]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/memory-failure.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
38 */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched.h>
44 #include <linux/ksm.h>
45 #include <linux/rmap.h>
46 #include <linux/export.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/backing-dev.h>
50 #include <linux/migrate.h>
51 #include <linux/page-isolation.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68
69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70
71 u32 hwpoison_filter_enable = 0;
72 u32 hwpoison_filter_dev_major = ~0U;
73 u32 hwpoison_filter_dev_minor = ~0U;
74 u64 hwpoison_filter_flags_mask;
75 u64 hwpoison_filter_flags_value;
76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
81
82 static int hwpoison_filter_dev(struct page *p)
83 {
84 struct address_space *mapping;
85 dev_t dev;
86
87 if (hwpoison_filter_dev_major == ~0U &&
88 hwpoison_filter_dev_minor == ~0U)
89 return 0;
90
91 /*
92 * page_mapping() does not accept slab pages.
93 */
94 if (PageSlab(p))
95 return -EINVAL;
96
97 mapping = page_mapping(p);
98 if (mapping == NULL || mapping->host == NULL)
99 return -EINVAL;
100
101 dev = mapping->host->i_sb->s_dev;
102 if (hwpoison_filter_dev_major != ~0U &&
103 hwpoison_filter_dev_major != MAJOR(dev))
104 return -EINVAL;
105 if (hwpoison_filter_dev_minor != ~0U &&
106 hwpoison_filter_dev_minor != MINOR(dev))
107 return -EINVAL;
108
109 return 0;
110 }
111
112 static int hwpoison_filter_flags(struct page *p)
113 {
114 if (!hwpoison_filter_flags_mask)
115 return 0;
116
117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 hwpoison_filter_flags_value)
119 return 0;
120 else
121 return -EINVAL;
122 }
123
124 /*
125 * This allows stress tests to limit test scope to a collection of tasks
126 * by putting them under some memcg. This prevents killing unrelated/important
127 * processes such as /sbin/init. Note that the target task may share clean
128 * pages with init (eg. libc text), which is harmless. If the target task
129 * share _dirty_ pages with another task B, the test scheme must make sure B
130 * is also included in the memcg. At last, due to race conditions this filter
131 * can only guarantee that the page either belongs to the memcg tasks, or is
132 * a freed page.
133 */
134 #ifdef CONFIG_MEMCG
135 u64 hwpoison_filter_memcg;
136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137 static int hwpoison_filter_task(struct page *p)
138 {
139 if (!hwpoison_filter_memcg)
140 return 0;
141
142 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 return -EINVAL;
144
145 return 0;
146 }
147 #else
148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
150
151 int hwpoison_filter(struct page *p)
152 {
153 if (!hwpoison_filter_enable)
154 return 0;
155
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
158
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
161
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
164
165 return 0;
166 }
167 #else
168 int hwpoison_filter(struct page *p)
169 {
170 return 0;
171 }
172 #endif
173
174 EXPORT_SYMBOL_GPL(hwpoison_filter);
175
176 /*
177 * Send all the processes who have the page mapped a signal.
178 * ``action optional'' if they are not immediately affected by the error
179 * ``action required'' if error happened in current execution context
180 */
181 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 unsigned long pfn, struct page *page, int flags)
183 {
184 struct siginfo si;
185 int ret;
186
187 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
188 pfn, t->comm, t->pid);
189 si.si_signo = SIGBUS;
190 si.si_errno = 0;
191 si.si_addr = (void *)addr;
192 #ifdef __ARCH_SI_TRAPNO
193 si.si_trapno = trapno;
194 #endif
195 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
196
197 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
198 si.si_code = BUS_MCEERR_AR;
199 ret = force_sig_info(SIGBUS, &si, current);
200 } else {
201 /*
202 * Don't use force here, it's convenient if the signal
203 * can be temporarily blocked.
204 * This could cause a loop when the user sets SIGBUS
205 * to SIG_IGN, but hopefully no one will do that?
206 */
207 si.si_code = BUS_MCEERR_AO;
208 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
209 }
210 if (ret < 0)
211 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
212 t->comm, t->pid, ret);
213 return ret;
214 }
215
216 /*
217 * When a unknown page type is encountered drain as many buffers as possible
218 * in the hope to turn the page into a LRU or free page, which we can handle.
219 */
220 void shake_page(struct page *p, int access)
221 {
222 if (!PageSlab(p)) {
223 lru_add_drain_all();
224 if (PageLRU(p))
225 return;
226 drain_all_pages(page_zone(p));
227 if (PageLRU(p) || is_free_buddy_page(p))
228 return;
229 }
230
231 /*
232 * Only call shrink_node_slabs here (which would also shrink
233 * other caches) if access is not potentially fatal.
234 */
235 if (access)
236 drop_slab_node(page_to_nid(p));
237 }
238 EXPORT_SYMBOL_GPL(shake_page);
239
240 /*
241 * Kill all processes that have a poisoned page mapped and then isolate
242 * the page.
243 *
244 * General strategy:
245 * Find all processes having the page mapped and kill them.
246 * But we keep a page reference around so that the page is not
247 * actually freed yet.
248 * Then stash the page away
249 *
250 * There's no convenient way to get back to mapped processes
251 * from the VMAs. So do a brute-force search over all
252 * running processes.
253 *
254 * Remember that machine checks are not common (or rather
255 * if they are common you have other problems), so this shouldn't
256 * be a performance issue.
257 *
258 * Also there are some races possible while we get from the
259 * error detection to actually handle it.
260 */
261
262 struct to_kill {
263 struct list_head nd;
264 struct task_struct *tsk;
265 unsigned long addr;
266 char addr_valid;
267 };
268
269 /*
270 * Failure handling: if we can't find or can't kill a process there's
271 * not much we can do. We just print a message and ignore otherwise.
272 */
273
274 /*
275 * Schedule a process for later kill.
276 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
277 * TBD would GFP_NOIO be enough?
278 */
279 static void add_to_kill(struct task_struct *tsk, struct page *p,
280 struct vm_area_struct *vma,
281 struct list_head *to_kill,
282 struct to_kill **tkc)
283 {
284 struct to_kill *tk;
285
286 if (*tkc) {
287 tk = *tkc;
288 *tkc = NULL;
289 } else {
290 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
291 if (!tk) {
292 pr_err("Memory failure: Out of memory while machine check handling\n");
293 return;
294 }
295 }
296 tk->addr = page_address_in_vma(p, vma);
297 tk->addr_valid = 1;
298
299 /*
300 * In theory we don't have to kill when the page was
301 * munmaped. But it could be also a mremap. Since that's
302 * likely very rare kill anyways just out of paranoia, but use
303 * a SIGKILL because the error is not contained anymore.
304 */
305 if (tk->addr == -EFAULT) {
306 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
307 page_to_pfn(p), tsk->comm);
308 tk->addr_valid = 0;
309 }
310 get_task_struct(tsk);
311 tk->tsk = tsk;
312 list_add_tail(&tk->nd, to_kill);
313 }
314
315 /*
316 * Kill the processes that have been collected earlier.
317 *
318 * Only do anything when DOIT is set, otherwise just free the list
319 * (this is used for clean pages which do not need killing)
320 * Also when FAIL is set do a force kill because something went
321 * wrong earlier.
322 */
323 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
324 int fail, struct page *page, unsigned long pfn,
325 int flags)
326 {
327 struct to_kill *tk, *next;
328
329 list_for_each_entry_safe (tk, next, to_kill, nd) {
330 if (forcekill) {
331 /*
332 * In case something went wrong with munmapping
333 * make sure the process doesn't catch the
334 * signal and then access the memory. Just kill it.
335 */
336 if (fail || tk->addr_valid == 0) {
337 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
338 pfn, tk->tsk->comm, tk->tsk->pid);
339 force_sig(SIGKILL, tk->tsk);
340 }
341
342 /*
343 * In theory the process could have mapped
344 * something else on the address in-between. We could
345 * check for that, but we need to tell the
346 * process anyways.
347 */
348 else if (kill_proc(tk->tsk, tk->addr, trapno,
349 pfn, page, flags) < 0)
350 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
351 pfn, tk->tsk->comm, tk->tsk->pid);
352 }
353 put_task_struct(tk->tsk);
354 kfree(tk);
355 }
356 }
357
358 /*
359 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
360 * on behalf of the thread group. Return task_struct of the (first found)
361 * dedicated thread if found, and return NULL otherwise.
362 *
363 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
364 * have to call rcu_read_lock/unlock() in this function.
365 */
366 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
367 {
368 struct task_struct *t;
369
370 for_each_thread(tsk, t)
371 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
372 return t;
373 return NULL;
374 }
375
376 /*
377 * Determine whether a given process is "early kill" process which expects
378 * to be signaled when some page under the process is hwpoisoned.
379 * Return task_struct of the dedicated thread (main thread unless explicitly
380 * specified) if the process is "early kill," and otherwise returns NULL.
381 */
382 static struct task_struct *task_early_kill(struct task_struct *tsk,
383 int force_early)
384 {
385 struct task_struct *t;
386 if (!tsk->mm)
387 return NULL;
388 if (force_early)
389 return tsk;
390 t = find_early_kill_thread(tsk);
391 if (t)
392 return t;
393 if (sysctl_memory_failure_early_kill)
394 return tsk;
395 return NULL;
396 }
397
398 /*
399 * Collect processes when the error hit an anonymous page.
400 */
401 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
402 struct to_kill **tkc, int force_early)
403 {
404 struct vm_area_struct *vma;
405 struct task_struct *tsk;
406 struct anon_vma *av;
407 pgoff_t pgoff;
408
409 av = page_lock_anon_vma_read(page);
410 if (av == NULL) /* Not actually mapped anymore */
411 return;
412
413 pgoff = page_to_pgoff(page);
414 read_lock(&tasklist_lock);
415 for_each_process (tsk) {
416 struct anon_vma_chain *vmac;
417 struct task_struct *t = task_early_kill(tsk, force_early);
418
419 if (!t)
420 continue;
421 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
422 pgoff, pgoff) {
423 vma = vmac->vma;
424 if (!page_mapped_in_vma(page, vma))
425 continue;
426 if (vma->vm_mm == t->mm)
427 add_to_kill(t, page, vma, to_kill, tkc);
428 }
429 }
430 read_unlock(&tasklist_lock);
431 page_unlock_anon_vma_read(av);
432 }
433
434 /*
435 * Collect processes when the error hit a file mapped page.
436 */
437 static void collect_procs_file(struct page *page, struct list_head *to_kill,
438 struct to_kill **tkc, int force_early)
439 {
440 struct vm_area_struct *vma;
441 struct task_struct *tsk;
442 struct address_space *mapping = page->mapping;
443
444 i_mmap_lock_read(mapping);
445 read_lock(&tasklist_lock);
446 for_each_process(tsk) {
447 pgoff_t pgoff = page_to_pgoff(page);
448 struct task_struct *t = task_early_kill(tsk, force_early);
449
450 if (!t)
451 continue;
452 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
453 pgoff) {
454 /*
455 * Send early kill signal to tasks where a vma covers
456 * the page but the corrupted page is not necessarily
457 * mapped it in its pte.
458 * Assume applications who requested early kill want
459 * to be informed of all such data corruptions.
460 */
461 if (vma->vm_mm == t->mm)
462 add_to_kill(t, page, vma, to_kill, tkc);
463 }
464 }
465 read_unlock(&tasklist_lock);
466 i_mmap_unlock_read(mapping);
467 }
468
469 /*
470 * Collect the processes who have the corrupted page mapped to kill.
471 * This is done in two steps for locking reasons.
472 * First preallocate one tokill structure outside the spin locks,
473 * so that we can kill at least one process reasonably reliable.
474 */
475 static void collect_procs(struct page *page, struct list_head *tokill,
476 int force_early)
477 {
478 struct to_kill *tk;
479
480 if (!page->mapping)
481 return;
482
483 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
484 if (!tk)
485 return;
486 if (PageAnon(page))
487 collect_procs_anon(page, tokill, &tk, force_early);
488 else
489 collect_procs_file(page, tokill, &tk, force_early);
490 kfree(tk);
491 }
492
493 static const char *action_name[] = {
494 [MF_IGNORED] = "Ignored",
495 [MF_FAILED] = "Failed",
496 [MF_DELAYED] = "Delayed",
497 [MF_RECOVERED] = "Recovered",
498 };
499
500 static const char * const action_page_types[] = {
501 [MF_MSG_KERNEL] = "reserved kernel page",
502 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
503 [MF_MSG_SLAB] = "kernel slab page",
504 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
505 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
506 [MF_MSG_HUGE] = "huge page",
507 [MF_MSG_FREE_HUGE] = "free huge page",
508 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
509 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
510 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
511 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
512 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
513 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
514 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
515 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
516 [MF_MSG_CLEAN_LRU] = "clean LRU page",
517 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
518 [MF_MSG_BUDDY] = "free buddy page",
519 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
520 [MF_MSG_UNKNOWN] = "unknown page",
521 };
522
523 /*
524 * XXX: It is possible that a page is isolated from LRU cache,
525 * and then kept in swap cache or failed to remove from page cache.
526 * The page count will stop it from being freed by unpoison.
527 * Stress tests should be aware of this memory leak problem.
528 */
529 static int delete_from_lru_cache(struct page *p)
530 {
531 if (!isolate_lru_page(p)) {
532 /*
533 * Clear sensible page flags, so that the buddy system won't
534 * complain when the page is unpoison-and-freed.
535 */
536 ClearPageActive(p);
537 ClearPageUnevictable(p);
538 /*
539 * drop the page count elevated by isolate_lru_page()
540 */
541 put_page(p);
542 return 0;
543 }
544 return -EIO;
545 }
546
547 /*
548 * Error hit kernel page.
549 * Do nothing, try to be lucky and not touch this instead. For a few cases we
550 * could be more sophisticated.
551 */
552 static int me_kernel(struct page *p, unsigned long pfn)
553 {
554 return MF_IGNORED;
555 }
556
557 /*
558 * Page in unknown state. Do nothing.
559 */
560 static int me_unknown(struct page *p, unsigned long pfn)
561 {
562 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
563 return MF_FAILED;
564 }
565
566 /*
567 * Clean (or cleaned) page cache page.
568 */
569 static int me_pagecache_clean(struct page *p, unsigned long pfn)
570 {
571 int err;
572 int ret = MF_FAILED;
573 struct address_space *mapping;
574
575 delete_from_lru_cache(p);
576
577 /*
578 * For anonymous pages we're done the only reference left
579 * should be the one m_f() holds.
580 */
581 if (PageAnon(p))
582 return MF_RECOVERED;
583
584 /*
585 * Now truncate the page in the page cache. This is really
586 * more like a "temporary hole punch"
587 * Don't do this for block devices when someone else
588 * has a reference, because it could be file system metadata
589 * and that's not safe to truncate.
590 */
591 mapping = page_mapping(p);
592 if (!mapping) {
593 /*
594 * Page has been teared down in the meanwhile
595 */
596 return MF_FAILED;
597 }
598
599 /*
600 * Truncation is a bit tricky. Enable it per file system for now.
601 *
602 * Open: to take i_mutex or not for this? Right now we don't.
603 */
604 if (mapping->a_ops->error_remove_page) {
605 err = mapping->a_ops->error_remove_page(mapping, p);
606 if (err != 0) {
607 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
608 pfn, err);
609 } else if (page_has_private(p) &&
610 !try_to_release_page(p, GFP_NOIO)) {
611 pr_info("Memory failure: %#lx: failed to release buffers\n",
612 pfn);
613 } else {
614 ret = MF_RECOVERED;
615 }
616 } else {
617 /*
618 * If the file system doesn't support it just invalidate
619 * This fails on dirty or anything with private pages
620 */
621 if (invalidate_inode_page(p))
622 ret = MF_RECOVERED;
623 else
624 pr_info("Memory failure: %#lx: Failed to invalidate\n",
625 pfn);
626 }
627 return ret;
628 }
629
630 /*
631 * Dirty pagecache page
632 * Issues: when the error hit a hole page the error is not properly
633 * propagated.
634 */
635 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
636 {
637 struct address_space *mapping = page_mapping(p);
638
639 SetPageError(p);
640 /* TBD: print more information about the file. */
641 if (mapping) {
642 /*
643 * IO error will be reported by write(), fsync(), etc.
644 * who check the mapping.
645 * This way the application knows that something went
646 * wrong with its dirty file data.
647 *
648 * There's one open issue:
649 *
650 * The EIO will be only reported on the next IO
651 * operation and then cleared through the IO map.
652 * Normally Linux has two mechanisms to pass IO error
653 * first through the AS_EIO flag in the address space
654 * and then through the PageError flag in the page.
655 * Since we drop pages on memory failure handling the
656 * only mechanism open to use is through AS_AIO.
657 *
658 * This has the disadvantage that it gets cleared on
659 * the first operation that returns an error, while
660 * the PageError bit is more sticky and only cleared
661 * when the page is reread or dropped. If an
662 * application assumes it will always get error on
663 * fsync, but does other operations on the fd before
664 * and the page is dropped between then the error
665 * will not be properly reported.
666 *
667 * This can already happen even without hwpoisoned
668 * pages: first on metadata IO errors (which only
669 * report through AS_EIO) or when the page is dropped
670 * at the wrong time.
671 *
672 * So right now we assume that the application DTRT on
673 * the first EIO, but we're not worse than other parts
674 * of the kernel.
675 */
676 mapping_set_error(mapping, EIO);
677 }
678
679 return me_pagecache_clean(p, pfn);
680 }
681
682 /*
683 * Clean and dirty swap cache.
684 *
685 * Dirty swap cache page is tricky to handle. The page could live both in page
686 * cache and swap cache(ie. page is freshly swapped in). So it could be
687 * referenced concurrently by 2 types of PTEs:
688 * normal PTEs and swap PTEs. We try to handle them consistently by calling
689 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
690 * and then
691 * - clear dirty bit to prevent IO
692 * - remove from LRU
693 * - but keep in the swap cache, so that when we return to it on
694 * a later page fault, we know the application is accessing
695 * corrupted data and shall be killed (we installed simple
696 * interception code in do_swap_page to catch it).
697 *
698 * Clean swap cache pages can be directly isolated. A later page fault will
699 * bring in the known good data from disk.
700 */
701 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
702 {
703 ClearPageDirty(p);
704 /* Trigger EIO in shmem: */
705 ClearPageUptodate(p);
706
707 if (!delete_from_lru_cache(p))
708 return MF_DELAYED;
709 else
710 return MF_FAILED;
711 }
712
713 static int me_swapcache_clean(struct page *p, unsigned long pfn)
714 {
715 delete_from_swap_cache(p);
716
717 if (!delete_from_lru_cache(p))
718 return MF_RECOVERED;
719 else
720 return MF_FAILED;
721 }
722
723 /*
724 * Huge pages. Needs work.
725 * Issues:
726 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
727 * To narrow down kill region to one page, we need to break up pmd.
728 */
729 static int me_huge_page(struct page *p, unsigned long pfn)
730 {
731 int res = 0;
732 struct page *hpage = compound_head(p);
733
734 if (!PageHuge(hpage))
735 return MF_DELAYED;
736
737 /*
738 * We can safely recover from error on free or reserved (i.e.
739 * not in-use) hugepage by dequeuing it from freelist.
740 * To check whether a hugepage is in-use or not, we can't use
741 * page->lru because it can be used in other hugepage operations,
742 * such as __unmap_hugepage_range() and gather_surplus_pages().
743 * So instead we use page_mapping() and PageAnon().
744 */
745 if (!(page_mapping(hpage) || PageAnon(hpage))) {
746 res = dequeue_hwpoisoned_huge_page(hpage);
747 if (!res)
748 return MF_RECOVERED;
749 }
750 return MF_DELAYED;
751 }
752
753 /*
754 * Various page states we can handle.
755 *
756 * A page state is defined by its current page->flags bits.
757 * The table matches them in order and calls the right handler.
758 *
759 * This is quite tricky because we can access page at any time
760 * in its live cycle, so all accesses have to be extremely careful.
761 *
762 * This is not complete. More states could be added.
763 * For any missing state don't attempt recovery.
764 */
765
766 #define dirty (1UL << PG_dirty)
767 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
768 #define unevict (1UL << PG_unevictable)
769 #define mlock (1UL << PG_mlocked)
770 #define writeback (1UL << PG_writeback)
771 #define lru (1UL << PG_lru)
772 #define head (1UL << PG_head)
773 #define slab (1UL << PG_slab)
774 #define reserved (1UL << PG_reserved)
775
776 static struct page_state {
777 unsigned long mask;
778 unsigned long res;
779 enum mf_action_page_type type;
780 int (*action)(struct page *p, unsigned long pfn);
781 } error_states[] = {
782 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
783 /*
784 * free pages are specially detected outside this table:
785 * PG_buddy pages only make a small fraction of all free pages.
786 */
787
788 /*
789 * Could in theory check if slab page is free or if we can drop
790 * currently unused objects without touching them. But just
791 * treat it as standard kernel for now.
792 */
793 { slab, slab, MF_MSG_SLAB, me_kernel },
794
795 { head, head, MF_MSG_HUGE, me_huge_page },
796
797 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
798 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
799
800 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
801 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
802
803 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
804 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
805
806 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
807 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
808
809 /*
810 * Catchall entry: must be at end.
811 */
812 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
813 };
814
815 #undef dirty
816 #undef sc
817 #undef unevict
818 #undef mlock
819 #undef writeback
820 #undef lru
821 #undef head
822 #undef slab
823 #undef reserved
824
825 /*
826 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
827 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
828 */
829 static void action_result(unsigned long pfn, enum mf_action_page_type type,
830 enum mf_result result)
831 {
832 trace_memory_failure_event(pfn, type, result);
833
834 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
835 pfn, action_page_types[type], action_name[result]);
836 }
837
838 static int page_action(struct page_state *ps, struct page *p,
839 unsigned long pfn)
840 {
841 int result;
842 int count;
843
844 result = ps->action(p, pfn);
845
846 count = page_count(p) - 1;
847 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
848 count--;
849 if (count != 0) {
850 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
851 pfn, action_page_types[ps->type], count);
852 result = MF_FAILED;
853 }
854 action_result(pfn, ps->type, result);
855
856 /* Could do more checks here if page looks ok */
857 /*
858 * Could adjust zone counters here to correct for the missing page.
859 */
860
861 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
862 }
863
864 /**
865 * get_hwpoison_page() - Get refcount for memory error handling:
866 * @page: raw error page (hit by memory error)
867 *
868 * Return: return 0 if failed to grab the refcount, otherwise true (some
869 * non-zero value.)
870 */
871 int get_hwpoison_page(struct page *page)
872 {
873 struct page *head = compound_head(page);
874
875 if (!PageHuge(head) && PageTransHuge(head)) {
876 /*
877 * Non anonymous thp exists only in allocation/free time. We
878 * can't handle such a case correctly, so let's give it up.
879 * This should be better than triggering BUG_ON when kernel
880 * tries to touch the "partially handled" page.
881 */
882 if (!PageAnon(head)) {
883 pr_err("Memory failure: %#lx: non anonymous thp\n",
884 page_to_pfn(page));
885 return 0;
886 }
887 }
888
889 if (get_page_unless_zero(head)) {
890 if (head == compound_head(page))
891 return 1;
892
893 pr_info("Memory failure: %#lx cannot catch tail\n",
894 page_to_pfn(page));
895 put_page(head);
896 }
897
898 return 0;
899 }
900 EXPORT_SYMBOL_GPL(get_hwpoison_page);
901
902 /*
903 * Do all that is necessary to remove user space mappings. Unmap
904 * the pages and send SIGBUS to the processes if the data was dirty.
905 */
906 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
907 int trapno, int flags, struct page **hpagep)
908 {
909 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
910 struct address_space *mapping;
911 LIST_HEAD(tokill);
912 int ret;
913 int kill = 1, forcekill;
914 struct page *hpage = *hpagep;
915
916 /*
917 * Here we are interested only in user-mapped pages, so skip any
918 * other types of pages.
919 */
920 if (PageReserved(p) || PageSlab(p))
921 return SWAP_SUCCESS;
922 if (!(PageLRU(hpage) || PageHuge(p)))
923 return SWAP_SUCCESS;
924
925 /*
926 * This check implies we don't kill processes if their pages
927 * are in the swap cache early. Those are always late kills.
928 */
929 if (!page_mapped(hpage))
930 return SWAP_SUCCESS;
931
932 if (PageKsm(p)) {
933 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
934 return SWAP_FAIL;
935 }
936
937 if (PageSwapCache(p)) {
938 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
939 pfn);
940 ttu |= TTU_IGNORE_HWPOISON;
941 }
942
943 /*
944 * Propagate the dirty bit from PTEs to struct page first, because we
945 * need this to decide if we should kill or just drop the page.
946 * XXX: the dirty test could be racy: set_page_dirty() may not always
947 * be called inside page lock (it's recommended but not enforced).
948 */
949 mapping = page_mapping(hpage);
950 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
951 mapping_cap_writeback_dirty(mapping)) {
952 if (page_mkclean(hpage)) {
953 SetPageDirty(hpage);
954 } else {
955 kill = 0;
956 ttu |= TTU_IGNORE_HWPOISON;
957 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
958 pfn);
959 }
960 }
961
962 /*
963 * First collect all the processes that have the page
964 * mapped in dirty form. This has to be done before try_to_unmap,
965 * because ttu takes the rmap data structures down.
966 *
967 * Error handling: We ignore errors here because
968 * there's nothing that can be done.
969 */
970 if (kill)
971 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
972
973 ret = try_to_unmap(hpage, ttu);
974 if (ret != SWAP_SUCCESS)
975 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
976 pfn, page_mapcount(hpage));
977
978 /*
979 * Now that the dirty bit has been propagated to the
980 * struct page and all unmaps done we can decide if
981 * killing is needed or not. Only kill when the page
982 * was dirty or the process is not restartable,
983 * otherwise the tokill list is merely
984 * freed. When there was a problem unmapping earlier
985 * use a more force-full uncatchable kill to prevent
986 * any accesses to the poisoned memory.
987 */
988 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
989 kill_procs(&tokill, forcekill, trapno,
990 ret != SWAP_SUCCESS, p, pfn, flags);
991
992 return ret;
993 }
994
995 static void set_page_hwpoison_huge_page(struct page *hpage)
996 {
997 int i;
998 int nr_pages = 1 << compound_order(hpage);
999 for (i = 0; i < nr_pages; i++)
1000 SetPageHWPoison(hpage + i);
1001 }
1002
1003 static void clear_page_hwpoison_huge_page(struct page *hpage)
1004 {
1005 int i;
1006 int nr_pages = 1 << compound_order(hpage);
1007 for (i = 0; i < nr_pages; i++)
1008 ClearPageHWPoison(hpage + i);
1009 }
1010
1011 /**
1012 * memory_failure - Handle memory failure of a page.
1013 * @pfn: Page Number of the corrupted page
1014 * @trapno: Trap number reported in the signal to user space.
1015 * @flags: fine tune action taken
1016 *
1017 * This function is called by the low level machine check code
1018 * of an architecture when it detects hardware memory corruption
1019 * of a page. It tries its best to recover, which includes
1020 * dropping pages, killing processes etc.
1021 *
1022 * The function is primarily of use for corruptions that
1023 * happen outside the current execution context (e.g. when
1024 * detected by a background scrubber)
1025 *
1026 * Must run in process context (e.g. a work queue) with interrupts
1027 * enabled and no spinlocks hold.
1028 */
1029 int memory_failure(unsigned long pfn, int trapno, int flags)
1030 {
1031 struct page_state *ps;
1032 struct page *p;
1033 struct page *hpage;
1034 struct page *orig_head;
1035 int res;
1036 unsigned int nr_pages;
1037 unsigned long page_flags;
1038
1039 if (!sysctl_memory_failure_recovery)
1040 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1041
1042 if (!pfn_valid(pfn)) {
1043 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1044 pfn);
1045 return -ENXIO;
1046 }
1047
1048 p = pfn_to_page(pfn);
1049 orig_head = hpage = compound_head(p);
1050 if (TestSetPageHWPoison(p)) {
1051 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1052 pfn);
1053 return 0;
1054 }
1055
1056 /*
1057 * Currently errors on hugetlbfs pages are measured in hugepage units,
1058 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1059 * transparent hugepages, they are supposed to be split and error
1060 * measurement is done in normal page units. So nr_pages should be one
1061 * in this case.
1062 */
1063 if (PageHuge(p))
1064 nr_pages = 1 << compound_order(hpage);
1065 else /* normal page or thp */
1066 nr_pages = 1;
1067 num_poisoned_pages_add(nr_pages);
1068
1069 /*
1070 * We need/can do nothing about count=0 pages.
1071 * 1) it's a free page, and therefore in safe hand:
1072 * prep_new_page() will be the gate keeper.
1073 * 2) it's a free hugepage, which is also safe:
1074 * an affected hugepage will be dequeued from hugepage freelist,
1075 * so there's no concern about reusing it ever after.
1076 * 3) it's part of a non-compound high order page.
1077 * Implies some kernel user: cannot stop them from
1078 * R/W the page; let's pray that the page has been
1079 * used and will be freed some time later.
1080 * In fact it's dangerous to directly bump up page count from 0,
1081 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1082 */
1083 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1084 if (is_free_buddy_page(p)) {
1085 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1086 return 0;
1087 } else if (PageHuge(hpage)) {
1088 /*
1089 * Check "filter hit" and "race with other subpage."
1090 */
1091 lock_page(hpage);
1092 if (PageHWPoison(hpage)) {
1093 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1094 || (p != hpage && TestSetPageHWPoison(hpage))) {
1095 num_poisoned_pages_sub(nr_pages);
1096 unlock_page(hpage);
1097 return 0;
1098 }
1099 }
1100 set_page_hwpoison_huge_page(hpage);
1101 res = dequeue_hwpoisoned_huge_page(hpage);
1102 action_result(pfn, MF_MSG_FREE_HUGE,
1103 res ? MF_IGNORED : MF_DELAYED);
1104 unlock_page(hpage);
1105 return res;
1106 } else {
1107 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1108 return -EBUSY;
1109 }
1110 }
1111
1112 if (!PageHuge(p) && PageTransHuge(hpage)) {
1113 lock_page(p);
1114 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1115 unlock_page(p);
1116 if (!PageAnon(p))
1117 pr_err("Memory failure: %#lx: non anonymous thp\n",
1118 pfn);
1119 else
1120 pr_err("Memory failure: %#lx: thp split failed\n",
1121 pfn);
1122 if (TestClearPageHWPoison(p))
1123 num_poisoned_pages_sub(nr_pages);
1124 put_hwpoison_page(p);
1125 return -EBUSY;
1126 }
1127 unlock_page(p);
1128 VM_BUG_ON_PAGE(!page_count(p), p);
1129 hpage = compound_head(p);
1130 }
1131
1132 /*
1133 * We ignore non-LRU pages for good reasons.
1134 * - PG_locked is only well defined for LRU pages and a few others
1135 * - to avoid races with __SetPageLocked()
1136 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1137 * The check (unnecessarily) ignores LRU pages being isolated and
1138 * walked by the page reclaim code, however that's not a big loss.
1139 */
1140 if (!PageHuge(p)) {
1141 if (!PageLRU(p))
1142 shake_page(p, 0);
1143 if (!PageLRU(p)) {
1144 /*
1145 * shake_page could have turned it free.
1146 */
1147 if (is_free_buddy_page(p)) {
1148 if (flags & MF_COUNT_INCREASED)
1149 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1150 else
1151 action_result(pfn, MF_MSG_BUDDY_2ND,
1152 MF_DELAYED);
1153 return 0;
1154 }
1155 }
1156 }
1157
1158 lock_page(hpage);
1159
1160 /*
1161 * The page could have changed compound pages during the locking.
1162 * If this happens just bail out.
1163 */
1164 if (PageCompound(p) && compound_head(p) != orig_head) {
1165 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1166 res = -EBUSY;
1167 goto out;
1168 }
1169
1170 /*
1171 * We use page flags to determine what action should be taken, but
1172 * the flags can be modified by the error containment action. One
1173 * example is an mlocked page, where PG_mlocked is cleared by
1174 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1175 * correctly, we save a copy of the page flags at this time.
1176 */
1177 page_flags = p->flags;
1178
1179 /*
1180 * unpoison always clear PG_hwpoison inside page lock
1181 */
1182 if (!PageHWPoison(p)) {
1183 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1184 num_poisoned_pages_sub(nr_pages);
1185 unlock_page(hpage);
1186 put_hwpoison_page(hpage);
1187 return 0;
1188 }
1189 if (hwpoison_filter(p)) {
1190 if (TestClearPageHWPoison(p))
1191 num_poisoned_pages_sub(nr_pages);
1192 unlock_page(hpage);
1193 put_hwpoison_page(hpage);
1194 return 0;
1195 }
1196
1197 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1198 goto identify_page_state;
1199
1200 /*
1201 * For error on the tail page, we should set PG_hwpoison
1202 * on the head page to show that the hugepage is hwpoisoned
1203 */
1204 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1205 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1206 unlock_page(hpage);
1207 put_hwpoison_page(hpage);
1208 return 0;
1209 }
1210 /*
1211 * Set PG_hwpoison on all pages in an error hugepage,
1212 * because containment is done in hugepage unit for now.
1213 * Since we have done TestSetPageHWPoison() for the head page with
1214 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1215 */
1216 if (PageHuge(p))
1217 set_page_hwpoison_huge_page(hpage);
1218
1219 /*
1220 * It's very difficult to mess with pages currently under IO
1221 * and in many cases impossible, so we just avoid it here.
1222 */
1223 wait_on_page_writeback(p);
1224
1225 /*
1226 * Now take care of user space mappings.
1227 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1228 *
1229 * When the raw error page is thp tail page, hpage points to the raw
1230 * page after thp split.
1231 */
1232 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1233 != SWAP_SUCCESS) {
1234 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1235 res = -EBUSY;
1236 goto out;
1237 }
1238
1239 /*
1240 * Torn down by someone else?
1241 */
1242 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1243 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1244 res = -EBUSY;
1245 goto out;
1246 }
1247
1248 identify_page_state:
1249 res = -EBUSY;
1250 /*
1251 * The first check uses the current page flags which may not have any
1252 * relevant information. The second check with the saved page flagss is
1253 * carried out only if the first check can't determine the page status.
1254 */
1255 for (ps = error_states;; ps++)
1256 if ((p->flags & ps->mask) == ps->res)
1257 break;
1258
1259 page_flags |= (p->flags & (1UL << PG_dirty));
1260
1261 if (!ps->mask)
1262 for (ps = error_states;; ps++)
1263 if ((page_flags & ps->mask) == ps->res)
1264 break;
1265 res = page_action(ps, p, pfn);
1266 out:
1267 unlock_page(hpage);
1268 return res;
1269 }
1270 EXPORT_SYMBOL_GPL(memory_failure);
1271
1272 #define MEMORY_FAILURE_FIFO_ORDER 4
1273 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1274
1275 struct memory_failure_entry {
1276 unsigned long pfn;
1277 int trapno;
1278 int flags;
1279 };
1280
1281 struct memory_failure_cpu {
1282 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1283 MEMORY_FAILURE_FIFO_SIZE);
1284 spinlock_t lock;
1285 struct work_struct work;
1286 };
1287
1288 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1289
1290 /**
1291 * memory_failure_queue - Schedule handling memory failure of a page.
1292 * @pfn: Page Number of the corrupted page
1293 * @trapno: Trap number reported in the signal to user space.
1294 * @flags: Flags for memory failure handling
1295 *
1296 * This function is called by the low level hardware error handler
1297 * when it detects hardware memory corruption of a page. It schedules
1298 * the recovering of error page, including dropping pages, killing
1299 * processes etc.
1300 *
1301 * The function is primarily of use for corruptions that
1302 * happen outside the current execution context (e.g. when
1303 * detected by a background scrubber)
1304 *
1305 * Can run in IRQ context.
1306 */
1307 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1308 {
1309 struct memory_failure_cpu *mf_cpu;
1310 unsigned long proc_flags;
1311 struct memory_failure_entry entry = {
1312 .pfn = pfn,
1313 .trapno = trapno,
1314 .flags = flags,
1315 };
1316
1317 mf_cpu = &get_cpu_var(memory_failure_cpu);
1318 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1319 if (kfifo_put(&mf_cpu->fifo, entry))
1320 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1321 else
1322 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1323 pfn);
1324 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1325 put_cpu_var(memory_failure_cpu);
1326 }
1327 EXPORT_SYMBOL_GPL(memory_failure_queue);
1328
1329 static void memory_failure_work_func(struct work_struct *work)
1330 {
1331 struct memory_failure_cpu *mf_cpu;
1332 struct memory_failure_entry entry = { 0, };
1333 unsigned long proc_flags;
1334 int gotten;
1335
1336 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1337 for (;;) {
1338 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1339 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1340 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1341 if (!gotten)
1342 break;
1343 if (entry.flags & MF_SOFT_OFFLINE)
1344 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1345 else
1346 memory_failure(entry.pfn, entry.trapno, entry.flags);
1347 }
1348 }
1349
1350 static int __init memory_failure_init(void)
1351 {
1352 struct memory_failure_cpu *mf_cpu;
1353 int cpu;
1354
1355 for_each_possible_cpu(cpu) {
1356 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1357 spin_lock_init(&mf_cpu->lock);
1358 INIT_KFIFO(mf_cpu->fifo);
1359 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1360 }
1361
1362 return 0;
1363 }
1364 core_initcall(memory_failure_init);
1365
1366 #define unpoison_pr_info(fmt, pfn, rs) \
1367 ({ \
1368 if (__ratelimit(rs)) \
1369 pr_info(fmt, pfn); \
1370 })
1371
1372 /**
1373 * unpoison_memory - Unpoison a previously poisoned page
1374 * @pfn: Page number of the to be unpoisoned page
1375 *
1376 * Software-unpoison a page that has been poisoned by
1377 * memory_failure() earlier.
1378 *
1379 * This is only done on the software-level, so it only works
1380 * for linux injected failures, not real hardware failures
1381 *
1382 * Returns 0 for success, otherwise -errno.
1383 */
1384 int unpoison_memory(unsigned long pfn)
1385 {
1386 struct page *page;
1387 struct page *p;
1388 int freeit = 0;
1389 unsigned int nr_pages;
1390 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1391 DEFAULT_RATELIMIT_BURST);
1392
1393 if (!pfn_valid(pfn))
1394 return -ENXIO;
1395
1396 p = pfn_to_page(pfn);
1397 page = compound_head(p);
1398
1399 if (!PageHWPoison(p)) {
1400 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1401 pfn, &unpoison_rs);
1402 return 0;
1403 }
1404
1405 if (page_count(page) > 1) {
1406 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1407 pfn, &unpoison_rs);
1408 return 0;
1409 }
1410
1411 if (page_mapped(page)) {
1412 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1413 pfn, &unpoison_rs);
1414 return 0;
1415 }
1416
1417 if (page_mapping(page)) {
1418 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1419 pfn, &unpoison_rs);
1420 return 0;
1421 }
1422
1423 /*
1424 * unpoison_memory() can encounter thp only when the thp is being
1425 * worked by memory_failure() and the page lock is not held yet.
1426 * In such case, we yield to memory_failure() and make unpoison fail.
1427 */
1428 if (!PageHuge(page) && PageTransHuge(page)) {
1429 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1430 pfn, &unpoison_rs);
1431 return 0;
1432 }
1433
1434 nr_pages = 1 << compound_order(page);
1435
1436 if (!get_hwpoison_page(p)) {
1437 /*
1438 * Since HWPoisoned hugepage should have non-zero refcount,
1439 * race between memory failure and unpoison seems to happen.
1440 * In such case unpoison fails and memory failure runs
1441 * to the end.
1442 */
1443 if (PageHuge(page)) {
1444 unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
1445 pfn, &unpoison_rs);
1446 return 0;
1447 }
1448 if (TestClearPageHWPoison(p))
1449 num_poisoned_pages_dec();
1450 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1451 pfn, &unpoison_rs);
1452 return 0;
1453 }
1454
1455 lock_page(page);
1456 /*
1457 * This test is racy because PG_hwpoison is set outside of page lock.
1458 * That's acceptable because that won't trigger kernel panic. Instead,
1459 * the PG_hwpoison page will be caught and isolated on the entrance to
1460 * the free buddy page pool.
1461 */
1462 if (TestClearPageHWPoison(page)) {
1463 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1464 pfn, &unpoison_rs);
1465 num_poisoned_pages_sub(nr_pages);
1466 freeit = 1;
1467 if (PageHuge(page))
1468 clear_page_hwpoison_huge_page(page);
1469 }
1470 unlock_page(page);
1471
1472 put_hwpoison_page(page);
1473 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1474 put_hwpoison_page(page);
1475
1476 return 0;
1477 }
1478 EXPORT_SYMBOL(unpoison_memory);
1479
1480 static struct page *new_page(struct page *p, unsigned long private, int **x)
1481 {
1482 int nid = page_to_nid(p);
1483 if (PageHuge(p))
1484 return alloc_huge_page_node(page_hstate(compound_head(p)),
1485 nid);
1486 else
1487 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1488 }
1489
1490 /*
1491 * Safely get reference count of an arbitrary page.
1492 * Returns 0 for a free page, -EIO for a zero refcount page
1493 * that is not free, and 1 for any other page type.
1494 * For 1 the page is returned with increased page count, otherwise not.
1495 */
1496 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1497 {
1498 int ret;
1499
1500 if (flags & MF_COUNT_INCREASED)
1501 return 1;
1502
1503 /*
1504 * When the target page is a free hugepage, just remove it
1505 * from free hugepage list.
1506 */
1507 if (!get_hwpoison_page(p)) {
1508 if (PageHuge(p)) {
1509 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1510 ret = 0;
1511 } else if (is_free_buddy_page(p)) {
1512 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1513 ret = 0;
1514 } else {
1515 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1516 __func__, pfn, p->flags);
1517 ret = -EIO;
1518 }
1519 } else {
1520 /* Not a free page */
1521 ret = 1;
1522 }
1523 return ret;
1524 }
1525
1526 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1527 {
1528 int ret = __get_any_page(page, pfn, flags);
1529
1530 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1531 /*
1532 * Try to free it.
1533 */
1534 put_hwpoison_page(page);
1535 shake_page(page, 1);
1536
1537 /*
1538 * Did it turn free?
1539 */
1540 ret = __get_any_page(page, pfn, 0);
1541 if (ret == 1 && !PageLRU(page)) {
1542 /* Drop page reference which is from __get_any_page() */
1543 put_hwpoison_page(page);
1544 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1545 pfn, page->flags);
1546 return -EIO;
1547 }
1548 }
1549 return ret;
1550 }
1551
1552 static int soft_offline_huge_page(struct page *page, int flags)
1553 {
1554 int ret;
1555 unsigned long pfn = page_to_pfn(page);
1556 struct page *hpage = compound_head(page);
1557 LIST_HEAD(pagelist);
1558
1559 /*
1560 * This double-check of PageHWPoison is to avoid the race with
1561 * memory_failure(). See also comment in __soft_offline_page().
1562 */
1563 lock_page(hpage);
1564 if (PageHWPoison(hpage)) {
1565 unlock_page(hpage);
1566 put_hwpoison_page(hpage);
1567 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1568 return -EBUSY;
1569 }
1570 unlock_page(hpage);
1571
1572 ret = isolate_huge_page(hpage, &pagelist);
1573 /*
1574 * get_any_page() and isolate_huge_page() takes a refcount each,
1575 * so need to drop one here.
1576 */
1577 put_hwpoison_page(hpage);
1578 if (!ret) {
1579 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1580 return -EBUSY;
1581 }
1582
1583 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1584 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1585 if (ret) {
1586 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1587 pfn, ret, page->flags);
1588 if (!list_empty(&pagelist))
1589 putback_movable_pages(&pagelist);
1590 if (ret > 0)
1591 ret = -EIO;
1592 } else {
1593 /* overcommit hugetlb page will be freed to buddy */
1594 if (PageHuge(page)) {
1595 set_page_hwpoison_huge_page(hpage);
1596 dequeue_hwpoisoned_huge_page(hpage);
1597 num_poisoned_pages_add(1 << compound_order(hpage));
1598 } else {
1599 SetPageHWPoison(page);
1600 num_poisoned_pages_inc();
1601 }
1602 }
1603 return ret;
1604 }
1605
1606 static int __soft_offline_page(struct page *page, int flags)
1607 {
1608 int ret;
1609 unsigned long pfn = page_to_pfn(page);
1610
1611 /*
1612 * Check PageHWPoison again inside page lock because PageHWPoison
1613 * is set by memory_failure() outside page lock. Note that
1614 * memory_failure() also double-checks PageHWPoison inside page lock,
1615 * so there's no race between soft_offline_page() and memory_failure().
1616 */
1617 lock_page(page);
1618 wait_on_page_writeback(page);
1619 if (PageHWPoison(page)) {
1620 unlock_page(page);
1621 put_hwpoison_page(page);
1622 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1623 return -EBUSY;
1624 }
1625 /*
1626 * Try to invalidate first. This should work for
1627 * non dirty unmapped page cache pages.
1628 */
1629 ret = invalidate_inode_page(page);
1630 unlock_page(page);
1631 /*
1632 * RED-PEN would be better to keep it isolated here, but we
1633 * would need to fix isolation locking first.
1634 */
1635 if (ret == 1) {
1636 put_hwpoison_page(page);
1637 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1638 SetPageHWPoison(page);
1639 num_poisoned_pages_inc();
1640 return 0;
1641 }
1642
1643 /*
1644 * Simple invalidation didn't work.
1645 * Try to migrate to a new page instead. migrate.c
1646 * handles a large number of cases for us.
1647 */
1648 ret = isolate_lru_page(page);
1649 /*
1650 * Drop page reference which is came from get_any_page()
1651 * successful isolate_lru_page() already took another one.
1652 */
1653 put_hwpoison_page(page);
1654 if (!ret) {
1655 LIST_HEAD(pagelist);
1656 inc_node_page_state(page, NR_ISOLATED_ANON +
1657 page_is_file_cache(page));
1658 list_add(&page->lru, &pagelist);
1659 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1660 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1661 if (ret) {
1662 if (!list_empty(&pagelist)) {
1663 list_del(&page->lru);
1664 dec_node_page_state(page, NR_ISOLATED_ANON +
1665 page_is_file_cache(page));
1666 putback_lru_page(page);
1667 }
1668
1669 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1670 pfn, ret, page->flags);
1671 if (ret > 0)
1672 ret = -EIO;
1673 }
1674 } else {
1675 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1676 pfn, ret, page_count(page), page->flags);
1677 }
1678 return ret;
1679 }
1680
1681 static int soft_offline_in_use_page(struct page *page, int flags)
1682 {
1683 int ret;
1684 struct page *hpage = compound_head(page);
1685
1686 if (!PageHuge(page) && PageTransHuge(hpage)) {
1687 lock_page(hpage);
1688 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1689 unlock_page(hpage);
1690 if (!PageAnon(hpage))
1691 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1692 else
1693 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1694 put_hwpoison_page(hpage);
1695 return -EBUSY;
1696 }
1697 unlock_page(hpage);
1698 get_hwpoison_page(page);
1699 put_hwpoison_page(hpage);
1700 }
1701
1702 if (PageHuge(page))
1703 ret = soft_offline_huge_page(page, flags);
1704 else
1705 ret = __soft_offline_page(page, flags);
1706
1707 return ret;
1708 }
1709
1710 static void soft_offline_free_page(struct page *page)
1711 {
1712 if (PageHuge(page)) {
1713 struct page *hpage = compound_head(page);
1714
1715 set_page_hwpoison_huge_page(hpage);
1716 if (!dequeue_hwpoisoned_huge_page(hpage))
1717 num_poisoned_pages_add(1 << compound_order(hpage));
1718 } else {
1719 if (!TestSetPageHWPoison(page))
1720 num_poisoned_pages_inc();
1721 }
1722 }
1723
1724 /**
1725 * soft_offline_page - Soft offline a page.
1726 * @page: page to offline
1727 * @flags: flags. Same as memory_failure().
1728 *
1729 * Returns 0 on success, otherwise negated errno.
1730 *
1731 * Soft offline a page, by migration or invalidation,
1732 * without killing anything. This is for the case when
1733 * a page is not corrupted yet (so it's still valid to access),
1734 * but has had a number of corrected errors and is better taken
1735 * out.
1736 *
1737 * The actual policy on when to do that is maintained by
1738 * user space.
1739 *
1740 * This should never impact any application or cause data loss,
1741 * however it might take some time.
1742 *
1743 * This is not a 100% solution for all memory, but tries to be
1744 * ``good enough'' for the majority of memory.
1745 */
1746 int soft_offline_page(struct page *page, int flags)
1747 {
1748 int ret;
1749 unsigned long pfn = page_to_pfn(page);
1750
1751 if (PageHWPoison(page)) {
1752 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1753 if (flags & MF_COUNT_INCREASED)
1754 put_hwpoison_page(page);
1755 return -EBUSY;
1756 }
1757
1758 get_online_mems();
1759 ret = get_any_page(page, pfn, flags);
1760 put_online_mems();
1761
1762 if (ret > 0)
1763 ret = soft_offline_in_use_page(page, flags);
1764 else if (ret == 0)
1765 soft_offline_free_page(page);
1766
1767 return ret;
1768 }