]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/mmap.c
ef78a5ca5599bee6e62607e4e00a81705f0da388
[mirror_ubuntu-zesty-kernel.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlb.h>
51 #include <asm/mmu_context.h>
52
53 #include "internal.h"
54
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags) (0)
57 #endif
58
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63 #endif
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68 #endif
69
70 static bool ignore_rlimit_data;
71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
72
73 static void unmap_region(struct mm_struct *mm,
74 struct vm_area_struct *vma, struct vm_area_struct *prev,
75 unsigned long start, unsigned long end);
76
77 /* description of effects of mapping type and prot in current implementation.
78 * this is due to the limited x86 page protection hardware. The expected
79 * behavior is in parens:
80 *
81 * map_type prot
82 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
83 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
84 * w: (no) no w: (no) no w: (yes) yes w: (no) no
85 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
86 *
87 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
88 * w: (no) no w: (no) no w: (copy) copy w: (no) no
89 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
90 *
91 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
92 * MAP_PRIVATE:
93 * r: (no) no
94 * w: (no) no
95 * x: (yes) yes
96 */
97 pgprot_t protection_map[16] = {
98 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101
102 pgprot_t vm_get_page_prot(unsigned long vm_flags)
103 {
104 return __pgprot(pgprot_val(protection_map[vm_flags &
105 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
106 pgprot_val(arch_vm_get_page_prot(vm_flags)));
107 }
108 EXPORT_SYMBOL(vm_get_page_prot);
109
110 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
111 {
112 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
113 }
114
115 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
116 void vma_set_page_prot(struct vm_area_struct *vma)
117 {
118 unsigned long vm_flags = vma->vm_flags;
119 pgprot_t vm_page_prot;
120
121 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
122 if (vma_wants_writenotify(vma, vm_page_prot)) {
123 vm_flags &= ~VM_SHARED;
124 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
125 }
126 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
127 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
128 }
129
130 /*
131 * Requires inode->i_mapping->i_mmap_rwsem
132 */
133 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
134 struct file *file, struct address_space *mapping)
135 {
136 if (vma->vm_flags & VM_DENYWRITE)
137 atomic_inc(&file_inode(file)->i_writecount);
138 if (vma->vm_flags & VM_SHARED)
139 mapping_unmap_writable(mapping);
140
141 flush_dcache_mmap_lock(mapping);
142 vma_interval_tree_remove(vma, &mapping->i_mmap);
143 flush_dcache_mmap_unlock(mapping);
144 }
145
146 /*
147 * Unlink a file-based vm structure from its interval tree, to hide
148 * vma from rmap and vmtruncate before freeing its page tables.
149 */
150 void unlink_file_vma(struct vm_area_struct *vma)
151 {
152 struct file *file = vma->vm_file;
153
154 if (file) {
155 struct address_space *mapping = file->f_mapping;
156 i_mmap_lock_write(mapping);
157 __remove_shared_vm_struct(vma, file, mapping);
158 i_mmap_unlock_write(mapping);
159 }
160 }
161
162 /*
163 * Close a vm structure and free it, returning the next.
164 */
165 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
166 {
167 struct vm_area_struct *next = vma->vm_next;
168
169 might_sleep();
170 if (vma->vm_ops && vma->vm_ops->close)
171 vma->vm_ops->close(vma);
172 if (vma->vm_file)
173 vma_fput(vma);
174 mpol_put(vma_policy(vma));
175 kmem_cache_free(vm_area_cachep, vma);
176 return next;
177 }
178
179 static int do_brk(unsigned long addr, unsigned long len);
180
181 SYSCALL_DEFINE1(brk, unsigned long, brk)
182 {
183 unsigned long retval;
184 unsigned long newbrk, oldbrk;
185 struct mm_struct *mm = current->mm;
186 struct vm_area_struct *next;
187 unsigned long min_brk;
188 bool populate;
189
190 if (down_write_killable(&mm->mmap_sem))
191 return -EINTR;
192
193 #ifdef CONFIG_COMPAT_BRK
194 /*
195 * CONFIG_COMPAT_BRK can still be overridden by setting
196 * randomize_va_space to 2, which will still cause mm->start_brk
197 * to be arbitrarily shifted
198 */
199 if (current->brk_randomized)
200 min_brk = mm->start_brk;
201 else
202 min_brk = mm->end_data;
203 #else
204 min_brk = mm->start_brk;
205 #endif
206 if (brk < min_brk)
207 goto out;
208
209 /*
210 * Check against rlimit here. If this check is done later after the test
211 * of oldbrk with newbrk then it can escape the test and let the data
212 * segment grow beyond its set limit the in case where the limit is
213 * not page aligned -Ram Gupta
214 */
215 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216 mm->end_data, mm->start_data))
217 goto out;
218
219 newbrk = PAGE_ALIGN(brk);
220 oldbrk = PAGE_ALIGN(mm->brk);
221 if (oldbrk == newbrk)
222 goto set_brk;
223
224 /* Always allow shrinking brk. */
225 if (brk <= mm->brk) {
226 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
227 goto set_brk;
228 goto out;
229 }
230
231 /* Check against existing mmap mappings. */
232 next = find_vma(mm, oldbrk);
233 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
234 goto out;
235
236 /* Ok, looks good - let it rip. */
237 if (do_brk(oldbrk, newbrk-oldbrk) < 0)
238 goto out;
239
240 set_brk:
241 mm->brk = brk;
242 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
243 up_write(&mm->mmap_sem);
244 if (populate)
245 mm_populate(oldbrk, newbrk - oldbrk);
246 return brk;
247
248 out:
249 retval = mm->brk;
250 up_write(&mm->mmap_sem);
251 return retval;
252 }
253
254 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
255 {
256 unsigned long max, prev_end, subtree_gap;
257
258 /*
259 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
260 * allow two stack_guard_gaps between them here, and when choosing
261 * an unmapped area; whereas when expanding we only require one.
262 * That's a little inconsistent, but keeps the code here simpler.
263 */
264 max = vm_start_gap(vma);
265 if (vma->vm_prev) {
266 prev_end = vm_end_gap(vma->vm_prev);
267 if (max > prev_end)
268 max -= prev_end;
269 else
270 max = 0;
271 }
272 if (vma->vm_rb.rb_left) {
273 subtree_gap = rb_entry(vma->vm_rb.rb_left,
274 struct vm_area_struct, vm_rb)->rb_subtree_gap;
275 if (subtree_gap > max)
276 max = subtree_gap;
277 }
278 if (vma->vm_rb.rb_right) {
279 subtree_gap = rb_entry(vma->vm_rb.rb_right,
280 struct vm_area_struct, vm_rb)->rb_subtree_gap;
281 if (subtree_gap > max)
282 max = subtree_gap;
283 }
284 return max;
285 }
286
287 #ifdef CONFIG_DEBUG_VM_RB
288 static int browse_rb(struct mm_struct *mm)
289 {
290 struct rb_root *root = &mm->mm_rb;
291 int i = 0, j, bug = 0;
292 struct rb_node *nd, *pn = NULL;
293 unsigned long prev = 0, pend = 0;
294
295 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
296 struct vm_area_struct *vma;
297 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
298 if (vma->vm_start < prev) {
299 pr_emerg("vm_start %lx < prev %lx\n",
300 vma->vm_start, prev);
301 bug = 1;
302 }
303 if (vma->vm_start < pend) {
304 pr_emerg("vm_start %lx < pend %lx\n",
305 vma->vm_start, pend);
306 bug = 1;
307 }
308 if (vma->vm_start > vma->vm_end) {
309 pr_emerg("vm_start %lx > vm_end %lx\n",
310 vma->vm_start, vma->vm_end);
311 bug = 1;
312 }
313 spin_lock(&mm->page_table_lock);
314 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
315 pr_emerg("free gap %lx, correct %lx\n",
316 vma->rb_subtree_gap,
317 vma_compute_subtree_gap(vma));
318 bug = 1;
319 }
320 spin_unlock(&mm->page_table_lock);
321 i++;
322 pn = nd;
323 prev = vma->vm_start;
324 pend = vma->vm_end;
325 }
326 j = 0;
327 for (nd = pn; nd; nd = rb_prev(nd))
328 j++;
329 if (i != j) {
330 pr_emerg("backwards %d, forwards %d\n", j, i);
331 bug = 1;
332 }
333 return bug ? -1 : i;
334 }
335
336 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
337 {
338 struct rb_node *nd;
339
340 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
341 struct vm_area_struct *vma;
342 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
343 VM_BUG_ON_VMA(vma != ignore &&
344 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
345 vma);
346 }
347 }
348
349 static void validate_mm(struct mm_struct *mm)
350 {
351 int bug = 0;
352 int i = 0;
353 unsigned long highest_address = 0;
354 struct vm_area_struct *vma = mm->mmap;
355
356 while (vma) {
357 struct anon_vma *anon_vma = vma->anon_vma;
358 struct anon_vma_chain *avc;
359
360 if (anon_vma) {
361 anon_vma_lock_read(anon_vma);
362 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
363 anon_vma_interval_tree_verify(avc);
364 anon_vma_unlock_read(anon_vma);
365 }
366
367 highest_address = vm_end_gap(vma);
368 vma = vma->vm_next;
369 i++;
370 }
371 if (i != mm->map_count) {
372 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
373 bug = 1;
374 }
375 if (highest_address != mm->highest_vm_end) {
376 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
377 mm->highest_vm_end, highest_address);
378 bug = 1;
379 }
380 i = browse_rb(mm);
381 if (i != mm->map_count) {
382 if (i != -1)
383 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
384 bug = 1;
385 }
386 VM_BUG_ON_MM(bug, mm);
387 }
388 #else
389 #define validate_mm_rb(root, ignore) do { } while (0)
390 #define validate_mm(mm) do { } while (0)
391 #endif
392
393 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
394 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
395
396 /*
397 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
398 * vma->vm_prev->vm_end values changed, without modifying the vma's position
399 * in the rbtree.
400 */
401 static void vma_gap_update(struct vm_area_struct *vma)
402 {
403 /*
404 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
405 * function that does exacltly what we want.
406 */
407 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
408 }
409
410 static inline void vma_rb_insert(struct vm_area_struct *vma,
411 struct rb_root *root)
412 {
413 /* All rb_subtree_gap values must be consistent prior to insertion */
414 validate_mm_rb(root, NULL);
415
416 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
417 }
418
419 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
420 {
421 /*
422 * Note rb_erase_augmented is a fairly large inline function,
423 * so make sure we instantiate it only once with our desired
424 * augmented rbtree callbacks.
425 */
426 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
427 }
428
429 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
430 struct rb_root *root,
431 struct vm_area_struct *ignore)
432 {
433 /*
434 * All rb_subtree_gap values must be consistent prior to erase,
435 * with the possible exception of the "next" vma being erased if
436 * next->vm_start was reduced.
437 */
438 validate_mm_rb(root, ignore);
439
440 __vma_rb_erase(vma, root);
441 }
442
443 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
444 struct rb_root *root)
445 {
446 /*
447 * All rb_subtree_gap values must be consistent prior to erase,
448 * with the possible exception of the vma being erased.
449 */
450 validate_mm_rb(root, vma);
451
452 __vma_rb_erase(vma, root);
453 }
454
455 /*
456 * vma has some anon_vma assigned, and is already inserted on that
457 * anon_vma's interval trees.
458 *
459 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
460 * vma must be removed from the anon_vma's interval trees using
461 * anon_vma_interval_tree_pre_update_vma().
462 *
463 * After the update, the vma will be reinserted using
464 * anon_vma_interval_tree_post_update_vma().
465 *
466 * The entire update must be protected by exclusive mmap_sem and by
467 * the root anon_vma's mutex.
468 */
469 static inline void
470 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
471 {
472 struct anon_vma_chain *avc;
473
474 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
475 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
476 }
477
478 static inline void
479 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
480 {
481 struct anon_vma_chain *avc;
482
483 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
484 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
485 }
486
487 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
488 unsigned long end, struct vm_area_struct **pprev,
489 struct rb_node ***rb_link, struct rb_node **rb_parent)
490 {
491 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
492
493 __rb_link = &mm->mm_rb.rb_node;
494 rb_prev = __rb_parent = NULL;
495
496 while (*__rb_link) {
497 struct vm_area_struct *vma_tmp;
498
499 __rb_parent = *__rb_link;
500 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
501
502 if (vma_tmp->vm_end > addr) {
503 /* Fail if an existing vma overlaps the area */
504 if (vma_tmp->vm_start < end)
505 return -ENOMEM;
506 __rb_link = &__rb_parent->rb_left;
507 } else {
508 rb_prev = __rb_parent;
509 __rb_link = &__rb_parent->rb_right;
510 }
511 }
512
513 *pprev = NULL;
514 if (rb_prev)
515 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
516 *rb_link = __rb_link;
517 *rb_parent = __rb_parent;
518 return 0;
519 }
520
521 static unsigned long count_vma_pages_range(struct mm_struct *mm,
522 unsigned long addr, unsigned long end)
523 {
524 unsigned long nr_pages = 0;
525 struct vm_area_struct *vma;
526
527 /* Find first overlaping mapping */
528 vma = find_vma_intersection(mm, addr, end);
529 if (!vma)
530 return 0;
531
532 nr_pages = (min(end, vma->vm_end) -
533 max(addr, vma->vm_start)) >> PAGE_SHIFT;
534
535 /* Iterate over the rest of the overlaps */
536 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
537 unsigned long overlap_len;
538
539 if (vma->vm_start > end)
540 break;
541
542 overlap_len = min(end, vma->vm_end) - vma->vm_start;
543 nr_pages += overlap_len >> PAGE_SHIFT;
544 }
545
546 return nr_pages;
547 }
548
549 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
550 struct rb_node **rb_link, struct rb_node *rb_parent)
551 {
552 /* Update tracking information for the gap following the new vma. */
553 if (vma->vm_next)
554 vma_gap_update(vma->vm_next);
555 else
556 mm->highest_vm_end = vm_end_gap(vma);
557
558 /*
559 * vma->vm_prev wasn't known when we followed the rbtree to find the
560 * correct insertion point for that vma. As a result, we could not
561 * update the vma vm_rb parents rb_subtree_gap values on the way down.
562 * So, we first insert the vma with a zero rb_subtree_gap value
563 * (to be consistent with what we did on the way down), and then
564 * immediately update the gap to the correct value. Finally we
565 * rebalance the rbtree after all augmented values have been set.
566 */
567 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
568 vma->rb_subtree_gap = 0;
569 vma_gap_update(vma);
570 vma_rb_insert(vma, &mm->mm_rb);
571 }
572
573 static void __vma_link_file(struct vm_area_struct *vma)
574 {
575 struct file *file;
576
577 file = vma->vm_file;
578 if (file) {
579 struct address_space *mapping = file->f_mapping;
580
581 if (vma->vm_flags & VM_DENYWRITE)
582 atomic_dec(&file_inode(file)->i_writecount);
583 if (vma->vm_flags & VM_SHARED)
584 atomic_inc(&mapping->i_mmap_writable);
585
586 flush_dcache_mmap_lock(mapping);
587 vma_interval_tree_insert(vma, &mapping->i_mmap);
588 flush_dcache_mmap_unlock(mapping);
589 }
590 }
591
592 static void
593 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
594 struct vm_area_struct *prev, struct rb_node **rb_link,
595 struct rb_node *rb_parent)
596 {
597 __vma_link_list(mm, vma, prev, rb_parent);
598 __vma_link_rb(mm, vma, rb_link, rb_parent);
599 }
600
601 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
602 struct vm_area_struct *prev, struct rb_node **rb_link,
603 struct rb_node *rb_parent)
604 {
605 struct address_space *mapping = NULL;
606
607 if (vma->vm_file) {
608 mapping = vma->vm_file->f_mapping;
609 i_mmap_lock_write(mapping);
610 }
611
612 __vma_link(mm, vma, prev, rb_link, rb_parent);
613 __vma_link_file(vma);
614
615 if (mapping)
616 i_mmap_unlock_write(mapping);
617
618 mm->map_count++;
619 validate_mm(mm);
620 }
621
622 /*
623 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
624 * mm's list and rbtree. It has already been inserted into the interval tree.
625 */
626 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
627 {
628 struct vm_area_struct *prev;
629 struct rb_node **rb_link, *rb_parent;
630
631 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
632 &prev, &rb_link, &rb_parent))
633 BUG();
634 __vma_link(mm, vma, prev, rb_link, rb_parent);
635 mm->map_count++;
636 }
637
638 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
639 struct vm_area_struct *vma,
640 struct vm_area_struct *prev,
641 bool has_prev,
642 struct vm_area_struct *ignore)
643 {
644 struct vm_area_struct *next;
645
646 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
647 next = vma->vm_next;
648 if (has_prev)
649 prev->vm_next = next;
650 else {
651 prev = vma->vm_prev;
652 if (prev)
653 prev->vm_next = next;
654 else
655 mm->mmap = next;
656 }
657 if (next)
658 next->vm_prev = prev;
659
660 /* Kill the cache */
661 vmacache_invalidate(mm);
662 }
663
664 static inline void __vma_unlink_prev(struct mm_struct *mm,
665 struct vm_area_struct *vma,
666 struct vm_area_struct *prev)
667 {
668 __vma_unlink_common(mm, vma, prev, true, vma);
669 }
670
671 /*
672 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
673 * is already present in an i_mmap tree without adjusting the tree.
674 * The following helper function should be used when such adjustments
675 * are necessary. The "insert" vma (if any) is to be inserted
676 * before we drop the necessary locks.
677 */
678 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
679 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
680 struct vm_area_struct *expand)
681 {
682 struct mm_struct *mm = vma->vm_mm;
683 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
684 struct address_space *mapping = NULL;
685 struct rb_root *root = NULL;
686 struct anon_vma *anon_vma = NULL;
687 struct file *file = vma->vm_file;
688 bool start_changed = false, end_changed = false;
689 long adjust_next = 0;
690 int remove_next = 0;
691
692 if (next && !insert) {
693 struct vm_area_struct *exporter = NULL, *importer = NULL;
694
695 if (end >= next->vm_end) {
696 /*
697 * vma expands, overlapping all the next, and
698 * perhaps the one after too (mprotect case 6).
699 * The only other cases that gets here are
700 * case 1, case 7 and case 8.
701 */
702 if (next == expand) {
703 /*
704 * The only case where we don't expand "vma"
705 * and we expand "next" instead is case 8.
706 */
707 VM_WARN_ON(end != next->vm_end);
708 /*
709 * remove_next == 3 means we're
710 * removing "vma" and that to do so we
711 * swapped "vma" and "next".
712 */
713 remove_next = 3;
714 VM_WARN_ON(file != next->vm_file);
715 swap(vma, next);
716 } else {
717 VM_WARN_ON(expand != vma);
718 /*
719 * case 1, 6, 7, remove_next == 2 is case 6,
720 * remove_next == 1 is case 1 or 7.
721 */
722 remove_next = 1 + (end > next->vm_end);
723 VM_WARN_ON(remove_next == 2 &&
724 end != next->vm_next->vm_end);
725 VM_WARN_ON(remove_next == 1 &&
726 end != next->vm_end);
727 /* trim end to next, for case 6 first pass */
728 end = next->vm_end;
729 }
730
731 exporter = next;
732 importer = vma;
733
734 /*
735 * If next doesn't have anon_vma, import from vma after
736 * next, if the vma overlaps with it.
737 */
738 if (remove_next == 2 && !next->anon_vma)
739 exporter = next->vm_next;
740
741 } else if (end > next->vm_start) {
742 /*
743 * vma expands, overlapping part of the next:
744 * mprotect case 5 shifting the boundary up.
745 */
746 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
747 exporter = next;
748 importer = vma;
749 VM_WARN_ON(expand != importer);
750 } else if (end < vma->vm_end) {
751 /*
752 * vma shrinks, and !insert tells it's not
753 * split_vma inserting another: so it must be
754 * mprotect case 4 shifting the boundary down.
755 */
756 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
757 exporter = vma;
758 importer = next;
759 VM_WARN_ON(expand != importer);
760 }
761
762 /*
763 * Easily overlooked: when mprotect shifts the boundary,
764 * make sure the expanding vma has anon_vma set if the
765 * shrinking vma had, to cover any anon pages imported.
766 */
767 if (exporter && exporter->anon_vma && !importer->anon_vma) {
768 int error;
769
770 importer->anon_vma = exporter->anon_vma;
771 error = anon_vma_clone(importer, exporter);
772 if (error)
773 return error;
774 }
775 }
776 again:
777 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
778
779 if (file) {
780 mapping = file->f_mapping;
781 root = &mapping->i_mmap;
782 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
783
784 if (adjust_next)
785 uprobe_munmap(next, next->vm_start, next->vm_end);
786
787 i_mmap_lock_write(mapping);
788 if (insert) {
789 /*
790 * Put into interval tree now, so instantiated pages
791 * are visible to arm/parisc __flush_dcache_page
792 * throughout; but we cannot insert into address
793 * space until vma start or end is updated.
794 */
795 __vma_link_file(insert);
796 }
797 }
798
799 anon_vma = vma->anon_vma;
800 if (!anon_vma && adjust_next)
801 anon_vma = next->anon_vma;
802 if (anon_vma) {
803 VM_WARN_ON(adjust_next && next->anon_vma &&
804 anon_vma != next->anon_vma);
805 anon_vma_lock_write(anon_vma);
806 anon_vma_interval_tree_pre_update_vma(vma);
807 if (adjust_next)
808 anon_vma_interval_tree_pre_update_vma(next);
809 }
810
811 if (root) {
812 flush_dcache_mmap_lock(mapping);
813 vma_interval_tree_remove(vma, root);
814 if (adjust_next)
815 vma_interval_tree_remove(next, root);
816 }
817
818 if (start != vma->vm_start) {
819 vma->vm_start = start;
820 start_changed = true;
821 }
822 if (end != vma->vm_end) {
823 vma->vm_end = end;
824 end_changed = true;
825 }
826 vma->vm_pgoff = pgoff;
827 if (adjust_next) {
828 next->vm_start += adjust_next << PAGE_SHIFT;
829 next->vm_pgoff += adjust_next;
830 }
831
832 if (root) {
833 if (adjust_next)
834 vma_interval_tree_insert(next, root);
835 vma_interval_tree_insert(vma, root);
836 flush_dcache_mmap_unlock(mapping);
837 }
838
839 if (remove_next) {
840 /*
841 * vma_merge has merged next into vma, and needs
842 * us to remove next before dropping the locks.
843 */
844 if (remove_next != 3)
845 __vma_unlink_prev(mm, next, vma);
846 else
847 /*
848 * vma is not before next if they've been
849 * swapped.
850 *
851 * pre-swap() next->vm_start was reduced so
852 * tell validate_mm_rb to ignore pre-swap()
853 * "next" (which is stored in post-swap()
854 * "vma").
855 */
856 __vma_unlink_common(mm, next, NULL, false, vma);
857 if (file)
858 __remove_shared_vm_struct(next, file, mapping);
859 } else if (insert) {
860 /*
861 * split_vma has split insert from vma, and needs
862 * us to insert it before dropping the locks
863 * (it may either follow vma or precede it).
864 */
865 __insert_vm_struct(mm, insert);
866 } else {
867 if (start_changed)
868 vma_gap_update(vma);
869 if (end_changed) {
870 if (!next)
871 mm->highest_vm_end = vm_end_gap(vma);
872 else if (!adjust_next)
873 vma_gap_update(next);
874 }
875 }
876
877 if (anon_vma) {
878 anon_vma_interval_tree_post_update_vma(vma);
879 if (adjust_next)
880 anon_vma_interval_tree_post_update_vma(next);
881 anon_vma_unlock_write(anon_vma);
882 }
883 if (mapping)
884 i_mmap_unlock_write(mapping);
885
886 if (root) {
887 uprobe_mmap(vma);
888
889 if (adjust_next)
890 uprobe_mmap(next);
891 }
892
893 if (remove_next) {
894 if (file) {
895 uprobe_munmap(next, next->vm_start, next->vm_end);
896 vma_fput(vma);
897 }
898 if (next->anon_vma)
899 anon_vma_merge(vma, next);
900 mm->map_count--;
901 mpol_put(vma_policy(next));
902 kmem_cache_free(vm_area_cachep, next);
903 /*
904 * In mprotect's case 6 (see comments on vma_merge),
905 * we must remove another next too. It would clutter
906 * up the code too much to do both in one go.
907 */
908 if (remove_next != 3) {
909 /*
910 * If "next" was removed and vma->vm_end was
911 * expanded (up) over it, in turn
912 * "next->vm_prev->vm_end" changed and the
913 * "vma->vm_next" gap must be updated.
914 */
915 next = vma->vm_next;
916 } else {
917 /*
918 * For the scope of the comment "next" and
919 * "vma" considered pre-swap(): if "vma" was
920 * removed, next->vm_start was expanded (down)
921 * over it and the "next" gap must be updated.
922 * Because of the swap() the post-swap() "vma"
923 * actually points to pre-swap() "next"
924 * (post-swap() "next" as opposed is now a
925 * dangling pointer).
926 */
927 next = vma;
928 }
929 if (remove_next == 2) {
930 remove_next = 1;
931 end = next->vm_end;
932 goto again;
933 }
934 else if (next)
935 vma_gap_update(next);
936 else {
937 /*
938 * If remove_next == 2 we obviously can't
939 * reach this path.
940 *
941 * If remove_next == 3 we can't reach this
942 * path because pre-swap() next is always not
943 * NULL. pre-swap() "next" is not being
944 * removed and its next->vm_end is not altered
945 * (and furthermore "end" already matches
946 * next->vm_end in remove_next == 3).
947 *
948 * We reach this only in the remove_next == 1
949 * case if the "next" vma that was removed was
950 * the highest vma of the mm. However in such
951 * case next->vm_end == "end" and the extended
952 * "vma" has vma->vm_end == next->vm_end so
953 * mm->highest_vm_end doesn't need any update
954 * in remove_next == 1 case.
955 */
956 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
957 }
958 }
959 if (insert && file)
960 uprobe_mmap(insert);
961
962 validate_mm(mm);
963
964 return 0;
965 }
966
967 /*
968 * If the vma has a ->close operation then the driver probably needs to release
969 * per-vma resources, so we don't attempt to merge those.
970 */
971 static inline int is_mergeable_vma(struct vm_area_struct *vma,
972 struct file *file, unsigned long vm_flags,
973 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
974 {
975 /*
976 * VM_SOFTDIRTY should not prevent from VMA merging, if we
977 * match the flags but dirty bit -- the caller should mark
978 * merged VMA as dirty. If dirty bit won't be excluded from
979 * comparison, we increase pressue on the memory system forcing
980 * the kernel to generate new VMAs when old one could be
981 * extended instead.
982 */
983 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
984 return 0;
985 if (vma->vm_file != file)
986 return 0;
987 if (vma->vm_ops && vma->vm_ops->close)
988 return 0;
989 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
990 return 0;
991 return 1;
992 }
993
994 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
995 struct anon_vma *anon_vma2,
996 struct vm_area_struct *vma)
997 {
998 /*
999 * The list_is_singular() test is to avoid merging VMA cloned from
1000 * parents. This can improve scalability caused by anon_vma lock.
1001 */
1002 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1003 list_is_singular(&vma->anon_vma_chain)))
1004 return 1;
1005 return anon_vma1 == anon_vma2;
1006 }
1007
1008 /*
1009 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1010 * in front of (at a lower virtual address and file offset than) the vma.
1011 *
1012 * We cannot merge two vmas if they have differently assigned (non-NULL)
1013 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1014 *
1015 * We don't check here for the merged mmap wrapping around the end of pagecache
1016 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1017 * wrap, nor mmaps which cover the final page at index -1UL.
1018 */
1019 static int
1020 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1021 struct anon_vma *anon_vma, struct file *file,
1022 pgoff_t vm_pgoff,
1023 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1024 {
1025 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1026 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1027 if (vma->vm_pgoff == vm_pgoff)
1028 return 1;
1029 }
1030 return 0;
1031 }
1032
1033 /*
1034 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1035 * beyond (at a higher virtual address and file offset than) the vma.
1036 *
1037 * We cannot merge two vmas if they have differently assigned (non-NULL)
1038 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1039 */
1040 static int
1041 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1042 struct anon_vma *anon_vma, struct file *file,
1043 pgoff_t vm_pgoff,
1044 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1045 {
1046 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1047 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1048 pgoff_t vm_pglen;
1049 vm_pglen = vma_pages(vma);
1050 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1051 return 1;
1052 }
1053 return 0;
1054 }
1055
1056 /*
1057 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1058 * whether that can be merged with its predecessor or its successor.
1059 * Or both (it neatly fills a hole).
1060 *
1061 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1062 * certain not to be mapped by the time vma_merge is called; but when
1063 * called for mprotect, it is certain to be already mapped (either at
1064 * an offset within prev, or at the start of next), and the flags of
1065 * this area are about to be changed to vm_flags - and the no-change
1066 * case has already been eliminated.
1067 *
1068 * The following mprotect cases have to be considered, where AAAA is
1069 * the area passed down from mprotect_fixup, never extending beyond one
1070 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1071 *
1072 * AAAA AAAA AAAA AAAA
1073 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1074 * cannot merge might become might become might become
1075 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1076 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1077 * mremap move: PPPPXXXXXXXX 8
1078 * AAAA
1079 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1080 * might become case 1 below case 2 below case 3 below
1081 *
1082 * It is important for case 8 that the the vma NNNN overlapping the
1083 * region AAAA is never going to extended over XXXX. Instead XXXX must
1084 * be extended in region AAAA and NNNN must be removed. This way in
1085 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1086 * rmap_locks, the properties of the merged vma will be already
1087 * correct for the whole merged range. Some of those properties like
1088 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1089 * be correct for the whole merged range immediately after the
1090 * rmap_locks are released. Otherwise if XXXX would be removed and
1091 * NNNN would be extended over the XXXX range, remove_migration_ptes
1092 * or other rmap walkers (if working on addresses beyond the "end"
1093 * parameter) may establish ptes with the wrong permissions of NNNN
1094 * instead of the right permissions of XXXX.
1095 */
1096 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1097 struct vm_area_struct *prev, unsigned long addr,
1098 unsigned long end, unsigned long vm_flags,
1099 struct anon_vma *anon_vma, struct file *file,
1100 pgoff_t pgoff, struct mempolicy *policy,
1101 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1102 {
1103 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1104 struct vm_area_struct *area, *next;
1105 int err;
1106
1107 /*
1108 * We later require that vma->vm_flags == vm_flags,
1109 * so this tests vma->vm_flags & VM_SPECIAL, too.
1110 */
1111 if (vm_flags & VM_SPECIAL)
1112 return NULL;
1113
1114 if (prev)
1115 next = prev->vm_next;
1116 else
1117 next = mm->mmap;
1118 area = next;
1119 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1120 next = next->vm_next;
1121
1122 /* verify some invariant that must be enforced by the caller */
1123 VM_WARN_ON(prev && addr <= prev->vm_start);
1124 VM_WARN_ON(area && end > area->vm_end);
1125 VM_WARN_ON(addr >= end);
1126
1127 /*
1128 * Can it merge with the predecessor?
1129 */
1130 if (prev && prev->vm_end == addr &&
1131 mpol_equal(vma_policy(prev), policy) &&
1132 can_vma_merge_after(prev, vm_flags,
1133 anon_vma, file, pgoff,
1134 vm_userfaultfd_ctx)) {
1135 /*
1136 * OK, it can. Can we now merge in the successor as well?
1137 */
1138 if (next && end == next->vm_start &&
1139 mpol_equal(policy, vma_policy(next)) &&
1140 can_vma_merge_before(next, vm_flags,
1141 anon_vma, file,
1142 pgoff+pglen,
1143 vm_userfaultfd_ctx) &&
1144 is_mergeable_anon_vma(prev->anon_vma,
1145 next->anon_vma, NULL)) {
1146 /* cases 1, 6 */
1147 err = __vma_adjust(prev, prev->vm_start,
1148 next->vm_end, prev->vm_pgoff, NULL,
1149 prev);
1150 } else /* cases 2, 5, 7 */
1151 err = __vma_adjust(prev, prev->vm_start,
1152 end, prev->vm_pgoff, NULL, prev);
1153 if (err)
1154 return NULL;
1155 khugepaged_enter_vma_merge(prev, vm_flags);
1156 return prev;
1157 }
1158
1159 /*
1160 * Can this new request be merged in front of next?
1161 */
1162 if (next && end == next->vm_start &&
1163 mpol_equal(policy, vma_policy(next)) &&
1164 can_vma_merge_before(next, vm_flags,
1165 anon_vma, file, pgoff+pglen,
1166 vm_userfaultfd_ctx)) {
1167 if (prev && addr < prev->vm_end) /* case 4 */
1168 err = __vma_adjust(prev, prev->vm_start,
1169 addr, prev->vm_pgoff, NULL, next);
1170 else { /* cases 3, 8 */
1171 err = __vma_adjust(area, addr, next->vm_end,
1172 next->vm_pgoff - pglen, NULL, next);
1173 /*
1174 * In case 3 area is already equal to next and
1175 * this is a noop, but in case 8 "area" has
1176 * been removed and next was expanded over it.
1177 */
1178 area = next;
1179 }
1180 if (err)
1181 return NULL;
1182 khugepaged_enter_vma_merge(area, vm_flags);
1183 return area;
1184 }
1185
1186 return NULL;
1187 }
1188
1189 /*
1190 * Rough compatbility check to quickly see if it's even worth looking
1191 * at sharing an anon_vma.
1192 *
1193 * They need to have the same vm_file, and the flags can only differ
1194 * in things that mprotect may change.
1195 *
1196 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1197 * we can merge the two vma's. For example, we refuse to merge a vma if
1198 * there is a vm_ops->close() function, because that indicates that the
1199 * driver is doing some kind of reference counting. But that doesn't
1200 * really matter for the anon_vma sharing case.
1201 */
1202 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1203 {
1204 return a->vm_end == b->vm_start &&
1205 mpol_equal(vma_policy(a), vma_policy(b)) &&
1206 a->vm_file == b->vm_file &&
1207 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1208 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1209 }
1210
1211 /*
1212 * Do some basic sanity checking to see if we can re-use the anon_vma
1213 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1214 * the same as 'old', the other will be the new one that is trying
1215 * to share the anon_vma.
1216 *
1217 * NOTE! This runs with mm_sem held for reading, so it is possible that
1218 * the anon_vma of 'old' is concurrently in the process of being set up
1219 * by another page fault trying to merge _that_. But that's ok: if it
1220 * is being set up, that automatically means that it will be a singleton
1221 * acceptable for merging, so we can do all of this optimistically. But
1222 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1223 *
1224 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1225 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1226 * is to return an anon_vma that is "complex" due to having gone through
1227 * a fork).
1228 *
1229 * We also make sure that the two vma's are compatible (adjacent,
1230 * and with the same memory policies). That's all stable, even with just
1231 * a read lock on the mm_sem.
1232 */
1233 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1234 {
1235 if (anon_vma_compatible(a, b)) {
1236 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1237
1238 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1239 return anon_vma;
1240 }
1241 return NULL;
1242 }
1243
1244 /*
1245 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1246 * neighbouring vmas for a suitable anon_vma, before it goes off
1247 * to allocate a new anon_vma. It checks because a repetitive
1248 * sequence of mprotects and faults may otherwise lead to distinct
1249 * anon_vmas being allocated, preventing vma merge in subsequent
1250 * mprotect.
1251 */
1252 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1253 {
1254 struct anon_vma *anon_vma;
1255 struct vm_area_struct *near;
1256
1257 near = vma->vm_next;
1258 if (!near)
1259 goto try_prev;
1260
1261 anon_vma = reusable_anon_vma(near, vma, near);
1262 if (anon_vma)
1263 return anon_vma;
1264 try_prev:
1265 near = vma->vm_prev;
1266 if (!near)
1267 goto none;
1268
1269 anon_vma = reusable_anon_vma(near, near, vma);
1270 if (anon_vma)
1271 return anon_vma;
1272 none:
1273 /*
1274 * There's no absolute need to look only at touching neighbours:
1275 * we could search further afield for "compatible" anon_vmas.
1276 * But it would probably just be a waste of time searching,
1277 * or lead to too many vmas hanging off the same anon_vma.
1278 * We're trying to allow mprotect remerging later on,
1279 * not trying to minimize memory used for anon_vmas.
1280 */
1281 return NULL;
1282 }
1283
1284 /*
1285 * If a hint addr is less than mmap_min_addr change hint to be as
1286 * low as possible but still greater than mmap_min_addr
1287 */
1288 static inline unsigned long round_hint_to_min(unsigned long hint)
1289 {
1290 hint &= PAGE_MASK;
1291 if (((void *)hint != NULL) &&
1292 (hint < mmap_min_addr))
1293 return PAGE_ALIGN(mmap_min_addr);
1294 return hint;
1295 }
1296
1297 static inline int mlock_future_check(struct mm_struct *mm,
1298 unsigned long flags,
1299 unsigned long len)
1300 {
1301 unsigned long locked, lock_limit;
1302
1303 /* mlock MCL_FUTURE? */
1304 if (flags & VM_LOCKED) {
1305 locked = len >> PAGE_SHIFT;
1306 locked += mm->locked_vm;
1307 lock_limit = rlimit(RLIMIT_MEMLOCK);
1308 lock_limit >>= PAGE_SHIFT;
1309 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1310 return -EAGAIN;
1311 }
1312 return 0;
1313 }
1314
1315 /*
1316 * The caller must hold down_write(&current->mm->mmap_sem).
1317 */
1318 unsigned long do_mmap(struct file *file, unsigned long addr,
1319 unsigned long len, unsigned long prot,
1320 unsigned long flags, vm_flags_t vm_flags,
1321 unsigned long pgoff, unsigned long *populate)
1322 {
1323 struct mm_struct *mm = current->mm;
1324 int pkey = 0;
1325
1326 *populate = 0;
1327
1328 if (!len)
1329 return -EINVAL;
1330
1331 /*
1332 * Does the application expect PROT_READ to imply PROT_EXEC?
1333 *
1334 * (the exception is when the underlying filesystem is noexec
1335 * mounted, in which case we dont add PROT_EXEC.)
1336 */
1337 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1338 if (!(file && path_noexec(&file->f_path)))
1339 prot |= PROT_EXEC;
1340
1341 if (!(flags & MAP_FIXED))
1342 addr = round_hint_to_min(addr);
1343
1344 /* Careful about overflows.. */
1345 len = PAGE_ALIGN(len);
1346 if (!len)
1347 return -ENOMEM;
1348
1349 /* offset overflow? */
1350 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1351 return -EOVERFLOW;
1352
1353 /* Too many mappings? */
1354 if (mm->map_count > sysctl_max_map_count)
1355 return -ENOMEM;
1356
1357 /* Obtain the address to map to. we verify (or select) it and ensure
1358 * that it represents a valid section of the address space.
1359 */
1360 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1361 if (offset_in_page(addr))
1362 return addr;
1363
1364 if (prot == PROT_EXEC) {
1365 pkey = execute_only_pkey(mm);
1366 if (pkey < 0)
1367 pkey = 0;
1368 }
1369
1370 /* Do simple checking here so the lower-level routines won't have
1371 * to. we assume access permissions have been handled by the open
1372 * of the memory object, so we don't do any here.
1373 */
1374 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1375 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1376
1377 if (flags & MAP_LOCKED)
1378 if (!can_do_mlock())
1379 return -EPERM;
1380
1381 if (mlock_future_check(mm, vm_flags, len))
1382 return -EAGAIN;
1383
1384 if (file) {
1385 struct inode *inode = file_inode(file);
1386
1387 switch (flags & MAP_TYPE) {
1388 case MAP_SHARED:
1389 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1390 return -EACCES;
1391
1392 /*
1393 * Make sure we don't allow writing to an append-only
1394 * file..
1395 */
1396 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1397 return -EACCES;
1398
1399 /*
1400 * Make sure there are no mandatory locks on the file.
1401 */
1402 if (locks_verify_locked(file))
1403 return -EAGAIN;
1404
1405 vm_flags |= VM_SHARED | VM_MAYSHARE;
1406 if (!(file->f_mode & FMODE_WRITE))
1407 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1408
1409 /* fall through */
1410 case MAP_PRIVATE:
1411 if (!(file->f_mode & FMODE_READ))
1412 return -EACCES;
1413 if (path_noexec(&file->f_path)) {
1414 if (vm_flags & VM_EXEC)
1415 return -EPERM;
1416 vm_flags &= ~VM_MAYEXEC;
1417 }
1418
1419 if (!file->f_op->mmap)
1420 return -ENODEV;
1421 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1422 return -EINVAL;
1423 break;
1424
1425 default:
1426 return -EINVAL;
1427 }
1428 } else {
1429 switch (flags & MAP_TYPE) {
1430 case MAP_SHARED:
1431 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1432 return -EINVAL;
1433 /*
1434 * Ignore pgoff.
1435 */
1436 pgoff = 0;
1437 vm_flags |= VM_SHARED | VM_MAYSHARE;
1438 break;
1439 case MAP_PRIVATE:
1440 /*
1441 * Set pgoff according to addr for anon_vma.
1442 */
1443 pgoff = addr >> PAGE_SHIFT;
1444 break;
1445 default:
1446 return -EINVAL;
1447 }
1448 }
1449
1450 /*
1451 * Set 'VM_NORESERVE' if we should not account for the
1452 * memory use of this mapping.
1453 */
1454 if (flags & MAP_NORESERVE) {
1455 /* We honor MAP_NORESERVE if allowed to overcommit */
1456 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1457 vm_flags |= VM_NORESERVE;
1458
1459 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1460 if (file && is_file_hugepages(file))
1461 vm_flags |= VM_NORESERVE;
1462 }
1463
1464 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1465 if (!IS_ERR_VALUE(addr) &&
1466 ((vm_flags & VM_LOCKED) ||
1467 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1468 *populate = len;
1469 return addr;
1470 }
1471
1472 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1473 unsigned long, prot, unsigned long, flags,
1474 unsigned long, fd, unsigned long, pgoff)
1475 {
1476 struct file *file = NULL;
1477 unsigned long retval;
1478
1479 if (!(flags & MAP_ANONYMOUS)) {
1480 audit_mmap_fd(fd, flags);
1481 file = fget(fd);
1482 if (!file)
1483 return -EBADF;
1484 if (is_file_hugepages(file))
1485 len = ALIGN(len, huge_page_size(hstate_file(file)));
1486 retval = -EINVAL;
1487 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1488 goto out_fput;
1489 } else if (flags & MAP_HUGETLB) {
1490 struct user_struct *user = NULL;
1491 struct hstate *hs;
1492
1493 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1494 if (!hs)
1495 return -EINVAL;
1496
1497 len = ALIGN(len, huge_page_size(hs));
1498 /*
1499 * VM_NORESERVE is used because the reservations will be
1500 * taken when vm_ops->mmap() is called
1501 * A dummy user value is used because we are not locking
1502 * memory so no accounting is necessary
1503 */
1504 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1505 VM_NORESERVE,
1506 &user, HUGETLB_ANONHUGE_INODE,
1507 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1508 if (IS_ERR(file))
1509 return PTR_ERR(file);
1510 }
1511
1512 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1513
1514 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1515 out_fput:
1516 if (file)
1517 fput(file);
1518 return retval;
1519 }
1520
1521 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1522 struct mmap_arg_struct {
1523 unsigned long addr;
1524 unsigned long len;
1525 unsigned long prot;
1526 unsigned long flags;
1527 unsigned long fd;
1528 unsigned long offset;
1529 };
1530
1531 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1532 {
1533 struct mmap_arg_struct a;
1534
1535 if (copy_from_user(&a, arg, sizeof(a)))
1536 return -EFAULT;
1537 if (offset_in_page(a.offset))
1538 return -EINVAL;
1539
1540 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1541 a.offset >> PAGE_SHIFT);
1542 }
1543 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1544
1545 /*
1546 * Some shared mappigns will want the pages marked read-only
1547 * to track write events. If so, we'll downgrade vm_page_prot
1548 * to the private version (using protection_map[] without the
1549 * VM_SHARED bit).
1550 */
1551 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1552 {
1553 vm_flags_t vm_flags = vma->vm_flags;
1554 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1555
1556 /* If it was private or non-writable, the write bit is already clear */
1557 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1558 return 0;
1559
1560 /* The backer wishes to know when pages are first written to? */
1561 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1562 return 1;
1563
1564 /* The open routine did something to the protections that pgprot_modify
1565 * won't preserve? */
1566 if (pgprot_val(vm_page_prot) !=
1567 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1568 return 0;
1569
1570 /* Do we need to track softdirty? */
1571 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1572 return 1;
1573
1574 /* Specialty mapping? */
1575 if (vm_flags & VM_PFNMAP)
1576 return 0;
1577
1578 /* Can the mapping track the dirty pages? */
1579 return vma->vm_file && vma->vm_file->f_mapping &&
1580 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1581 }
1582
1583 /*
1584 * We account for memory if it's a private writeable mapping,
1585 * not hugepages and VM_NORESERVE wasn't set.
1586 */
1587 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1588 {
1589 /*
1590 * hugetlb has its own accounting separate from the core VM
1591 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1592 */
1593 if (file && is_file_hugepages(file))
1594 return 0;
1595
1596 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1597 }
1598
1599 unsigned long mmap_region(struct file *file, unsigned long addr,
1600 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1601 {
1602 struct mm_struct *mm = current->mm;
1603 struct vm_area_struct *vma, *prev;
1604 int error;
1605 struct rb_node **rb_link, *rb_parent;
1606 unsigned long charged = 0;
1607
1608 /* Check against address space limit. */
1609 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1610 unsigned long nr_pages;
1611
1612 /*
1613 * MAP_FIXED may remove pages of mappings that intersects with
1614 * requested mapping. Account for the pages it would unmap.
1615 */
1616 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1617
1618 if (!may_expand_vm(mm, vm_flags,
1619 (len >> PAGE_SHIFT) - nr_pages))
1620 return -ENOMEM;
1621 }
1622
1623 /* Clear old maps */
1624 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1625 &rb_parent)) {
1626 if (do_munmap(mm, addr, len))
1627 return -ENOMEM;
1628 }
1629
1630 /*
1631 * Private writable mapping: check memory availability
1632 */
1633 if (accountable_mapping(file, vm_flags)) {
1634 charged = len >> PAGE_SHIFT;
1635 if (security_vm_enough_memory_mm(mm, charged))
1636 return -ENOMEM;
1637 vm_flags |= VM_ACCOUNT;
1638 }
1639
1640 /*
1641 * Can we just expand an old mapping?
1642 */
1643 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1644 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1645 if (vma)
1646 goto out;
1647
1648 /*
1649 * Determine the object being mapped and call the appropriate
1650 * specific mapper. the address has already been validated, but
1651 * not unmapped, but the maps are removed from the list.
1652 */
1653 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1654 if (!vma) {
1655 error = -ENOMEM;
1656 goto unacct_error;
1657 }
1658
1659 vma->vm_mm = mm;
1660 vma->vm_start = addr;
1661 vma->vm_end = addr + len;
1662 vma->vm_flags = vm_flags;
1663 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1664 vma->vm_pgoff = pgoff;
1665 INIT_LIST_HEAD(&vma->anon_vma_chain);
1666
1667 if (file) {
1668 if (vm_flags & VM_DENYWRITE) {
1669 error = deny_write_access(file);
1670 if (error)
1671 goto free_vma;
1672 }
1673 if (vm_flags & VM_SHARED) {
1674 error = mapping_map_writable(file->f_mapping);
1675 if (error)
1676 goto allow_write_and_free_vma;
1677 }
1678
1679 /* ->mmap() can change vma->vm_file, but must guarantee that
1680 * vma_link() below can deny write-access if VM_DENYWRITE is set
1681 * and map writably if VM_SHARED is set. This usually means the
1682 * new file must not have been exposed to user-space, yet.
1683 */
1684 vma->vm_file = get_file(file);
1685 error = file->f_op->mmap(file, vma);
1686 if (error)
1687 goto unmap_and_free_vma;
1688
1689 /* Can addr have changed??
1690 *
1691 * Answer: Yes, several device drivers can do it in their
1692 * f_op->mmap method. -DaveM
1693 * Bug: If addr is changed, prev, rb_link, rb_parent should
1694 * be updated for vma_link()
1695 */
1696 WARN_ON_ONCE(addr != vma->vm_start);
1697
1698 addr = vma->vm_start;
1699 vm_flags = vma->vm_flags;
1700 } else if (vm_flags & VM_SHARED) {
1701 error = shmem_zero_setup(vma);
1702 if (error)
1703 goto free_vma;
1704 }
1705
1706 vma_link(mm, vma, prev, rb_link, rb_parent);
1707 /* Once vma denies write, undo our temporary denial count */
1708 if (file) {
1709 if (vm_flags & VM_SHARED)
1710 mapping_unmap_writable(file->f_mapping);
1711 if (vm_flags & VM_DENYWRITE)
1712 allow_write_access(file);
1713 }
1714 file = vma->vm_file;
1715 out:
1716 perf_event_mmap(vma);
1717
1718 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1719 if (vm_flags & VM_LOCKED) {
1720 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1721 vma == get_gate_vma(current->mm)))
1722 mm->locked_vm += (len >> PAGE_SHIFT);
1723 else
1724 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1725 }
1726
1727 if (file)
1728 uprobe_mmap(vma);
1729
1730 /*
1731 * New (or expanded) vma always get soft dirty status.
1732 * Otherwise user-space soft-dirty page tracker won't
1733 * be able to distinguish situation when vma area unmapped,
1734 * then new mapped in-place (which must be aimed as
1735 * a completely new data area).
1736 */
1737 vma->vm_flags |= VM_SOFTDIRTY;
1738
1739 vma_set_page_prot(vma);
1740
1741 return addr;
1742
1743 unmap_and_free_vma:
1744 vma_fput(vma);
1745 vma->vm_file = NULL;
1746
1747 /* Undo any partial mapping done by a device driver. */
1748 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1749 charged = 0;
1750 if (vm_flags & VM_SHARED)
1751 mapping_unmap_writable(file->f_mapping);
1752 allow_write_and_free_vma:
1753 if (vm_flags & VM_DENYWRITE)
1754 allow_write_access(file);
1755 free_vma:
1756 kmem_cache_free(vm_area_cachep, vma);
1757 unacct_error:
1758 if (charged)
1759 vm_unacct_memory(charged);
1760 return error;
1761 }
1762
1763 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1764 {
1765 /*
1766 * We implement the search by looking for an rbtree node that
1767 * immediately follows a suitable gap. That is,
1768 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1769 * - gap_end = vma->vm_start >= info->low_limit + length;
1770 * - gap_end - gap_start >= length
1771 */
1772
1773 struct mm_struct *mm = current->mm;
1774 struct vm_area_struct *vma;
1775 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1776
1777 /* Adjust search length to account for worst case alignment overhead */
1778 length = info->length + info->align_mask;
1779 if (length < info->length)
1780 return -ENOMEM;
1781
1782 /* Adjust search limits by the desired length */
1783 if (info->high_limit < length)
1784 return -ENOMEM;
1785 high_limit = info->high_limit - length;
1786
1787 if (info->low_limit > high_limit)
1788 return -ENOMEM;
1789 low_limit = info->low_limit + length;
1790
1791 /* Check if rbtree root looks promising */
1792 if (RB_EMPTY_ROOT(&mm->mm_rb))
1793 goto check_highest;
1794 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1795 if (vma->rb_subtree_gap < length)
1796 goto check_highest;
1797
1798 while (true) {
1799 /* Visit left subtree if it looks promising */
1800 gap_end = vm_start_gap(vma);
1801 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1802 struct vm_area_struct *left =
1803 rb_entry(vma->vm_rb.rb_left,
1804 struct vm_area_struct, vm_rb);
1805 if (left->rb_subtree_gap >= length) {
1806 vma = left;
1807 continue;
1808 }
1809 }
1810
1811 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1812 check_current:
1813 /* Check if current node has a suitable gap */
1814 if (gap_start > high_limit)
1815 return -ENOMEM;
1816 if (gap_end >= low_limit &&
1817 gap_end > gap_start && gap_end - gap_start >= length)
1818 goto found;
1819
1820 /* Visit right subtree if it looks promising */
1821 if (vma->vm_rb.rb_right) {
1822 struct vm_area_struct *right =
1823 rb_entry(vma->vm_rb.rb_right,
1824 struct vm_area_struct, vm_rb);
1825 if (right->rb_subtree_gap >= length) {
1826 vma = right;
1827 continue;
1828 }
1829 }
1830
1831 /* Go back up the rbtree to find next candidate node */
1832 while (true) {
1833 struct rb_node *prev = &vma->vm_rb;
1834 if (!rb_parent(prev))
1835 goto check_highest;
1836 vma = rb_entry(rb_parent(prev),
1837 struct vm_area_struct, vm_rb);
1838 if (prev == vma->vm_rb.rb_left) {
1839 gap_start = vm_end_gap(vma->vm_prev);
1840 gap_end = vm_start_gap(vma);
1841 goto check_current;
1842 }
1843 }
1844 }
1845
1846 check_highest:
1847 /* Check highest gap, which does not precede any rbtree node */
1848 gap_start = mm->highest_vm_end;
1849 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1850 if (gap_start > high_limit)
1851 return -ENOMEM;
1852
1853 found:
1854 /* We found a suitable gap. Clip it with the original low_limit. */
1855 if (gap_start < info->low_limit)
1856 gap_start = info->low_limit;
1857
1858 /* Adjust gap address to the desired alignment */
1859 gap_start += (info->align_offset - gap_start) & info->align_mask;
1860
1861 VM_BUG_ON(gap_start + info->length > info->high_limit);
1862 VM_BUG_ON(gap_start + info->length > gap_end);
1863 return gap_start;
1864 }
1865
1866 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1867 {
1868 struct mm_struct *mm = current->mm;
1869 struct vm_area_struct *vma;
1870 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1871
1872 /* Adjust search length to account for worst case alignment overhead */
1873 length = info->length + info->align_mask;
1874 if (length < info->length)
1875 return -ENOMEM;
1876
1877 /*
1878 * Adjust search limits by the desired length.
1879 * See implementation comment at top of unmapped_area().
1880 */
1881 gap_end = info->high_limit;
1882 if (gap_end < length)
1883 return -ENOMEM;
1884 high_limit = gap_end - length;
1885
1886 if (info->low_limit > high_limit)
1887 return -ENOMEM;
1888 low_limit = info->low_limit + length;
1889
1890 /* Check highest gap, which does not precede any rbtree node */
1891 gap_start = mm->highest_vm_end;
1892 if (gap_start <= high_limit)
1893 goto found_highest;
1894
1895 /* Check if rbtree root looks promising */
1896 if (RB_EMPTY_ROOT(&mm->mm_rb))
1897 return -ENOMEM;
1898 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1899 if (vma->rb_subtree_gap < length)
1900 return -ENOMEM;
1901
1902 while (true) {
1903 /* Visit right subtree if it looks promising */
1904 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1905 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1906 struct vm_area_struct *right =
1907 rb_entry(vma->vm_rb.rb_right,
1908 struct vm_area_struct, vm_rb);
1909 if (right->rb_subtree_gap >= length) {
1910 vma = right;
1911 continue;
1912 }
1913 }
1914
1915 check_current:
1916 /* Check if current node has a suitable gap */
1917 gap_end = vm_start_gap(vma);
1918 if (gap_end < low_limit)
1919 return -ENOMEM;
1920 if (gap_start <= high_limit &&
1921 gap_end > gap_start && gap_end - gap_start >= length)
1922 goto found;
1923
1924 /* Visit left subtree if it looks promising */
1925 if (vma->vm_rb.rb_left) {
1926 struct vm_area_struct *left =
1927 rb_entry(vma->vm_rb.rb_left,
1928 struct vm_area_struct, vm_rb);
1929 if (left->rb_subtree_gap >= length) {
1930 vma = left;
1931 continue;
1932 }
1933 }
1934
1935 /* Go back up the rbtree to find next candidate node */
1936 while (true) {
1937 struct rb_node *prev = &vma->vm_rb;
1938 if (!rb_parent(prev))
1939 return -ENOMEM;
1940 vma = rb_entry(rb_parent(prev),
1941 struct vm_area_struct, vm_rb);
1942 if (prev == vma->vm_rb.rb_right) {
1943 gap_start = vma->vm_prev ?
1944 vm_end_gap(vma->vm_prev) : 0;
1945 goto check_current;
1946 }
1947 }
1948 }
1949
1950 found:
1951 /* We found a suitable gap. Clip it with the original high_limit. */
1952 if (gap_end > info->high_limit)
1953 gap_end = info->high_limit;
1954
1955 found_highest:
1956 /* Compute highest gap address at the desired alignment */
1957 gap_end -= info->length;
1958 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1959
1960 VM_BUG_ON(gap_end < info->low_limit);
1961 VM_BUG_ON(gap_end < gap_start);
1962 return gap_end;
1963 }
1964
1965 /* Get an address range which is currently unmapped.
1966 * For shmat() with addr=0.
1967 *
1968 * Ugly calling convention alert:
1969 * Return value with the low bits set means error value,
1970 * ie
1971 * if (ret & ~PAGE_MASK)
1972 * error = ret;
1973 *
1974 * This function "knows" that -ENOMEM has the bits set.
1975 */
1976 #ifndef HAVE_ARCH_UNMAPPED_AREA
1977 unsigned long
1978 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1979 unsigned long len, unsigned long pgoff, unsigned long flags)
1980 {
1981 struct mm_struct *mm = current->mm;
1982 struct vm_area_struct *vma, *prev;
1983 struct vm_unmapped_area_info info;
1984
1985 if (len > TASK_SIZE - mmap_min_addr)
1986 return -ENOMEM;
1987
1988 if (flags & MAP_FIXED)
1989 return addr;
1990
1991 if (addr) {
1992 addr = PAGE_ALIGN(addr);
1993 vma = find_vma_prev(mm, addr, &prev);
1994 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1995 (!vma || addr + len <= vm_start_gap(vma)) &&
1996 (!prev || addr >= vm_end_gap(prev)))
1997 return addr;
1998 }
1999
2000 info.flags = 0;
2001 info.length = len;
2002 info.low_limit = mm->mmap_base;
2003 info.high_limit = TASK_SIZE;
2004 info.align_mask = 0;
2005 return vm_unmapped_area(&info);
2006 }
2007 #endif
2008
2009 /*
2010 * This mmap-allocator allocates new areas top-down from below the
2011 * stack's low limit (the base):
2012 */
2013 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2014 unsigned long
2015 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2016 const unsigned long len, const unsigned long pgoff,
2017 const unsigned long flags)
2018 {
2019 struct vm_area_struct *vma, *prev;
2020 struct mm_struct *mm = current->mm;
2021 unsigned long addr = addr0;
2022 struct vm_unmapped_area_info info;
2023
2024 /* requested length too big for entire address space */
2025 if (len > TASK_SIZE - mmap_min_addr)
2026 return -ENOMEM;
2027
2028 if (flags & MAP_FIXED)
2029 return addr;
2030
2031 /* requesting a specific address */
2032 if (addr) {
2033 addr = PAGE_ALIGN(addr);
2034 vma = find_vma_prev(mm, addr, &prev);
2035 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2036 (!vma || addr + len <= vm_start_gap(vma)) &&
2037 (!prev || addr >= vm_end_gap(prev)))
2038 return addr;
2039 }
2040
2041 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2042 info.length = len;
2043 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2044 info.high_limit = mm->mmap_base;
2045 info.align_mask = 0;
2046 addr = vm_unmapped_area(&info);
2047
2048 /*
2049 * A failed mmap() very likely causes application failure,
2050 * so fall back to the bottom-up function here. This scenario
2051 * can happen with large stack limits and large mmap()
2052 * allocations.
2053 */
2054 if (offset_in_page(addr)) {
2055 VM_BUG_ON(addr != -ENOMEM);
2056 info.flags = 0;
2057 info.low_limit = TASK_UNMAPPED_BASE;
2058 info.high_limit = TASK_SIZE;
2059 addr = vm_unmapped_area(&info);
2060 }
2061
2062 return addr;
2063 }
2064 #endif
2065
2066 unsigned long
2067 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2068 unsigned long pgoff, unsigned long flags)
2069 {
2070 unsigned long (*get_area)(struct file *, unsigned long,
2071 unsigned long, unsigned long, unsigned long);
2072
2073 unsigned long error = arch_mmap_check(addr, len, flags);
2074 if (error)
2075 return error;
2076
2077 /* Careful about overflows.. */
2078 if (len > TASK_SIZE)
2079 return -ENOMEM;
2080
2081 get_area = current->mm->get_unmapped_area;
2082 if (file) {
2083 if (file->f_op->get_unmapped_area)
2084 get_area = file->f_op->get_unmapped_area;
2085 } else if (flags & MAP_SHARED) {
2086 /*
2087 * mmap_region() will call shmem_zero_setup() to create a file,
2088 * so use shmem's get_unmapped_area in case it can be huge.
2089 * do_mmap_pgoff() will clear pgoff, so match alignment.
2090 */
2091 pgoff = 0;
2092 get_area = shmem_get_unmapped_area;
2093 }
2094
2095 addr = get_area(file, addr, len, pgoff, flags);
2096 if (IS_ERR_VALUE(addr))
2097 return addr;
2098
2099 if (addr > TASK_SIZE - len)
2100 return -ENOMEM;
2101 if (offset_in_page(addr))
2102 return -EINVAL;
2103
2104 error = security_mmap_addr(addr);
2105 return error ? error : addr;
2106 }
2107
2108 EXPORT_SYMBOL(get_unmapped_area);
2109
2110 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2111 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2112 {
2113 struct rb_node *rb_node;
2114 struct vm_area_struct *vma;
2115
2116 /* Check the cache first. */
2117 vma = vmacache_find(mm, addr);
2118 if (likely(vma))
2119 return vma;
2120
2121 rb_node = mm->mm_rb.rb_node;
2122
2123 while (rb_node) {
2124 struct vm_area_struct *tmp;
2125
2126 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2127
2128 if (tmp->vm_end > addr) {
2129 vma = tmp;
2130 if (tmp->vm_start <= addr)
2131 break;
2132 rb_node = rb_node->rb_left;
2133 } else
2134 rb_node = rb_node->rb_right;
2135 }
2136
2137 if (vma)
2138 vmacache_update(addr, vma);
2139 return vma;
2140 }
2141
2142 EXPORT_SYMBOL(find_vma);
2143
2144 /*
2145 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2146 */
2147 struct vm_area_struct *
2148 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2149 struct vm_area_struct **pprev)
2150 {
2151 struct vm_area_struct *vma;
2152
2153 vma = find_vma(mm, addr);
2154 if (vma) {
2155 *pprev = vma->vm_prev;
2156 } else {
2157 struct rb_node *rb_node = mm->mm_rb.rb_node;
2158 *pprev = NULL;
2159 while (rb_node) {
2160 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2161 rb_node = rb_node->rb_right;
2162 }
2163 }
2164 return vma;
2165 }
2166
2167 /*
2168 * Verify that the stack growth is acceptable and
2169 * update accounting. This is shared with both the
2170 * grow-up and grow-down cases.
2171 */
2172 static int acct_stack_growth(struct vm_area_struct *vma,
2173 unsigned long size, unsigned long grow)
2174 {
2175 struct mm_struct *mm = vma->vm_mm;
2176 struct rlimit *rlim = current->signal->rlim;
2177 unsigned long new_start;
2178
2179 /* address space limit tests */
2180 if (!may_expand_vm(mm, vma->vm_flags, grow))
2181 return -ENOMEM;
2182
2183 /* Stack limit test */
2184 if (size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2185 return -ENOMEM;
2186
2187 /* mlock limit tests */
2188 if (vma->vm_flags & VM_LOCKED) {
2189 unsigned long locked;
2190 unsigned long limit;
2191 locked = mm->locked_vm + grow;
2192 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2193 limit >>= PAGE_SHIFT;
2194 if (locked > limit && !capable(CAP_IPC_LOCK))
2195 return -ENOMEM;
2196 }
2197
2198 /* Check to ensure the stack will not grow into a hugetlb-only region */
2199 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2200 vma->vm_end - size;
2201 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2202 return -EFAULT;
2203
2204 /*
2205 * Overcommit.. This must be the final test, as it will
2206 * update security statistics.
2207 */
2208 if (security_vm_enough_memory_mm(mm, grow))
2209 return -ENOMEM;
2210
2211 return 0;
2212 }
2213
2214 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2215 /*
2216 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2217 * vma is the last one with address > vma->vm_end. Have to extend vma.
2218 */
2219 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2220 {
2221 struct mm_struct *mm = vma->vm_mm;
2222 struct vm_area_struct *next;
2223 unsigned long gap_addr;
2224 int error = 0;
2225
2226 if (!(vma->vm_flags & VM_GROWSUP))
2227 return -EFAULT;
2228
2229 /* Guard against exceeding limits of the address space. */
2230 address &= PAGE_MASK;
2231 if (address >= TASK_SIZE)
2232 return -ENOMEM;
2233 address += PAGE_SIZE;
2234
2235 /* Enforce stack_guard_gap */
2236 gap_addr = address + stack_guard_gap;
2237
2238 /* Guard against overflow */
2239 if (gap_addr < address || gap_addr > TASK_SIZE)
2240 gap_addr = TASK_SIZE;
2241
2242 next = vma->vm_next;
2243 if (next && next->vm_start < gap_addr) {
2244 if (!(next->vm_flags & VM_GROWSUP))
2245 return -ENOMEM;
2246 /* Check that both stack segments have the same anon_vma? */
2247 }
2248
2249 /* We must make sure the anon_vma is allocated. */
2250 if (unlikely(anon_vma_prepare(vma)))
2251 return -ENOMEM;
2252
2253 /*
2254 * vma->vm_start/vm_end cannot change under us because the caller
2255 * is required to hold the mmap_sem in read mode. We need the
2256 * anon_vma lock to serialize against concurrent expand_stacks.
2257 */
2258 anon_vma_lock_write(vma->anon_vma);
2259
2260 /* Somebody else might have raced and expanded it already */
2261 if (address > vma->vm_end) {
2262 unsigned long size, grow;
2263
2264 size = address - vma->vm_start;
2265 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2266
2267 error = -ENOMEM;
2268 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2269 error = acct_stack_growth(vma, size, grow);
2270 if (!error) {
2271 /*
2272 * vma_gap_update() doesn't support concurrent
2273 * updates, but we only hold a shared mmap_sem
2274 * lock here, so we need to protect against
2275 * concurrent vma expansions.
2276 * anon_vma_lock_write() doesn't help here, as
2277 * we don't guarantee that all growable vmas
2278 * in a mm share the same root anon vma.
2279 * So, we reuse mm->page_table_lock to guard
2280 * against concurrent vma expansions.
2281 */
2282 spin_lock(&mm->page_table_lock);
2283 if (vma->vm_flags & VM_LOCKED)
2284 mm->locked_vm += grow;
2285 vm_stat_account(mm, vma->vm_flags, grow);
2286 anon_vma_interval_tree_pre_update_vma(vma);
2287 vma->vm_end = address;
2288 anon_vma_interval_tree_post_update_vma(vma);
2289 if (vma->vm_next)
2290 vma_gap_update(vma->vm_next);
2291 else
2292 mm->highest_vm_end = vm_end_gap(vma);
2293 spin_unlock(&mm->page_table_lock);
2294
2295 perf_event_mmap(vma);
2296 }
2297 }
2298 }
2299 anon_vma_unlock_write(vma->anon_vma);
2300 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2301 validate_mm(mm);
2302 return error;
2303 }
2304 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2305
2306 /*
2307 * vma is the first one with address < vma->vm_start. Have to extend vma.
2308 */
2309 int expand_downwards(struct vm_area_struct *vma,
2310 unsigned long address)
2311 {
2312 struct mm_struct *mm = vma->vm_mm;
2313 struct vm_area_struct *prev;
2314 unsigned long gap_addr;
2315 int error;
2316
2317 address &= PAGE_MASK;
2318 error = security_mmap_addr(address);
2319 if (error)
2320 return error;
2321
2322 /* Enforce stack_guard_gap */
2323 gap_addr = address - stack_guard_gap;
2324 if (gap_addr > address)
2325 return -ENOMEM;
2326 prev = vma->vm_prev;
2327 if (prev && prev->vm_end > gap_addr) {
2328 if (!(prev->vm_flags & VM_GROWSDOWN))
2329 return -ENOMEM;
2330 /* Check that both stack segments have the same anon_vma? */
2331 }
2332
2333 /* We must make sure the anon_vma is allocated. */
2334 if (unlikely(anon_vma_prepare(vma)))
2335 return -ENOMEM;
2336
2337 /*
2338 * vma->vm_start/vm_end cannot change under us because the caller
2339 * is required to hold the mmap_sem in read mode. We need the
2340 * anon_vma lock to serialize against concurrent expand_stacks.
2341 */
2342 anon_vma_lock_write(vma->anon_vma);
2343
2344 /* Somebody else might have raced and expanded it already */
2345 if (address < vma->vm_start) {
2346 unsigned long size, grow;
2347
2348 size = vma->vm_end - address;
2349 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2350
2351 error = -ENOMEM;
2352 if (grow <= vma->vm_pgoff) {
2353 error = acct_stack_growth(vma, size, grow);
2354 if (!error) {
2355 /*
2356 * vma_gap_update() doesn't support concurrent
2357 * updates, but we only hold a shared mmap_sem
2358 * lock here, so we need to protect against
2359 * concurrent vma expansions.
2360 * anon_vma_lock_write() doesn't help here, as
2361 * we don't guarantee that all growable vmas
2362 * in a mm share the same root anon vma.
2363 * So, we reuse mm->page_table_lock to guard
2364 * against concurrent vma expansions.
2365 */
2366 spin_lock(&mm->page_table_lock);
2367 if (vma->vm_flags & VM_LOCKED)
2368 mm->locked_vm += grow;
2369 vm_stat_account(mm, vma->vm_flags, grow);
2370 anon_vma_interval_tree_pre_update_vma(vma);
2371 vma->vm_start = address;
2372 vma->vm_pgoff -= grow;
2373 anon_vma_interval_tree_post_update_vma(vma);
2374 vma_gap_update(vma);
2375 spin_unlock(&mm->page_table_lock);
2376
2377 perf_event_mmap(vma);
2378 }
2379 }
2380 }
2381 anon_vma_unlock_write(vma->anon_vma);
2382 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2383 validate_mm(mm);
2384 return error;
2385 }
2386
2387 /* enforced gap between the expanding stack and other mappings. */
2388 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2389
2390 static int __init cmdline_parse_stack_guard_gap(char *p)
2391 {
2392 unsigned long val;
2393 char *endptr;
2394
2395 val = simple_strtoul(p, &endptr, 10);
2396 if (!*endptr)
2397 stack_guard_gap = val << PAGE_SHIFT;
2398
2399 return 0;
2400 }
2401 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2402
2403 #ifdef CONFIG_STACK_GROWSUP
2404 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2405 {
2406 return expand_upwards(vma, address);
2407 }
2408
2409 struct vm_area_struct *
2410 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2411 {
2412 struct vm_area_struct *vma, *prev;
2413
2414 addr &= PAGE_MASK;
2415 vma = find_vma_prev(mm, addr, &prev);
2416 if (vma && (vma->vm_start <= addr))
2417 return vma;
2418 if (!prev || expand_stack(prev, addr))
2419 return NULL;
2420 if (prev->vm_flags & VM_LOCKED)
2421 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2422 return prev;
2423 }
2424 #else
2425 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2426 {
2427 return expand_downwards(vma, address);
2428 }
2429
2430 struct vm_area_struct *
2431 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2432 {
2433 struct vm_area_struct *vma;
2434 unsigned long start;
2435
2436 addr &= PAGE_MASK;
2437 vma = find_vma(mm, addr);
2438 if (!vma)
2439 return NULL;
2440 if (vma->vm_start <= addr)
2441 return vma;
2442 if (!(vma->vm_flags & VM_GROWSDOWN))
2443 return NULL;
2444 start = vma->vm_start;
2445 if (expand_stack(vma, addr))
2446 return NULL;
2447 if (vma->vm_flags & VM_LOCKED)
2448 populate_vma_page_range(vma, addr, start, NULL);
2449 return vma;
2450 }
2451 #endif
2452
2453 EXPORT_SYMBOL_GPL(find_extend_vma);
2454
2455 /*
2456 * Ok - we have the memory areas we should free on the vma list,
2457 * so release them, and do the vma updates.
2458 *
2459 * Called with the mm semaphore held.
2460 */
2461 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2462 {
2463 unsigned long nr_accounted = 0;
2464
2465 /* Update high watermark before we lower total_vm */
2466 update_hiwater_vm(mm);
2467 do {
2468 long nrpages = vma_pages(vma);
2469
2470 if (vma->vm_flags & VM_ACCOUNT)
2471 nr_accounted += nrpages;
2472 vm_stat_account(mm, vma->vm_flags, -nrpages);
2473 vma = remove_vma(vma);
2474 } while (vma);
2475 vm_unacct_memory(nr_accounted);
2476 validate_mm(mm);
2477 }
2478
2479 /*
2480 * Get rid of page table information in the indicated region.
2481 *
2482 * Called with the mm semaphore held.
2483 */
2484 static void unmap_region(struct mm_struct *mm,
2485 struct vm_area_struct *vma, struct vm_area_struct *prev,
2486 unsigned long start, unsigned long end)
2487 {
2488 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2489 struct mmu_gather tlb;
2490
2491 lru_add_drain();
2492 tlb_gather_mmu(&tlb, mm, start, end);
2493 update_hiwater_rss(mm);
2494 unmap_vmas(&tlb, vma, start, end);
2495 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2496 next ? next->vm_start : USER_PGTABLES_CEILING);
2497 tlb_finish_mmu(&tlb, start, end);
2498 }
2499
2500 /*
2501 * Create a list of vma's touched by the unmap, removing them from the mm's
2502 * vma list as we go..
2503 */
2504 static void
2505 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2506 struct vm_area_struct *prev, unsigned long end)
2507 {
2508 struct vm_area_struct **insertion_point;
2509 struct vm_area_struct *tail_vma = NULL;
2510
2511 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2512 vma->vm_prev = NULL;
2513 do {
2514 vma_rb_erase(vma, &mm->mm_rb);
2515 mm->map_count--;
2516 tail_vma = vma;
2517 vma = vma->vm_next;
2518 } while (vma && vma->vm_start < end);
2519 *insertion_point = vma;
2520 if (vma) {
2521 vma->vm_prev = prev;
2522 vma_gap_update(vma);
2523 } else
2524 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2525 tail_vma->vm_next = NULL;
2526
2527 /* Kill the cache */
2528 vmacache_invalidate(mm);
2529 }
2530
2531 /*
2532 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2533 * munmap path where it doesn't make sense to fail.
2534 */
2535 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2536 unsigned long addr, int new_below)
2537 {
2538 struct vm_area_struct *new;
2539 int err;
2540
2541 if (is_vm_hugetlb_page(vma) && (addr &
2542 ~(huge_page_mask(hstate_vma(vma)))))
2543 return -EINVAL;
2544
2545 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2546 if (!new)
2547 return -ENOMEM;
2548
2549 /* most fields are the same, copy all, and then fixup */
2550 *new = *vma;
2551
2552 INIT_LIST_HEAD(&new->anon_vma_chain);
2553
2554 if (new_below)
2555 new->vm_end = addr;
2556 else {
2557 new->vm_start = addr;
2558 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2559 }
2560
2561 err = vma_dup_policy(vma, new);
2562 if (err)
2563 goto out_free_vma;
2564
2565 err = anon_vma_clone(new, vma);
2566 if (err)
2567 goto out_free_mpol;
2568
2569 if (new->vm_file)
2570 vma_get_file(new);
2571
2572 if (new->vm_ops && new->vm_ops->open)
2573 new->vm_ops->open(new);
2574
2575 if (new_below)
2576 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2577 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2578 else
2579 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2580
2581 /* Success. */
2582 if (!err)
2583 return 0;
2584
2585 /* Clean everything up if vma_adjust failed. */
2586 if (new->vm_ops && new->vm_ops->close)
2587 new->vm_ops->close(new);
2588 if (new->vm_file)
2589 vma_fput(new);
2590 unlink_anon_vmas(new);
2591 out_free_mpol:
2592 mpol_put(vma_policy(new));
2593 out_free_vma:
2594 kmem_cache_free(vm_area_cachep, new);
2595 return err;
2596 }
2597
2598 /*
2599 * Split a vma into two pieces at address 'addr', a new vma is allocated
2600 * either for the first part or the tail.
2601 */
2602 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2603 unsigned long addr, int new_below)
2604 {
2605 if (mm->map_count >= sysctl_max_map_count)
2606 return -ENOMEM;
2607
2608 return __split_vma(mm, vma, addr, new_below);
2609 }
2610
2611 /* Munmap is split into 2 main parts -- this part which finds
2612 * what needs doing, and the areas themselves, which do the
2613 * work. This now handles partial unmappings.
2614 * Jeremy Fitzhardinge <jeremy@goop.org>
2615 */
2616 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2617 {
2618 unsigned long end;
2619 struct vm_area_struct *vma, *prev, *last;
2620
2621 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2622 return -EINVAL;
2623
2624 len = PAGE_ALIGN(len);
2625 if (len == 0)
2626 return -EINVAL;
2627
2628 /* Find the first overlapping VMA */
2629 vma = find_vma(mm, start);
2630 if (!vma)
2631 return 0;
2632 prev = vma->vm_prev;
2633 /* we have start < vma->vm_end */
2634
2635 /* if it doesn't overlap, we have nothing.. */
2636 end = start + len;
2637 if (vma->vm_start >= end)
2638 return 0;
2639
2640 /*
2641 * If we need to split any vma, do it now to save pain later.
2642 *
2643 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2644 * unmapped vm_area_struct will remain in use: so lower split_vma
2645 * places tmp vma above, and higher split_vma places tmp vma below.
2646 */
2647 if (start > vma->vm_start) {
2648 int error;
2649
2650 /*
2651 * Make sure that map_count on return from munmap() will
2652 * not exceed its limit; but let map_count go just above
2653 * its limit temporarily, to help free resources as expected.
2654 */
2655 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2656 return -ENOMEM;
2657
2658 error = __split_vma(mm, vma, start, 0);
2659 if (error)
2660 return error;
2661 prev = vma;
2662 }
2663
2664 /* Does it split the last one? */
2665 last = find_vma(mm, end);
2666 if (last && end > last->vm_start) {
2667 int error = __split_vma(mm, last, end, 1);
2668 if (error)
2669 return error;
2670 }
2671 vma = prev ? prev->vm_next : mm->mmap;
2672
2673 /*
2674 * unlock any mlock()ed ranges before detaching vmas
2675 */
2676 if (mm->locked_vm) {
2677 struct vm_area_struct *tmp = vma;
2678 while (tmp && tmp->vm_start < end) {
2679 if (tmp->vm_flags & VM_LOCKED) {
2680 mm->locked_vm -= vma_pages(tmp);
2681 munlock_vma_pages_all(tmp);
2682 }
2683 tmp = tmp->vm_next;
2684 }
2685 }
2686
2687 /*
2688 * Remove the vma's, and unmap the actual pages
2689 */
2690 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2691 unmap_region(mm, vma, prev, start, end);
2692
2693 arch_unmap(mm, vma, start, end);
2694
2695 /* Fix up all other VM information */
2696 remove_vma_list(mm, vma);
2697
2698 return 0;
2699 }
2700
2701 int vm_munmap(unsigned long start, size_t len)
2702 {
2703 int ret;
2704 struct mm_struct *mm = current->mm;
2705
2706 if (down_write_killable(&mm->mmap_sem))
2707 return -EINTR;
2708
2709 ret = do_munmap(mm, start, len);
2710 up_write(&mm->mmap_sem);
2711 return ret;
2712 }
2713 EXPORT_SYMBOL(vm_munmap);
2714
2715 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2716 {
2717 int ret;
2718 struct mm_struct *mm = current->mm;
2719
2720 profile_munmap(addr);
2721 if (down_write_killable(&mm->mmap_sem))
2722 return -EINTR;
2723 ret = do_munmap(mm, addr, len);
2724 up_write(&mm->mmap_sem);
2725 return ret;
2726 }
2727
2728
2729 /*
2730 * Emulation of deprecated remap_file_pages() syscall.
2731 */
2732 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2733 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2734 {
2735
2736 struct mm_struct *mm = current->mm;
2737 struct vm_area_struct *vma;
2738 unsigned long populate = 0;
2739 unsigned long ret = -EINVAL;
2740 struct file *file, *prfile;
2741
2742 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2743 current->comm, current->pid);
2744
2745 if (prot)
2746 return ret;
2747 start = start & PAGE_MASK;
2748 size = size & PAGE_MASK;
2749
2750 if (start + size <= start)
2751 return ret;
2752
2753 /* Does pgoff wrap? */
2754 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2755 return ret;
2756
2757 if (down_write_killable(&mm->mmap_sem))
2758 return -EINTR;
2759
2760 vma = find_vma(mm, start);
2761
2762 if (!vma || !(vma->vm_flags & VM_SHARED))
2763 goto out;
2764
2765 if (start < vma->vm_start)
2766 goto out;
2767
2768 if (start + size > vma->vm_end) {
2769 struct vm_area_struct *next;
2770
2771 for (next = vma->vm_next; next; next = next->vm_next) {
2772 /* hole between vmas ? */
2773 if (next->vm_start != next->vm_prev->vm_end)
2774 goto out;
2775
2776 if (next->vm_file != vma->vm_file)
2777 goto out;
2778
2779 if (next->vm_flags != vma->vm_flags)
2780 goto out;
2781
2782 if (start + size <= next->vm_end)
2783 break;
2784 }
2785
2786 if (!next)
2787 goto out;
2788 }
2789
2790 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2791 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2792 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2793
2794 flags &= MAP_NONBLOCK;
2795 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2796 if (vma->vm_flags & VM_LOCKED) {
2797 struct vm_area_struct *tmp;
2798 flags |= MAP_LOCKED;
2799
2800 /* drop PG_Mlocked flag for over-mapped range */
2801 for (tmp = vma; tmp->vm_start >= start + size;
2802 tmp = tmp->vm_next) {
2803 /*
2804 * Split pmd and munlock page on the border
2805 * of the range.
2806 */
2807 vma_adjust_trans_huge(tmp, start, start + size, 0);
2808
2809 munlock_vma_pages_range(tmp,
2810 max(tmp->vm_start, start),
2811 min(tmp->vm_end, start + size));
2812 }
2813 }
2814
2815 vma_get_file(vma);
2816 file = vma->vm_file;
2817 prfile = vma->vm_prfile;
2818 ret = do_mmap_pgoff(vma->vm_file, start, size,
2819 prot, flags, pgoff, &populate);
2820 if (!IS_ERR_VALUE(ret) && file && prfile) {
2821 struct vm_area_struct *new_vma;
2822
2823 new_vma = find_vma(mm, ret);
2824 if (!new_vma->vm_prfile)
2825 new_vma->vm_prfile = prfile;
2826 if (new_vma != vma)
2827 get_file(prfile);
2828 }
2829 /*
2830 * two fput()s instead of vma_fput(vma),
2831 * coz vma may not be available anymore.
2832 */
2833 fput(file);
2834 if (prfile)
2835 fput(prfile);
2836 out:
2837 up_write(&mm->mmap_sem);
2838 if (populate)
2839 mm_populate(ret, populate);
2840 if (!IS_ERR_VALUE(ret))
2841 ret = 0;
2842 return ret;
2843 }
2844
2845 static inline void verify_mm_writelocked(struct mm_struct *mm)
2846 {
2847 #ifdef CONFIG_DEBUG_VM
2848 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2849 WARN_ON(1);
2850 up_read(&mm->mmap_sem);
2851 }
2852 #endif
2853 }
2854
2855 /*
2856 * this is really a simplified "do_mmap". it only handles
2857 * anonymous maps. eventually we may be able to do some
2858 * brk-specific accounting here.
2859 */
2860 static int do_brk(unsigned long addr, unsigned long request)
2861 {
2862 struct mm_struct *mm = current->mm;
2863 struct vm_area_struct *vma, *prev;
2864 unsigned long flags, len;
2865 struct rb_node **rb_link, *rb_parent;
2866 pgoff_t pgoff = addr >> PAGE_SHIFT;
2867 int error;
2868
2869 len = PAGE_ALIGN(request);
2870 if (len < request)
2871 return -ENOMEM;
2872 if (!len)
2873 return 0;
2874
2875 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2876
2877 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2878 if (offset_in_page(error))
2879 return error;
2880
2881 error = mlock_future_check(mm, mm->def_flags, len);
2882 if (error)
2883 return error;
2884
2885 /*
2886 * mm->mmap_sem is required to protect against another thread
2887 * changing the mappings in case we sleep.
2888 */
2889 verify_mm_writelocked(mm);
2890
2891 /*
2892 * Clear old maps. this also does some error checking for us
2893 */
2894 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2895 &rb_parent)) {
2896 if (do_munmap(mm, addr, len))
2897 return -ENOMEM;
2898 }
2899
2900 /* Check against address space limits *after* clearing old maps... */
2901 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2902 return -ENOMEM;
2903
2904 if (mm->map_count > sysctl_max_map_count)
2905 return -ENOMEM;
2906
2907 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2908 return -ENOMEM;
2909
2910 /* Can we just expand an old private anonymous mapping? */
2911 vma = vma_merge(mm, prev, addr, addr + len, flags,
2912 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2913 if (vma)
2914 goto out;
2915
2916 /*
2917 * create a vma struct for an anonymous mapping
2918 */
2919 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2920 if (!vma) {
2921 vm_unacct_memory(len >> PAGE_SHIFT);
2922 return -ENOMEM;
2923 }
2924
2925 INIT_LIST_HEAD(&vma->anon_vma_chain);
2926 vma->vm_mm = mm;
2927 vma->vm_start = addr;
2928 vma->vm_end = addr + len;
2929 vma->vm_pgoff = pgoff;
2930 vma->vm_flags = flags;
2931 vma->vm_page_prot = vm_get_page_prot(flags);
2932 vma_link(mm, vma, prev, rb_link, rb_parent);
2933 out:
2934 perf_event_mmap(vma);
2935 mm->total_vm += len >> PAGE_SHIFT;
2936 mm->data_vm += len >> PAGE_SHIFT;
2937 if (flags & VM_LOCKED)
2938 mm->locked_vm += (len >> PAGE_SHIFT);
2939 vma->vm_flags |= VM_SOFTDIRTY;
2940 return 0;
2941 }
2942
2943 int vm_brk(unsigned long addr, unsigned long len)
2944 {
2945 struct mm_struct *mm = current->mm;
2946 int ret;
2947 bool populate;
2948
2949 if (down_write_killable(&mm->mmap_sem))
2950 return -EINTR;
2951
2952 ret = do_brk(addr, len);
2953 populate = ((mm->def_flags & VM_LOCKED) != 0);
2954 up_write(&mm->mmap_sem);
2955 if (populate && !ret)
2956 mm_populate(addr, len);
2957 return ret;
2958 }
2959 EXPORT_SYMBOL(vm_brk);
2960
2961 /* Release all mmaps. */
2962 void exit_mmap(struct mm_struct *mm)
2963 {
2964 struct mmu_gather tlb;
2965 struct vm_area_struct *vma;
2966 unsigned long nr_accounted = 0;
2967
2968 /* mm's last user has gone, and its about to be pulled down */
2969 mmu_notifier_release(mm);
2970
2971 if (mm->locked_vm) {
2972 vma = mm->mmap;
2973 while (vma) {
2974 if (vma->vm_flags & VM_LOCKED)
2975 munlock_vma_pages_all(vma);
2976 vma = vma->vm_next;
2977 }
2978 }
2979
2980 arch_exit_mmap(mm);
2981
2982 vma = mm->mmap;
2983 if (!vma) /* Can happen if dup_mmap() received an OOM */
2984 return;
2985
2986 lru_add_drain();
2987 flush_cache_mm(mm);
2988 tlb_gather_mmu(&tlb, mm, 0, -1);
2989 /* update_hiwater_rss(mm) here? but nobody should be looking */
2990 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2991 unmap_vmas(&tlb, vma, 0, -1);
2992
2993 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2994 tlb_finish_mmu(&tlb, 0, -1);
2995
2996 /*
2997 * Walk the list again, actually closing and freeing it,
2998 * with preemption enabled, without holding any MM locks.
2999 */
3000 while (vma) {
3001 if (vma->vm_flags & VM_ACCOUNT)
3002 nr_accounted += vma_pages(vma);
3003 vma = remove_vma(vma);
3004 }
3005 vm_unacct_memory(nr_accounted);
3006 }
3007
3008 /* Insert vm structure into process list sorted by address
3009 * and into the inode's i_mmap tree. If vm_file is non-NULL
3010 * then i_mmap_rwsem is taken here.
3011 */
3012 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3013 {
3014 struct vm_area_struct *prev;
3015 struct rb_node **rb_link, *rb_parent;
3016
3017 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3018 &prev, &rb_link, &rb_parent))
3019 return -ENOMEM;
3020 if ((vma->vm_flags & VM_ACCOUNT) &&
3021 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3022 return -ENOMEM;
3023
3024 /*
3025 * The vm_pgoff of a purely anonymous vma should be irrelevant
3026 * until its first write fault, when page's anon_vma and index
3027 * are set. But now set the vm_pgoff it will almost certainly
3028 * end up with (unless mremap moves it elsewhere before that
3029 * first wfault), so /proc/pid/maps tells a consistent story.
3030 *
3031 * By setting it to reflect the virtual start address of the
3032 * vma, merges and splits can happen in a seamless way, just
3033 * using the existing file pgoff checks and manipulations.
3034 * Similarly in do_mmap_pgoff and in do_brk.
3035 */
3036 if (vma_is_anonymous(vma)) {
3037 BUG_ON(vma->anon_vma);
3038 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3039 }
3040
3041 vma_link(mm, vma, prev, rb_link, rb_parent);
3042 return 0;
3043 }
3044
3045 /*
3046 * Copy the vma structure to a new location in the same mm,
3047 * prior to moving page table entries, to effect an mremap move.
3048 */
3049 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3050 unsigned long addr, unsigned long len, pgoff_t pgoff,
3051 bool *need_rmap_locks)
3052 {
3053 struct vm_area_struct *vma = *vmap;
3054 unsigned long vma_start = vma->vm_start;
3055 struct mm_struct *mm = vma->vm_mm;
3056 struct vm_area_struct *new_vma, *prev;
3057 struct rb_node **rb_link, *rb_parent;
3058 bool faulted_in_anon_vma = true;
3059
3060 /*
3061 * If anonymous vma has not yet been faulted, update new pgoff
3062 * to match new location, to increase its chance of merging.
3063 */
3064 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3065 pgoff = addr >> PAGE_SHIFT;
3066 faulted_in_anon_vma = false;
3067 }
3068
3069 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3070 return NULL; /* should never get here */
3071 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3072 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3073 vma->vm_userfaultfd_ctx);
3074 if (new_vma) {
3075 /*
3076 * Source vma may have been merged into new_vma
3077 */
3078 if (unlikely(vma_start >= new_vma->vm_start &&
3079 vma_start < new_vma->vm_end)) {
3080 /*
3081 * The only way we can get a vma_merge with
3082 * self during an mremap is if the vma hasn't
3083 * been faulted in yet and we were allowed to
3084 * reset the dst vma->vm_pgoff to the
3085 * destination address of the mremap to allow
3086 * the merge to happen. mremap must change the
3087 * vm_pgoff linearity between src and dst vmas
3088 * (in turn preventing a vma_merge) to be
3089 * safe. It is only safe to keep the vm_pgoff
3090 * linear if there are no pages mapped yet.
3091 */
3092 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3093 *vmap = vma = new_vma;
3094 }
3095 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3096 } else {
3097 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3098 if (!new_vma)
3099 goto out;
3100 *new_vma = *vma;
3101 new_vma->vm_start = addr;
3102 new_vma->vm_end = addr + len;
3103 new_vma->vm_pgoff = pgoff;
3104 if (vma_dup_policy(vma, new_vma))
3105 goto out_free_vma;
3106 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3107 if (anon_vma_clone(new_vma, vma))
3108 goto out_free_mempol;
3109 if (new_vma->vm_file)
3110 vma_get_file(new_vma);
3111 if (new_vma->vm_ops && new_vma->vm_ops->open)
3112 new_vma->vm_ops->open(new_vma);
3113 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3114 *need_rmap_locks = false;
3115 }
3116 return new_vma;
3117
3118 out_free_mempol:
3119 mpol_put(vma_policy(new_vma));
3120 out_free_vma:
3121 kmem_cache_free(vm_area_cachep, new_vma);
3122 out:
3123 return NULL;
3124 }
3125
3126 /*
3127 * Return true if the calling process may expand its vm space by the passed
3128 * number of pages
3129 */
3130 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3131 {
3132 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3133 return false;
3134
3135 if (is_data_mapping(flags) &&
3136 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3137 /* Workaround for Valgrind */
3138 if (rlimit(RLIMIT_DATA) == 0 &&
3139 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3140 return true;
3141 if (!ignore_rlimit_data) {
3142 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3143 current->comm, current->pid,
3144 (mm->data_vm + npages) << PAGE_SHIFT,
3145 rlimit(RLIMIT_DATA));
3146 return false;
3147 }
3148 }
3149
3150 return true;
3151 }
3152
3153 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3154 {
3155 mm->total_vm += npages;
3156
3157 if (is_exec_mapping(flags))
3158 mm->exec_vm += npages;
3159 else if (is_stack_mapping(flags))
3160 mm->stack_vm += npages;
3161 else if (is_data_mapping(flags))
3162 mm->data_vm += npages;
3163 }
3164
3165 static int special_mapping_fault(struct vm_area_struct *vma,
3166 struct vm_fault *vmf);
3167
3168 /*
3169 * Having a close hook prevents vma merging regardless of flags.
3170 */
3171 static void special_mapping_close(struct vm_area_struct *vma)
3172 {
3173 }
3174
3175 static const char *special_mapping_name(struct vm_area_struct *vma)
3176 {
3177 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3178 }
3179
3180 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3181 {
3182 struct vm_special_mapping *sm = new_vma->vm_private_data;
3183
3184 if (sm->mremap)
3185 return sm->mremap(sm, new_vma);
3186 return 0;
3187 }
3188
3189 static const struct vm_operations_struct special_mapping_vmops = {
3190 .close = special_mapping_close,
3191 .fault = special_mapping_fault,
3192 .mremap = special_mapping_mremap,
3193 .name = special_mapping_name,
3194 };
3195
3196 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3197 .close = special_mapping_close,
3198 .fault = special_mapping_fault,
3199 };
3200
3201 static int special_mapping_fault(struct vm_area_struct *vma,
3202 struct vm_fault *vmf)
3203 {
3204 pgoff_t pgoff;
3205 struct page **pages;
3206
3207 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3208 pages = vma->vm_private_data;
3209 } else {
3210 struct vm_special_mapping *sm = vma->vm_private_data;
3211
3212 if (sm->fault)
3213 return sm->fault(sm, vma, vmf);
3214
3215 pages = sm->pages;
3216 }
3217
3218 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3219 pgoff--;
3220
3221 if (*pages) {
3222 struct page *page = *pages;
3223 get_page(page);
3224 vmf->page = page;
3225 return 0;
3226 }
3227
3228 return VM_FAULT_SIGBUS;
3229 }
3230
3231 static struct vm_area_struct *__install_special_mapping(
3232 struct mm_struct *mm,
3233 unsigned long addr, unsigned long len,
3234 unsigned long vm_flags, void *priv,
3235 const struct vm_operations_struct *ops)
3236 {
3237 int ret;
3238 struct vm_area_struct *vma;
3239
3240 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3241 if (unlikely(vma == NULL))
3242 return ERR_PTR(-ENOMEM);
3243
3244 INIT_LIST_HEAD(&vma->anon_vma_chain);
3245 vma->vm_mm = mm;
3246 vma->vm_start = addr;
3247 vma->vm_end = addr + len;
3248
3249 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3250 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3251
3252 vma->vm_ops = ops;
3253 vma->vm_private_data = priv;
3254
3255 ret = insert_vm_struct(mm, vma);
3256 if (ret)
3257 goto out;
3258
3259 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3260
3261 perf_event_mmap(vma);
3262
3263 return vma;
3264
3265 out:
3266 kmem_cache_free(vm_area_cachep, vma);
3267 return ERR_PTR(ret);
3268 }
3269
3270 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3271 const struct vm_special_mapping *sm)
3272 {
3273 return vma->vm_private_data == sm &&
3274 (vma->vm_ops == &special_mapping_vmops ||
3275 vma->vm_ops == &legacy_special_mapping_vmops);
3276 }
3277
3278 /*
3279 * Called with mm->mmap_sem held for writing.
3280 * Insert a new vma covering the given region, with the given flags.
3281 * Its pages are supplied by the given array of struct page *.
3282 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3283 * The region past the last page supplied will always produce SIGBUS.
3284 * The array pointer and the pages it points to are assumed to stay alive
3285 * for as long as this mapping might exist.
3286 */
3287 struct vm_area_struct *_install_special_mapping(
3288 struct mm_struct *mm,
3289 unsigned long addr, unsigned long len,
3290 unsigned long vm_flags, const struct vm_special_mapping *spec)
3291 {
3292 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3293 &special_mapping_vmops);
3294 }
3295
3296 int install_special_mapping(struct mm_struct *mm,
3297 unsigned long addr, unsigned long len,
3298 unsigned long vm_flags, struct page **pages)
3299 {
3300 struct vm_area_struct *vma = __install_special_mapping(
3301 mm, addr, len, vm_flags, (void *)pages,
3302 &legacy_special_mapping_vmops);
3303
3304 return PTR_ERR_OR_ZERO(vma);
3305 }
3306
3307 static DEFINE_MUTEX(mm_all_locks_mutex);
3308
3309 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3310 {
3311 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3312 /*
3313 * The LSB of head.next can't change from under us
3314 * because we hold the mm_all_locks_mutex.
3315 */
3316 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3317 /*
3318 * We can safely modify head.next after taking the
3319 * anon_vma->root->rwsem. If some other vma in this mm shares
3320 * the same anon_vma we won't take it again.
3321 *
3322 * No need of atomic instructions here, head.next
3323 * can't change from under us thanks to the
3324 * anon_vma->root->rwsem.
3325 */
3326 if (__test_and_set_bit(0, (unsigned long *)
3327 &anon_vma->root->rb_root.rb_node))
3328 BUG();
3329 }
3330 }
3331
3332 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3333 {
3334 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3335 /*
3336 * AS_MM_ALL_LOCKS can't change from under us because
3337 * we hold the mm_all_locks_mutex.
3338 *
3339 * Operations on ->flags have to be atomic because
3340 * even if AS_MM_ALL_LOCKS is stable thanks to the
3341 * mm_all_locks_mutex, there may be other cpus
3342 * changing other bitflags in parallel to us.
3343 */
3344 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3345 BUG();
3346 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3347 }
3348 }
3349
3350 /*
3351 * This operation locks against the VM for all pte/vma/mm related
3352 * operations that could ever happen on a certain mm. This includes
3353 * vmtruncate, try_to_unmap, and all page faults.
3354 *
3355 * The caller must take the mmap_sem in write mode before calling
3356 * mm_take_all_locks(). The caller isn't allowed to release the
3357 * mmap_sem until mm_drop_all_locks() returns.
3358 *
3359 * mmap_sem in write mode is required in order to block all operations
3360 * that could modify pagetables and free pages without need of
3361 * altering the vma layout. It's also needed in write mode to avoid new
3362 * anon_vmas to be associated with existing vmas.
3363 *
3364 * A single task can't take more than one mm_take_all_locks() in a row
3365 * or it would deadlock.
3366 *
3367 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3368 * mapping->flags avoid to take the same lock twice, if more than one
3369 * vma in this mm is backed by the same anon_vma or address_space.
3370 *
3371 * We take locks in following order, accordingly to comment at beginning
3372 * of mm/rmap.c:
3373 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3374 * hugetlb mapping);
3375 * - all i_mmap_rwsem locks;
3376 * - all anon_vma->rwseml
3377 *
3378 * We can take all locks within these types randomly because the VM code
3379 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3380 * mm_all_locks_mutex.
3381 *
3382 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3383 * that may have to take thousand of locks.
3384 *
3385 * mm_take_all_locks() can fail if it's interrupted by signals.
3386 */
3387 int mm_take_all_locks(struct mm_struct *mm)
3388 {
3389 struct vm_area_struct *vma;
3390 struct anon_vma_chain *avc;
3391
3392 BUG_ON(down_read_trylock(&mm->mmap_sem));
3393
3394 mutex_lock(&mm_all_locks_mutex);
3395
3396 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3397 if (signal_pending(current))
3398 goto out_unlock;
3399 if (vma->vm_file && vma->vm_file->f_mapping &&
3400 is_vm_hugetlb_page(vma))
3401 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3402 }
3403
3404 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3405 if (signal_pending(current))
3406 goto out_unlock;
3407 if (vma->vm_file && vma->vm_file->f_mapping &&
3408 !is_vm_hugetlb_page(vma))
3409 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3410 }
3411
3412 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3413 if (signal_pending(current))
3414 goto out_unlock;
3415 if (vma->anon_vma)
3416 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3417 vm_lock_anon_vma(mm, avc->anon_vma);
3418 }
3419
3420 return 0;
3421
3422 out_unlock:
3423 mm_drop_all_locks(mm);
3424 return -EINTR;
3425 }
3426
3427 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3428 {
3429 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3430 /*
3431 * The LSB of head.next can't change to 0 from under
3432 * us because we hold the mm_all_locks_mutex.
3433 *
3434 * We must however clear the bitflag before unlocking
3435 * the vma so the users using the anon_vma->rb_root will
3436 * never see our bitflag.
3437 *
3438 * No need of atomic instructions here, head.next
3439 * can't change from under us until we release the
3440 * anon_vma->root->rwsem.
3441 */
3442 if (!__test_and_clear_bit(0, (unsigned long *)
3443 &anon_vma->root->rb_root.rb_node))
3444 BUG();
3445 anon_vma_unlock_write(anon_vma);
3446 }
3447 }
3448
3449 static void vm_unlock_mapping(struct address_space *mapping)
3450 {
3451 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3452 /*
3453 * AS_MM_ALL_LOCKS can't change to 0 from under us
3454 * because we hold the mm_all_locks_mutex.
3455 */
3456 i_mmap_unlock_write(mapping);
3457 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3458 &mapping->flags))
3459 BUG();
3460 }
3461 }
3462
3463 /*
3464 * The mmap_sem cannot be released by the caller until
3465 * mm_drop_all_locks() returns.
3466 */
3467 void mm_drop_all_locks(struct mm_struct *mm)
3468 {
3469 struct vm_area_struct *vma;
3470 struct anon_vma_chain *avc;
3471
3472 BUG_ON(down_read_trylock(&mm->mmap_sem));
3473 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3474
3475 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3476 if (vma->anon_vma)
3477 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3478 vm_unlock_anon_vma(avc->anon_vma);
3479 if (vma->vm_file && vma->vm_file->f_mapping)
3480 vm_unlock_mapping(vma->vm_file->f_mapping);
3481 }
3482
3483 mutex_unlock(&mm_all_locks_mutex);
3484 }
3485
3486 /*
3487 * initialise the VMA slab
3488 */
3489 void __init mmap_init(void)
3490 {
3491 int ret;
3492
3493 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3494 VM_BUG_ON(ret);
3495 }
3496
3497 /*
3498 * Initialise sysctl_user_reserve_kbytes.
3499 *
3500 * This is intended to prevent a user from starting a single memory hogging
3501 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3502 * mode.
3503 *
3504 * The default value is min(3% of free memory, 128MB)
3505 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3506 */
3507 static int init_user_reserve(void)
3508 {
3509 unsigned long free_kbytes;
3510
3511 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3512
3513 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3514 return 0;
3515 }
3516 subsys_initcall(init_user_reserve);
3517
3518 /*
3519 * Initialise sysctl_admin_reserve_kbytes.
3520 *
3521 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3522 * to log in and kill a memory hogging process.
3523 *
3524 * Systems with more than 256MB will reserve 8MB, enough to recover
3525 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3526 * only reserve 3% of free pages by default.
3527 */
3528 static int init_admin_reserve(void)
3529 {
3530 unsigned long free_kbytes;
3531
3532 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3533
3534 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3535 return 0;
3536 }
3537 subsys_initcall(init_admin_reserve);
3538
3539 /*
3540 * Reinititalise user and admin reserves if memory is added or removed.
3541 *
3542 * The default user reserve max is 128MB, and the default max for the
3543 * admin reserve is 8MB. These are usually, but not always, enough to
3544 * enable recovery from a memory hogging process using login/sshd, a shell,
3545 * and tools like top. It may make sense to increase or even disable the
3546 * reserve depending on the existence of swap or variations in the recovery
3547 * tools. So, the admin may have changed them.
3548 *
3549 * If memory is added and the reserves have been eliminated or increased above
3550 * the default max, then we'll trust the admin.
3551 *
3552 * If memory is removed and there isn't enough free memory, then we
3553 * need to reset the reserves.
3554 *
3555 * Otherwise keep the reserve set by the admin.
3556 */
3557 static int reserve_mem_notifier(struct notifier_block *nb,
3558 unsigned long action, void *data)
3559 {
3560 unsigned long tmp, free_kbytes;
3561
3562 switch (action) {
3563 case MEM_ONLINE:
3564 /* Default max is 128MB. Leave alone if modified by operator. */
3565 tmp = sysctl_user_reserve_kbytes;
3566 if (0 < tmp && tmp < (1UL << 17))
3567 init_user_reserve();
3568
3569 /* Default max is 8MB. Leave alone if modified by operator. */
3570 tmp = sysctl_admin_reserve_kbytes;
3571 if (0 < tmp && tmp < (1UL << 13))
3572 init_admin_reserve();
3573
3574 break;
3575 case MEM_OFFLINE:
3576 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3577
3578 if (sysctl_user_reserve_kbytes > free_kbytes) {
3579 init_user_reserve();
3580 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3581 sysctl_user_reserve_kbytes);
3582 }
3583
3584 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3585 init_admin_reserve();
3586 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3587 sysctl_admin_reserve_kbytes);
3588 }
3589 break;
3590 default:
3591 break;
3592 }
3593 return NOTIFY_OK;
3594 }
3595
3596 static struct notifier_block reserve_mem_nb = {
3597 .notifier_call = reserve_mem_notifier,
3598 };
3599
3600 static int __meminit init_reserve_notifier(void)
3601 {
3602 if (register_hotmemory_notifier(&reserve_mem_nb))
3603 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3604
3605 return 0;
3606 }
3607 subsys_initcall(init_reserve_notifier);