]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/mempolicy.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97
98 #include <asm/tlbflush.h>
99 #include <linux/uaccess.h>
100
101 #include "internal.h"
102
103 /* Internal flags */
104 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
105 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
106
107 static struct kmem_cache *policy_cache;
108 static struct kmem_cache *sn_cache;
109
110 /* Highest zone. An specific allocation for a zone below that is not
111 policied. */
112 enum zone_type policy_zone = 0;
113
114 /*
115 * run-time system-wide default policy => local allocation
116 */
117 static struct mempolicy default_policy = {
118 .refcnt = ATOMIC_INIT(1), /* never free it */
119 .mode = MPOL_PREFERRED,
120 .flags = MPOL_F_LOCAL,
121 };
122
123 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
124
125 struct mempolicy *get_task_policy(struct task_struct *p)
126 {
127 struct mempolicy *pol = p->mempolicy;
128 int node;
129
130 if (pol)
131 return pol;
132
133 node = numa_node_id();
134 if (node != NUMA_NO_NODE) {
135 pol = &preferred_node_policy[node];
136 /* preferred_node_policy is not initialised early in boot */
137 if (pol->mode)
138 return pol;
139 }
140
141 return &default_policy;
142 }
143
144 static const struct mempolicy_operations {
145 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
146 /*
147 * If read-side task has no lock to protect task->mempolicy, write-side
148 * task will rebind the task->mempolicy by two step. The first step is
149 * setting all the newly nodes, and the second step is cleaning all the
150 * disallowed nodes. In this way, we can avoid finding no node to alloc
151 * page.
152 * If we have a lock to protect task->mempolicy in read-side, we do
153 * rebind directly.
154 *
155 * step:
156 * MPOL_REBIND_ONCE - do rebind work at once
157 * MPOL_REBIND_STEP1 - set all the newly nodes
158 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
159 */
160 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
161 enum mpol_rebind_step step);
162 } mpol_ops[MPOL_MAX];
163
164 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
165 {
166 return pol->flags & MPOL_MODE_FLAGS;
167 }
168
169 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
170 const nodemask_t *rel)
171 {
172 nodemask_t tmp;
173 nodes_fold(tmp, *orig, nodes_weight(*rel));
174 nodes_onto(*ret, tmp, *rel);
175 }
176
177 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
178 {
179 if (nodes_empty(*nodes))
180 return -EINVAL;
181 pol->v.nodes = *nodes;
182 return 0;
183 }
184
185 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
186 {
187 if (!nodes)
188 pol->flags |= MPOL_F_LOCAL; /* local allocation */
189 else if (nodes_empty(*nodes))
190 return -EINVAL; /* no allowed nodes */
191 else
192 pol->v.preferred_node = first_node(*nodes);
193 return 0;
194 }
195
196 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
197 {
198 if (nodes_empty(*nodes))
199 return -EINVAL;
200 pol->v.nodes = *nodes;
201 return 0;
202 }
203
204 /*
205 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
206 * any, for the new policy. mpol_new() has already validated the nodes
207 * parameter with respect to the policy mode and flags. But, we need to
208 * handle an empty nodemask with MPOL_PREFERRED here.
209 *
210 * Must be called holding task's alloc_lock to protect task's mems_allowed
211 * and mempolicy. May also be called holding the mmap_semaphore for write.
212 */
213 static int mpol_set_nodemask(struct mempolicy *pol,
214 const nodemask_t *nodes, struct nodemask_scratch *nsc)
215 {
216 int ret;
217
218 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
219 if (pol == NULL)
220 return 0;
221 /* Check N_MEMORY */
222 nodes_and(nsc->mask1,
223 cpuset_current_mems_allowed, node_states[N_MEMORY]);
224
225 VM_BUG_ON(!nodes);
226 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
227 nodes = NULL; /* explicit local allocation */
228 else {
229 if (pol->flags & MPOL_F_RELATIVE_NODES)
230 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
231 else
232 nodes_and(nsc->mask2, *nodes, nsc->mask1);
233
234 if (mpol_store_user_nodemask(pol))
235 pol->w.user_nodemask = *nodes;
236 else
237 pol->w.cpuset_mems_allowed =
238 cpuset_current_mems_allowed;
239 }
240
241 if (nodes)
242 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
243 else
244 ret = mpol_ops[pol->mode].create(pol, NULL);
245 return ret;
246 }
247
248 /*
249 * This function just creates a new policy, does some check and simple
250 * initialization. You must invoke mpol_set_nodemask() to set nodes.
251 */
252 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
253 nodemask_t *nodes)
254 {
255 struct mempolicy *policy;
256
257 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
258 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
259
260 if (mode == MPOL_DEFAULT) {
261 if (nodes && !nodes_empty(*nodes))
262 return ERR_PTR(-EINVAL);
263 return NULL;
264 }
265 VM_BUG_ON(!nodes);
266
267 /*
268 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
269 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
270 * All other modes require a valid pointer to a non-empty nodemask.
271 */
272 if (mode == MPOL_PREFERRED) {
273 if (nodes_empty(*nodes)) {
274 if (((flags & MPOL_F_STATIC_NODES) ||
275 (flags & MPOL_F_RELATIVE_NODES)))
276 return ERR_PTR(-EINVAL);
277 }
278 } else if (mode == MPOL_LOCAL) {
279 if (!nodes_empty(*nodes) ||
280 (flags & MPOL_F_STATIC_NODES) ||
281 (flags & MPOL_F_RELATIVE_NODES))
282 return ERR_PTR(-EINVAL);
283 mode = MPOL_PREFERRED;
284 } else if (nodes_empty(*nodes))
285 return ERR_PTR(-EINVAL);
286 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
287 if (!policy)
288 return ERR_PTR(-ENOMEM);
289 atomic_set(&policy->refcnt, 1);
290 policy->mode = mode;
291 policy->flags = flags;
292
293 return policy;
294 }
295
296 /* Slow path of a mpol destructor. */
297 void __mpol_put(struct mempolicy *p)
298 {
299 if (!atomic_dec_and_test(&p->refcnt))
300 return;
301 kmem_cache_free(policy_cache, p);
302 }
303
304 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
305 enum mpol_rebind_step step)
306 {
307 }
308
309 /*
310 * step:
311 * MPOL_REBIND_ONCE - do rebind work at once
312 * MPOL_REBIND_STEP1 - set all the newly nodes
313 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
314 */
315 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
316 enum mpol_rebind_step step)
317 {
318 nodemask_t tmp;
319
320 if (pol->flags & MPOL_F_STATIC_NODES)
321 nodes_and(tmp, pol->w.user_nodemask, *nodes);
322 else if (pol->flags & MPOL_F_RELATIVE_NODES)
323 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
324 else {
325 /*
326 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
327 * result
328 */
329 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
330 nodes_remap(tmp, pol->v.nodes,
331 pol->w.cpuset_mems_allowed, *nodes);
332 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
333 } else if (step == MPOL_REBIND_STEP2) {
334 tmp = pol->w.cpuset_mems_allowed;
335 pol->w.cpuset_mems_allowed = *nodes;
336 } else
337 BUG();
338 }
339
340 if (nodes_empty(tmp))
341 tmp = *nodes;
342
343 if (step == MPOL_REBIND_STEP1)
344 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
345 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
346 pol->v.nodes = tmp;
347 else
348 BUG();
349
350 if (!node_isset(current->il_next, tmp)) {
351 current->il_next = next_node_in(current->il_next, tmp);
352 if (current->il_next >= MAX_NUMNODES)
353 current->il_next = numa_node_id();
354 }
355 }
356
357 static void mpol_rebind_preferred(struct mempolicy *pol,
358 const nodemask_t *nodes,
359 enum mpol_rebind_step step)
360 {
361 nodemask_t tmp;
362
363 if (pol->flags & MPOL_F_STATIC_NODES) {
364 int node = first_node(pol->w.user_nodemask);
365
366 if (node_isset(node, *nodes)) {
367 pol->v.preferred_node = node;
368 pol->flags &= ~MPOL_F_LOCAL;
369 } else
370 pol->flags |= MPOL_F_LOCAL;
371 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
372 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
373 pol->v.preferred_node = first_node(tmp);
374 } else if (!(pol->flags & MPOL_F_LOCAL)) {
375 pol->v.preferred_node = node_remap(pol->v.preferred_node,
376 pol->w.cpuset_mems_allowed,
377 *nodes);
378 pol->w.cpuset_mems_allowed = *nodes;
379 }
380 }
381
382 /*
383 * mpol_rebind_policy - Migrate a policy to a different set of nodes
384 *
385 * If read-side task has no lock to protect task->mempolicy, write-side
386 * task will rebind the task->mempolicy by two step. The first step is
387 * setting all the newly nodes, and the second step is cleaning all the
388 * disallowed nodes. In this way, we can avoid finding no node to alloc
389 * page.
390 * If we have a lock to protect task->mempolicy in read-side, we do
391 * rebind directly.
392 *
393 * step:
394 * MPOL_REBIND_ONCE - do rebind work at once
395 * MPOL_REBIND_STEP1 - set all the newly nodes
396 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
397 */
398 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
399 enum mpol_rebind_step step)
400 {
401 if (!pol)
402 return;
403 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
404 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
405 return;
406
407 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
408 return;
409
410 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
411 BUG();
412
413 if (step == MPOL_REBIND_STEP1)
414 pol->flags |= MPOL_F_REBINDING;
415 else if (step == MPOL_REBIND_STEP2)
416 pol->flags &= ~MPOL_F_REBINDING;
417 else if (step >= MPOL_REBIND_NSTEP)
418 BUG();
419
420 mpol_ops[pol->mode].rebind(pol, newmask, step);
421 }
422
423 /*
424 * Wrapper for mpol_rebind_policy() that just requires task
425 * pointer, and updates task mempolicy.
426 *
427 * Called with task's alloc_lock held.
428 */
429
430 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
431 enum mpol_rebind_step step)
432 {
433 mpol_rebind_policy(tsk->mempolicy, new, step);
434 }
435
436 /*
437 * Rebind each vma in mm to new nodemask.
438 *
439 * Call holding a reference to mm. Takes mm->mmap_sem during call.
440 */
441
442 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
443 {
444 struct vm_area_struct *vma;
445
446 down_write(&mm->mmap_sem);
447 for (vma = mm->mmap; vma; vma = vma->vm_next)
448 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
449 up_write(&mm->mmap_sem);
450 }
451
452 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
453 [MPOL_DEFAULT] = {
454 .rebind = mpol_rebind_default,
455 },
456 [MPOL_INTERLEAVE] = {
457 .create = mpol_new_interleave,
458 .rebind = mpol_rebind_nodemask,
459 },
460 [MPOL_PREFERRED] = {
461 .create = mpol_new_preferred,
462 .rebind = mpol_rebind_preferred,
463 },
464 [MPOL_BIND] = {
465 .create = mpol_new_bind,
466 .rebind = mpol_rebind_nodemask,
467 },
468 };
469
470 static void migrate_page_add(struct page *page, struct list_head *pagelist,
471 unsigned long flags);
472
473 struct queue_pages {
474 struct list_head *pagelist;
475 unsigned long flags;
476 nodemask_t *nmask;
477 struct vm_area_struct *prev;
478 };
479
480 /*
481 * Scan through pages checking if pages follow certain conditions,
482 * and move them to the pagelist if they do.
483 */
484 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
485 unsigned long end, struct mm_walk *walk)
486 {
487 struct vm_area_struct *vma = walk->vma;
488 struct page *page;
489 struct queue_pages *qp = walk->private;
490 unsigned long flags = qp->flags;
491 int nid, ret;
492 pte_t *pte;
493 spinlock_t *ptl;
494
495 if (pmd_trans_huge(*pmd)) {
496 ptl = pmd_lock(walk->mm, pmd);
497 if (pmd_trans_huge(*pmd)) {
498 page = pmd_page(*pmd);
499 if (is_huge_zero_page(page)) {
500 spin_unlock(ptl);
501 __split_huge_pmd(vma, pmd, addr, false, NULL);
502 } else {
503 get_page(page);
504 spin_unlock(ptl);
505 lock_page(page);
506 ret = split_huge_page(page);
507 unlock_page(page);
508 put_page(page);
509 if (ret)
510 return 0;
511 }
512 } else {
513 spin_unlock(ptl);
514 }
515 }
516
517 if (pmd_trans_unstable(pmd))
518 return 0;
519 retry:
520 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
521 for (; addr != end; pte++, addr += PAGE_SIZE) {
522 if (!pte_present(*pte))
523 continue;
524 page = vm_normal_page(vma, addr, *pte);
525 if (!page)
526 continue;
527 /*
528 * vm_normal_page() filters out zero pages, but there might
529 * still be PageReserved pages to skip, perhaps in a VDSO.
530 */
531 if (PageReserved(page))
532 continue;
533 nid = page_to_nid(page);
534 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
535 continue;
536 if (PageTransCompound(page)) {
537 get_page(page);
538 pte_unmap_unlock(pte, ptl);
539 lock_page(page);
540 ret = split_huge_page(page);
541 unlock_page(page);
542 put_page(page);
543 /* Failed to split -- skip. */
544 if (ret) {
545 pte = pte_offset_map_lock(walk->mm, pmd,
546 addr, &ptl);
547 continue;
548 }
549 goto retry;
550 }
551
552 migrate_page_add(page, qp->pagelist, flags);
553 }
554 pte_unmap_unlock(pte - 1, ptl);
555 cond_resched();
556 return 0;
557 }
558
559 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
560 unsigned long addr, unsigned long end,
561 struct mm_walk *walk)
562 {
563 #ifdef CONFIG_HUGETLB_PAGE
564 struct queue_pages *qp = walk->private;
565 unsigned long flags = qp->flags;
566 int nid;
567 struct page *page;
568 spinlock_t *ptl;
569 pte_t entry;
570
571 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
572 entry = huge_ptep_get(pte);
573 if (!pte_present(entry))
574 goto unlock;
575 page = pte_page(entry);
576 nid = page_to_nid(page);
577 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
578 goto unlock;
579 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
580 if (flags & (MPOL_MF_MOVE_ALL) ||
581 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
582 isolate_huge_page(page, qp->pagelist);
583 unlock:
584 spin_unlock(ptl);
585 #else
586 BUG();
587 #endif
588 return 0;
589 }
590
591 #ifdef CONFIG_NUMA_BALANCING
592 /*
593 * This is used to mark a range of virtual addresses to be inaccessible.
594 * These are later cleared by a NUMA hinting fault. Depending on these
595 * faults, pages may be migrated for better NUMA placement.
596 *
597 * This is assuming that NUMA faults are handled using PROT_NONE. If
598 * an architecture makes a different choice, it will need further
599 * changes to the core.
600 */
601 unsigned long change_prot_numa(struct vm_area_struct *vma,
602 unsigned long addr, unsigned long end)
603 {
604 int nr_updated;
605
606 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
607 if (nr_updated)
608 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
609
610 return nr_updated;
611 }
612 #else
613 static unsigned long change_prot_numa(struct vm_area_struct *vma,
614 unsigned long addr, unsigned long end)
615 {
616 return 0;
617 }
618 #endif /* CONFIG_NUMA_BALANCING */
619
620 static int queue_pages_test_walk(unsigned long start, unsigned long end,
621 struct mm_walk *walk)
622 {
623 struct vm_area_struct *vma = walk->vma;
624 struct queue_pages *qp = walk->private;
625 unsigned long endvma = vma->vm_end;
626 unsigned long flags = qp->flags;
627
628 if (!vma_migratable(vma))
629 return 1;
630
631 if (endvma > end)
632 endvma = end;
633 if (vma->vm_start > start)
634 start = vma->vm_start;
635
636 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
637 if (!vma->vm_next && vma->vm_end < end)
638 return -EFAULT;
639 if (qp->prev && qp->prev->vm_end < vma->vm_start)
640 return -EFAULT;
641 }
642
643 qp->prev = vma;
644
645 if (flags & MPOL_MF_LAZY) {
646 /* Similar to task_numa_work, skip inaccessible VMAs */
647 if (!is_vm_hugetlb_page(vma) &&
648 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
649 !(vma->vm_flags & VM_MIXEDMAP))
650 change_prot_numa(vma, start, endvma);
651 return 1;
652 }
653
654 /* queue pages from current vma */
655 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
656 return 0;
657 return 1;
658 }
659
660 /*
661 * Walk through page tables and collect pages to be migrated.
662 *
663 * If pages found in a given range are on a set of nodes (determined by
664 * @nodes and @flags,) it's isolated and queued to the pagelist which is
665 * passed via @private.)
666 */
667 static int
668 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
669 nodemask_t *nodes, unsigned long flags,
670 struct list_head *pagelist)
671 {
672 struct queue_pages qp = {
673 .pagelist = pagelist,
674 .flags = flags,
675 .nmask = nodes,
676 .prev = NULL,
677 };
678 struct mm_walk queue_pages_walk = {
679 .hugetlb_entry = queue_pages_hugetlb,
680 .pmd_entry = queue_pages_pte_range,
681 .test_walk = queue_pages_test_walk,
682 .mm = mm,
683 .private = &qp,
684 };
685
686 return walk_page_range(start, end, &queue_pages_walk);
687 }
688
689 /*
690 * Apply policy to a single VMA
691 * This must be called with the mmap_sem held for writing.
692 */
693 static int vma_replace_policy(struct vm_area_struct *vma,
694 struct mempolicy *pol)
695 {
696 int err;
697 struct mempolicy *old;
698 struct mempolicy *new;
699
700 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
701 vma->vm_start, vma->vm_end, vma->vm_pgoff,
702 vma->vm_ops, vma->vm_file,
703 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
704
705 new = mpol_dup(pol);
706 if (IS_ERR(new))
707 return PTR_ERR(new);
708
709 if (vma->vm_ops && vma->vm_ops->set_policy) {
710 err = vma->vm_ops->set_policy(vma, new);
711 if (err)
712 goto err_out;
713 }
714
715 old = vma->vm_policy;
716 vma->vm_policy = new; /* protected by mmap_sem */
717 mpol_put(old);
718
719 return 0;
720 err_out:
721 mpol_put(new);
722 return err;
723 }
724
725 /* Step 2: apply policy to a range and do splits. */
726 static int mbind_range(struct mm_struct *mm, unsigned long start,
727 unsigned long end, struct mempolicy *new_pol)
728 {
729 struct vm_area_struct *next;
730 struct vm_area_struct *prev;
731 struct vm_area_struct *vma;
732 int err = 0;
733 pgoff_t pgoff;
734 unsigned long vmstart;
735 unsigned long vmend;
736
737 vma = find_vma(mm, start);
738 if (!vma || vma->vm_start > start)
739 return -EFAULT;
740
741 prev = vma->vm_prev;
742 if (start > vma->vm_start)
743 prev = vma;
744
745 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
746 next = vma->vm_next;
747 vmstart = max(start, vma->vm_start);
748 vmend = min(end, vma->vm_end);
749
750 if (mpol_equal(vma_policy(vma), new_pol))
751 continue;
752
753 pgoff = vma->vm_pgoff +
754 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
755 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
756 vma->anon_vma, vma->vm_file, pgoff,
757 new_pol, vma->vm_userfaultfd_ctx);
758 if (prev) {
759 vma = prev;
760 next = vma->vm_next;
761 if (mpol_equal(vma_policy(vma), new_pol))
762 continue;
763 /* vma_merge() joined vma && vma->next, case 8 */
764 goto replace;
765 }
766 if (vma->vm_start != vmstart) {
767 err = split_vma(vma->vm_mm, vma, vmstart, 1);
768 if (err)
769 goto out;
770 }
771 if (vma->vm_end != vmend) {
772 err = split_vma(vma->vm_mm, vma, vmend, 0);
773 if (err)
774 goto out;
775 }
776 replace:
777 err = vma_replace_policy(vma, new_pol);
778 if (err)
779 goto out;
780 }
781
782 out:
783 return err;
784 }
785
786 /* Set the process memory policy */
787 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
788 nodemask_t *nodes)
789 {
790 struct mempolicy *new, *old;
791 NODEMASK_SCRATCH(scratch);
792 int ret;
793
794 if (!scratch)
795 return -ENOMEM;
796
797 new = mpol_new(mode, flags, nodes);
798 if (IS_ERR(new)) {
799 ret = PTR_ERR(new);
800 goto out;
801 }
802
803 task_lock(current);
804 ret = mpol_set_nodemask(new, nodes, scratch);
805 if (ret) {
806 task_unlock(current);
807 mpol_put(new);
808 goto out;
809 }
810 old = current->mempolicy;
811 current->mempolicy = new;
812 if (new && new->mode == MPOL_INTERLEAVE &&
813 nodes_weight(new->v.nodes))
814 current->il_next = first_node(new->v.nodes);
815 task_unlock(current);
816 mpol_put(old);
817 ret = 0;
818 out:
819 NODEMASK_SCRATCH_FREE(scratch);
820 return ret;
821 }
822
823 /*
824 * Return nodemask for policy for get_mempolicy() query
825 *
826 * Called with task's alloc_lock held
827 */
828 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
829 {
830 nodes_clear(*nodes);
831 if (p == &default_policy)
832 return;
833
834 switch (p->mode) {
835 case MPOL_BIND:
836 /* Fall through */
837 case MPOL_INTERLEAVE:
838 *nodes = p->v.nodes;
839 break;
840 case MPOL_PREFERRED:
841 if (!(p->flags & MPOL_F_LOCAL))
842 node_set(p->v.preferred_node, *nodes);
843 /* else return empty node mask for local allocation */
844 break;
845 default:
846 BUG();
847 }
848 }
849
850 static int lookup_node(unsigned long addr)
851 {
852 struct page *p;
853 int err;
854
855 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
856 if (err >= 0) {
857 err = page_to_nid(p);
858 put_page(p);
859 }
860 return err;
861 }
862
863 /* Retrieve NUMA policy */
864 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
865 unsigned long addr, unsigned long flags)
866 {
867 int err;
868 struct mm_struct *mm = current->mm;
869 struct vm_area_struct *vma = NULL;
870 struct mempolicy *pol = current->mempolicy;
871
872 if (flags &
873 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
874 return -EINVAL;
875
876 if (flags & MPOL_F_MEMS_ALLOWED) {
877 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
878 return -EINVAL;
879 *policy = 0; /* just so it's initialized */
880 task_lock(current);
881 *nmask = cpuset_current_mems_allowed;
882 task_unlock(current);
883 return 0;
884 }
885
886 if (flags & MPOL_F_ADDR) {
887 /*
888 * Do NOT fall back to task policy if the
889 * vma/shared policy at addr is NULL. We
890 * want to return MPOL_DEFAULT in this case.
891 */
892 down_read(&mm->mmap_sem);
893 vma = find_vma_intersection(mm, addr, addr+1);
894 if (!vma) {
895 up_read(&mm->mmap_sem);
896 return -EFAULT;
897 }
898 if (vma->vm_ops && vma->vm_ops->get_policy)
899 pol = vma->vm_ops->get_policy(vma, addr);
900 else
901 pol = vma->vm_policy;
902 } else if (addr)
903 return -EINVAL;
904
905 if (!pol)
906 pol = &default_policy; /* indicates default behavior */
907
908 if (flags & MPOL_F_NODE) {
909 if (flags & MPOL_F_ADDR) {
910 err = lookup_node(addr);
911 if (err < 0)
912 goto out;
913 *policy = err;
914 } else if (pol == current->mempolicy &&
915 pol->mode == MPOL_INTERLEAVE) {
916 *policy = current->il_next;
917 } else {
918 err = -EINVAL;
919 goto out;
920 }
921 } else {
922 *policy = pol == &default_policy ? MPOL_DEFAULT :
923 pol->mode;
924 /*
925 * Internal mempolicy flags must be masked off before exposing
926 * the policy to userspace.
927 */
928 *policy |= (pol->flags & MPOL_MODE_FLAGS);
929 }
930
931 if (vma) {
932 up_read(&current->mm->mmap_sem);
933 vma = NULL;
934 }
935
936 err = 0;
937 if (nmask) {
938 if (mpol_store_user_nodemask(pol)) {
939 *nmask = pol->w.user_nodemask;
940 } else {
941 task_lock(current);
942 get_policy_nodemask(pol, nmask);
943 task_unlock(current);
944 }
945 }
946
947 out:
948 mpol_cond_put(pol);
949 if (vma)
950 up_read(&current->mm->mmap_sem);
951 return err;
952 }
953
954 #ifdef CONFIG_MIGRATION
955 /*
956 * page migration
957 */
958 static void migrate_page_add(struct page *page, struct list_head *pagelist,
959 unsigned long flags)
960 {
961 /*
962 * Avoid migrating a page that is shared with others.
963 */
964 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
965 if (!isolate_lru_page(page)) {
966 list_add_tail(&page->lru, pagelist);
967 inc_node_page_state(page, NR_ISOLATED_ANON +
968 page_is_file_cache(page));
969 }
970 }
971 }
972
973 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
974 {
975 if (PageHuge(page))
976 return alloc_huge_page_node(page_hstate(compound_head(page)),
977 node);
978 else
979 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
980 __GFP_THISNODE, 0);
981 }
982
983 /*
984 * Migrate pages from one node to a target node.
985 * Returns error or the number of pages not migrated.
986 */
987 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
988 int flags)
989 {
990 nodemask_t nmask;
991 LIST_HEAD(pagelist);
992 int err = 0;
993
994 nodes_clear(nmask);
995 node_set(source, nmask);
996
997 /*
998 * This does not "check" the range but isolates all pages that
999 * need migration. Between passing in the full user address
1000 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1001 */
1002 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1003 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1004 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1005
1006 if (!list_empty(&pagelist)) {
1007 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1008 MIGRATE_SYNC, MR_SYSCALL);
1009 if (err)
1010 putback_movable_pages(&pagelist);
1011 }
1012
1013 return err;
1014 }
1015
1016 /*
1017 * Move pages between the two nodesets so as to preserve the physical
1018 * layout as much as possible.
1019 *
1020 * Returns the number of page that could not be moved.
1021 */
1022 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1023 const nodemask_t *to, int flags)
1024 {
1025 int busy = 0;
1026 int err;
1027 nodemask_t tmp;
1028
1029 err = migrate_prep();
1030 if (err)
1031 return err;
1032
1033 down_read(&mm->mmap_sem);
1034
1035 /*
1036 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1037 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1038 * bit in 'tmp', and return that <source, dest> pair for migration.
1039 * The pair of nodemasks 'to' and 'from' define the map.
1040 *
1041 * If no pair of bits is found that way, fallback to picking some
1042 * pair of 'source' and 'dest' bits that are not the same. If the
1043 * 'source' and 'dest' bits are the same, this represents a node
1044 * that will be migrating to itself, so no pages need move.
1045 *
1046 * If no bits are left in 'tmp', or if all remaining bits left
1047 * in 'tmp' correspond to the same bit in 'to', return false
1048 * (nothing left to migrate).
1049 *
1050 * This lets us pick a pair of nodes to migrate between, such that
1051 * if possible the dest node is not already occupied by some other
1052 * source node, minimizing the risk of overloading the memory on a
1053 * node that would happen if we migrated incoming memory to a node
1054 * before migrating outgoing memory source that same node.
1055 *
1056 * A single scan of tmp is sufficient. As we go, we remember the
1057 * most recent <s, d> pair that moved (s != d). If we find a pair
1058 * that not only moved, but what's better, moved to an empty slot
1059 * (d is not set in tmp), then we break out then, with that pair.
1060 * Otherwise when we finish scanning from_tmp, we at least have the
1061 * most recent <s, d> pair that moved. If we get all the way through
1062 * the scan of tmp without finding any node that moved, much less
1063 * moved to an empty node, then there is nothing left worth migrating.
1064 */
1065
1066 tmp = *from;
1067 while (!nodes_empty(tmp)) {
1068 int s,d;
1069 int source = NUMA_NO_NODE;
1070 int dest = 0;
1071
1072 for_each_node_mask(s, tmp) {
1073
1074 /*
1075 * do_migrate_pages() tries to maintain the relative
1076 * node relationship of the pages established between
1077 * threads and memory areas.
1078 *
1079 * However if the number of source nodes is not equal to
1080 * the number of destination nodes we can not preserve
1081 * this node relative relationship. In that case, skip
1082 * copying memory from a node that is in the destination
1083 * mask.
1084 *
1085 * Example: [2,3,4] -> [3,4,5] moves everything.
1086 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1087 */
1088
1089 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1090 (node_isset(s, *to)))
1091 continue;
1092
1093 d = node_remap(s, *from, *to);
1094 if (s == d)
1095 continue;
1096
1097 source = s; /* Node moved. Memorize */
1098 dest = d;
1099
1100 /* dest not in remaining from nodes? */
1101 if (!node_isset(dest, tmp))
1102 break;
1103 }
1104 if (source == NUMA_NO_NODE)
1105 break;
1106
1107 node_clear(source, tmp);
1108 err = migrate_to_node(mm, source, dest, flags);
1109 if (err > 0)
1110 busy += err;
1111 if (err < 0)
1112 break;
1113 }
1114 up_read(&mm->mmap_sem);
1115 if (err < 0)
1116 return err;
1117 return busy;
1118
1119 }
1120
1121 /*
1122 * Allocate a new page for page migration based on vma policy.
1123 * Start by assuming the page is mapped by the same vma as contains @start.
1124 * Search forward from there, if not. N.B., this assumes that the
1125 * list of pages handed to migrate_pages()--which is how we get here--
1126 * is in virtual address order.
1127 */
1128 static struct page *new_page(struct page *page, unsigned long start, int **x)
1129 {
1130 struct vm_area_struct *vma;
1131 unsigned long uninitialized_var(address);
1132
1133 vma = find_vma(current->mm, start);
1134 while (vma) {
1135 address = page_address_in_vma(page, vma);
1136 if (address != -EFAULT)
1137 break;
1138 vma = vma->vm_next;
1139 }
1140
1141 if (PageHuge(page)) {
1142 BUG_ON(!vma);
1143 return alloc_huge_page_noerr(vma, address, 1);
1144 }
1145 /*
1146 * if !vma, alloc_page_vma() will use task or system default policy
1147 */
1148 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1149 }
1150 #else
1151
1152 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1153 unsigned long flags)
1154 {
1155 }
1156
1157 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1158 const nodemask_t *to, int flags)
1159 {
1160 return -ENOSYS;
1161 }
1162
1163 static struct page *new_page(struct page *page, unsigned long start, int **x)
1164 {
1165 return NULL;
1166 }
1167 #endif
1168
1169 static long do_mbind(unsigned long start, unsigned long len,
1170 unsigned short mode, unsigned short mode_flags,
1171 nodemask_t *nmask, unsigned long flags)
1172 {
1173 struct mm_struct *mm = current->mm;
1174 struct mempolicy *new;
1175 unsigned long end;
1176 int err;
1177 LIST_HEAD(pagelist);
1178
1179 if (flags & ~(unsigned long)MPOL_MF_VALID)
1180 return -EINVAL;
1181 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1182 return -EPERM;
1183
1184 if (start & ~PAGE_MASK)
1185 return -EINVAL;
1186
1187 if (mode == MPOL_DEFAULT)
1188 flags &= ~MPOL_MF_STRICT;
1189
1190 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1191 end = start + len;
1192
1193 if (end < start)
1194 return -EINVAL;
1195 if (end == start)
1196 return 0;
1197
1198 new = mpol_new(mode, mode_flags, nmask);
1199 if (IS_ERR(new))
1200 return PTR_ERR(new);
1201
1202 if (flags & MPOL_MF_LAZY)
1203 new->flags |= MPOL_F_MOF;
1204
1205 /*
1206 * If we are using the default policy then operation
1207 * on discontinuous address spaces is okay after all
1208 */
1209 if (!new)
1210 flags |= MPOL_MF_DISCONTIG_OK;
1211
1212 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1213 start, start + len, mode, mode_flags,
1214 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1215
1216 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1217
1218 err = migrate_prep();
1219 if (err)
1220 goto mpol_out;
1221 }
1222 {
1223 NODEMASK_SCRATCH(scratch);
1224 if (scratch) {
1225 down_write(&mm->mmap_sem);
1226 task_lock(current);
1227 err = mpol_set_nodemask(new, nmask, scratch);
1228 task_unlock(current);
1229 if (err)
1230 up_write(&mm->mmap_sem);
1231 } else
1232 err = -ENOMEM;
1233 NODEMASK_SCRATCH_FREE(scratch);
1234 }
1235 if (err)
1236 goto mpol_out;
1237
1238 err = queue_pages_range(mm, start, end, nmask,
1239 flags | MPOL_MF_INVERT, &pagelist);
1240 if (!err)
1241 err = mbind_range(mm, start, end, new);
1242
1243 if (!err) {
1244 int nr_failed = 0;
1245
1246 if (!list_empty(&pagelist)) {
1247 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1248 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1249 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1250 if (nr_failed)
1251 putback_movable_pages(&pagelist);
1252 }
1253
1254 if (nr_failed && (flags & MPOL_MF_STRICT))
1255 err = -EIO;
1256 } else
1257 putback_movable_pages(&pagelist);
1258
1259 up_write(&mm->mmap_sem);
1260 mpol_out:
1261 mpol_put(new);
1262 return err;
1263 }
1264
1265 /*
1266 * User space interface with variable sized bitmaps for nodelists.
1267 */
1268
1269 /* Copy a node mask from user space. */
1270 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1271 unsigned long maxnode)
1272 {
1273 unsigned long k;
1274 unsigned long nlongs;
1275 unsigned long endmask;
1276
1277 --maxnode;
1278 nodes_clear(*nodes);
1279 if (maxnode == 0 || !nmask)
1280 return 0;
1281 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1282 return -EINVAL;
1283
1284 nlongs = BITS_TO_LONGS(maxnode);
1285 if ((maxnode % BITS_PER_LONG) == 0)
1286 endmask = ~0UL;
1287 else
1288 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1289
1290 /* When the user specified more nodes than supported just check
1291 if the non supported part is all zero. */
1292 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1293 if (nlongs > PAGE_SIZE/sizeof(long))
1294 return -EINVAL;
1295 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1296 unsigned long t;
1297 if (get_user(t, nmask + k))
1298 return -EFAULT;
1299 if (k == nlongs - 1) {
1300 if (t & endmask)
1301 return -EINVAL;
1302 } else if (t)
1303 return -EINVAL;
1304 }
1305 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1306 endmask = ~0UL;
1307 }
1308
1309 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1310 return -EFAULT;
1311 nodes_addr(*nodes)[nlongs-1] &= endmask;
1312 return 0;
1313 }
1314
1315 /* Copy a kernel node mask to user space */
1316 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1317 nodemask_t *nodes)
1318 {
1319 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1320 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1321
1322 if (copy > nbytes) {
1323 if (copy > PAGE_SIZE)
1324 return -EINVAL;
1325 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1326 return -EFAULT;
1327 copy = nbytes;
1328 }
1329 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1330 }
1331
1332 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1333 unsigned long, mode, const unsigned long __user *, nmask,
1334 unsigned long, maxnode, unsigned, flags)
1335 {
1336 nodemask_t nodes;
1337 int err;
1338 unsigned short mode_flags;
1339
1340 mode_flags = mode & MPOL_MODE_FLAGS;
1341 mode &= ~MPOL_MODE_FLAGS;
1342 if (mode >= MPOL_MAX)
1343 return -EINVAL;
1344 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1345 (mode_flags & MPOL_F_RELATIVE_NODES))
1346 return -EINVAL;
1347 err = get_nodes(&nodes, nmask, maxnode);
1348 if (err)
1349 return err;
1350 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1351 }
1352
1353 /* Set the process memory policy */
1354 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1355 unsigned long, maxnode)
1356 {
1357 int err;
1358 nodemask_t nodes;
1359 unsigned short flags;
1360
1361 flags = mode & MPOL_MODE_FLAGS;
1362 mode &= ~MPOL_MODE_FLAGS;
1363 if ((unsigned int)mode >= MPOL_MAX)
1364 return -EINVAL;
1365 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1366 return -EINVAL;
1367 err = get_nodes(&nodes, nmask, maxnode);
1368 if (err)
1369 return err;
1370 return do_set_mempolicy(mode, flags, &nodes);
1371 }
1372
1373 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1374 const unsigned long __user *, old_nodes,
1375 const unsigned long __user *, new_nodes)
1376 {
1377 const struct cred *cred = current_cred(), *tcred;
1378 struct mm_struct *mm = NULL;
1379 struct task_struct *task;
1380 nodemask_t task_nodes;
1381 int err;
1382 nodemask_t *old;
1383 nodemask_t *new;
1384 NODEMASK_SCRATCH(scratch);
1385
1386 if (!scratch)
1387 return -ENOMEM;
1388
1389 old = &scratch->mask1;
1390 new = &scratch->mask2;
1391
1392 err = get_nodes(old, old_nodes, maxnode);
1393 if (err)
1394 goto out;
1395
1396 err = get_nodes(new, new_nodes, maxnode);
1397 if (err)
1398 goto out;
1399
1400 /* Find the mm_struct */
1401 rcu_read_lock();
1402 task = pid ? find_task_by_vpid(pid) : current;
1403 if (!task) {
1404 rcu_read_unlock();
1405 err = -ESRCH;
1406 goto out;
1407 }
1408 get_task_struct(task);
1409
1410 err = -EINVAL;
1411
1412 /*
1413 * Check if this process has the right to modify the specified
1414 * process. The right exists if the process has administrative
1415 * capabilities, superuser privileges or the same
1416 * userid as the target process.
1417 */
1418 tcred = __task_cred(task);
1419 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1420 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1421 !capable(CAP_SYS_NICE)) {
1422 rcu_read_unlock();
1423 err = -EPERM;
1424 goto out_put;
1425 }
1426 rcu_read_unlock();
1427
1428 task_nodes = cpuset_mems_allowed(task);
1429 /* Is the user allowed to access the target nodes? */
1430 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1431 err = -EPERM;
1432 goto out_put;
1433 }
1434
1435 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1436 err = -EINVAL;
1437 goto out_put;
1438 }
1439
1440 err = security_task_movememory(task);
1441 if (err)
1442 goto out_put;
1443
1444 mm = get_task_mm(task);
1445 put_task_struct(task);
1446
1447 if (!mm) {
1448 err = -EINVAL;
1449 goto out;
1450 }
1451
1452 err = do_migrate_pages(mm, old, new,
1453 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1454
1455 mmput(mm);
1456 out:
1457 NODEMASK_SCRATCH_FREE(scratch);
1458
1459 return err;
1460
1461 out_put:
1462 put_task_struct(task);
1463 goto out;
1464
1465 }
1466
1467
1468 /* Retrieve NUMA policy */
1469 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1470 unsigned long __user *, nmask, unsigned long, maxnode,
1471 unsigned long, addr, unsigned long, flags)
1472 {
1473 int err;
1474 int uninitialized_var(pval);
1475 nodemask_t nodes;
1476
1477 if (nmask != NULL && maxnode < MAX_NUMNODES)
1478 return -EINVAL;
1479
1480 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1481
1482 if (err)
1483 return err;
1484
1485 if (policy && put_user(pval, policy))
1486 return -EFAULT;
1487
1488 if (nmask)
1489 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1490
1491 return err;
1492 }
1493
1494 #ifdef CONFIG_COMPAT
1495
1496 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1497 compat_ulong_t __user *, nmask,
1498 compat_ulong_t, maxnode,
1499 compat_ulong_t, addr, compat_ulong_t, flags)
1500 {
1501 long err;
1502 unsigned long __user *nm = NULL;
1503 unsigned long nr_bits, alloc_size;
1504 DECLARE_BITMAP(bm, MAX_NUMNODES);
1505
1506 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1507 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1508
1509 if (nmask)
1510 nm = compat_alloc_user_space(alloc_size);
1511
1512 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1513
1514 if (!err && nmask) {
1515 unsigned long copy_size;
1516 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1517 err = copy_from_user(bm, nm, copy_size);
1518 /* ensure entire bitmap is zeroed */
1519 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1520 err |= compat_put_bitmap(nmask, bm, nr_bits);
1521 }
1522
1523 return err;
1524 }
1525
1526 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1527 compat_ulong_t, maxnode)
1528 {
1529 unsigned long __user *nm = NULL;
1530 unsigned long nr_bits, alloc_size;
1531 DECLARE_BITMAP(bm, MAX_NUMNODES);
1532
1533 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1534 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1535
1536 if (nmask) {
1537 if (compat_get_bitmap(bm, nmask, nr_bits))
1538 return -EFAULT;
1539 nm = compat_alloc_user_space(alloc_size);
1540 if (copy_to_user(nm, bm, alloc_size))
1541 return -EFAULT;
1542 }
1543
1544 return sys_set_mempolicy(mode, nm, nr_bits+1);
1545 }
1546
1547 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1548 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1549 compat_ulong_t, maxnode, compat_ulong_t, flags)
1550 {
1551 unsigned long __user *nm = NULL;
1552 unsigned long nr_bits, alloc_size;
1553 nodemask_t bm;
1554
1555 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1556 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1557
1558 if (nmask) {
1559 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1560 return -EFAULT;
1561 nm = compat_alloc_user_space(alloc_size);
1562 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1563 return -EFAULT;
1564 }
1565
1566 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1567 }
1568
1569 #endif
1570
1571 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1572 unsigned long addr)
1573 {
1574 struct mempolicy *pol = NULL;
1575
1576 if (vma) {
1577 if (vma->vm_ops && vma->vm_ops->get_policy) {
1578 pol = vma->vm_ops->get_policy(vma, addr);
1579 } else if (vma->vm_policy) {
1580 pol = vma->vm_policy;
1581
1582 /*
1583 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1584 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1585 * count on these policies which will be dropped by
1586 * mpol_cond_put() later
1587 */
1588 if (mpol_needs_cond_ref(pol))
1589 mpol_get(pol);
1590 }
1591 }
1592
1593 return pol;
1594 }
1595
1596 /*
1597 * get_vma_policy(@vma, @addr)
1598 * @vma: virtual memory area whose policy is sought
1599 * @addr: address in @vma for shared policy lookup
1600 *
1601 * Returns effective policy for a VMA at specified address.
1602 * Falls back to current->mempolicy or system default policy, as necessary.
1603 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1604 * count--added by the get_policy() vm_op, as appropriate--to protect against
1605 * freeing by another task. It is the caller's responsibility to free the
1606 * extra reference for shared policies.
1607 */
1608 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1609 unsigned long addr)
1610 {
1611 struct mempolicy *pol = __get_vma_policy(vma, addr);
1612
1613 if (!pol)
1614 pol = get_task_policy(current);
1615
1616 return pol;
1617 }
1618
1619 bool vma_policy_mof(struct vm_area_struct *vma)
1620 {
1621 struct mempolicy *pol;
1622
1623 if (vma->vm_ops && vma->vm_ops->get_policy) {
1624 bool ret = false;
1625
1626 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1627 if (pol && (pol->flags & MPOL_F_MOF))
1628 ret = true;
1629 mpol_cond_put(pol);
1630
1631 return ret;
1632 }
1633
1634 pol = vma->vm_policy;
1635 if (!pol)
1636 pol = get_task_policy(current);
1637
1638 return pol->flags & MPOL_F_MOF;
1639 }
1640
1641 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1642 {
1643 enum zone_type dynamic_policy_zone = policy_zone;
1644
1645 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1646
1647 /*
1648 * if policy->v.nodes has movable memory only,
1649 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1650 *
1651 * policy->v.nodes is intersect with node_states[N_MEMORY].
1652 * so if the following test faile, it implies
1653 * policy->v.nodes has movable memory only.
1654 */
1655 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1656 dynamic_policy_zone = ZONE_MOVABLE;
1657
1658 return zone >= dynamic_policy_zone;
1659 }
1660
1661 /*
1662 * Return a nodemask representing a mempolicy for filtering nodes for
1663 * page allocation
1664 */
1665 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1666 {
1667 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1668 if (unlikely(policy->mode == MPOL_BIND) &&
1669 apply_policy_zone(policy, gfp_zone(gfp)) &&
1670 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1671 return &policy->v.nodes;
1672
1673 return NULL;
1674 }
1675
1676 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1677 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1678 int nd)
1679 {
1680 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1681 nd = policy->v.preferred_node;
1682 else {
1683 /*
1684 * __GFP_THISNODE shouldn't even be used with the bind policy
1685 * because we might easily break the expectation to stay on the
1686 * requested node and not break the policy.
1687 */
1688 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1689 }
1690
1691 return node_zonelist(nd, gfp);
1692 }
1693
1694 /* Do dynamic interleaving for a process */
1695 static unsigned interleave_nodes(struct mempolicy *policy)
1696 {
1697 unsigned nid, next;
1698 struct task_struct *me = current;
1699
1700 nid = me->il_next;
1701 next = next_node_in(nid, policy->v.nodes);
1702 if (next < MAX_NUMNODES)
1703 me->il_next = next;
1704 return nid;
1705 }
1706
1707 /*
1708 * Depending on the memory policy provide a node from which to allocate the
1709 * next slab entry.
1710 */
1711 unsigned int mempolicy_slab_node(void)
1712 {
1713 struct mempolicy *policy;
1714 int node = numa_mem_id();
1715
1716 if (in_interrupt())
1717 return node;
1718
1719 policy = current->mempolicy;
1720 if (!policy || policy->flags & MPOL_F_LOCAL)
1721 return node;
1722
1723 switch (policy->mode) {
1724 case MPOL_PREFERRED:
1725 /*
1726 * handled MPOL_F_LOCAL above
1727 */
1728 return policy->v.preferred_node;
1729
1730 case MPOL_INTERLEAVE:
1731 return interleave_nodes(policy);
1732
1733 case MPOL_BIND: {
1734 struct zoneref *z;
1735
1736 /*
1737 * Follow bind policy behavior and start allocation at the
1738 * first node.
1739 */
1740 struct zonelist *zonelist;
1741 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1742 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1743 z = first_zones_zonelist(zonelist, highest_zoneidx,
1744 &policy->v.nodes);
1745 return z->zone ? z->zone->node : node;
1746 }
1747
1748 default:
1749 BUG();
1750 }
1751 }
1752
1753 /*
1754 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1755 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1756 * number of present nodes.
1757 */
1758 static unsigned offset_il_node(struct mempolicy *pol,
1759 struct vm_area_struct *vma, unsigned long n)
1760 {
1761 unsigned nnodes = nodes_weight(pol->v.nodes);
1762 unsigned target;
1763 int i;
1764 int nid;
1765
1766 if (!nnodes)
1767 return numa_node_id();
1768 target = (unsigned int)n % nnodes;
1769 nid = first_node(pol->v.nodes);
1770 for (i = 0; i < target; i++)
1771 nid = next_node(nid, pol->v.nodes);
1772 return nid;
1773 }
1774
1775 /* Determine a node number for interleave */
1776 static inline unsigned interleave_nid(struct mempolicy *pol,
1777 struct vm_area_struct *vma, unsigned long addr, int shift)
1778 {
1779 if (vma) {
1780 unsigned long off;
1781
1782 /*
1783 * for small pages, there is no difference between
1784 * shift and PAGE_SHIFT, so the bit-shift is safe.
1785 * for huge pages, since vm_pgoff is in units of small
1786 * pages, we need to shift off the always 0 bits to get
1787 * a useful offset.
1788 */
1789 BUG_ON(shift < PAGE_SHIFT);
1790 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1791 off += (addr - vma->vm_start) >> shift;
1792 return offset_il_node(pol, vma, off);
1793 } else
1794 return interleave_nodes(pol);
1795 }
1796
1797 #ifdef CONFIG_HUGETLBFS
1798 /*
1799 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1800 * @vma: virtual memory area whose policy is sought
1801 * @addr: address in @vma for shared policy lookup and interleave policy
1802 * @gfp_flags: for requested zone
1803 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1804 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1805 *
1806 * Returns a zonelist suitable for a huge page allocation and a pointer
1807 * to the struct mempolicy for conditional unref after allocation.
1808 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1809 * @nodemask for filtering the zonelist.
1810 *
1811 * Must be protected by read_mems_allowed_begin()
1812 */
1813 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1814 gfp_t gfp_flags, struct mempolicy **mpol,
1815 nodemask_t **nodemask)
1816 {
1817 struct zonelist *zl;
1818
1819 *mpol = get_vma_policy(vma, addr);
1820 *nodemask = NULL; /* assume !MPOL_BIND */
1821
1822 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1823 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1824 huge_page_shift(hstate_vma(vma))), gfp_flags);
1825 } else {
1826 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1827 if ((*mpol)->mode == MPOL_BIND)
1828 *nodemask = &(*mpol)->v.nodes;
1829 }
1830 return zl;
1831 }
1832
1833 /*
1834 * init_nodemask_of_mempolicy
1835 *
1836 * If the current task's mempolicy is "default" [NULL], return 'false'
1837 * to indicate default policy. Otherwise, extract the policy nodemask
1838 * for 'bind' or 'interleave' policy into the argument nodemask, or
1839 * initialize the argument nodemask to contain the single node for
1840 * 'preferred' or 'local' policy and return 'true' to indicate presence
1841 * of non-default mempolicy.
1842 *
1843 * We don't bother with reference counting the mempolicy [mpol_get/put]
1844 * because the current task is examining it's own mempolicy and a task's
1845 * mempolicy is only ever changed by the task itself.
1846 *
1847 * N.B., it is the caller's responsibility to free a returned nodemask.
1848 */
1849 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1850 {
1851 struct mempolicy *mempolicy;
1852 int nid;
1853
1854 if (!(mask && current->mempolicy))
1855 return false;
1856
1857 task_lock(current);
1858 mempolicy = current->mempolicy;
1859 switch (mempolicy->mode) {
1860 case MPOL_PREFERRED:
1861 if (mempolicy->flags & MPOL_F_LOCAL)
1862 nid = numa_node_id();
1863 else
1864 nid = mempolicy->v.preferred_node;
1865 init_nodemask_of_node(mask, nid);
1866 break;
1867
1868 case MPOL_BIND:
1869 /* Fall through */
1870 case MPOL_INTERLEAVE:
1871 *mask = mempolicy->v.nodes;
1872 break;
1873
1874 default:
1875 BUG();
1876 }
1877 task_unlock(current);
1878
1879 return true;
1880 }
1881 #endif
1882
1883 /*
1884 * mempolicy_nodemask_intersects
1885 *
1886 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1887 * policy. Otherwise, check for intersection between mask and the policy
1888 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1889 * policy, always return true since it may allocate elsewhere on fallback.
1890 *
1891 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1892 */
1893 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1894 const nodemask_t *mask)
1895 {
1896 struct mempolicy *mempolicy;
1897 bool ret = true;
1898
1899 if (!mask)
1900 return ret;
1901 task_lock(tsk);
1902 mempolicy = tsk->mempolicy;
1903 if (!mempolicy)
1904 goto out;
1905
1906 switch (mempolicy->mode) {
1907 case MPOL_PREFERRED:
1908 /*
1909 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1910 * allocate from, they may fallback to other nodes when oom.
1911 * Thus, it's possible for tsk to have allocated memory from
1912 * nodes in mask.
1913 */
1914 break;
1915 case MPOL_BIND:
1916 case MPOL_INTERLEAVE:
1917 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1918 break;
1919 default:
1920 BUG();
1921 }
1922 out:
1923 task_unlock(tsk);
1924 return ret;
1925 }
1926
1927 /* Allocate a page in interleaved policy.
1928 Own path because it needs to do special accounting. */
1929 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1930 unsigned nid)
1931 {
1932 struct zonelist *zl;
1933 struct page *page;
1934
1935 zl = node_zonelist(nid, gfp);
1936 page = __alloc_pages(gfp, order, zl);
1937 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1938 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1939 return page;
1940 }
1941
1942 /**
1943 * alloc_pages_vma - Allocate a page for a VMA.
1944 *
1945 * @gfp:
1946 * %GFP_USER user allocation.
1947 * %GFP_KERNEL kernel allocations,
1948 * %GFP_HIGHMEM highmem/user allocations,
1949 * %GFP_FS allocation should not call back into a file system.
1950 * %GFP_ATOMIC don't sleep.
1951 *
1952 * @order:Order of the GFP allocation.
1953 * @vma: Pointer to VMA or NULL if not available.
1954 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1955 * @node: Which node to prefer for allocation (modulo policy).
1956 * @hugepage: for hugepages try only the preferred node if possible
1957 *
1958 * This function allocates a page from the kernel page pool and applies
1959 * a NUMA policy associated with the VMA or the current process.
1960 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1961 * mm_struct of the VMA to prevent it from going away. Should be used for
1962 * all allocations for pages that will be mapped into user space. Returns
1963 * NULL when no page can be allocated.
1964 */
1965 struct page *
1966 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1967 unsigned long addr, int node, bool hugepage)
1968 {
1969 struct mempolicy *pol;
1970 struct page *page;
1971 unsigned int cpuset_mems_cookie;
1972 struct zonelist *zl;
1973 nodemask_t *nmask;
1974
1975 retry_cpuset:
1976 pol = get_vma_policy(vma, addr);
1977 cpuset_mems_cookie = read_mems_allowed_begin();
1978
1979 if (pol->mode == MPOL_INTERLEAVE) {
1980 unsigned nid;
1981
1982 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1983 mpol_cond_put(pol);
1984 page = alloc_page_interleave(gfp, order, nid);
1985 goto out;
1986 }
1987
1988 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1989 int hpage_node = node;
1990
1991 /*
1992 * For hugepage allocation and non-interleave policy which
1993 * allows the current node (or other explicitly preferred
1994 * node) we only try to allocate from the current/preferred
1995 * node and don't fall back to other nodes, as the cost of
1996 * remote accesses would likely offset THP benefits.
1997 *
1998 * If the policy is interleave, or does not allow the current
1999 * node in its nodemask, we allocate the standard way.
2000 */
2001 if (pol->mode == MPOL_PREFERRED &&
2002 !(pol->flags & MPOL_F_LOCAL))
2003 hpage_node = pol->v.preferred_node;
2004
2005 nmask = policy_nodemask(gfp, pol);
2006 if (!nmask || node_isset(hpage_node, *nmask)) {
2007 mpol_cond_put(pol);
2008 page = __alloc_pages_node(hpage_node,
2009 gfp | __GFP_THISNODE, order);
2010 goto out;
2011 }
2012 }
2013
2014 nmask = policy_nodemask(gfp, pol);
2015 zl = policy_zonelist(gfp, pol, node);
2016 page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2017 mpol_cond_put(pol);
2018 out:
2019 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2020 goto retry_cpuset;
2021 return page;
2022 }
2023
2024 /**
2025 * alloc_pages_current - Allocate pages.
2026 *
2027 * @gfp:
2028 * %GFP_USER user allocation,
2029 * %GFP_KERNEL kernel allocation,
2030 * %GFP_HIGHMEM highmem allocation,
2031 * %GFP_FS don't call back into a file system.
2032 * %GFP_ATOMIC don't sleep.
2033 * @order: Power of two of allocation size in pages. 0 is a single page.
2034 *
2035 * Allocate a page from the kernel page pool. When not in
2036 * interrupt context and apply the current process NUMA policy.
2037 * Returns NULL when no page can be allocated.
2038 *
2039 * Don't call cpuset_update_task_memory_state() unless
2040 * 1) it's ok to take cpuset_sem (can WAIT), and
2041 * 2) allocating for current task (not interrupt).
2042 */
2043 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2044 {
2045 struct mempolicy *pol = &default_policy;
2046 struct page *page;
2047 unsigned int cpuset_mems_cookie;
2048
2049 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2050 pol = get_task_policy(current);
2051
2052 retry_cpuset:
2053 cpuset_mems_cookie = read_mems_allowed_begin();
2054
2055 /*
2056 * No reference counting needed for current->mempolicy
2057 * nor system default_policy
2058 */
2059 if (pol->mode == MPOL_INTERLEAVE)
2060 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2061 else
2062 page = __alloc_pages_nodemask(gfp, order,
2063 policy_zonelist(gfp, pol, numa_node_id()),
2064 policy_nodemask(gfp, pol));
2065
2066 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2067 goto retry_cpuset;
2068
2069 return page;
2070 }
2071 EXPORT_SYMBOL(alloc_pages_current);
2072
2073 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2074 {
2075 struct mempolicy *pol = mpol_dup(vma_policy(src));
2076
2077 if (IS_ERR(pol))
2078 return PTR_ERR(pol);
2079 dst->vm_policy = pol;
2080 return 0;
2081 }
2082
2083 /*
2084 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2085 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2086 * with the mems_allowed returned by cpuset_mems_allowed(). This
2087 * keeps mempolicies cpuset relative after its cpuset moves. See
2088 * further kernel/cpuset.c update_nodemask().
2089 *
2090 * current's mempolicy may be rebinded by the other task(the task that changes
2091 * cpuset's mems), so we needn't do rebind work for current task.
2092 */
2093
2094 /* Slow path of a mempolicy duplicate */
2095 struct mempolicy *__mpol_dup(struct mempolicy *old)
2096 {
2097 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2098
2099 if (!new)
2100 return ERR_PTR(-ENOMEM);
2101
2102 /* task's mempolicy is protected by alloc_lock */
2103 if (old == current->mempolicy) {
2104 task_lock(current);
2105 *new = *old;
2106 task_unlock(current);
2107 } else
2108 *new = *old;
2109
2110 if (current_cpuset_is_being_rebound()) {
2111 nodemask_t mems = cpuset_mems_allowed(current);
2112 if (new->flags & MPOL_F_REBINDING)
2113 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2114 else
2115 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2116 }
2117 atomic_set(&new->refcnt, 1);
2118 return new;
2119 }
2120
2121 /* Slow path of a mempolicy comparison */
2122 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2123 {
2124 if (!a || !b)
2125 return false;
2126 if (a->mode != b->mode)
2127 return false;
2128 if (a->flags != b->flags)
2129 return false;
2130 if (mpol_store_user_nodemask(a))
2131 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2132 return false;
2133
2134 switch (a->mode) {
2135 case MPOL_BIND:
2136 /* Fall through */
2137 case MPOL_INTERLEAVE:
2138 return !!nodes_equal(a->v.nodes, b->v.nodes);
2139 case MPOL_PREFERRED:
2140 return a->v.preferred_node == b->v.preferred_node;
2141 default:
2142 BUG();
2143 return false;
2144 }
2145 }
2146
2147 /*
2148 * Shared memory backing store policy support.
2149 *
2150 * Remember policies even when nobody has shared memory mapped.
2151 * The policies are kept in Red-Black tree linked from the inode.
2152 * They are protected by the sp->lock rwlock, which should be held
2153 * for any accesses to the tree.
2154 */
2155
2156 /*
2157 * lookup first element intersecting start-end. Caller holds sp->lock for
2158 * reading or for writing
2159 */
2160 static struct sp_node *
2161 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2162 {
2163 struct rb_node *n = sp->root.rb_node;
2164
2165 while (n) {
2166 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2167
2168 if (start >= p->end)
2169 n = n->rb_right;
2170 else if (end <= p->start)
2171 n = n->rb_left;
2172 else
2173 break;
2174 }
2175 if (!n)
2176 return NULL;
2177 for (;;) {
2178 struct sp_node *w = NULL;
2179 struct rb_node *prev = rb_prev(n);
2180 if (!prev)
2181 break;
2182 w = rb_entry(prev, struct sp_node, nd);
2183 if (w->end <= start)
2184 break;
2185 n = prev;
2186 }
2187 return rb_entry(n, struct sp_node, nd);
2188 }
2189
2190 /*
2191 * Insert a new shared policy into the list. Caller holds sp->lock for
2192 * writing.
2193 */
2194 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2195 {
2196 struct rb_node **p = &sp->root.rb_node;
2197 struct rb_node *parent = NULL;
2198 struct sp_node *nd;
2199
2200 while (*p) {
2201 parent = *p;
2202 nd = rb_entry(parent, struct sp_node, nd);
2203 if (new->start < nd->start)
2204 p = &(*p)->rb_left;
2205 else if (new->end > nd->end)
2206 p = &(*p)->rb_right;
2207 else
2208 BUG();
2209 }
2210 rb_link_node(&new->nd, parent, p);
2211 rb_insert_color(&new->nd, &sp->root);
2212 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2213 new->policy ? new->policy->mode : 0);
2214 }
2215
2216 /* Find shared policy intersecting idx */
2217 struct mempolicy *
2218 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2219 {
2220 struct mempolicy *pol = NULL;
2221 struct sp_node *sn;
2222
2223 if (!sp->root.rb_node)
2224 return NULL;
2225 read_lock(&sp->lock);
2226 sn = sp_lookup(sp, idx, idx+1);
2227 if (sn) {
2228 mpol_get(sn->policy);
2229 pol = sn->policy;
2230 }
2231 read_unlock(&sp->lock);
2232 return pol;
2233 }
2234
2235 static void sp_free(struct sp_node *n)
2236 {
2237 mpol_put(n->policy);
2238 kmem_cache_free(sn_cache, n);
2239 }
2240
2241 /**
2242 * mpol_misplaced - check whether current page node is valid in policy
2243 *
2244 * @page: page to be checked
2245 * @vma: vm area where page mapped
2246 * @addr: virtual address where page mapped
2247 *
2248 * Lookup current policy node id for vma,addr and "compare to" page's
2249 * node id.
2250 *
2251 * Returns:
2252 * -1 - not misplaced, page is in the right node
2253 * node - node id where the page should be
2254 *
2255 * Policy determination "mimics" alloc_page_vma().
2256 * Called from fault path where we know the vma and faulting address.
2257 */
2258 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2259 {
2260 struct mempolicy *pol;
2261 struct zoneref *z;
2262 int curnid = page_to_nid(page);
2263 unsigned long pgoff;
2264 int thiscpu = raw_smp_processor_id();
2265 int thisnid = cpu_to_node(thiscpu);
2266 int polnid = -1;
2267 int ret = -1;
2268
2269 BUG_ON(!vma);
2270
2271 pol = get_vma_policy(vma, addr);
2272 if (!(pol->flags & MPOL_F_MOF))
2273 goto out;
2274
2275 switch (pol->mode) {
2276 case MPOL_INTERLEAVE:
2277 BUG_ON(addr >= vma->vm_end);
2278 BUG_ON(addr < vma->vm_start);
2279
2280 pgoff = vma->vm_pgoff;
2281 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2282 polnid = offset_il_node(pol, vma, pgoff);
2283 break;
2284
2285 case MPOL_PREFERRED:
2286 if (pol->flags & MPOL_F_LOCAL)
2287 polnid = numa_node_id();
2288 else
2289 polnid = pol->v.preferred_node;
2290 break;
2291
2292 case MPOL_BIND:
2293
2294 /*
2295 * allows binding to multiple nodes.
2296 * use current page if in policy nodemask,
2297 * else select nearest allowed node, if any.
2298 * If no allowed nodes, use current [!misplaced].
2299 */
2300 if (node_isset(curnid, pol->v.nodes))
2301 goto out;
2302 z = first_zones_zonelist(
2303 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2304 gfp_zone(GFP_HIGHUSER),
2305 &pol->v.nodes);
2306 polnid = z->zone->node;
2307 break;
2308
2309 default:
2310 BUG();
2311 }
2312
2313 /* Migrate the page towards the node whose CPU is referencing it */
2314 if (pol->flags & MPOL_F_MORON) {
2315 polnid = thisnid;
2316
2317 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2318 goto out;
2319 }
2320
2321 if (curnid != polnid)
2322 ret = polnid;
2323 out:
2324 mpol_cond_put(pol);
2325
2326 return ret;
2327 }
2328
2329 /*
2330 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2331 * dropped after task->mempolicy is set to NULL so that any allocation done as
2332 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2333 * policy.
2334 */
2335 void mpol_put_task_policy(struct task_struct *task)
2336 {
2337 struct mempolicy *pol;
2338
2339 task_lock(task);
2340 pol = task->mempolicy;
2341 task->mempolicy = NULL;
2342 task_unlock(task);
2343 mpol_put(pol);
2344 }
2345
2346 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2347 {
2348 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2349 rb_erase(&n->nd, &sp->root);
2350 sp_free(n);
2351 }
2352
2353 static void sp_node_init(struct sp_node *node, unsigned long start,
2354 unsigned long end, struct mempolicy *pol)
2355 {
2356 node->start = start;
2357 node->end = end;
2358 node->policy = pol;
2359 }
2360
2361 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2362 struct mempolicy *pol)
2363 {
2364 struct sp_node *n;
2365 struct mempolicy *newpol;
2366
2367 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2368 if (!n)
2369 return NULL;
2370
2371 newpol = mpol_dup(pol);
2372 if (IS_ERR(newpol)) {
2373 kmem_cache_free(sn_cache, n);
2374 return NULL;
2375 }
2376 newpol->flags |= MPOL_F_SHARED;
2377 sp_node_init(n, start, end, newpol);
2378
2379 return n;
2380 }
2381
2382 /* Replace a policy range. */
2383 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2384 unsigned long end, struct sp_node *new)
2385 {
2386 struct sp_node *n;
2387 struct sp_node *n_new = NULL;
2388 struct mempolicy *mpol_new = NULL;
2389 int ret = 0;
2390
2391 restart:
2392 write_lock(&sp->lock);
2393 n = sp_lookup(sp, start, end);
2394 /* Take care of old policies in the same range. */
2395 while (n && n->start < end) {
2396 struct rb_node *next = rb_next(&n->nd);
2397 if (n->start >= start) {
2398 if (n->end <= end)
2399 sp_delete(sp, n);
2400 else
2401 n->start = end;
2402 } else {
2403 /* Old policy spanning whole new range. */
2404 if (n->end > end) {
2405 if (!n_new)
2406 goto alloc_new;
2407
2408 *mpol_new = *n->policy;
2409 atomic_set(&mpol_new->refcnt, 1);
2410 sp_node_init(n_new, end, n->end, mpol_new);
2411 n->end = start;
2412 sp_insert(sp, n_new);
2413 n_new = NULL;
2414 mpol_new = NULL;
2415 break;
2416 } else
2417 n->end = start;
2418 }
2419 if (!next)
2420 break;
2421 n = rb_entry(next, struct sp_node, nd);
2422 }
2423 if (new)
2424 sp_insert(sp, new);
2425 write_unlock(&sp->lock);
2426 ret = 0;
2427
2428 err_out:
2429 if (mpol_new)
2430 mpol_put(mpol_new);
2431 if (n_new)
2432 kmem_cache_free(sn_cache, n_new);
2433
2434 return ret;
2435
2436 alloc_new:
2437 write_unlock(&sp->lock);
2438 ret = -ENOMEM;
2439 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2440 if (!n_new)
2441 goto err_out;
2442 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2443 if (!mpol_new)
2444 goto err_out;
2445 goto restart;
2446 }
2447
2448 /**
2449 * mpol_shared_policy_init - initialize shared policy for inode
2450 * @sp: pointer to inode shared policy
2451 * @mpol: struct mempolicy to install
2452 *
2453 * Install non-NULL @mpol in inode's shared policy rb-tree.
2454 * On entry, the current task has a reference on a non-NULL @mpol.
2455 * This must be released on exit.
2456 * This is called at get_inode() calls and we can use GFP_KERNEL.
2457 */
2458 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2459 {
2460 int ret;
2461
2462 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2463 rwlock_init(&sp->lock);
2464
2465 if (mpol) {
2466 struct vm_area_struct pvma;
2467 struct mempolicy *new;
2468 NODEMASK_SCRATCH(scratch);
2469
2470 if (!scratch)
2471 goto put_mpol;
2472 /* contextualize the tmpfs mount point mempolicy */
2473 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2474 if (IS_ERR(new))
2475 goto free_scratch; /* no valid nodemask intersection */
2476
2477 task_lock(current);
2478 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2479 task_unlock(current);
2480 if (ret)
2481 goto put_new;
2482
2483 /* Create pseudo-vma that contains just the policy */
2484 memset(&pvma, 0, sizeof(struct vm_area_struct));
2485 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2486 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2487
2488 put_new:
2489 mpol_put(new); /* drop initial ref */
2490 free_scratch:
2491 NODEMASK_SCRATCH_FREE(scratch);
2492 put_mpol:
2493 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2494 }
2495 }
2496
2497 int mpol_set_shared_policy(struct shared_policy *info,
2498 struct vm_area_struct *vma, struct mempolicy *npol)
2499 {
2500 int err;
2501 struct sp_node *new = NULL;
2502 unsigned long sz = vma_pages(vma);
2503
2504 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2505 vma->vm_pgoff,
2506 sz, npol ? npol->mode : -1,
2507 npol ? npol->flags : -1,
2508 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2509
2510 if (npol) {
2511 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2512 if (!new)
2513 return -ENOMEM;
2514 }
2515 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2516 if (err && new)
2517 sp_free(new);
2518 return err;
2519 }
2520
2521 /* Free a backing policy store on inode delete. */
2522 void mpol_free_shared_policy(struct shared_policy *p)
2523 {
2524 struct sp_node *n;
2525 struct rb_node *next;
2526
2527 if (!p->root.rb_node)
2528 return;
2529 write_lock(&p->lock);
2530 next = rb_first(&p->root);
2531 while (next) {
2532 n = rb_entry(next, struct sp_node, nd);
2533 next = rb_next(&n->nd);
2534 sp_delete(p, n);
2535 }
2536 write_unlock(&p->lock);
2537 }
2538
2539 #ifdef CONFIG_NUMA_BALANCING
2540 static int __initdata numabalancing_override;
2541
2542 static void __init check_numabalancing_enable(void)
2543 {
2544 bool numabalancing_default = false;
2545
2546 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2547 numabalancing_default = true;
2548
2549 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2550 if (numabalancing_override)
2551 set_numabalancing_state(numabalancing_override == 1);
2552
2553 if (num_online_nodes() > 1 && !numabalancing_override) {
2554 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2555 numabalancing_default ? "Enabling" : "Disabling");
2556 set_numabalancing_state(numabalancing_default);
2557 }
2558 }
2559
2560 static int __init setup_numabalancing(char *str)
2561 {
2562 int ret = 0;
2563 if (!str)
2564 goto out;
2565
2566 if (!strcmp(str, "enable")) {
2567 numabalancing_override = 1;
2568 ret = 1;
2569 } else if (!strcmp(str, "disable")) {
2570 numabalancing_override = -1;
2571 ret = 1;
2572 }
2573 out:
2574 if (!ret)
2575 pr_warn("Unable to parse numa_balancing=\n");
2576
2577 return ret;
2578 }
2579 __setup("numa_balancing=", setup_numabalancing);
2580 #else
2581 static inline void __init check_numabalancing_enable(void)
2582 {
2583 }
2584 #endif /* CONFIG_NUMA_BALANCING */
2585
2586 /* assumes fs == KERNEL_DS */
2587 void __init numa_policy_init(void)
2588 {
2589 nodemask_t interleave_nodes;
2590 unsigned long largest = 0;
2591 int nid, prefer = 0;
2592
2593 policy_cache = kmem_cache_create("numa_policy",
2594 sizeof(struct mempolicy),
2595 0, SLAB_PANIC, NULL);
2596
2597 sn_cache = kmem_cache_create("shared_policy_node",
2598 sizeof(struct sp_node),
2599 0, SLAB_PANIC, NULL);
2600
2601 for_each_node(nid) {
2602 preferred_node_policy[nid] = (struct mempolicy) {
2603 .refcnt = ATOMIC_INIT(1),
2604 .mode = MPOL_PREFERRED,
2605 .flags = MPOL_F_MOF | MPOL_F_MORON,
2606 .v = { .preferred_node = nid, },
2607 };
2608 }
2609
2610 /*
2611 * Set interleaving policy for system init. Interleaving is only
2612 * enabled across suitably sized nodes (default is >= 16MB), or
2613 * fall back to the largest node if they're all smaller.
2614 */
2615 nodes_clear(interleave_nodes);
2616 for_each_node_state(nid, N_MEMORY) {
2617 unsigned long total_pages = node_present_pages(nid);
2618
2619 /* Preserve the largest node */
2620 if (largest < total_pages) {
2621 largest = total_pages;
2622 prefer = nid;
2623 }
2624
2625 /* Interleave this node? */
2626 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2627 node_set(nid, interleave_nodes);
2628 }
2629
2630 /* All too small, use the largest */
2631 if (unlikely(nodes_empty(interleave_nodes)))
2632 node_set(prefer, interleave_nodes);
2633
2634 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2635 pr_err("%s: interleaving failed\n", __func__);
2636
2637 check_numabalancing_enable();
2638 }
2639
2640 /* Reset policy of current process to default */
2641 void numa_default_policy(void)
2642 {
2643 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2644 }
2645
2646 /*
2647 * Parse and format mempolicy from/to strings
2648 */
2649
2650 /*
2651 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2652 */
2653 static const char * const policy_modes[] =
2654 {
2655 [MPOL_DEFAULT] = "default",
2656 [MPOL_PREFERRED] = "prefer",
2657 [MPOL_BIND] = "bind",
2658 [MPOL_INTERLEAVE] = "interleave",
2659 [MPOL_LOCAL] = "local",
2660 };
2661
2662
2663 #ifdef CONFIG_TMPFS
2664 /**
2665 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2666 * @str: string containing mempolicy to parse
2667 * @mpol: pointer to struct mempolicy pointer, returned on success.
2668 *
2669 * Format of input:
2670 * <mode>[=<flags>][:<nodelist>]
2671 *
2672 * On success, returns 0, else 1
2673 */
2674 int mpol_parse_str(char *str, struct mempolicy **mpol)
2675 {
2676 struct mempolicy *new = NULL;
2677 unsigned short mode;
2678 unsigned short mode_flags;
2679 nodemask_t nodes;
2680 char *nodelist = strchr(str, ':');
2681 char *flags = strchr(str, '=');
2682 int err = 1;
2683
2684 if (nodelist) {
2685 /* NUL-terminate mode or flags string */
2686 *nodelist++ = '\0';
2687 if (nodelist_parse(nodelist, nodes))
2688 goto out;
2689 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2690 goto out;
2691 } else
2692 nodes_clear(nodes);
2693
2694 if (flags)
2695 *flags++ = '\0'; /* terminate mode string */
2696
2697 for (mode = 0; mode < MPOL_MAX; mode++) {
2698 if (!strcmp(str, policy_modes[mode])) {
2699 break;
2700 }
2701 }
2702 if (mode >= MPOL_MAX)
2703 goto out;
2704
2705 switch (mode) {
2706 case MPOL_PREFERRED:
2707 /*
2708 * Insist on a nodelist of one node only
2709 */
2710 if (nodelist) {
2711 char *rest = nodelist;
2712 while (isdigit(*rest))
2713 rest++;
2714 if (*rest)
2715 goto out;
2716 }
2717 break;
2718 case MPOL_INTERLEAVE:
2719 /*
2720 * Default to online nodes with memory if no nodelist
2721 */
2722 if (!nodelist)
2723 nodes = node_states[N_MEMORY];
2724 break;
2725 case MPOL_LOCAL:
2726 /*
2727 * Don't allow a nodelist; mpol_new() checks flags
2728 */
2729 if (nodelist)
2730 goto out;
2731 mode = MPOL_PREFERRED;
2732 break;
2733 case MPOL_DEFAULT:
2734 /*
2735 * Insist on a empty nodelist
2736 */
2737 if (!nodelist)
2738 err = 0;
2739 goto out;
2740 case MPOL_BIND:
2741 /*
2742 * Insist on a nodelist
2743 */
2744 if (!nodelist)
2745 goto out;
2746 }
2747
2748 mode_flags = 0;
2749 if (flags) {
2750 /*
2751 * Currently, we only support two mutually exclusive
2752 * mode flags.
2753 */
2754 if (!strcmp(flags, "static"))
2755 mode_flags |= MPOL_F_STATIC_NODES;
2756 else if (!strcmp(flags, "relative"))
2757 mode_flags |= MPOL_F_RELATIVE_NODES;
2758 else
2759 goto out;
2760 }
2761
2762 new = mpol_new(mode, mode_flags, &nodes);
2763 if (IS_ERR(new))
2764 goto out;
2765
2766 /*
2767 * Save nodes for mpol_to_str() to show the tmpfs mount options
2768 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2769 */
2770 if (mode != MPOL_PREFERRED)
2771 new->v.nodes = nodes;
2772 else if (nodelist)
2773 new->v.preferred_node = first_node(nodes);
2774 else
2775 new->flags |= MPOL_F_LOCAL;
2776
2777 /*
2778 * Save nodes for contextualization: this will be used to "clone"
2779 * the mempolicy in a specific context [cpuset] at a later time.
2780 */
2781 new->w.user_nodemask = nodes;
2782
2783 err = 0;
2784
2785 out:
2786 /* Restore string for error message */
2787 if (nodelist)
2788 *--nodelist = ':';
2789 if (flags)
2790 *--flags = '=';
2791 if (!err)
2792 *mpol = new;
2793 return err;
2794 }
2795 #endif /* CONFIG_TMPFS */
2796
2797 /**
2798 * mpol_to_str - format a mempolicy structure for printing
2799 * @buffer: to contain formatted mempolicy string
2800 * @maxlen: length of @buffer
2801 * @pol: pointer to mempolicy to be formatted
2802 *
2803 * Convert @pol into a string. If @buffer is too short, truncate the string.
2804 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2805 * longest flag, "relative", and to display at least a few node ids.
2806 */
2807 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2808 {
2809 char *p = buffer;
2810 nodemask_t nodes = NODE_MASK_NONE;
2811 unsigned short mode = MPOL_DEFAULT;
2812 unsigned short flags = 0;
2813
2814 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2815 mode = pol->mode;
2816 flags = pol->flags;
2817 }
2818
2819 switch (mode) {
2820 case MPOL_DEFAULT:
2821 break;
2822 case MPOL_PREFERRED:
2823 if (flags & MPOL_F_LOCAL)
2824 mode = MPOL_LOCAL;
2825 else
2826 node_set(pol->v.preferred_node, nodes);
2827 break;
2828 case MPOL_BIND:
2829 case MPOL_INTERLEAVE:
2830 nodes = pol->v.nodes;
2831 break;
2832 default:
2833 WARN_ON_ONCE(1);
2834 snprintf(p, maxlen, "unknown");
2835 return;
2836 }
2837
2838 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2839
2840 if (flags & MPOL_MODE_FLAGS) {
2841 p += snprintf(p, buffer + maxlen - p, "=");
2842
2843 /*
2844 * Currently, the only defined flags are mutually exclusive
2845 */
2846 if (flags & MPOL_F_STATIC_NODES)
2847 p += snprintf(p, buffer + maxlen - p, "static");
2848 else if (flags & MPOL_F_RELATIVE_NODES)
2849 p += snprintf(p, buffer + maxlen - p, "relative");
2850 }
2851
2852 if (!nodes_empty(nodes))
2853 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2854 nodemask_pr_args(&nodes));
2855 }