * Returns
1542 * - 0 if PMD could not be locked
1543 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1544 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1545 */
1546 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1547 unsigned long addr, pgprot_t newprot, int prot_numa)
1548 {
1549 struct mm_struct *mm = vma->vm_mm;
1550 spinlock_t *ptl;
1551 int ret = 0;
1552
1553 ptl = __pmd_trans_huge_lock(pmd, vma);
1554 if (ptl) {
1555 pmd_t entry;
1556 bool preserve_write = prot_numa && pmd_write(*pmd);
1557 ret = 1;
1558
1559 /*
1560 * Avoid trapping faults against the zero page. The read-only
1561 * data is likely to be read-cached on the local CPU and
1562 * local/remote hits to the zero page are not interesting.
1563 */
1564 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1565 spin_unlock(ptl);
1566 return ret;
1567 }
1568
1569 if (!prot_numa || !pmd_protnone(*pmd)) {
1570 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1571 entry = pmd_modify(entry, newprot);
1572 if (preserve_write)
1573 entry = pmd_mk_savedwrite(entry);
1574 ret = HPAGE_PMD_NR;
1575 set_pmd_at(mm, addr, pmd, entry);
1576 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1577 pmd_write(entry));
1578 }
1579 spin_unlock(ptl);
1580 }
1581
1582 return ret;
1583 }
1584
1585 /*
1586 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1587 *
1588 * Note that if it returns page table lock pointer, this routine returns without
1589 * unlocking page table lock. So callers must unlock it.
1590 */
1591 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1592 {
1593 spinlock_t *ptl;
1594 ptl = pmd_lock(vma->vm_mm, pmd);
1595 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1596 return ptl;
1597 spin_unlock(ptl);
1598 return NULL;
1599 }
1600
1601 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1602 unsigned long haddr, pmd_t *pmd)
1603 {
1604 struct mm_struct *mm = vma->vm_mm;
1605 pgtable_t pgtable;
1606 pmd_t _pmd;
1607 int i;
1608
1609 /* leave pmd empty until pte is filled */
1610 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1611
1612 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1613 pmd_populate(mm, &_pmd, pgtable);
1614
1615 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1616 pte_t *pte, entry;
1617 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1618 entry = pte_mkspecial(entry);
1619 pte = pte_offset_map(&_pmd, haddr);
1620 VM_BUG_ON(!pte_none(*pte));
1621 set_pte_at(mm, haddr, pte, entry);
1622 pte_unmap(pte);
1623 }
1624 smp_wmb(); /* make pte visible before pmd */
1625 pmd_populate(mm, pmd, pgtable);
1626 }
1627
1628 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1629 unsigned long haddr, bool freeze)
1630 {
1631 struct mm_struct *mm = vma->vm_mm;
1632 struct page *page;
1633 pgtable_t pgtable;
1634 pmd_t _pmd;
1635 bool young, write, dirty, soft_dirty;
1636 unsigned long addr;
1637 int i;
1638
1639 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1640 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1641 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1642 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1643
1644 count_vm_event(THP_SPLIT_PMD);
1645
1646 if (!vma_is_anonymous(vma)) {
1647 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1648 /*
1649 * We are going to unmap this huge page. So
1650 * just go ahead and zap it
1651 */
1652 if (arch_needs_pgtable_deposit())
1653 zap_deposited_table(mm, pmd);
1654 if (vma_is_dax(vma))
1655 return;
1656 page = pmd_page(_pmd);
1657 if (!PageReferenced(page) && pmd_young(_pmd))
1658 SetPageReferenced(page);
1659 page_remove_rmap(page, true);
1660 put_page(page);
1661 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1662 return;
1663 } else if (is_huge_zero_pmd(*pmd)) {
1664 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1665 }
1666
1667 page = pmd_page(*pmd);
1668 VM_BUG_ON_PAGE(!page_count(page), page);
1669 page_ref_add(page, HPAGE_PMD_NR - 1);
1670 write = pmd_write(*pmd);
1671 young = pmd_young(*pmd);
1672 dirty = pmd_dirty(*pmd);
1673 soft_dirty = pmd_soft_dirty(*pmd);
1674
1675 pmdp_huge_split_prepare(vma, haddr, pmd);
1676 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1677 pmd_populate(mm, &_pmd, pgtable);
1678
1679 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1680 pte_t entry, *pte;
1681 /*
1682 * Note that NUMA hinting access restrictions are not
1683 * transferred to avoid any possibility of altering
1684 * permissions across VMAs.
1685 */
1686 if (freeze) {
1687 swp_entry_t swp_entry;
1688 swp_entry = make_migration_entry(page + i, write);
1689 entry = swp_entry_to_pte(swp_entry);
1690 if (soft_dirty)
1691 entry = pte_swp_mksoft_dirty(entry);
1692 } else {
1693 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1694 entry = maybe_mkwrite(entry, vma);
1695 if (!write)
1696 entry = pte_wrprotect(entry);
1697 if (!young)
1698 entry = pte_mkold(entry);
1699 if (soft_dirty)
1700 entry = pte_mksoft_dirty(entry);
1701 }
1702 if (dirty)
1703 SetPageDirty(page + i);
1704 pte = pte_offset_map(&_pmd, addr);
1705 BUG_ON(!pte_none(*pte));
1706 set_pte_at(mm, addr, pte, entry);
1707 atomic_inc(&page[i]._mapcount);
1708 pte_unmap(pte);
1709 }
1710
1711 /*
1712 * Set PG_double_map before dropping compound_mapcount to avoid
1713 * false-negative page_mapped().
1714 */
1715 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1716 for (i = 0; i < HPAGE_PMD_NR; i++)
1717 atomic_inc(&page[i]._mapcount);
1718 }
1719
1720 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1721 /* Last compound_mapcount is gone. */
1722 __dec_node_page_state(page, NR_ANON_THPS);
1723 if (TestClearPageDoubleMap(page)) {
1724 /* No need in mapcount reference anymore */
1725 for (i = 0; i < HPAGE_PMD_NR; i++)
1726 atomic_dec(&page[i]._mapcount);
1727 }
1728 }
1729
1730 smp_wmb(); /* make pte visible before pmd */
1731 /*
1732 * Up to this point the pmd is present and huge and userland has the
1733 * whole access to the hugepage during the split (which happens in
1734 * place). If we overwrite the pmd with the not-huge version pointing
1735 * to the pte here (which of course we could if all CPUs were bug
1736 * free), userland could trigger a small page size TLB miss on the
1737 * small sized TLB while the hugepage TLB entry is still established in
1738 * the huge TLB. Some CPU doesn't like that.
1739 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1740 * 383 on page 93. Intel should be safe but is also warns that it's
1741 * only safe if the permission and cache attributes of the two entries
1742 * loaded in the two TLB is identical (which should be the case here).
1743 * But it is generally safer to never allow small and huge TLB entries
1744 * for the same virtual address to be loaded simultaneously. So instead
1745 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1746 * current pmd notpresent (atomically because here the pmd_trans_huge
1747 * and pmd_trans_splitting must remain set at all times on the pmd
1748 * until the split is complete for this pmd), then we flush the SMP TLB
1749 * and finally we write the non-huge version of the pmd entry with
1750 * pmd_populate.
1751 */
1752 pmdp_invalidate(vma, haddr, pmd);
1753 pmd_populate(mm, pmd, pgtable);
1754
1755 if (freeze) {
1756 for (i = 0; i < HPAGE_PMD_NR; i++) {
1757 page_remove_rmap(page + i, false);
1758 put_page(page + i);
1759 }
1760 }
1761 }
1762
1763 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1764 unsigned long address, bool freeze, struct page *page)
1765 {
1766 spinlock_t *ptl;
1767 struct mm_struct *mm = vma->vm_mm;
1768 unsigned long haddr = address & HPAGE_PMD_MASK;
1769
1770 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1771 ptl = pmd_lock(mm, pmd);
1772
1773 /*
1774 * If caller asks to setup a migration entries, we need a page to check
1775 * pmd against. Otherwise we can end up replacing wrong page.
1776 */
1777 VM_BUG_ON(freeze && !page);
1778 if (page && page != pmd_page(*pmd))
1779 goto out;
1780
1781 if (pmd_trans_huge(*pmd)) {
1782 page = pmd_page(*pmd);
1783 if (PageMlocked(page))
1784 clear_page_mlock(page);
1785 } else if (!pmd_devmap(*pmd))
1786 goto out;
1787 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
1788 out:
1789 spin_unlock(ptl);
1790 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1791 }
1792
1793 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1794 bool freeze, struct page *page)
1795 {
1796 pgd_t *pgd;
1797 pud_t *pud;
1798 pmd_t *pmd;
1799
1800 pgd = pgd_offset(vma->vm_mm, address);
1801 if (!pgd_present(*pgd))
1802 return;
1803
1804 pud = pud_offset(pgd, address);
1805 if (!pud_present(*pud))
1806 return;
1807
1808 pmd = pmd_offset(pud, address);
1809
1810 __split_huge_pmd(vma, pmd, address, freeze, page);
1811 }
1812
1813 void vma_adjust_trans_huge(struct vm_area_struct *vma,
1814 unsigned long start,
1815 unsigned long end,
1816 long adjust_next)
1817 {
1818 /*
1819 * If the new start address isn't hpage aligned and it could
1820 * previously contain an hugepage: check if we need to split
1821 * an huge pmd.
1822 */
1823 if (start & ~HPAGE_PMD_MASK &&
1824 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1825 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1826 split_huge_pmd_address(vma, start, false, NULL);
1827
1828 /*
1829 * If the new end address isn't hpage aligned and it could
1830 * previously contain an hugepage: check if we need to split
1831 * an huge pmd.
1832 */
1833 if (end & ~HPAGE_PMD_MASK &&
1834 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1835 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1836 split_huge_pmd_address(vma, end, false, NULL);
1837
1838 /*
1839 * If we're also updating the vma->vm_next->vm_start, if the new
1840 * vm_next->vm_start isn't page aligned and it could previously
1841 * contain an hugepage: check if we need to split an huge pmd.
1842 */
1843 if (adjust_next > 0) {
1844 struct vm_area_struct *next = vma->vm_next;
1845 unsigned long nstart = next->vm_start;
1846 nstart += adjust_next << PAGE_SHIFT;
1847 if (nstart & ~HPAGE_PMD_MASK &&
1848 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1849 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1850 split_huge_pmd_address(next, nstart, false, NULL);
1851 }
1852 }
1853
1854 static void freeze_page(struct page *page)
1855 {
1856 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1857 TTU_RMAP_LOCKED;
1858 int i, ret;
1859
1860 VM_BUG_ON_PAGE(!PageHead(page), page);
1861
1862 if (PageAnon(page))
1863 ttu_flags |= TTU_MIGRATION;
1864
1865 /* We only need TTU_SPLIT_HUGE_PMD once */
1866 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1867 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1868 /* Cut short if the page is unmapped */
1869 if (page_count(page) == 1)
1870 return;
1871
1872 ret = try_to_unmap(page + i, ttu_flags);
1873 }
1874 VM_BUG_ON_PAGE(ret, page + i - 1);
1875 }
1876
1877 static void unfreeze_page(struct page *page)
1878 {
1879 int i;
1880
1881 for (i = 0; i < HPAGE_PMD_NR; i++)
1882 remove_migration_ptes(page + i, page + i, true);
1883 }
1884
1885 static void __split_huge_page_tail(struct page *head, int tail,
1886 struct lruvec *lruvec, struct list_head *list)
1887 {
1888 struct page *page_tail = head + tail;
1889
1890 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1891 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1892
1893 /*
1894 * tail_page->_refcount is zero and not changing from under us. But
1895 * get_page_unless_zero() may be running from under us on the
1896 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1897 * atomic_add(), we would then run atomic_set() concurrently with
1898 * get_page_unless_zero(), and atomic_set() is implemented in C not
1899 * using locked ops. spin_unlock on x86 sometime uses locked ops
1900 * because of PPro errata 66, 92, so unless somebody can guarantee
1901 * atomic_set() here would be safe on all archs (and not only on x86),
1902 * it's safer to use atomic_inc()/atomic_add().
1903 */
1904 if (PageAnon(head)) {
1905 page_ref_inc(page_tail);
1906 } else {
1907 /* Additional pin to radix tree */
1908 page_ref_add(page_tail, 2);
1909 }
1910
1911 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1912 page_tail->flags |= (head->flags &
1913 ((1L << PG_referenced) |
1914 (1L << PG_swapbacked) |
1915 (1L << PG_mlocked) |
1916 (1L << PG_uptodate) |
1917 (1L << PG_active) |
1918 (1L << PG_locked) |
1919 (1L << PG_unevictable) |
1920 (1L << PG_dirty)));
1921
1922 /*
1923 * After clearing PageTail the gup refcount can be released.
1924 * Page flags also must be visible before we make the page non-compound.
1925 */
1926 smp_wmb();
1927
1928 clear_compound_head(page_tail);
1929
1930 if (page_is_young(head))
1931 set_page_young(page_tail);
1932 if (page_is_idle(head))
1933 set_page_idle(page_tail);
1934
1935 /* ->mapping in first tail page is compound_mapcount */
1936 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1937 page_tail);
1938 page_tail->mapping = head->mapping;
1939
1940 page_tail->index = head->index + tail;
1941 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1942 lru_add_page_tail(head, page_tail, lruvec, list);
1943 }
1944
1945 static void __split_huge_page(struct page *page, struct list_head *list,
1946 unsigned long flags)
1947 {
1948 struct page *head = compound_head(page);
1949 struct zone *zone = page_zone(head);
1950 struct lruvec *lruvec;
1951 pgoff_t end = -1;
1952 int i;
1953
1954 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1955
1956 /* complete memcg works before add pages to LRU */
1957 mem_cgroup_split_huge_fixup(head);
1958
1959 if (!PageAnon(page))
1960 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1961
1962 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1963 __split_huge_page_tail(head, i, lruvec, list);
1964 /* Some pages can be beyond i_size: drop them from page cache */
1965 if (head[i].index >= end) {
1966 __ClearPageDirty(head + i);
1967 __delete_from_page_cache(head + i, NULL);
1968 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1969 shmem_uncharge(head->mapping->host, 1);
1970 put_page(head + i);
1971 }
1972 }
1973
1974 ClearPageCompound(head);
1975 /* See comment in __split_huge_page_tail() */
1976 if (PageAnon(head)) {
1977 page_ref_inc(head);
1978 } else {
1979 /* Additional pin to radix tree */
1980 page_ref_add(head, 2);
1981 spin_unlock(&head->mapping->tree_lock);
1982 }
1983
1984 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1985
1986 unfreeze_page(head);
1987
1988 for (i = 0; i < HPAGE_PMD_NR; i++) {
1989 struct page *subpage = head + i;
1990 if (subpage == page)
1991 continue;
1992 unlock_page(subpage);
1993
1994 /*
1995 * Subpages may be freed if there wasn't any mapping
1996 * like if add_to_swap() is running on a lru page that
1997 * had its mapping zapped. And freeing these pages
1998 * requires taking the lru_lock so we do the put_page
1999 * of the tail pages after the split is complete.
2000 */
2001 put_page(subpage);
2002 }
2003 }
2004
2005 int total_mapcount(struct page *page)
2006 {
2007 int i, compound, ret;
2008
2009 VM_BUG_ON_PAGE(PageTail(page), page);
2010
2011 if (likely(!PageCompound(page)))
2012 return atomic_read(&page->_mapcount) + 1;
2013
2014 compound = compound_mapcount(page);
2015 if (PageHuge(page))
2016 return compound;
2017 ret = compound;
2018 for (i = 0; i < HPAGE_PMD_NR; i++)
2019 ret += atomic_read(&page[i]._mapcount) + 1;
2020 /* File pages has compound_mapcount included in _mapcount */
2021 if (!PageAnon(page))
2022 return ret - compound * HPAGE_PMD_NR;
2023 if (PageDoubleMap(page))
2024 ret -= HPAGE_PMD_NR;
2025 return ret;
2026 }
2027
2028 /*
2029 * This calculates accurately how many mappings a transparent hugepage
2030 * has (unlike page_mapcount() which isn't fully accurate). This full
2031 * accuracy is primarily needed to know if copy-on-write faults can
2032 * reuse the page and change the mapping to read-write instead of
2033 * copying them. At the same time this returns the total_mapcount too.
2034 *
2035 * The function returns the highest mapcount any one of the subpages
2036 * has. If the return value is one, even if different processes are
2037 * mapping different subpages of the transparent hugepage, they can
2038 * all reuse it, because each process is reusing a different subpage.
2039 *
2040 * The total_mapcount is instead counting all virtual mappings of the
2041 * subpages. If the total_mapcount is equal to "one", it tells the
2042 * caller all mappings belong to the same "mm" and in turn the
2043 * anon_vma of the transparent hugepage can become the vma->anon_vma
2044 * local one as no other process may be mapping any of the subpages.
2045 *
2046 * It would be more accurate to replace page_mapcount() with
2047 * page_trans_huge_mapcount(), however we only use
2048 * page_trans_huge_mapcount() in the copy-on-write faults where we
2049 * need full accuracy to avoid breaking page pinning, because
2050 * page_trans_huge_mapcount() is slower than page_mapcount().
2051 */
2052 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2053 {
2054 int i, ret, _total_mapcount, mapcount;
2055
2056 /* hugetlbfs shouldn't call it */
2057 VM_BUG_ON_PAGE(PageHuge(page), page);
2058
2059 if (likely(!PageTransCompound(page))) {
2060 mapcount = atomic_read(&page->_mapcount) + 1;
2061 if (total_mapcount)
2062 *total_mapcount = mapcount;
2063 return mapcount;
2064 }
2065
2066 page = compound_head(page);
2067
2068 _total_mapcount = ret = 0;
2069 for (i = 0; i < HPAGE_PMD_NR; i++) {
2070 mapcount = atomic_read(&page[i]._mapcount) + 1;
2071 ret = max(ret, mapcount);
2072 _total_mapcount += mapcount;
2073 }
2074 if (PageDoubleMap(page)) {
2075 ret -= 1;
2076 _total_mapcount -= HPAGE_PMD_NR;
2077 }
2078 mapcount = compound_mapcount(page);
2079 ret += mapcount;
2080 _total_mapcount += mapcount;
2081 if (total_mapcount)
2082 *total_mapcount = _total_mapcount;
2083 return ret;
2084 }
2085
2086 /*
2087 * This function splits huge page into normal pages. @page can point to any
2088 * subpage of huge page to split. Split doesn't change the position of @page.
2089 *
2090 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2091 * The huge page must be locked.
2092 *
2093 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2094 *
2095 * Both head page and tail pages will inherit mapping, flags, and so on from
2096 * the hugepage.
2097 *
2098 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2099 * they are not mapped.
2100 *
2101 * Returns 0 if the hugepage is split successfully.
2102 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2103 * us.
2104 */
2105 int split_huge_page_to_list(struct page *page, struct list_head *list)
2106 {
2107 struct page *head = compound_head(page);
2108 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2109 struct anon_vma *anon_vma = NULL;
2110 struct address_space *mapping = NULL;
2111 int count, mapcount, extra_pins, ret;
2112 bool mlocked;
2113 unsigned long flags;
2114
2115 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2116 VM_BUG_ON_PAGE(!PageLocked(page), page);
2117 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2118 VM_BUG_ON_PAGE(!PageCompound(page), page);
2119
2120 if (PageAnon(head)) {
2121 /*
2122 * The caller does not necessarily hold an mmap_sem that would
2123 * prevent the anon_vma disappearing so we first we take a
2124 * reference to it and then lock the anon_vma for write. This
2125 * is similar to page_lock_anon_vma_read except the write lock
2126 * is taken to serialise against parallel split or collapse
2127 * operations.
2128 */
2129 anon_vma = page_get_anon_vma(head);
2130 if (!anon_vma) {
2131 ret = -EBUSY;
2132 goto out;
2133 }
2134 extra_pins = 0;
2135 mapping = NULL;
2136 anon_vma_lock_write(anon_vma);
2137 } else {
2138 mapping = head->mapping;
2139
2140 /* Truncated ? */
2141 if (!mapping) {
2142 ret = -EBUSY;
2143 goto out;
2144 }
2145
2146 /* Addidional pins from radix tree */
2147 extra_pins = HPAGE_PMD_NR;
2148 anon_vma = NULL;
2149 i_mmap_lock_read(mapping);
2150 }
2151
2152 /*
2153 * Racy check if we can split the page, before freeze_page() will
2154 * split PMDs
2155 */
2156 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2157 ret = -EBUSY;
2158 goto out_unlock;
2159 }
2160
2161 mlocked = PageMlocked(page);
2162 freeze_page(head);
2163 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2164
2165 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2166 if (mlocked)
2167 lru_add_drain();
2168
2169 /* prevent PageLRU to go away from under us, and freeze lru stats */
2170 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2171
2172 if (mapping) {
2173 void **pslot;
2174
2175 spin_lock(&mapping->tree_lock);
2176 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2177 page_index(head));
2178 /*
2179 * Check if the head page is present in radix tree.
2180 * We assume all tail are present too, if head is there.
2181 */
2182 if (radix_tree_deref_slot_protected(pslot,
2183 &mapping->tree_lock) != head)
2184 goto fail;
2185 }
2186
2187 /* Prevent deferred_split_scan() touching ->_refcount */
2188 spin_lock(&pgdata->split_queue_lock);
2189 count = page_count(head);
2190 mapcount = total_mapcount(head);
2191 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2192 if (!list_empty(page_deferred_list(head))) {
2193 pgdata->split_queue_len--;
2194 list_del(page_deferred_list(head));
2195 }
2196 if (mapping)
2197 __dec_node_page_state(page, NR_SHMEM_THPS);
2198 spin_unlock(&pgdata->split_queue_lock);
2199 __split_huge_page(page, list, flags);
2200 ret = 0;
2201 } else {
2202 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2203 pr_alert("total_mapcount: %u, page_count(): %u\n",
2204 mapcount, count);
2205 if (PageTail(page))
2206 dump_page(head, NULL);
2207 dump_page(page, "total_mapcount(head) > 0");
2208 BUG();
2209 }
2210 spin_unlock(&pgdata->split_queue_lock);
2211 fail: if (mapping)
2212 spin_unlock(&mapping->tree_lock);
2213 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2214 unfreeze_page(head);
2215 ret = -EBUSY;
2216 }
2217
2218 out_unlock:
2219 if (anon_vma) {
2220 anon_vma_unlock_write(anon_vma);
2221 put_anon_vma(anon_vma);
2222 }
2223 if (mapping)
2224 i_mmap_unlock_read(mapping);
2225 out:
2226 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2227 return ret;
2228 }
2229
2230 void free_transhuge_page(struct page *page)
2231 {
2232 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2233 unsigned long flags;
2234
2235 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2236 if (!list_empty(page_deferred_list(page))) {
2237 pgdata->split_queue_len--;
2238 list_del(page_deferred_list(page));
2239 }
2240 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2241 free_compound_page(page);
2242 }
2243
2244 void deferred_split_huge_page(struct page *page)
2245 {
2246 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2247 unsigned long flags;
2248
2249 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2250
2251 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2252 if (list_empty(page_deferred_list(page))) {
2253 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2254 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2255 pgdata->split_queue_len++;
2256 }
2257 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2258 }
2259
2260 static unsigned long deferred_split_count(struct shrinker *shrink,
2261 struct shrink_control *sc)
2262 {
2263 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2264 return ACCESS_ONCE(pgdata->split_queue_len);
2265 }
2266
2267 static unsigned long deferred_split_scan(struct shrinker *shrink,
2268 struct shrink_control *sc)
2269 {
2270 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2271 unsigned long flags;
2272 LIST_HEAD(list), *pos, *next;
2273 struct page *page;
2274 int split = 0;
2275
2276 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2277 /* Take pin on all head pages to avoid freeing them under us */
2278 list_for_each_safe(pos, next, &pgdata->split_queue) {
2279 page = list_entry((void *)pos, struct page, mapping);
2280 page = compound_head(page);
2281 if (get_page_unless_zero(page)) {
2282 list_move(page_deferred_list(page), &list);
2283 } else {
2284 /* We lost race with put_compound_page() */
2285 list_del_init(page_deferred_list(page));
2286 pgdata->split_queue_len--;
2287 }
2288 if (!--sc->nr_to_scan)
2289 break;
2290 }
2291 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2292
2293 list_for_each_safe(pos, next, &list) {
2294 page = list_entry((void *)pos, struct page, mapping);
2295 lock_page(page);
2296 /* split_huge_page() removes page from list on success */
2297 if (!split_huge_page(page))
2298 split++;
2299 unlock_page(page);
2300 put_page(page);
2301 }
2302
2303 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2304 list_splice_tail(&list, &pgdata->split_queue);
2305 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2306
2307 /*
2308 * Stop shrinker if we didn't split any page, but the queue is empty.
2309 * This can happen if pages were freed under us.
2310 */
2311 if (!split && list_empty(&pgdata->split_queue))
2312 return SHRINK_STOP;
2313 return split;
2314 }
2315
2316 static struct shrinker deferred_split_shrinker = {
2317 .count_objects = deferred_split_count,
2318 .scan_objects = deferred_split_scan,
2319 .seeks = DEFAULT_SEEKS,
2320 .flags = SHRINKER_NUMA_AWARE,
2321 };
2322
2323 #ifdef CONFIG_DEBUG_FS
2324 static int split_huge_pages_set(void *data, u64 val)
2325 {
2326 struct zone *zone;
2327 struct page *page;
2328 unsigned long pfn, max_zone_pfn;
2329 unsigned long total = 0, split = 0;
2330
2331 if (val != 1)
2332 return -EINVAL;
2333
2334 for_each_populated_zone(zone) {
2335 max_zone_pfn = zone_end_pfn(zone);
2336 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2337 if (!pfn_valid(pfn))
2338 continue;
2339
2340 page = pfn_to_page(pfn);
2341 if (!get_page_unless_zero(page))
2342 continue;
2343
2344 if (zone != page_zone(page))
2345 goto next;
2346
2347 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2348 goto next;
2349
2350 total++;
2351 lock_page(page);
2352 if (!split_huge_page(page))
2353 split++;
2354 unlock_page(page);
2355 next:
2356 put_page(page);
2357 }
2358 }
2359
2360 pr_info("%lu of %lu THP split\n", split, total);
2361
2362 return 0;
2363 }
2364 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2365 "%llu\n");
2366
2367 static int __init split_huge_pages_debugfs(void)
2368 {
2369 void *ret;
2370
2371 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2372 &split_huge_pages_fops);
2373 if (!ret)
2374 pr_warn("Failed to create split_huge_pages in debugfs");
2375 return 0;
2376 }
2377 late_initcall(split_huge_pages_debugfs);
2378 #endif