]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/ksm.c
Revert "mm, ksm: convert write_protect_page() to use page_vma_mapped_walk()"
[mirror_ubuntu-zesty-kernel.git] / mm / ksm.c
1 /*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x) (x)
46 #define DO_NUMA(x) do { (x); } while (0)
47 #else
48 #define NUMA(x) (0)
49 #define DO_NUMA(x) do { } while (0)
50 #endif
51
52 /*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
93 */
94
95 /**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100 * @mm: the mm that this information is valid for
101 */
102 struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
105 struct rmap_item *rmap_list;
106 struct mm_struct *mm;
107 };
108
109 /**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118 struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
121 struct rmap_item **rmap_list;
122 unsigned long seqnr;
123 };
124
125 /**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
130 * @hlist: hlist head of rmap_items using this ksm page
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133 */
134 struct stable_node {
135 union {
136 struct rb_node node; /* when node of stable tree */
137 struct { /* when listed for migration */
138 struct list_head *head;
139 struct list_head list;
140 };
141 };
142 struct hlist_head hlist;
143 unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 int nid;
146 #endif
147 };
148
149 /**
150 * struct rmap_item - reverse mapping item for virtual addresses
151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
154 * @mm: the memory structure this rmap_item is pointing into
155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156 * @oldchecksum: previous checksum of the page at that virtual address
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
160 */
161 struct rmap_item {
162 struct rmap_item *rmap_list;
163 union {
164 struct anon_vma *anon_vma; /* when stable */
165 #ifdef CONFIG_NUMA
166 int nid; /* when node of unstable tree */
167 #endif
168 };
169 struct mm_struct *mm;
170 unsigned long address; /* + low bits used for flags below */
171 unsigned int oldchecksum; /* when unstable */
172 union {
173 struct rb_node node; /* when node of unstable tree */
174 struct { /* when listed from stable tree */
175 struct stable_node *head;
176 struct hlist_node hlist;
177 };
178 };
179 };
180
181 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
183 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
184
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197 static struct mm_slot ksm_mm_head = {
198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201 .mm_slot = &ksm_mm_head,
202 };
203
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225
226 /* Checksum of an empty (zeroed) page */
227 static unsigned int zero_checksum __read_mostly;
228
229 /* Whether to merge empty (zeroed) pages with actual zero pages */
230 static bool ksm_use_zero_pages __read_mostly;
231
232 #ifdef CONFIG_NUMA
233 /* Zeroed when merging across nodes is not allowed */
234 static unsigned int ksm_merge_across_nodes = 1;
235 static int ksm_nr_node_ids = 1;
236 #else
237 #define ksm_merge_across_nodes 1U
238 #define ksm_nr_node_ids 1
239 #endif
240
241 #define KSM_RUN_STOP 0
242 #define KSM_RUN_MERGE 1
243 #define KSM_RUN_UNMERGE 2
244 #define KSM_RUN_OFFLINE 4
245 static unsigned long ksm_run = KSM_RUN_STOP;
246 static void wait_while_offlining(void);
247
248 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
249 static DEFINE_MUTEX(ksm_thread_mutex);
250 static DEFINE_SPINLOCK(ksm_mmlist_lock);
251
252 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
253 sizeof(struct __struct), __alignof__(struct __struct),\
254 (__flags), NULL)
255
256 static int __init ksm_slab_init(void)
257 {
258 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
259 if (!rmap_item_cache)
260 goto out;
261
262 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
263 if (!stable_node_cache)
264 goto out_free1;
265
266 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
267 if (!mm_slot_cache)
268 goto out_free2;
269
270 return 0;
271
272 out_free2:
273 kmem_cache_destroy(stable_node_cache);
274 out_free1:
275 kmem_cache_destroy(rmap_item_cache);
276 out:
277 return -ENOMEM;
278 }
279
280 static void __init ksm_slab_free(void)
281 {
282 kmem_cache_destroy(mm_slot_cache);
283 kmem_cache_destroy(stable_node_cache);
284 kmem_cache_destroy(rmap_item_cache);
285 mm_slot_cache = NULL;
286 }
287
288 static inline struct rmap_item *alloc_rmap_item(void)
289 {
290 struct rmap_item *rmap_item;
291
292 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
293 __GFP_NORETRY | __GFP_NOWARN);
294 if (rmap_item)
295 ksm_rmap_items++;
296 return rmap_item;
297 }
298
299 static inline void free_rmap_item(struct rmap_item *rmap_item)
300 {
301 ksm_rmap_items--;
302 rmap_item->mm = NULL; /* debug safety */
303 kmem_cache_free(rmap_item_cache, rmap_item);
304 }
305
306 static inline struct stable_node *alloc_stable_node(void)
307 {
308 /*
309 * The allocation can take too long with GFP_KERNEL when memory is under
310 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
311 * grants access to memory reserves, helping to avoid this problem.
312 */
313 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
314 }
315
316 static inline void free_stable_node(struct stable_node *stable_node)
317 {
318 kmem_cache_free(stable_node_cache, stable_node);
319 }
320
321 static inline struct mm_slot *alloc_mm_slot(void)
322 {
323 if (!mm_slot_cache) /* initialization failed */
324 return NULL;
325 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
326 }
327
328 static inline void free_mm_slot(struct mm_slot *mm_slot)
329 {
330 kmem_cache_free(mm_slot_cache, mm_slot);
331 }
332
333 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
334 {
335 struct mm_slot *slot;
336
337 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
338 if (slot->mm == mm)
339 return slot;
340
341 return NULL;
342 }
343
344 static void insert_to_mm_slots_hash(struct mm_struct *mm,
345 struct mm_slot *mm_slot)
346 {
347 mm_slot->mm = mm;
348 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
349 }
350
351 /*
352 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
353 * page tables after it has passed through ksm_exit() - which, if necessary,
354 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
355 * a special flag: they can just back out as soon as mm_users goes to zero.
356 * ksm_test_exit() is used throughout to make this test for exit: in some
357 * places for correctness, in some places just to avoid unnecessary work.
358 */
359 static inline bool ksm_test_exit(struct mm_struct *mm)
360 {
361 return atomic_read(&mm->mm_users) == 0;
362 }
363
364 /*
365 * We use break_ksm to break COW on a ksm page: it's a stripped down
366 *
367 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
368 * put_page(page);
369 *
370 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
371 * in case the application has unmapped and remapped mm,addr meanwhile.
372 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
373 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
374 *
375 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
376 * of the process that owns 'vma'. We also do not want to enforce
377 * protection keys here anyway.
378 */
379 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
380 {
381 struct page *page;
382 int ret = 0;
383
384 do {
385 cond_resched();
386 page = follow_page(vma, addr,
387 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
388 if (IS_ERR_OR_NULL(page))
389 break;
390 if (PageKsm(page))
391 ret = handle_mm_fault(vma, addr,
392 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
393 else
394 ret = VM_FAULT_WRITE;
395 put_page(page);
396 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
397 /*
398 * We must loop because handle_mm_fault() may back out if there's
399 * any difficulty e.g. if pte accessed bit gets updated concurrently.
400 *
401 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
402 * COW has been broken, even if the vma does not permit VM_WRITE;
403 * but note that a concurrent fault might break PageKsm for us.
404 *
405 * VM_FAULT_SIGBUS could occur if we race with truncation of the
406 * backing file, which also invalidates anonymous pages: that's
407 * okay, that truncation will have unmapped the PageKsm for us.
408 *
409 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
410 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
411 * current task has TIF_MEMDIE set, and will be OOM killed on return
412 * to user; and ksmd, having no mm, would never be chosen for that.
413 *
414 * But if the mm is in a limited mem_cgroup, then the fault may fail
415 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
416 * even ksmd can fail in this way - though it's usually breaking ksm
417 * just to undo a merge it made a moment before, so unlikely to oom.
418 *
419 * That's a pity: we might therefore have more kernel pages allocated
420 * than we're counting as nodes in the stable tree; but ksm_do_scan
421 * will retry to break_cow on each pass, so should recover the page
422 * in due course. The important thing is to not let VM_MERGEABLE
423 * be cleared while any such pages might remain in the area.
424 */
425 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
426 }
427
428 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
429 unsigned long addr)
430 {
431 struct vm_area_struct *vma;
432 if (ksm_test_exit(mm))
433 return NULL;
434 vma = find_vma(mm, addr);
435 if (!vma || vma->vm_start > addr)
436 return NULL;
437 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
438 return NULL;
439 return vma;
440 }
441
442 static void break_cow(struct rmap_item *rmap_item)
443 {
444 struct mm_struct *mm = rmap_item->mm;
445 unsigned long addr = rmap_item->address;
446 struct vm_area_struct *vma;
447
448 /*
449 * It is not an accident that whenever we want to break COW
450 * to undo, we also need to drop a reference to the anon_vma.
451 */
452 put_anon_vma(rmap_item->anon_vma);
453
454 down_read(&mm->mmap_sem);
455 vma = find_mergeable_vma(mm, addr);
456 if (vma)
457 break_ksm(vma, addr);
458 up_read(&mm->mmap_sem);
459 }
460
461 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
462 {
463 struct mm_struct *mm = rmap_item->mm;
464 unsigned long addr = rmap_item->address;
465 struct vm_area_struct *vma;
466 struct page *page;
467
468 down_read(&mm->mmap_sem);
469 vma = find_mergeable_vma(mm, addr);
470 if (!vma)
471 goto out;
472
473 page = follow_page(vma, addr, FOLL_GET);
474 if (IS_ERR_OR_NULL(page))
475 goto out;
476 if (PageAnon(page)) {
477 flush_anon_page(vma, page, addr);
478 flush_dcache_page(page);
479 } else {
480 put_page(page);
481 out:
482 page = NULL;
483 }
484 up_read(&mm->mmap_sem);
485 return page;
486 }
487
488 /*
489 * This helper is used for getting right index into array of tree roots.
490 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
491 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
492 * every node has its own stable and unstable tree.
493 */
494 static inline int get_kpfn_nid(unsigned long kpfn)
495 {
496 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
497 }
498
499 static void remove_node_from_stable_tree(struct stable_node *stable_node)
500 {
501 struct rmap_item *rmap_item;
502
503 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
504 if (rmap_item->hlist.next)
505 ksm_pages_sharing--;
506 else
507 ksm_pages_shared--;
508 put_anon_vma(rmap_item->anon_vma);
509 rmap_item->address &= PAGE_MASK;
510 cond_resched();
511 }
512
513 if (stable_node->head == &migrate_nodes)
514 list_del(&stable_node->list);
515 else
516 rb_erase(&stable_node->node,
517 root_stable_tree + NUMA(stable_node->nid));
518 free_stable_node(stable_node);
519 }
520
521 /*
522 * get_ksm_page: checks if the page indicated by the stable node
523 * is still its ksm page, despite having held no reference to it.
524 * In which case we can trust the content of the page, and it
525 * returns the gotten page; but if the page has now been zapped,
526 * remove the stale node from the stable tree and return NULL.
527 * But beware, the stable node's page might be being migrated.
528 *
529 * You would expect the stable_node to hold a reference to the ksm page.
530 * But if it increments the page's count, swapping out has to wait for
531 * ksmd to come around again before it can free the page, which may take
532 * seconds or even minutes: much too unresponsive. So instead we use a
533 * "keyhole reference": access to the ksm page from the stable node peeps
534 * out through its keyhole to see if that page still holds the right key,
535 * pointing back to this stable node. This relies on freeing a PageAnon
536 * page to reset its page->mapping to NULL, and relies on no other use of
537 * a page to put something that might look like our key in page->mapping.
538 * is on its way to being freed; but it is an anomaly to bear in mind.
539 */
540 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
541 {
542 struct page *page;
543 void *expected_mapping;
544 unsigned long kpfn;
545
546 expected_mapping = (void *)((unsigned long)stable_node |
547 PAGE_MAPPING_KSM);
548 again:
549 kpfn = READ_ONCE(stable_node->kpfn);
550 page = pfn_to_page(kpfn);
551
552 /*
553 * page is computed from kpfn, so on most architectures reading
554 * page->mapping is naturally ordered after reading node->kpfn,
555 * but on Alpha we need to be more careful.
556 */
557 smp_read_barrier_depends();
558 if (READ_ONCE(page->mapping) != expected_mapping)
559 goto stale;
560
561 /*
562 * We cannot do anything with the page while its refcount is 0.
563 * Usually 0 means free, or tail of a higher-order page: in which
564 * case this node is no longer referenced, and should be freed;
565 * however, it might mean that the page is under page_freeze_refs().
566 * The __remove_mapping() case is easy, again the node is now stale;
567 * but if page is swapcache in migrate_page_move_mapping(), it might
568 * still be our page, in which case it's essential to keep the node.
569 */
570 while (!get_page_unless_zero(page)) {
571 /*
572 * Another check for page->mapping != expected_mapping would
573 * work here too. We have chosen the !PageSwapCache test to
574 * optimize the common case, when the page is or is about to
575 * be freed: PageSwapCache is cleared (under spin_lock_irq)
576 * in the freeze_refs section of __remove_mapping(); but Anon
577 * page->mapping reset to NULL later, in free_pages_prepare().
578 */
579 if (!PageSwapCache(page))
580 goto stale;
581 cpu_relax();
582 }
583
584 if (READ_ONCE(page->mapping) != expected_mapping) {
585 put_page(page);
586 goto stale;
587 }
588
589 if (lock_it) {
590 lock_page(page);
591 if (READ_ONCE(page->mapping) != expected_mapping) {
592 unlock_page(page);
593 put_page(page);
594 goto stale;
595 }
596 }
597 return page;
598
599 stale:
600 /*
601 * We come here from above when page->mapping or !PageSwapCache
602 * suggests that the node is stale; but it might be under migration.
603 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
604 * before checking whether node->kpfn has been changed.
605 */
606 smp_rmb();
607 if (READ_ONCE(stable_node->kpfn) != kpfn)
608 goto again;
609 remove_node_from_stable_tree(stable_node);
610 return NULL;
611 }
612
613 /*
614 * Removing rmap_item from stable or unstable tree.
615 * This function will clean the information from the stable/unstable tree.
616 */
617 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
618 {
619 if (rmap_item->address & STABLE_FLAG) {
620 struct stable_node *stable_node;
621 struct page *page;
622
623 stable_node = rmap_item->head;
624 page = get_ksm_page(stable_node, true);
625 if (!page)
626 goto out;
627
628 hlist_del(&rmap_item->hlist);
629 unlock_page(page);
630 put_page(page);
631
632 if (!hlist_empty(&stable_node->hlist))
633 ksm_pages_sharing--;
634 else
635 ksm_pages_shared--;
636
637 put_anon_vma(rmap_item->anon_vma);
638 rmap_item->address &= PAGE_MASK;
639
640 } else if (rmap_item->address & UNSTABLE_FLAG) {
641 unsigned char age;
642 /*
643 * Usually ksmd can and must skip the rb_erase, because
644 * root_unstable_tree was already reset to RB_ROOT.
645 * But be careful when an mm is exiting: do the rb_erase
646 * if this rmap_item was inserted by this scan, rather
647 * than left over from before.
648 */
649 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
650 BUG_ON(age > 1);
651 if (!age)
652 rb_erase(&rmap_item->node,
653 root_unstable_tree + NUMA(rmap_item->nid));
654 ksm_pages_unshared--;
655 rmap_item->address &= PAGE_MASK;
656 }
657 out:
658 cond_resched(); /* we're called from many long loops */
659 }
660
661 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
662 struct rmap_item **rmap_list)
663 {
664 while (*rmap_list) {
665 struct rmap_item *rmap_item = *rmap_list;
666 *rmap_list = rmap_item->rmap_list;
667 remove_rmap_item_from_tree(rmap_item);
668 free_rmap_item(rmap_item);
669 }
670 }
671
672 /*
673 * Though it's very tempting to unmerge rmap_items from stable tree rather
674 * than check every pte of a given vma, the locking doesn't quite work for
675 * that - an rmap_item is assigned to the stable tree after inserting ksm
676 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
677 * rmap_items from parent to child at fork time (so as not to waste time
678 * if exit comes before the next scan reaches it).
679 *
680 * Similarly, although we'd like to remove rmap_items (so updating counts
681 * and freeing memory) when unmerging an area, it's easier to leave that
682 * to the next pass of ksmd - consider, for example, how ksmd might be
683 * in cmp_and_merge_page on one of the rmap_items we would be removing.
684 */
685 static int unmerge_ksm_pages(struct vm_area_struct *vma,
686 unsigned long start, unsigned long end)
687 {
688 unsigned long addr;
689 int err = 0;
690
691 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
692 if (ksm_test_exit(vma->vm_mm))
693 break;
694 if (signal_pending(current))
695 err = -ERESTARTSYS;
696 else
697 err = break_ksm(vma, addr);
698 }
699 return err;
700 }
701
702 #ifdef CONFIG_SYSFS
703 /*
704 * Only called through the sysfs control interface:
705 */
706 static int remove_stable_node(struct stable_node *stable_node)
707 {
708 struct page *page;
709 int err;
710
711 page = get_ksm_page(stable_node, true);
712 if (!page) {
713 /*
714 * get_ksm_page did remove_node_from_stable_tree itself.
715 */
716 return 0;
717 }
718
719 if (WARN_ON_ONCE(page_mapped(page))) {
720 /*
721 * This should not happen: but if it does, just refuse to let
722 * merge_across_nodes be switched - there is no need to panic.
723 */
724 err = -EBUSY;
725 } else {
726 /*
727 * The stable node did not yet appear stale to get_ksm_page(),
728 * since that allows for an unmapped ksm page to be recognized
729 * right up until it is freed; but the node is safe to remove.
730 * This page might be in a pagevec waiting to be freed,
731 * or it might be PageSwapCache (perhaps under writeback),
732 * or it might have been removed from swapcache a moment ago.
733 */
734 set_page_stable_node(page, NULL);
735 remove_node_from_stable_tree(stable_node);
736 err = 0;
737 }
738
739 unlock_page(page);
740 put_page(page);
741 return err;
742 }
743
744 static int remove_all_stable_nodes(void)
745 {
746 struct stable_node *stable_node, *next;
747 int nid;
748 int err = 0;
749
750 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
751 while (root_stable_tree[nid].rb_node) {
752 stable_node = rb_entry(root_stable_tree[nid].rb_node,
753 struct stable_node, node);
754 if (remove_stable_node(stable_node)) {
755 err = -EBUSY;
756 break; /* proceed to next nid */
757 }
758 cond_resched();
759 }
760 }
761 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
762 if (remove_stable_node(stable_node))
763 err = -EBUSY;
764 cond_resched();
765 }
766 return err;
767 }
768
769 static int unmerge_and_remove_all_rmap_items(void)
770 {
771 struct mm_slot *mm_slot;
772 struct mm_struct *mm;
773 struct vm_area_struct *vma;
774 int err = 0;
775
776 spin_lock(&ksm_mmlist_lock);
777 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
778 struct mm_slot, mm_list);
779 spin_unlock(&ksm_mmlist_lock);
780
781 for (mm_slot = ksm_scan.mm_slot;
782 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
783 mm = mm_slot->mm;
784 down_read(&mm->mmap_sem);
785 for (vma = mm->mmap; vma; vma = vma->vm_next) {
786 if (ksm_test_exit(mm))
787 break;
788 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
789 continue;
790 err = unmerge_ksm_pages(vma,
791 vma->vm_start, vma->vm_end);
792 if (err)
793 goto error;
794 }
795
796 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
797 up_read(&mm->mmap_sem);
798
799 spin_lock(&ksm_mmlist_lock);
800 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
801 struct mm_slot, mm_list);
802 if (ksm_test_exit(mm)) {
803 hash_del(&mm_slot->link);
804 list_del(&mm_slot->mm_list);
805 spin_unlock(&ksm_mmlist_lock);
806
807 free_mm_slot(mm_slot);
808 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
809 mmdrop(mm);
810 } else
811 spin_unlock(&ksm_mmlist_lock);
812 }
813
814 /* Clean up stable nodes, but don't worry if some are still busy */
815 remove_all_stable_nodes();
816 ksm_scan.seqnr = 0;
817 return 0;
818
819 error:
820 up_read(&mm->mmap_sem);
821 spin_lock(&ksm_mmlist_lock);
822 ksm_scan.mm_slot = &ksm_mm_head;
823 spin_unlock(&ksm_mmlist_lock);
824 return err;
825 }
826 #endif /* CONFIG_SYSFS */
827
828 static u32 calc_checksum(struct page *page)
829 {
830 u32 checksum;
831 void *addr = kmap_atomic(page);
832 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
833 kunmap_atomic(addr);
834 return checksum;
835 }
836
837 static int memcmp_pages(struct page *page1, struct page *page2)
838 {
839 char *addr1, *addr2;
840 int ret;
841
842 addr1 = kmap_atomic(page1);
843 addr2 = kmap_atomic(page2);
844 ret = memcmp(addr1, addr2, PAGE_SIZE);
845 kunmap_atomic(addr2);
846 kunmap_atomic(addr1);
847 return ret;
848 }
849
850 static inline int pages_identical(struct page *page1, struct page *page2)
851 {
852 return !memcmp_pages(page1, page2);
853 }
854
855 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
856 pte_t *orig_pte)
857 {
858 struct mm_struct *mm = vma->vm_mm;
859 unsigned long addr;
860 pte_t *ptep;
861 spinlock_t *ptl;
862 int swapped;
863 int err = -EFAULT;
864 unsigned long mmun_start; /* For mmu_notifiers */
865 unsigned long mmun_end; /* For mmu_notifiers */
866
867 addr = page_address_in_vma(page, vma);
868 if (addr == -EFAULT)
869 goto out;
870
871 BUG_ON(PageTransCompound(page));
872
873 mmun_start = addr;
874 mmun_end = addr + PAGE_SIZE;
875 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
876
877 ptep = page_check_address(page, mm, addr, &ptl, 0);
878 if (!ptep)
879 goto out_mn;
880
881 if (pte_write(*ptep) || pte_dirty(*ptep)) {
882 pte_t entry;
883
884 swapped = PageSwapCache(page);
885 flush_cache_page(vma, addr, page_to_pfn(page));
886 /*
887 * Ok this is tricky, when get_user_pages_fast() run it doesn't
888 * take any lock, therefore the check that we are going to make
889 * with the pagecount against the mapcount is racey and
890 * O_DIRECT can happen right after the check.
891 * So we clear the pte and flush the tlb before the check
892 * this assure us that no O_DIRECT can happen after the check
893 * or in the middle of the check.
894 */
895 entry = ptep_clear_flush_notify(vma, addr, ptep);
896 /*
897 * Check that no O_DIRECT or similar I/O is in progress on the
898 * page
899 */
900 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
901 set_pte_at(mm, addr, ptep, entry);
902 goto out_unlock;
903 }
904 if (pte_dirty(entry))
905 set_page_dirty(page);
906 entry = pte_mkclean(pte_wrprotect(entry));
907 set_pte_at_notify(mm, addr, ptep, entry);
908 }
909 *orig_pte = *ptep;
910 err = 0;
911
912 out_unlock:
913 pte_unmap_unlock(ptep, ptl);
914 out_mn:
915 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
916 out:
917 return err;
918 }
919
920 /**
921 * replace_page - replace page in vma by new ksm page
922 * @vma: vma that holds the pte pointing to page
923 * @page: the page we are replacing by kpage
924 * @kpage: the ksm page we replace page by
925 * @orig_pte: the original value of the pte
926 *
927 * Returns 0 on success, -EFAULT on failure.
928 */
929 static int replace_page(struct vm_area_struct *vma, struct page *page,
930 struct page *kpage, pte_t orig_pte)
931 {
932 struct mm_struct *mm = vma->vm_mm;
933 pmd_t *pmd;
934 pte_t *ptep;
935 pte_t newpte;
936 spinlock_t *ptl;
937 unsigned long addr;
938 int err = -EFAULT;
939 unsigned long mmun_start; /* For mmu_notifiers */
940 unsigned long mmun_end; /* For mmu_notifiers */
941
942 addr = page_address_in_vma(page, vma);
943 if (addr == -EFAULT)
944 goto out;
945
946 pmd = mm_find_pmd(mm, addr);
947 if (!pmd)
948 goto out;
949
950 mmun_start = addr;
951 mmun_end = addr + PAGE_SIZE;
952 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
953
954 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
955 if (!pte_same(*ptep, orig_pte)) {
956 pte_unmap_unlock(ptep, ptl);
957 goto out_mn;
958 }
959
960 /*
961 * No need to check ksm_use_zero_pages here: we can only have a
962 * zero_page here if ksm_use_zero_pages was enabled alreaady.
963 */
964 if (!is_zero_pfn(page_to_pfn(kpage))) {
965 get_page(kpage);
966 page_add_anon_rmap(kpage, vma, addr, false);
967 newpte = mk_pte(kpage, vma->vm_page_prot);
968 } else {
969 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
970 vma->vm_page_prot));
971 }
972
973 flush_cache_page(vma, addr, pte_pfn(*ptep));
974 ptep_clear_flush_notify(vma, addr, ptep);
975 set_pte_at_notify(mm, addr, ptep, newpte);
976
977 page_remove_rmap(page, false);
978 if (!page_mapped(page))
979 try_to_free_swap(page);
980 put_page(page);
981
982 pte_unmap_unlock(ptep, ptl);
983 err = 0;
984 out_mn:
985 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
986 out:
987 return err;
988 }
989
990 /*
991 * try_to_merge_one_page - take two pages and merge them into one
992 * @vma: the vma that holds the pte pointing to page
993 * @page: the PageAnon page that we want to replace with kpage
994 * @kpage: the PageKsm page that we want to map instead of page,
995 * or NULL the first time when we want to use page as kpage.
996 *
997 * This function returns 0 if the pages were merged, -EFAULT otherwise.
998 */
999 static int try_to_merge_one_page(struct vm_area_struct *vma,
1000 struct page *page, struct page *kpage)
1001 {
1002 pte_t orig_pte = __pte(0);
1003 int err = -EFAULT;
1004
1005 if (page == kpage) /* ksm page forked */
1006 return 0;
1007
1008 if (!PageAnon(page))
1009 goto out;
1010
1011 /*
1012 * We need the page lock to read a stable PageSwapCache in
1013 * write_protect_page(). We use trylock_page() instead of
1014 * lock_page() because we don't want to wait here - we
1015 * prefer to continue scanning and merging different pages,
1016 * then come back to this page when it is unlocked.
1017 */
1018 if (!trylock_page(page))
1019 goto out;
1020
1021 if (PageTransCompound(page)) {
1022 err = split_huge_page(page);
1023 if (err)
1024 goto out_unlock;
1025 }
1026
1027 /*
1028 * If this anonymous page is mapped only here, its pte may need
1029 * to be write-protected. If it's mapped elsewhere, all of its
1030 * ptes are necessarily already write-protected. But in either
1031 * case, we need to lock and check page_count is not raised.
1032 */
1033 if (write_protect_page(vma, page, &orig_pte) == 0) {
1034 if (!kpage) {
1035 /*
1036 * While we hold page lock, upgrade page from
1037 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1038 * stable_tree_insert() will update stable_node.
1039 */
1040 set_page_stable_node(page, NULL);
1041 mark_page_accessed(page);
1042 /*
1043 * Page reclaim just frees a clean page with no dirty
1044 * ptes: make sure that the ksm page would be swapped.
1045 */
1046 if (!PageDirty(page))
1047 SetPageDirty(page);
1048 err = 0;
1049 } else if (pages_identical(page, kpage))
1050 err = replace_page(vma, page, kpage, orig_pte);
1051 }
1052
1053 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1054 munlock_vma_page(page);
1055 if (!PageMlocked(kpage)) {
1056 unlock_page(page);
1057 lock_page(kpage);
1058 mlock_vma_page(kpage);
1059 page = kpage; /* for final unlock */
1060 }
1061 }
1062
1063 out_unlock:
1064 unlock_page(page);
1065 out:
1066 return err;
1067 }
1068
1069 /*
1070 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1071 * but no new kernel page is allocated: kpage must already be a ksm page.
1072 *
1073 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1074 */
1075 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1076 struct page *page, struct page *kpage)
1077 {
1078 struct mm_struct *mm = rmap_item->mm;
1079 struct vm_area_struct *vma;
1080 int err = -EFAULT;
1081
1082 down_read(&mm->mmap_sem);
1083 vma = find_mergeable_vma(mm, rmap_item->address);
1084 if (!vma)
1085 goto out;
1086
1087 err = try_to_merge_one_page(vma, page, kpage);
1088 if (err)
1089 goto out;
1090
1091 /* Unstable nid is in union with stable anon_vma: remove first */
1092 remove_rmap_item_from_tree(rmap_item);
1093
1094 /* Must get reference to anon_vma while still holding mmap_sem */
1095 rmap_item->anon_vma = vma->anon_vma;
1096 get_anon_vma(vma->anon_vma);
1097 out:
1098 up_read(&mm->mmap_sem);
1099 return err;
1100 }
1101
1102 /*
1103 * try_to_merge_two_pages - take two identical pages and prepare them
1104 * to be merged into one page.
1105 *
1106 * This function returns the kpage if we successfully merged two identical
1107 * pages into one ksm page, NULL otherwise.
1108 *
1109 * Note that this function upgrades page to ksm page: if one of the pages
1110 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1111 */
1112 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1113 struct page *page,
1114 struct rmap_item *tree_rmap_item,
1115 struct page *tree_page)
1116 {
1117 int err;
1118
1119 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1120 if (!err) {
1121 err = try_to_merge_with_ksm_page(tree_rmap_item,
1122 tree_page, page);
1123 /*
1124 * If that fails, we have a ksm page with only one pte
1125 * pointing to it: so break it.
1126 */
1127 if (err)
1128 break_cow(rmap_item);
1129 }
1130 return err ? NULL : page;
1131 }
1132
1133 /*
1134 * stable_tree_search - search for page inside the stable tree
1135 *
1136 * This function checks if there is a page inside the stable tree
1137 * with identical content to the page that we are scanning right now.
1138 *
1139 * This function returns the stable tree node of identical content if found,
1140 * NULL otherwise.
1141 */
1142 static struct page *stable_tree_search(struct page *page)
1143 {
1144 int nid;
1145 struct rb_root *root;
1146 struct rb_node **new;
1147 struct rb_node *parent;
1148 struct stable_node *stable_node;
1149 struct stable_node *page_node;
1150
1151 page_node = page_stable_node(page);
1152 if (page_node && page_node->head != &migrate_nodes) {
1153 /* ksm page forked */
1154 get_page(page);
1155 return page;
1156 }
1157
1158 nid = get_kpfn_nid(page_to_pfn(page));
1159 root = root_stable_tree + nid;
1160 again:
1161 new = &root->rb_node;
1162 parent = NULL;
1163
1164 while (*new) {
1165 struct page *tree_page;
1166 int ret;
1167
1168 cond_resched();
1169 stable_node = rb_entry(*new, struct stable_node, node);
1170 tree_page = get_ksm_page(stable_node, false);
1171 if (!tree_page) {
1172 /*
1173 * If we walked over a stale stable_node,
1174 * get_ksm_page() will call rb_erase() and it
1175 * may rebalance the tree from under us. So
1176 * restart the search from scratch. Returning
1177 * NULL would be safe too, but we'd generate
1178 * false negative insertions just because some
1179 * stable_node was stale.
1180 */
1181 goto again;
1182 }
1183
1184 ret = memcmp_pages(page, tree_page);
1185 put_page(tree_page);
1186
1187 parent = *new;
1188 if (ret < 0)
1189 new = &parent->rb_left;
1190 else if (ret > 0)
1191 new = &parent->rb_right;
1192 else {
1193 /*
1194 * Lock and unlock the stable_node's page (which
1195 * might already have been migrated) so that page
1196 * migration is sure to notice its raised count.
1197 * It would be more elegant to return stable_node
1198 * than kpage, but that involves more changes.
1199 */
1200 tree_page = get_ksm_page(stable_node, true);
1201 if (tree_page) {
1202 unlock_page(tree_page);
1203 if (get_kpfn_nid(stable_node->kpfn) !=
1204 NUMA(stable_node->nid)) {
1205 put_page(tree_page);
1206 goto replace;
1207 }
1208 return tree_page;
1209 }
1210 /*
1211 * There is now a place for page_node, but the tree may
1212 * have been rebalanced, so re-evaluate parent and new.
1213 */
1214 if (page_node)
1215 goto again;
1216 return NULL;
1217 }
1218 }
1219
1220 if (!page_node)
1221 return NULL;
1222
1223 list_del(&page_node->list);
1224 DO_NUMA(page_node->nid = nid);
1225 rb_link_node(&page_node->node, parent, new);
1226 rb_insert_color(&page_node->node, root);
1227 get_page(page);
1228 return page;
1229
1230 replace:
1231 if (page_node) {
1232 list_del(&page_node->list);
1233 DO_NUMA(page_node->nid = nid);
1234 rb_replace_node(&stable_node->node, &page_node->node, root);
1235 get_page(page);
1236 } else {
1237 rb_erase(&stable_node->node, root);
1238 page = NULL;
1239 }
1240 stable_node->head = &migrate_nodes;
1241 list_add(&stable_node->list, stable_node->head);
1242 return page;
1243 }
1244
1245 /*
1246 * stable_tree_insert - insert stable tree node pointing to new ksm page
1247 * into the stable tree.
1248 *
1249 * This function returns the stable tree node just allocated on success,
1250 * NULL otherwise.
1251 */
1252 static struct stable_node *stable_tree_insert(struct page *kpage)
1253 {
1254 int nid;
1255 unsigned long kpfn;
1256 struct rb_root *root;
1257 struct rb_node **new;
1258 struct rb_node *parent;
1259 struct stable_node *stable_node;
1260
1261 kpfn = page_to_pfn(kpage);
1262 nid = get_kpfn_nid(kpfn);
1263 root = root_stable_tree + nid;
1264 again:
1265 parent = NULL;
1266 new = &root->rb_node;
1267
1268 while (*new) {
1269 struct page *tree_page;
1270 int ret;
1271
1272 cond_resched();
1273 stable_node = rb_entry(*new, struct stable_node, node);
1274 tree_page = get_ksm_page(stable_node, false);
1275 if (!tree_page) {
1276 /*
1277 * If we walked over a stale stable_node,
1278 * get_ksm_page() will call rb_erase() and it
1279 * may rebalance the tree from under us. So
1280 * restart the search from scratch. Returning
1281 * NULL would be safe too, but we'd generate
1282 * false negative insertions just because some
1283 * stable_node was stale.
1284 */
1285 goto again;
1286 }
1287
1288 ret = memcmp_pages(kpage, tree_page);
1289 put_page(tree_page);
1290
1291 parent = *new;
1292 if (ret < 0)
1293 new = &parent->rb_left;
1294 else if (ret > 0)
1295 new = &parent->rb_right;
1296 else {
1297 /*
1298 * It is not a bug that stable_tree_search() didn't
1299 * find this node: because at that time our page was
1300 * not yet write-protected, so may have changed since.
1301 */
1302 return NULL;
1303 }
1304 }
1305
1306 stable_node = alloc_stable_node();
1307 if (!stable_node)
1308 return NULL;
1309
1310 INIT_HLIST_HEAD(&stable_node->hlist);
1311 stable_node->kpfn = kpfn;
1312 set_page_stable_node(kpage, stable_node);
1313 DO_NUMA(stable_node->nid = nid);
1314 rb_link_node(&stable_node->node, parent, new);
1315 rb_insert_color(&stable_node->node, root);
1316
1317 return stable_node;
1318 }
1319
1320 /*
1321 * unstable_tree_search_insert - search for identical page,
1322 * else insert rmap_item into the unstable tree.
1323 *
1324 * This function searches for a page in the unstable tree identical to the
1325 * page currently being scanned; and if no identical page is found in the
1326 * tree, we insert rmap_item as a new object into the unstable tree.
1327 *
1328 * This function returns pointer to rmap_item found to be identical
1329 * to the currently scanned page, NULL otherwise.
1330 *
1331 * This function does both searching and inserting, because they share
1332 * the same walking algorithm in an rbtree.
1333 */
1334 static
1335 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1336 struct page *page,
1337 struct page **tree_pagep)
1338 {
1339 struct rb_node **new;
1340 struct rb_root *root;
1341 struct rb_node *parent = NULL;
1342 int nid;
1343
1344 nid = get_kpfn_nid(page_to_pfn(page));
1345 root = root_unstable_tree + nid;
1346 new = &root->rb_node;
1347
1348 while (*new) {
1349 struct rmap_item *tree_rmap_item;
1350 struct page *tree_page;
1351 int ret;
1352
1353 cond_resched();
1354 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1355 tree_page = get_mergeable_page(tree_rmap_item);
1356 if (!tree_page)
1357 return NULL;
1358
1359 /*
1360 * Don't substitute a ksm page for a forked page.
1361 */
1362 if (page == tree_page) {
1363 put_page(tree_page);
1364 return NULL;
1365 }
1366
1367 ret = memcmp_pages(page, tree_page);
1368
1369 parent = *new;
1370 if (ret < 0) {
1371 put_page(tree_page);
1372 new = &parent->rb_left;
1373 } else if (ret > 0) {
1374 put_page(tree_page);
1375 new = &parent->rb_right;
1376 } else if (!ksm_merge_across_nodes &&
1377 page_to_nid(tree_page) != nid) {
1378 /*
1379 * If tree_page has been migrated to another NUMA node,
1380 * it will be flushed out and put in the right unstable
1381 * tree next time: only merge with it when across_nodes.
1382 */
1383 put_page(tree_page);
1384 return NULL;
1385 } else {
1386 *tree_pagep = tree_page;
1387 return tree_rmap_item;
1388 }
1389 }
1390
1391 rmap_item->address |= UNSTABLE_FLAG;
1392 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1393 DO_NUMA(rmap_item->nid = nid);
1394 rb_link_node(&rmap_item->node, parent, new);
1395 rb_insert_color(&rmap_item->node, root);
1396
1397 ksm_pages_unshared++;
1398 return NULL;
1399 }
1400
1401 /*
1402 * stable_tree_append - add another rmap_item to the linked list of
1403 * rmap_items hanging off a given node of the stable tree, all sharing
1404 * the same ksm page.
1405 */
1406 static void stable_tree_append(struct rmap_item *rmap_item,
1407 struct stable_node *stable_node)
1408 {
1409 rmap_item->head = stable_node;
1410 rmap_item->address |= STABLE_FLAG;
1411 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1412
1413 if (rmap_item->hlist.next)
1414 ksm_pages_sharing++;
1415 else
1416 ksm_pages_shared++;
1417 }
1418
1419 /*
1420 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1421 * if not, compare checksum to previous and if it's the same, see if page can
1422 * be inserted into the unstable tree, or merged with a page already there and
1423 * both transferred to the stable tree.
1424 *
1425 * @page: the page that we are searching identical page to.
1426 * @rmap_item: the reverse mapping into the virtual address of this page
1427 */
1428 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1429 {
1430 struct rmap_item *tree_rmap_item;
1431 struct page *tree_page = NULL;
1432 struct stable_node *stable_node;
1433 struct page *kpage;
1434 unsigned int checksum;
1435 int err;
1436
1437 stable_node = page_stable_node(page);
1438 if (stable_node) {
1439 if (stable_node->head != &migrate_nodes &&
1440 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1441 rb_erase(&stable_node->node,
1442 root_stable_tree + NUMA(stable_node->nid));
1443 stable_node->head = &migrate_nodes;
1444 list_add(&stable_node->list, stable_node->head);
1445 }
1446 if (stable_node->head != &migrate_nodes &&
1447 rmap_item->head == stable_node)
1448 return;
1449 }
1450
1451 /* We first start with searching the page inside the stable tree */
1452 kpage = stable_tree_search(page);
1453 if (kpage == page && rmap_item->head == stable_node) {
1454 put_page(kpage);
1455 return;
1456 }
1457
1458 remove_rmap_item_from_tree(rmap_item);
1459
1460 if (kpage) {
1461 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1462 if (!err) {
1463 /*
1464 * The page was successfully merged:
1465 * add its rmap_item to the stable tree.
1466 */
1467 lock_page(kpage);
1468 stable_tree_append(rmap_item, page_stable_node(kpage));
1469 unlock_page(kpage);
1470 }
1471 put_page(kpage);
1472 return;
1473 }
1474
1475 /*
1476 * If the hash value of the page has changed from the last time
1477 * we calculated it, this page is changing frequently: therefore we
1478 * don't want to insert it in the unstable tree, and we don't want
1479 * to waste our time searching for something identical to it there.
1480 */
1481 checksum = calc_checksum(page);
1482 if (rmap_item->oldchecksum != checksum) {
1483 rmap_item->oldchecksum = checksum;
1484 return;
1485 }
1486
1487 /*
1488 * Same checksum as an empty page. We attempt to merge it with the
1489 * appropriate zero page if the user enabled this via sysfs.
1490 */
1491 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
1492 struct vm_area_struct *vma;
1493
1494 vma = find_mergeable_vma(rmap_item->mm, rmap_item->address);
1495 err = try_to_merge_one_page(vma, page,
1496 ZERO_PAGE(rmap_item->address));
1497 /*
1498 * In case of failure, the page was not really empty, so we
1499 * need to continue. Otherwise we're done.
1500 */
1501 if (!err)
1502 return;
1503 }
1504 tree_rmap_item =
1505 unstable_tree_search_insert(rmap_item, page, &tree_page);
1506 if (tree_rmap_item) {
1507 kpage = try_to_merge_two_pages(rmap_item, page,
1508 tree_rmap_item, tree_page);
1509 put_page(tree_page);
1510 if (kpage) {
1511 /*
1512 * The pages were successfully merged: insert new
1513 * node in the stable tree and add both rmap_items.
1514 */
1515 lock_page(kpage);
1516 stable_node = stable_tree_insert(kpage);
1517 if (stable_node) {
1518 stable_tree_append(tree_rmap_item, stable_node);
1519 stable_tree_append(rmap_item, stable_node);
1520 }
1521 unlock_page(kpage);
1522
1523 /*
1524 * If we fail to insert the page into the stable tree,
1525 * we will have 2 virtual addresses that are pointing
1526 * to a ksm page left outside the stable tree,
1527 * in which case we need to break_cow on both.
1528 */
1529 if (!stable_node) {
1530 break_cow(tree_rmap_item);
1531 break_cow(rmap_item);
1532 }
1533 }
1534 }
1535 }
1536
1537 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1538 struct rmap_item **rmap_list,
1539 unsigned long addr)
1540 {
1541 struct rmap_item *rmap_item;
1542
1543 while (*rmap_list) {
1544 rmap_item = *rmap_list;
1545 if ((rmap_item->address & PAGE_MASK) == addr)
1546 return rmap_item;
1547 if (rmap_item->address > addr)
1548 break;
1549 *rmap_list = rmap_item->rmap_list;
1550 remove_rmap_item_from_tree(rmap_item);
1551 free_rmap_item(rmap_item);
1552 }
1553
1554 rmap_item = alloc_rmap_item();
1555 if (rmap_item) {
1556 /* It has already been zeroed */
1557 rmap_item->mm = mm_slot->mm;
1558 rmap_item->address = addr;
1559 rmap_item->rmap_list = *rmap_list;
1560 *rmap_list = rmap_item;
1561 }
1562 return rmap_item;
1563 }
1564
1565 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1566 {
1567 struct mm_struct *mm;
1568 struct mm_slot *slot;
1569 struct vm_area_struct *vma;
1570 struct rmap_item *rmap_item;
1571 int nid;
1572
1573 if (list_empty(&ksm_mm_head.mm_list))
1574 return NULL;
1575
1576 slot = ksm_scan.mm_slot;
1577 if (slot == &ksm_mm_head) {
1578 /*
1579 * A number of pages can hang around indefinitely on per-cpu
1580 * pagevecs, raised page count preventing write_protect_page
1581 * from merging them. Though it doesn't really matter much,
1582 * it is puzzling to see some stuck in pages_volatile until
1583 * other activity jostles them out, and they also prevented
1584 * LTP's KSM test from succeeding deterministically; so drain
1585 * them here (here rather than on entry to ksm_do_scan(),
1586 * so we don't IPI too often when pages_to_scan is set low).
1587 */
1588 lru_add_drain_all();
1589
1590 /*
1591 * Whereas stale stable_nodes on the stable_tree itself
1592 * get pruned in the regular course of stable_tree_search(),
1593 * those moved out to the migrate_nodes list can accumulate:
1594 * so prune them once before each full scan.
1595 */
1596 if (!ksm_merge_across_nodes) {
1597 struct stable_node *stable_node, *next;
1598 struct page *page;
1599
1600 list_for_each_entry_safe(stable_node, next,
1601 &migrate_nodes, list) {
1602 page = get_ksm_page(stable_node, false);
1603 if (page)
1604 put_page(page);
1605 cond_resched();
1606 }
1607 }
1608
1609 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1610 root_unstable_tree[nid] = RB_ROOT;
1611
1612 spin_lock(&ksm_mmlist_lock);
1613 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1614 ksm_scan.mm_slot = slot;
1615 spin_unlock(&ksm_mmlist_lock);
1616 /*
1617 * Although we tested list_empty() above, a racing __ksm_exit
1618 * of the last mm on the list may have removed it since then.
1619 */
1620 if (slot == &ksm_mm_head)
1621 return NULL;
1622 next_mm:
1623 ksm_scan.address = 0;
1624 ksm_scan.rmap_list = &slot->rmap_list;
1625 }
1626
1627 mm = slot->mm;
1628 down_read(&mm->mmap_sem);
1629 if (ksm_test_exit(mm))
1630 vma = NULL;
1631 else
1632 vma = find_vma(mm, ksm_scan.address);
1633
1634 for (; vma; vma = vma->vm_next) {
1635 if (!(vma->vm_flags & VM_MERGEABLE))
1636 continue;
1637 if (ksm_scan.address < vma->vm_start)
1638 ksm_scan.address = vma->vm_start;
1639 if (!vma->anon_vma)
1640 ksm_scan.address = vma->vm_end;
1641
1642 while (ksm_scan.address < vma->vm_end) {
1643 if (ksm_test_exit(mm))
1644 break;
1645 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1646 if (IS_ERR_OR_NULL(*page)) {
1647 ksm_scan.address += PAGE_SIZE;
1648 cond_resched();
1649 continue;
1650 }
1651 if (PageAnon(*page)) {
1652 flush_anon_page(vma, *page, ksm_scan.address);
1653 flush_dcache_page(*page);
1654 rmap_item = get_next_rmap_item(slot,
1655 ksm_scan.rmap_list, ksm_scan.address);
1656 if (rmap_item) {
1657 ksm_scan.rmap_list =
1658 &rmap_item->rmap_list;
1659 ksm_scan.address += PAGE_SIZE;
1660 } else
1661 put_page(*page);
1662 up_read(&mm->mmap_sem);
1663 return rmap_item;
1664 }
1665 put_page(*page);
1666 ksm_scan.address += PAGE_SIZE;
1667 cond_resched();
1668 }
1669 }
1670
1671 if (ksm_test_exit(mm)) {
1672 ksm_scan.address = 0;
1673 ksm_scan.rmap_list = &slot->rmap_list;
1674 }
1675 /*
1676 * Nuke all the rmap_items that are above this current rmap:
1677 * because there were no VM_MERGEABLE vmas with such addresses.
1678 */
1679 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1680
1681 spin_lock(&ksm_mmlist_lock);
1682 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1683 struct mm_slot, mm_list);
1684 if (ksm_scan.address == 0) {
1685 /*
1686 * We've completed a full scan of all vmas, holding mmap_sem
1687 * throughout, and found no VM_MERGEABLE: so do the same as
1688 * __ksm_exit does to remove this mm from all our lists now.
1689 * This applies either when cleaning up after __ksm_exit
1690 * (but beware: we can reach here even before __ksm_exit),
1691 * or when all VM_MERGEABLE areas have been unmapped (and
1692 * mmap_sem then protects against race with MADV_MERGEABLE).
1693 */
1694 hash_del(&slot->link);
1695 list_del(&slot->mm_list);
1696 spin_unlock(&ksm_mmlist_lock);
1697
1698 free_mm_slot(slot);
1699 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1700 up_read(&mm->mmap_sem);
1701 mmdrop(mm);
1702 } else {
1703 up_read(&mm->mmap_sem);
1704 /*
1705 * up_read(&mm->mmap_sem) first because after
1706 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1707 * already have been freed under us by __ksm_exit()
1708 * because the "mm_slot" is still hashed and
1709 * ksm_scan.mm_slot doesn't point to it anymore.
1710 */
1711 spin_unlock(&ksm_mmlist_lock);
1712 }
1713
1714 /* Repeat until we've completed scanning the whole list */
1715 slot = ksm_scan.mm_slot;
1716 if (slot != &ksm_mm_head)
1717 goto next_mm;
1718
1719 ksm_scan.seqnr++;
1720 return NULL;
1721 }
1722
1723 /**
1724 * ksm_do_scan - the ksm scanner main worker function.
1725 * @scan_npages - number of pages we want to scan before we return.
1726 */
1727 static void ksm_do_scan(unsigned int scan_npages)
1728 {
1729 struct rmap_item *rmap_item;
1730 struct page *uninitialized_var(page);
1731
1732 while (scan_npages-- && likely(!freezing(current))) {
1733 cond_resched();
1734 rmap_item = scan_get_next_rmap_item(&page);
1735 if (!rmap_item)
1736 return;
1737 cmp_and_merge_page(page, rmap_item);
1738 put_page(page);
1739 }
1740 }
1741
1742 static int ksmd_should_run(void)
1743 {
1744 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1745 }
1746
1747 static int ksm_scan_thread(void *nothing)
1748 {
1749 set_freezable();
1750 set_user_nice(current, 5);
1751
1752 while (!kthread_should_stop()) {
1753 mutex_lock(&ksm_thread_mutex);
1754 wait_while_offlining();
1755 if (ksmd_should_run())
1756 ksm_do_scan(ksm_thread_pages_to_scan);
1757 mutex_unlock(&ksm_thread_mutex);
1758
1759 try_to_freeze();
1760
1761 if (ksmd_should_run()) {
1762 if (ksm_thread_sleep_millisecs >= 1000)
1763 schedule_timeout_interruptible(
1764 msecs_to_jiffies(round_jiffies_relative(ksm_thread_sleep_millisecs)));
1765 else
1766 schedule_timeout_interruptible(
1767 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1768 } else {
1769 wait_event_freezable(ksm_thread_wait,
1770 ksmd_should_run() || kthread_should_stop());
1771 }
1772 }
1773 return 0;
1774 }
1775
1776 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1777 unsigned long end, int advice, unsigned long *vm_flags)
1778 {
1779 struct mm_struct *mm = vma->vm_mm;
1780 int err;
1781
1782 switch (advice) {
1783 case MADV_MERGEABLE:
1784 /*
1785 * Be somewhat over-protective for now!
1786 */
1787 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1788 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1789 VM_HUGETLB | VM_MIXEDMAP))
1790 return 0; /* just ignore the advice */
1791
1792 #ifdef VM_SAO
1793 if (*vm_flags & VM_SAO)
1794 return 0;
1795 #endif
1796
1797 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1798 err = __ksm_enter(mm);
1799 if (err)
1800 return err;
1801 }
1802
1803 *vm_flags |= VM_MERGEABLE;
1804 break;
1805
1806 case MADV_UNMERGEABLE:
1807 if (!(*vm_flags & VM_MERGEABLE))
1808 return 0; /* just ignore the advice */
1809
1810 if (vma->anon_vma) {
1811 err = unmerge_ksm_pages(vma, start, end);
1812 if (err)
1813 return err;
1814 }
1815
1816 *vm_flags &= ~VM_MERGEABLE;
1817 break;
1818 }
1819
1820 return 0;
1821 }
1822
1823 int __ksm_enter(struct mm_struct *mm)
1824 {
1825 struct mm_slot *mm_slot;
1826 int needs_wakeup;
1827
1828 mm_slot = alloc_mm_slot();
1829 if (!mm_slot)
1830 return -ENOMEM;
1831
1832 /* Check ksm_run too? Would need tighter locking */
1833 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1834
1835 spin_lock(&ksm_mmlist_lock);
1836 insert_to_mm_slots_hash(mm, mm_slot);
1837 /*
1838 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1839 * insert just behind the scanning cursor, to let the area settle
1840 * down a little; when fork is followed by immediate exec, we don't
1841 * want ksmd to waste time setting up and tearing down an rmap_list.
1842 *
1843 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1844 * scanning cursor, otherwise KSM pages in newly forked mms will be
1845 * missed: then we might as well insert at the end of the list.
1846 */
1847 if (ksm_run & KSM_RUN_UNMERGE)
1848 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1849 else
1850 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1851 spin_unlock(&ksm_mmlist_lock);
1852
1853 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1854 atomic_inc(&mm->mm_count);
1855
1856 if (needs_wakeup)
1857 wake_up_interruptible(&ksm_thread_wait);
1858
1859 return 0;
1860 }
1861
1862 void __ksm_exit(struct mm_struct *mm)
1863 {
1864 struct mm_slot *mm_slot;
1865 int easy_to_free = 0;
1866
1867 /*
1868 * This process is exiting: if it's straightforward (as is the
1869 * case when ksmd was never running), free mm_slot immediately.
1870 * But if it's at the cursor or has rmap_items linked to it, use
1871 * mmap_sem to synchronize with any break_cows before pagetables
1872 * are freed, and leave the mm_slot on the list for ksmd to free.
1873 * Beware: ksm may already have noticed it exiting and freed the slot.
1874 */
1875
1876 spin_lock(&ksm_mmlist_lock);
1877 mm_slot = get_mm_slot(mm);
1878 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1879 if (!mm_slot->rmap_list) {
1880 hash_del(&mm_slot->link);
1881 list_del(&mm_slot->mm_list);
1882 easy_to_free = 1;
1883 } else {
1884 list_move(&mm_slot->mm_list,
1885 &ksm_scan.mm_slot->mm_list);
1886 }
1887 }
1888 spin_unlock(&ksm_mmlist_lock);
1889
1890 if (easy_to_free) {
1891 free_mm_slot(mm_slot);
1892 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1893 mmdrop(mm);
1894 } else if (mm_slot) {
1895 down_write(&mm->mmap_sem);
1896 up_write(&mm->mmap_sem);
1897 }
1898 }
1899
1900 struct page *ksm_might_need_to_copy(struct page *page,
1901 struct vm_area_struct *vma, unsigned long address)
1902 {
1903 struct anon_vma *anon_vma = page_anon_vma(page);
1904 struct page *new_page;
1905
1906 if (PageKsm(page)) {
1907 if (page_stable_node(page) &&
1908 !(ksm_run & KSM_RUN_UNMERGE))
1909 return page; /* no need to copy it */
1910 } else if (!anon_vma) {
1911 return page; /* no need to copy it */
1912 } else if (anon_vma->root == vma->anon_vma->root &&
1913 page->index == linear_page_index(vma, address)) {
1914 return page; /* still no need to copy it */
1915 }
1916 if (!PageUptodate(page))
1917 return page; /* let do_swap_page report the error */
1918
1919 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1920 if (new_page) {
1921 copy_user_highpage(new_page, page, address, vma);
1922
1923 SetPageDirty(new_page);
1924 __SetPageUptodate(new_page);
1925 __SetPageLocked(new_page);
1926 }
1927
1928 return new_page;
1929 }
1930
1931 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1932 {
1933 struct stable_node *stable_node;
1934 struct rmap_item *rmap_item;
1935 int ret = SWAP_AGAIN;
1936 int search_new_forks = 0;
1937
1938 VM_BUG_ON_PAGE(!PageKsm(page), page);
1939
1940 /*
1941 * Rely on the page lock to protect against concurrent modifications
1942 * to that page's node of the stable tree.
1943 */
1944 VM_BUG_ON_PAGE(!PageLocked(page), page);
1945
1946 stable_node = page_stable_node(page);
1947 if (!stable_node)
1948 return ret;
1949 again:
1950 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1951 struct anon_vma *anon_vma = rmap_item->anon_vma;
1952 struct anon_vma_chain *vmac;
1953 struct vm_area_struct *vma;
1954
1955 cond_resched();
1956 anon_vma_lock_read(anon_vma);
1957 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1958 0, ULONG_MAX) {
1959 cond_resched();
1960 vma = vmac->vma;
1961 if (rmap_item->address < vma->vm_start ||
1962 rmap_item->address >= vma->vm_end)
1963 continue;
1964 /*
1965 * Initially we examine only the vma which covers this
1966 * rmap_item; but later, if there is still work to do,
1967 * we examine covering vmas in other mms: in case they
1968 * were forked from the original since ksmd passed.
1969 */
1970 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1971 continue;
1972
1973 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1974 continue;
1975
1976 ret = rwc->rmap_one(page, vma,
1977 rmap_item->address, rwc->arg);
1978 if (ret != SWAP_AGAIN) {
1979 anon_vma_unlock_read(anon_vma);
1980 goto out;
1981 }
1982 if (rwc->done && rwc->done(page)) {
1983 anon_vma_unlock_read(anon_vma);
1984 goto out;
1985 }
1986 }
1987 anon_vma_unlock_read(anon_vma);
1988 }
1989 if (!search_new_forks++)
1990 goto again;
1991 out:
1992 return ret;
1993 }
1994
1995 #ifdef CONFIG_MIGRATION
1996 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1997 {
1998 struct stable_node *stable_node;
1999
2000 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2001 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2002 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2003
2004 stable_node = page_stable_node(newpage);
2005 if (stable_node) {
2006 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2007 stable_node->kpfn = page_to_pfn(newpage);
2008 /*
2009 * newpage->mapping was set in advance; now we need smp_wmb()
2010 * to make sure that the new stable_node->kpfn is visible
2011 * to get_ksm_page() before it can see that oldpage->mapping
2012 * has gone stale (or that PageSwapCache has been cleared).
2013 */
2014 smp_wmb();
2015 set_page_stable_node(oldpage, NULL);
2016 }
2017 }
2018 #endif /* CONFIG_MIGRATION */
2019
2020 #ifdef CONFIG_MEMORY_HOTREMOVE
2021 static void wait_while_offlining(void)
2022 {
2023 while (ksm_run & KSM_RUN_OFFLINE) {
2024 mutex_unlock(&ksm_thread_mutex);
2025 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2026 TASK_UNINTERRUPTIBLE);
2027 mutex_lock(&ksm_thread_mutex);
2028 }
2029 }
2030
2031 static void ksm_check_stable_tree(unsigned long start_pfn,
2032 unsigned long end_pfn)
2033 {
2034 struct stable_node *stable_node, *next;
2035 struct rb_node *node;
2036 int nid;
2037
2038 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2039 node = rb_first(root_stable_tree + nid);
2040 while (node) {
2041 stable_node = rb_entry(node, struct stable_node, node);
2042 if (stable_node->kpfn >= start_pfn &&
2043 stable_node->kpfn < end_pfn) {
2044 /*
2045 * Don't get_ksm_page, page has already gone:
2046 * which is why we keep kpfn instead of page*
2047 */
2048 remove_node_from_stable_tree(stable_node);
2049 node = rb_first(root_stable_tree + nid);
2050 } else
2051 node = rb_next(node);
2052 cond_resched();
2053 }
2054 }
2055 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2056 if (stable_node->kpfn >= start_pfn &&
2057 stable_node->kpfn < end_pfn)
2058 remove_node_from_stable_tree(stable_node);
2059 cond_resched();
2060 }
2061 }
2062
2063 static int ksm_memory_callback(struct notifier_block *self,
2064 unsigned long action, void *arg)
2065 {
2066 struct memory_notify *mn = arg;
2067
2068 switch (action) {
2069 case MEM_GOING_OFFLINE:
2070 /*
2071 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2072 * and remove_all_stable_nodes() while memory is going offline:
2073 * it is unsafe for them to touch the stable tree at this time.
2074 * But unmerge_ksm_pages(), rmap lookups and other entry points
2075 * which do not need the ksm_thread_mutex are all safe.
2076 */
2077 mutex_lock(&ksm_thread_mutex);
2078 ksm_run |= KSM_RUN_OFFLINE;
2079 mutex_unlock(&ksm_thread_mutex);
2080 break;
2081
2082 case MEM_OFFLINE:
2083 /*
2084 * Most of the work is done by page migration; but there might
2085 * be a few stable_nodes left over, still pointing to struct
2086 * pages which have been offlined: prune those from the tree,
2087 * otherwise get_ksm_page() might later try to access a
2088 * non-existent struct page.
2089 */
2090 ksm_check_stable_tree(mn->start_pfn,
2091 mn->start_pfn + mn->nr_pages);
2092 /* fallthrough */
2093
2094 case MEM_CANCEL_OFFLINE:
2095 mutex_lock(&ksm_thread_mutex);
2096 ksm_run &= ~KSM_RUN_OFFLINE;
2097 mutex_unlock(&ksm_thread_mutex);
2098
2099 smp_mb(); /* wake_up_bit advises this */
2100 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2101 break;
2102 }
2103 return NOTIFY_OK;
2104 }
2105 #else
2106 static void wait_while_offlining(void)
2107 {
2108 }
2109 #endif /* CONFIG_MEMORY_HOTREMOVE */
2110
2111 #ifdef CONFIG_SYSFS
2112 /*
2113 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2114 */
2115
2116 #define KSM_ATTR_RO(_name) \
2117 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2118 #define KSM_ATTR(_name) \
2119 static struct kobj_attribute _name##_attr = \
2120 __ATTR(_name, 0644, _name##_show, _name##_store)
2121
2122 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2123 struct kobj_attribute *attr, char *buf)
2124 {
2125 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2126 }
2127
2128 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2129 struct kobj_attribute *attr,
2130 const char *buf, size_t count)
2131 {
2132 unsigned long msecs;
2133 int err;
2134
2135 err = kstrtoul(buf, 10, &msecs);
2136 if (err || msecs > UINT_MAX)
2137 return -EINVAL;
2138
2139 ksm_thread_sleep_millisecs = msecs;
2140
2141 return count;
2142 }
2143 KSM_ATTR(sleep_millisecs);
2144
2145 static ssize_t pages_to_scan_show(struct kobject *kobj,
2146 struct kobj_attribute *attr, char *buf)
2147 {
2148 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2149 }
2150
2151 static ssize_t pages_to_scan_store(struct kobject *kobj,
2152 struct kobj_attribute *attr,
2153 const char *buf, size_t count)
2154 {
2155 int err;
2156 unsigned long nr_pages;
2157
2158 err = kstrtoul(buf, 10, &nr_pages);
2159 if (err || nr_pages > UINT_MAX)
2160 return -EINVAL;
2161
2162 ksm_thread_pages_to_scan = nr_pages;
2163
2164 return count;
2165 }
2166 KSM_ATTR(pages_to_scan);
2167
2168 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2169 char *buf)
2170 {
2171 return sprintf(buf, "%lu\n", ksm_run);
2172 }
2173
2174 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2175 const char *buf, size_t count)
2176 {
2177 int err;
2178 unsigned long flags;
2179
2180 err = kstrtoul(buf, 10, &flags);
2181 if (err || flags > UINT_MAX)
2182 return -EINVAL;
2183 if (flags > KSM_RUN_UNMERGE)
2184 return -EINVAL;
2185
2186 /*
2187 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2188 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2189 * breaking COW to free the pages_shared (but leaves mm_slots
2190 * on the list for when ksmd may be set running again).
2191 */
2192
2193 mutex_lock(&ksm_thread_mutex);
2194 wait_while_offlining();
2195 if (ksm_run != flags) {
2196 ksm_run = flags;
2197 if (flags & KSM_RUN_UNMERGE) {
2198 set_current_oom_origin();
2199 err = unmerge_and_remove_all_rmap_items();
2200 clear_current_oom_origin();
2201 if (err) {
2202 ksm_run = KSM_RUN_STOP;
2203 count = err;
2204 }
2205 }
2206 }
2207 mutex_unlock(&ksm_thread_mutex);
2208
2209 if (flags & KSM_RUN_MERGE)
2210 wake_up_interruptible(&ksm_thread_wait);
2211
2212 return count;
2213 }
2214 KSM_ATTR(run);
2215
2216 #ifdef CONFIG_NUMA
2217 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2218 struct kobj_attribute *attr, char *buf)
2219 {
2220 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2221 }
2222
2223 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2224 struct kobj_attribute *attr,
2225 const char *buf, size_t count)
2226 {
2227 int err;
2228 unsigned long knob;
2229
2230 err = kstrtoul(buf, 10, &knob);
2231 if (err)
2232 return err;
2233 if (knob > 1)
2234 return -EINVAL;
2235
2236 mutex_lock(&ksm_thread_mutex);
2237 wait_while_offlining();
2238 if (ksm_merge_across_nodes != knob) {
2239 if (ksm_pages_shared || remove_all_stable_nodes())
2240 err = -EBUSY;
2241 else if (root_stable_tree == one_stable_tree) {
2242 struct rb_root *buf;
2243 /*
2244 * This is the first time that we switch away from the
2245 * default of merging across nodes: must now allocate
2246 * a buffer to hold as many roots as may be needed.
2247 * Allocate stable and unstable together:
2248 * MAXSMP NODES_SHIFT 10 will use 16kB.
2249 */
2250 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2251 GFP_KERNEL);
2252 /* Let us assume that RB_ROOT is NULL is zero */
2253 if (!buf)
2254 err = -ENOMEM;
2255 else {
2256 root_stable_tree = buf;
2257 root_unstable_tree = buf + nr_node_ids;
2258 /* Stable tree is empty but not the unstable */
2259 root_unstable_tree[0] = one_unstable_tree[0];
2260 }
2261 }
2262 if (!err) {
2263 ksm_merge_across_nodes = knob;
2264 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2265 }
2266 }
2267 mutex_unlock(&ksm_thread_mutex);
2268
2269 return err ? err : count;
2270 }
2271 KSM_ATTR(merge_across_nodes);
2272 #endif
2273
2274 static ssize_t use_zero_pages_show(struct kobject *kobj,
2275 struct kobj_attribute *attr, char *buf)
2276 {
2277 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2278 }
2279 static ssize_t use_zero_pages_store(struct kobject *kobj,
2280 struct kobj_attribute *attr,
2281 const char *buf, size_t count)
2282 {
2283 int err;
2284 bool value;
2285
2286 err = kstrtobool(buf, &value);
2287 if (err)
2288 return -EINVAL;
2289
2290 ksm_use_zero_pages = value;
2291
2292 return count;
2293 }
2294 KSM_ATTR(use_zero_pages);
2295
2296 static ssize_t pages_shared_show(struct kobject *kobj,
2297 struct kobj_attribute *attr, char *buf)
2298 {
2299 return sprintf(buf, "%lu\n", ksm_pages_shared);
2300 }
2301 KSM_ATTR_RO(pages_shared);
2302
2303 static ssize_t pages_sharing_show(struct kobject *kobj,
2304 struct kobj_attribute *attr, char *buf)
2305 {
2306 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2307 }
2308 KSM_ATTR_RO(pages_sharing);
2309
2310 static ssize_t pages_unshared_show(struct kobject *kobj,
2311 struct kobj_attribute *attr, char *buf)
2312 {
2313 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2314 }
2315 KSM_ATTR_RO(pages_unshared);
2316
2317 static ssize_t pages_volatile_show(struct kobject *kobj,
2318 struct kobj_attribute *attr, char *buf)
2319 {
2320 long ksm_pages_volatile;
2321
2322 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2323 - ksm_pages_sharing - ksm_pages_unshared;
2324 /*
2325 * It was not worth any locking to calculate that statistic,
2326 * but it might therefore sometimes be negative: conceal that.
2327 */
2328 if (ksm_pages_volatile < 0)
2329 ksm_pages_volatile = 0;
2330 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2331 }
2332 KSM_ATTR_RO(pages_volatile);
2333
2334 static ssize_t full_scans_show(struct kobject *kobj,
2335 struct kobj_attribute *attr, char *buf)
2336 {
2337 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2338 }
2339 KSM_ATTR_RO(full_scans);
2340
2341 static struct attribute *ksm_attrs[] = {
2342 &sleep_millisecs_attr.attr,
2343 &pages_to_scan_attr.attr,
2344 &run_attr.attr,
2345 &pages_shared_attr.attr,
2346 &pages_sharing_attr.attr,
2347 &pages_unshared_attr.attr,
2348 &pages_volatile_attr.attr,
2349 &full_scans_attr.attr,
2350 #ifdef CONFIG_NUMA
2351 &merge_across_nodes_attr.attr,
2352 #endif
2353 &use_zero_pages_attr.attr,
2354 NULL,
2355 };
2356
2357 static struct attribute_group ksm_attr_group = {
2358 .attrs = ksm_attrs,
2359 .name = "ksm",
2360 };
2361 #endif /* CONFIG_SYSFS */
2362
2363 static int __init ksm_init(void)
2364 {
2365 struct task_struct *ksm_thread;
2366 int err;
2367
2368 /* The correct value depends on page size and endianness */
2369 zero_checksum = calc_checksum(ZERO_PAGE(0));
2370 /* Default to false for backwards compatibility */
2371 ksm_use_zero_pages = false;
2372
2373 err = ksm_slab_init();
2374 if (err)
2375 goto out;
2376
2377 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2378 if (IS_ERR(ksm_thread)) {
2379 pr_err("ksm: creating kthread failed\n");
2380 err = PTR_ERR(ksm_thread);
2381 goto out_free;
2382 }
2383
2384 #ifdef CONFIG_SYSFS
2385 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2386 if (err) {
2387 pr_err("ksm: register sysfs failed\n");
2388 kthread_stop(ksm_thread);
2389 goto out_free;
2390 }
2391 #else
2392 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2393
2394 #endif /* CONFIG_SYSFS */
2395
2396 #ifdef CONFIG_MEMORY_HOTREMOVE
2397 /* There is no significance to this priority 100 */
2398 hotplug_memory_notifier(ksm_memory_callback, 100);
2399 #endif
2400 return 0;
2401
2402 out_free:
2403 ksm_slab_free();
2404 out:
2405 return err;
2406 }
2407 subsys_initcall(ksm_init);