]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/mempool.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / mm / mempool.c
1 /*
2 * linux/mm/mempool.c
3 *
4 * memory buffer pool support. Such pools are mostly used
5 * for guaranteed, deadlock-free memory allocations during
6 * extreme VM load.
7 *
8 * started by Ingo Molnar, Copyright (C) 2001
9 * debugging by David Rientjes, Copyright (C) 2015
10 */
11
12 #include <linux/mm.h>
13 #include <linux/slab.h>
14 #include <linux/highmem.h>
15 #include <linux/kasan.h>
16 #include <linux/kmemleak.h>
17 #include <linux/export.h>
18 #include <linux/mempool.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include "slab.h"
22
23 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
24 static void poison_error(mempool_t *pool, void *element, size_t size,
25 size_t byte)
26 {
27 const int nr = pool->curr_nr;
28 const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
29 const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
30 int i;
31
32 pr_err("BUG: mempool element poison mismatch\n");
33 pr_err("Mempool %p size %zu\n", pool, size);
34 pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
35 for (i = start; i < end; i++)
36 pr_cont("%x ", *(u8 *)(element + i));
37 pr_cont("%s\n", end < size ? "..." : "");
38 dump_stack();
39 }
40
41 static void __check_element(mempool_t *pool, void *element, size_t size)
42 {
43 u8 *obj = element;
44 size_t i;
45
46 for (i = 0; i < size; i++) {
47 u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
48
49 if (obj[i] != exp) {
50 poison_error(pool, element, size, i);
51 return;
52 }
53 }
54 memset(obj, POISON_INUSE, size);
55 }
56
57 static void check_element(mempool_t *pool, void *element)
58 {
59 /* Mempools backed by slab allocator */
60 if (pool->free == mempool_free_slab || pool->free == mempool_kfree)
61 __check_element(pool, element, ksize(element));
62
63 /* Mempools backed by page allocator */
64 if (pool->free == mempool_free_pages) {
65 int order = (int)(long)pool->pool_data;
66 void *addr = kmap_atomic((struct page *)element);
67
68 __check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
69 kunmap_atomic(addr);
70 }
71 }
72
73 static void __poison_element(void *element, size_t size)
74 {
75 u8 *obj = element;
76
77 memset(obj, POISON_FREE, size - 1);
78 obj[size - 1] = POISON_END;
79 }
80
81 static void poison_element(mempool_t *pool, void *element)
82 {
83 /* Mempools backed by slab allocator */
84 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
85 __poison_element(element, ksize(element));
86
87 /* Mempools backed by page allocator */
88 if (pool->alloc == mempool_alloc_pages) {
89 int order = (int)(long)pool->pool_data;
90 void *addr = kmap_atomic((struct page *)element);
91
92 __poison_element(addr, 1UL << (PAGE_SHIFT + order));
93 kunmap_atomic(addr);
94 }
95 }
96 #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
97 static inline void check_element(mempool_t *pool, void *element)
98 {
99 }
100 static inline void poison_element(mempool_t *pool, void *element)
101 {
102 }
103 #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
104
105 static void kasan_poison_element(mempool_t *pool, void *element)
106 {
107 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
108 kasan_poison_kfree(element);
109 if (pool->alloc == mempool_alloc_pages)
110 kasan_free_pages(element, (unsigned long)pool->pool_data);
111 }
112
113 static void kasan_unpoison_element(mempool_t *pool, void *element, gfp_t flags)
114 {
115 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
116 kasan_unpoison_slab(element);
117 if (pool->alloc == mempool_alloc_pages)
118 kasan_alloc_pages(element, (unsigned long)pool->pool_data);
119 }
120
121 static void add_element(mempool_t *pool, void *element)
122 {
123 BUG_ON(pool->curr_nr >= pool->min_nr);
124 poison_element(pool, element);
125 kasan_poison_element(pool, element);
126 pool->elements[pool->curr_nr++] = element;
127 }
128
129 static void *remove_element(mempool_t *pool, gfp_t flags)
130 {
131 void *element = pool->elements[--pool->curr_nr];
132
133 BUG_ON(pool->curr_nr < 0);
134 kasan_unpoison_element(pool, element, flags);
135 check_element(pool, element);
136 return element;
137 }
138
139 /**
140 * mempool_destroy - deallocate a memory pool
141 * @pool: pointer to the memory pool which was allocated via
142 * mempool_create().
143 *
144 * Free all reserved elements in @pool and @pool itself. This function
145 * only sleeps if the free_fn() function sleeps.
146 */
147 void mempool_destroy(mempool_t *pool)
148 {
149 if (unlikely(!pool))
150 return;
151
152 while (pool->curr_nr) {
153 void *element = remove_element(pool, GFP_KERNEL);
154 pool->free(element, pool->pool_data);
155 }
156 kfree(pool->elements);
157 kfree(pool);
158 }
159 EXPORT_SYMBOL(mempool_destroy);
160
161 /**
162 * mempool_create - create a memory pool
163 * @min_nr: the minimum number of elements guaranteed to be
164 * allocated for this pool.
165 * @alloc_fn: user-defined element-allocation function.
166 * @free_fn: user-defined element-freeing function.
167 * @pool_data: optional private data available to the user-defined functions.
168 *
169 * this function creates and allocates a guaranteed size, preallocated
170 * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
171 * functions. This function might sleep. Both the alloc_fn() and the free_fn()
172 * functions might sleep - as long as the mempool_alloc() function is not called
173 * from IRQ contexts.
174 */
175 mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
176 mempool_free_t *free_fn, void *pool_data)
177 {
178 return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,
179 GFP_KERNEL, NUMA_NO_NODE);
180 }
181 EXPORT_SYMBOL(mempool_create);
182
183 mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
184 mempool_free_t *free_fn, void *pool_data,
185 gfp_t gfp_mask, int node_id)
186 {
187 mempool_t *pool;
188 pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
189 if (!pool)
190 return NULL;
191 pool->elements = kmalloc_node(min_nr * sizeof(void *),
192 gfp_mask, node_id);
193 if (!pool->elements) {
194 kfree(pool);
195 return NULL;
196 }
197 spin_lock_init(&pool->lock);
198 pool->min_nr = min_nr;
199 pool->pool_data = pool_data;
200 init_waitqueue_head(&pool->wait);
201 pool->alloc = alloc_fn;
202 pool->free = free_fn;
203
204 /*
205 * First pre-allocate the guaranteed number of buffers.
206 */
207 while (pool->curr_nr < pool->min_nr) {
208 void *element;
209
210 element = pool->alloc(gfp_mask, pool->pool_data);
211 if (unlikely(!element)) {
212 mempool_destroy(pool);
213 return NULL;
214 }
215 add_element(pool, element);
216 }
217 return pool;
218 }
219 EXPORT_SYMBOL(mempool_create_node);
220
221 /**
222 * mempool_resize - resize an existing memory pool
223 * @pool: pointer to the memory pool which was allocated via
224 * mempool_create().
225 * @new_min_nr: the new minimum number of elements guaranteed to be
226 * allocated for this pool.
227 *
228 * This function shrinks/grows the pool. In the case of growing,
229 * it cannot be guaranteed that the pool will be grown to the new
230 * size immediately, but new mempool_free() calls will refill it.
231 * This function may sleep.
232 *
233 * Note, the caller must guarantee that no mempool_destroy is called
234 * while this function is running. mempool_alloc() & mempool_free()
235 * might be called (eg. from IRQ contexts) while this function executes.
236 */
237 int mempool_resize(mempool_t *pool, int new_min_nr)
238 {
239 void *element;
240 void **new_elements;
241 unsigned long flags;
242
243 BUG_ON(new_min_nr <= 0);
244 might_sleep();
245
246 spin_lock_irqsave(&pool->lock, flags);
247 if (new_min_nr <= pool->min_nr) {
248 while (new_min_nr < pool->curr_nr) {
249 element = remove_element(pool, GFP_KERNEL);
250 spin_unlock_irqrestore(&pool->lock, flags);
251 pool->free(element, pool->pool_data);
252 spin_lock_irqsave(&pool->lock, flags);
253 }
254 pool->min_nr = new_min_nr;
255 goto out_unlock;
256 }
257 spin_unlock_irqrestore(&pool->lock, flags);
258
259 /* Grow the pool */
260 new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
261 GFP_KERNEL);
262 if (!new_elements)
263 return -ENOMEM;
264
265 spin_lock_irqsave(&pool->lock, flags);
266 if (unlikely(new_min_nr <= pool->min_nr)) {
267 /* Raced, other resize will do our work */
268 spin_unlock_irqrestore(&pool->lock, flags);
269 kfree(new_elements);
270 goto out;
271 }
272 memcpy(new_elements, pool->elements,
273 pool->curr_nr * sizeof(*new_elements));
274 kfree(pool->elements);
275 pool->elements = new_elements;
276 pool->min_nr = new_min_nr;
277
278 while (pool->curr_nr < pool->min_nr) {
279 spin_unlock_irqrestore(&pool->lock, flags);
280 element = pool->alloc(GFP_KERNEL, pool->pool_data);
281 if (!element)
282 goto out;
283 spin_lock_irqsave(&pool->lock, flags);
284 if (pool->curr_nr < pool->min_nr) {
285 add_element(pool, element);
286 } else {
287 spin_unlock_irqrestore(&pool->lock, flags);
288 pool->free(element, pool->pool_data); /* Raced */
289 goto out;
290 }
291 }
292 out_unlock:
293 spin_unlock_irqrestore(&pool->lock, flags);
294 out:
295 return 0;
296 }
297 EXPORT_SYMBOL(mempool_resize);
298
299 /**
300 * mempool_alloc - allocate an element from a specific memory pool
301 * @pool: pointer to the memory pool which was allocated via
302 * mempool_create().
303 * @gfp_mask: the usual allocation bitmask.
304 *
305 * this function only sleeps if the alloc_fn() function sleeps or
306 * returns NULL. Note that due to preallocation, this function
307 * *never* fails when called from process contexts. (it might
308 * fail if called from an IRQ context.)
309 * Note: using __GFP_ZERO is not supported.
310 */
311 void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
312 {
313 void *element;
314 unsigned long flags;
315 wait_queue_t wait;
316 gfp_t gfp_temp;
317
318 VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
319 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
320
321 gfp_mask |= __GFP_NOMEMALLOC; /* don't allocate emergency reserves */
322 gfp_mask |= __GFP_NORETRY; /* don't loop in __alloc_pages */
323 gfp_mask |= __GFP_NOWARN; /* failures are OK */
324
325 gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
326
327 repeat_alloc:
328
329 element = pool->alloc(gfp_temp, pool->pool_data);
330 if (likely(element != NULL))
331 return element;
332
333 spin_lock_irqsave(&pool->lock, flags);
334 if (likely(pool->curr_nr)) {
335 element = remove_element(pool, gfp_temp);
336 spin_unlock_irqrestore(&pool->lock, flags);
337 /* paired with rmb in mempool_free(), read comment there */
338 smp_wmb();
339 /*
340 * Update the allocation stack trace as this is more useful
341 * for debugging.
342 */
343 kmemleak_update_trace(element);
344 return element;
345 }
346
347 /*
348 * We use gfp mask w/o direct reclaim or IO for the first round. If
349 * alloc failed with that and @pool was empty, retry immediately.
350 */
351 if (gfp_temp != gfp_mask) {
352 spin_unlock_irqrestore(&pool->lock, flags);
353 gfp_temp = gfp_mask;
354 goto repeat_alloc;
355 }
356
357 /* We must not sleep if !__GFP_DIRECT_RECLAIM */
358 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
359 spin_unlock_irqrestore(&pool->lock, flags);
360 return NULL;
361 }
362
363 /* Let's wait for someone else to return an element to @pool */
364 init_wait(&wait);
365 prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
366
367 spin_unlock_irqrestore(&pool->lock, flags);
368
369 /*
370 * FIXME: this should be io_schedule(). The timeout is there as a
371 * workaround for some DM problems in 2.6.18.
372 */
373 io_schedule_timeout(5*HZ);
374
375 finish_wait(&pool->wait, &wait);
376 goto repeat_alloc;
377 }
378 EXPORT_SYMBOL(mempool_alloc);
379
380 /**
381 * mempool_free - return an element to the pool.
382 * @element: pool element pointer.
383 * @pool: pointer to the memory pool which was allocated via
384 * mempool_create().
385 *
386 * this function only sleeps if the free_fn() function sleeps.
387 */
388 void mempool_free(void *element, mempool_t *pool)
389 {
390 unsigned long flags;
391
392 if (unlikely(element == NULL))
393 return;
394
395 /*
396 * Paired with the wmb in mempool_alloc(). The preceding read is
397 * for @element and the following @pool->curr_nr. This ensures
398 * that the visible value of @pool->curr_nr is from after the
399 * allocation of @element. This is necessary for fringe cases
400 * where @element was passed to this task without going through
401 * barriers.
402 *
403 * For example, assume @p is %NULL at the beginning and one task
404 * performs "p = mempool_alloc(...);" while another task is doing
405 * "while (!p) cpu_relax(); mempool_free(p, ...);". This function
406 * may end up using curr_nr value which is from before allocation
407 * of @p without the following rmb.
408 */
409 smp_rmb();
410
411 /*
412 * For correctness, we need a test which is guaranteed to trigger
413 * if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr
414 * without locking achieves that and refilling as soon as possible
415 * is desirable.
416 *
417 * Because curr_nr visible here is always a value after the
418 * allocation of @element, any task which decremented curr_nr below
419 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
420 * incremented to min_nr afterwards. If curr_nr gets incremented
421 * to min_nr after the allocation of @element, the elements
422 * allocated after that are subject to the same guarantee.
423 *
424 * Waiters happen iff curr_nr is 0 and the above guarantee also
425 * ensures that there will be frees which return elements to the
426 * pool waking up the waiters.
427 */
428 if (unlikely(pool->curr_nr < pool->min_nr)) {
429 spin_lock_irqsave(&pool->lock, flags);
430 if (likely(pool->curr_nr < pool->min_nr)) {
431 add_element(pool, element);
432 spin_unlock_irqrestore(&pool->lock, flags);
433 wake_up(&pool->wait);
434 return;
435 }
436 spin_unlock_irqrestore(&pool->lock, flags);
437 }
438 pool->free(element, pool->pool_data);
439 }
440 EXPORT_SYMBOL(mempool_free);
441
442 /*
443 * A commonly used alloc and free fn.
444 */
445 void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
446 {
447 struct kmem_cache *mem = pool_data;
448 VM_BUG_ON(mem->ctor);
449 return kmem_cache_alloc(mem, gfp_mask);
450 }
451 EXPORT_SYMBOL(mempool_alloc_slab);
452
453 void mempool_free_slab(void *element, void *pool_data)
454 {
455 struct kmem_cache *mem = pool_data;
456 kmem_cache_free(mem, element);
457 }
458 EXPORT_SYMBOL(mempool_free_slab);
459
460 /*
461 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
462 * specified by pool_data
463 */
464 void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
465 {
466 size_t size = (size_t)pool_data;
467 return kmalloc(size, gfp_mask);
468 }
469 EXPORT_SYMBOL(mempool_kmalloc);
470
471 void mempool_kfree(void *element, void *pool_data)
472 {
473 kfree(element);
474 }
475 EXPORT_SYMBOL(mempool_kfree);
476
477 /*
478 * A simple mempool-backed page allocator that allocates pages
479 * of the order specified by pool_data.
480 */
481 void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
482 {
483 int order = (int)(long)pool_data;
484 return alloc_pages(gfp_mask, order);
485 }
486 EXPORT_SYMBOL(mempool_alloc_pages);
487
488 void mempool_free_pages(void *element, void *pool_data)
489 {
490 int order = (int)(long)pool_data;
491 __free_pages(element, order);
492 }
493 EXPORT_SYMBOL(mempool_free_pages);