]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/page_alloc.c
1aec370bf9e92cea039c1917fa39dcb67bb111b9
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
72
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION (8)
76
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
81
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 /*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
93
94 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
95 volatile unsigned long latent_entropy __latent_entropy;
96 EXPORT_SYMBOL(latent_entropy);
97 #endif
98
99 /*
100 * Array of node states.
101 */
102 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
103 [N_POSSIBLE] = NODE_MASK_ALL,
104 [N_ONLINE] = { { [0] = 1UL } },
105 #ifndef CONFIG_NUMA
106 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
107 #ifdef CONFIG_HIGHMEM
108 [N_HIGH_MEMORY] = { { [0] = 1UL } },
109 #endif
110 #ifdef CONFIG_MOVABLE_NODE
111 [N_MEMORY] = { { [0] = 1UL } },
112 #endif
113 [N_CPU] = { { [0] = 1UL } },
114 #endif /* NUMA */
115 };
116 EXPORT_SYMBOL(node_states);
117
118 /* Protect totalram_pages and zone->managed_pages */
119 static DEFINE_SPINLOCK(managed_page_count_lock);
120
121 unsigned long totalram_pages __read_mostly;
122 unsigned long totalreserve_pages __read_mostly;
123 unsigned long totalcma_pages __read_mostly;
124
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127
128 /*
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
135 */
136 static inline int get_pcppage_migratetype(struct page *page)
137 {
138 return page->index;
139 }
140
141 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142 {
143 page->index = migratetype;
144 }
145
146 #ifdef CONFIG_PM_SLEEP
147 /*
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
154 */
155
156 static gfp_t saved_gfp_mask;
157
158 void pm_restore_gfp_mask(void)
159 {
160 WARN_ON(!mutex_is_locked(&pm_mutex));
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
164 }
165 }
166
167 void pm_restrict_gfp_mask(void)
168 {
169 WARN_ON(!mutex_is_locked(&pm_mutex));
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
173 }
174
175 bool pm_suspended_storage(void)
176 {
177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
178 return false;
179 return true;
180 }
181 #endif /* CONFIG_PM_SLEEP */
182
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly;
185 #endif
186
187 static void __free_pages_ok(struct page *page, unsigned int order);
188
189 /*
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
196 *
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
199 */
200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
201 #ifdef CONFIG_ZONE_DMA
202 256,
203 #endif
204 #ifdef CONFIG_ZONE_DMA32
205 256,
206 #endif
207 #ifdef CONFIG_HIGHMEM
208 32,
209 #endif
210 32,
211 };
212
213 EXPORT_SYMBOL(totalram_pages);
214
215 static char * const zone_names[MAX_NR_ZONES] = {
216 #ifdef CONFIG_ZONE_DMA
217 "DMA",
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
220 "DMA32",
221 #endif
222 "Normal",
223 #ifdef CONFIG_HIGHMEM
224 "HighMem",
225 #endif
226 "Movable",
227 #ifdef CONFIG_ZONE_DEVICE
228 "Device",
229 #endif
230 };
231
232 char * const migratetype_names[MIGRATE_TYPES] = {
233 "Unmovable",
234 "Movable",
235 "Reclaimable",
236 "HighAtomic",
237 #ifdef CONFIG_CMA
238 "CMA",
239 #endif
240 #ifdef CONFIG_MEMORY_ISOLATION
241 "Isolate",
242 #endif
243 };
244
245 compound_page_dtor * const compound_page_dtors[] = {
246 NULL,
247 free_compound_page,
248 #ifdef CONFIG_HUGETLB_PAGE
249 free_huge_page,
250 #endif
251 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
252 free_transhuge_page,
253 #endif
254 };
255
256 int min_free_kbytes = 1024;
257 int user_min_free_kbytes = -1;
258 int watermark_scale_factor = 10;
259
260 static unsigned long __meminitdata nr_kernel_pages;
261 static unsigned long __meminitdata nr_all_pages;
262 static unsigned long __meminitdata dma_reserve;
263
264 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
265 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
266 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
267 static unsigned long __initdata required_kernelcore;
268 static unsigned long __initdata required_movablecore;
269 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
270 static bool mirrored_kernelcore;
271
272 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
273 int movable_zone;
274 EXPORT_SYMBOL(movable_zone);
275 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
276
277 #if MAX_NUMNODES > 1
278 int nr_node_ids __read_mostly = MAX_NUMNODES;
279 int nr_online_nodes __read_mostly = 1;
280 EXPORT_SYMBOL(nr_node_ids);
281 EXPORT_SYMBOL(nr_online_nodes);
282 #endif
283
284 int page_group_by_mobility_disabled __read_mostly;
285
286 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
287 static inline void reset_deferred_meminit(pg_data_t *pgdat)
288 {
289 pgdat->first_deferred_pfn = ULONG_MAX;
290 }
291
292 /* Returns true if the struct page for the pfn is uninitialised */
293 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
294 {
295 int nid = early_pfn_to_nid(pfn);
296
297 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301 }
302
303 /*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310 {
311 unsigned long max_initialise;
312
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
322
323 (*nr_initialised)++;
324 if ((*nr_initialised > max_initialise) &&
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331 }
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
334 {
335 }
336
337 static inline bool early_page_uninitialised(unsigned long pfn)
338 {
339 return false;
340 }
341
342 static inline bool update_defer_init(pg_data_t *pgdat,
343 unsigned long pfn, unsigned long zone_end,
344 unsigned long *nr_initialised)
345 {
346 return true;
347 }
348 #endif
349
350 /* Return a pointer to the bitmap storing bits affecting a block of pages */
351 static inline unsigned long *get_pageblock_bitmap(struct page *page,
352 unsigned long pfn)
353 {
354 #ifdef CONFIG_SPARSEMEM
355 return __pfn_to_section(pfn)->pageblock_flags;
356 #else
357 return page_zone(page)->pageblock_flags;
358 #endif /* CONFIG_SPARSEMEM */
359 }
360
361 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
362 {
363 #ifdef CONFIG_SPARSEMEM
364 pfn &= (PAGES_PER_SECTION-1);
365 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
366 #else
367 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
368 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
369 #endif /* CONFIG_SPARSEMEM */
370 }
371
372 /**
373 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
374 * @page: The page within the block of interest
375 * @pfn: The target page frame number
376 * @end_bitidx: The last bit of interest to retrieve
377 * @mask: mask of bits that the caller is interested in
378 *
379 * Return: pageblock_bits flags
380 */
381 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
382 unsigned long pfn,
383 unsigned long end_bitidx,
384 unsigned long mask)
385 {
386 unsigned long *bitmap;
387 unsigned long bitidx, word_bitidx;
388 unsigned long word;
389
390 bitmap = get_pageblock_bitmap(page, pfn);
391 bitidx = pfn_to_bitidx(page, pfn);
392 word_bitidx = bitidx / BITS_PER_LONG;
393 bitidx &= (BITS_PER_LONG-1);
394
395 word = bitmap[word_bitidx];
396 bitidx += end_bitidx;
397 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
398 }
399
400 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
401 unsigned long end_bitidx,
402 unsigned long mask)
403 {
404 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
405 }
406
407 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
408 {
409 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
410 }
411
412 /**
413 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
414 * @page: The page within the block of interest
415 * @flags: The flags to set
416 * @pfn: The target page frame number
417 * @end_bitidx: The last bit of interest
418 * @mask: mask of bits that the caller is interested in
419 */
420 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
421 unsigned long pfn,
422 unsigned long end_bitidx,
423 unsigned long mask)
424 {
425 unsigned long *bitmap;
426 unsigned long bitidx, word_bitidx;
427 unsigned long old_word, word;
428
429 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
430
431 bitmap = get_pageblock_bitmap(page, pfn);
432 bitidx = pfn_to_bitidx(page, pfn);
433 word_bitidx = bitidx / BITS_PER_LONG;
434 bitidx &= (BITS_PER_LONG-1);
435
436 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
437
438 bitidx += end_bitidx;
439 mask <<= (BITS_PER_LONG - bitidx - 1);
440 flags <<= (BITS_PER_LONG - bitidx - 1);
441
442 word = READ_ONCE(bitmap[word_bitidx]);
443 for (;;) {
444 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
445 if (word == old_word)
446 break;
447 word = old_word;
448 }
449 }
450
451 void set_pageblock_migratetype(struct page *page, int migratetype)
452 {
453 if (unlikely(page_group_by_mobility_disabled &&
454 migratetype < MIGRATE_PCPTYPES))
455 migratetype = MIGRATE_UNMOVABLE;
456
457 set_pageblock_flags_group(page, (unsigned long)migratetype,
458 PB_migrate, PB_migrate_end);
459 }
460
461 #ifdef CONFIG_DEBUG_VM
462 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
463 {
464 int ret = 0;
465 unsigned seq;
466 unsigned long pfn = page_to_pfn(page);
467 unsigned long sp, start_pfn;
468
469 do {
470 seq = zone_span_seqbegin(zone);
471 start_pfn = zone->zone_start_pfn;
472 sp = zone->spanned_pages;
473 if (!zone_spans_pfn(zone, pfn))
474 ret = 1;
475 } while (zone_span_seqretry(zone, seq));
476
477 if (ret)
478 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
479 pfn, zone_to_nid(zone), zone->name,
480 start_pfn, start_pfn + sp);
481
482 return ret;
483 }
484
485 static int page_is_consistent(struct zone *zone, struct page *page)
486 {
487 if (!pfn_valid_within(page_to_pfn(page)))
488 return 0;
489 if (zone != page_zone(page))
490 return 0;
491
492 return 1;
493 }
494 /*
495 * Temporary debugging check for pages not lying within a given zone.
496 */
497 static int bad_range(struct zone *zone, struct page *page)
498 {
499 if (page_outside_zone_boundaries(zone, page))
500 return 1;
501 if (!page_is_consistent(zone, page))
502 return 1;
503
504 return 0;
505 }
506 #else
507 static inline int bad_range(struct zone *zone, struct page *page)
508 {
509 return 0;
510 }
511 #endif
512
513 static void bad_page(struct page *page, const char *reason,
514 unsigned long bad_flags)
515 {
516 static unsigned long resume;
517 static unsigned long nr_shown;
518 static unsigned long nr_unshown;
519
520 /*
521 * Allow a burst of 60 reports, then keep quiet for that minute;
522 * or allow a steady drip of one report per second.
523 */
524 if (nr_shown == 60) {
525 if (time_before(jiffies, resume)) {
526 nr_unshown++;
527 goto out;
528 }
529 if (nr_unshown) {
530 pr_alert(
531 "BUG: Bad page state: %lu messages suppressed\n",
532 nr_unshown);
533 nr_unshown = 0;
534 }
535 nr_shown = 0;
536 }
537 if (nr_shown++ == 0)
538 resume = jiffies + 60 * HZ;
539
540 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
541 current->comm, page_to_pfn(page));
542 __dump_page(page, reason);
543 bad_flags &= page->flags;
544 if (bad_flags)
545 pr_alert("bad because of flags: %#lx(%pGp)\n",
546 bad_flags, &bad_flags);
547 dump_page_owner(page);
548
549 print_modules();
550 dump_stack();
551 out:
552 /* Leave bad fields for debug, except PageBuddy could make trouble */
553 page_mapcount_reset(page); /* remove PageBuddy */
554 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
555 }
556
557 /*
558 * Higher-order pages are called "compound pages". They are structured thusly:
559 *
560 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
561 *
562 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
563 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
564 *
565 * The first tail page's ->compound_dtor holds the offset in array of compound
566 * page destructors. See compound_page_dtors.
567 *
568 * The first tail page's ->compound_order holds the order of allocation.
569 * This usage means that zero-order pages may not be compound.
570 */
571
572 void free_compound_page(struct page *page)
573 {
574 __free_pages_ok(page, compound_order(page));
575 }
576
577 void prep_compound_page(struct page *page, unsigned int order)
578 {
579 int i;
580 int nr_pages = 1 << order;
581
582 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
583 set_compound_order(page, order);
584 __SetPageHead(page);
585 for (i = 1; i < nr_pages; i++) {
586 struct page *p = page + i;
587 set_page_count(p, 0);
588 p->mapping = TAIL_MAPPING;
589 set_compound_head(p, page);
590 }
591 atomic_set(compound_mapcount_ptr(page), -1);
592 }
593
594 #ifdef CONFIG_DEBUG_PAGEALLOC
595 unsigned int _debug_guardpage_minorder;
596 bool _debug_pagealloc_enabled __read_mostly
597 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
598 EXPORT_SYMBOL(_debug_pagealloc_enabled);
599 bool _debug_guardpage_enabled __read_mostly;
600
601 static int __init early_debug_pagealloc(char *buf)
602 {
603 if (!buf)
604 return -EINVAL;
605 return kstrtobool(buf, &_debug_pagealloc_enabled);
606 }
607 early_param("debug_pagealloc", early_debug_pagealloc);
608
609 static bool need_debug_guardpage(void)
610 {
611 /* If we don't use debug_pagealloc, we don't need guard page */
612 if (!debug_pagealloc_enabled())
613 return false;
614
615 if (!debug_guardpage_minorder())
616 return false;
617
618 return true;
619 }
620
621 static void init_debug_guardpage(void)
622 {
623 if (!debug_pagealloc_enabled())
624 return;
625
626 if (!debug_guardpage_minorder())
627 return;
628
629 _debug_guardpage_enabled = true;
630 }
631
632 struct page_ext_operations debug_guardpage_ops = {
633 .need = need_debug_guardpage,
634 .init = init_debug_guardpage,
635 };
636
637 static int __init debug_guardpage_minorder_setup(char *buf)
638 {
639 unsigned long res;
640
641 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
642 pr_err("Bad debug_guardpage_minorder value\n");
643 return 0;
644 }
645 _debug_guardpage_minorder = res;
646 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
647 return 0;
648 }
649 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
650
651 static inline bool set_page_guard(struct zone *zone, struct page *page,
652 unsigned int order, int migratetype)
653 {
654 struct page_ext *page_ext;
655
656 if (!debug_guardpage_enabled())
657 return false;
658
659 if (order >= debug_guardpage_minorder())
660 return false;
661
662 page_ext = lookup_page_ext(page);
663 if (unlikely(!page_ext))
664 return false;
665
666 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
667
668 INIT_LIST_HEAD(&page->lru);
669 set_page_private(page, order);
670 /* Guard pages are not available for any usage */
671 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
672
673 return true;
674 }
675
676 static inline void clear_page_guard(struct zone *zone, struct page *page,
677 unsigned int order, int migratetype)
678 {
679 struct page_ext *page_ext;
680
681 if (!debug_guardpage_enabled())
682 return;
683
684 page_ext = lookup_page_ext(page);
685 if (unlikely(!page_ext))
686 return;
687
688 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
689
690 set_page_private(page, 0);
691 if (!is_migrate_isolate(migratetype))
692 __mod_zone_freepage_state(zone, (1 << order), migratetype);
693 }
694 #else
695 struct page_ext_operations debug_guardpage_ops;
696 static inline bool set_page_guard(struct zone *zone, struct page *page,
697 unsigned int order, int migratetype) { return false; }
698 static inline void clear_page_guard(struct zone *zone, struct page *page,
699 unsigned int order, int migratetype) {}
700 #endif
701
702 static inline void set_page_order(struct page *page, unsigned int order)
703 {
704 set_page_private(page, order);
705 __SetPageBuddy(page);
706 }
707
708 static inline void rmv_page_order(struct page *page)
709 {
710 __ClearPageBuddy(page);
711 set_page_private(page, 0);
712 }
713
714 /*
715 * This function checks whether a page is free && is the buddy
716 * we can do coalesce a page and its buddy if
717 * (a) the buddy is not in a hole &&
718 * (b) the buddy is in the buddy system &&
719 * (c) a page and its buddy have the same order &&
720 * (d) a page and its buddy are in the same zone.
721 *
722 * For recording whether a page is in the buddy system, we set ->_mapcount
723 * PAGE_BUDDY_MAPCOUNT_VALUE.
724 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
725 * serialized by zone->lock.
726 *
727 * For recording page's order, we use page_private(page).
728 */
729 static inline int page_is_buddy(struct page *page, struct page *buddy,
730 unsigned int order)
731 {
732 if (!pfn_valid_within(page_to_pfn(buddy)))
733 return 0;
734
735 if (page_is_guard(buddy) && page_order(buddy) == order) {
736 if (page_zone_id(page) != page_zone_id(buddy))
737 return 0;
738
739 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
740
741 return 1;
742 }
743
744 if (PageBuddy(buddy) && page_order(buddy) == order) {
745 /*
746 * zone check is done late to avoid uselessly
747 * calculating zone/node ids for pages that could
748 * never merge.
749 */
750 if (page_zone_id(page) != page_zone_id(buddy))
751 return 0;
752
753 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
754
755 return 1;
756 }
757 return 0;
758 }
759
760 /*
761 * Freeing function for a buddy system allocator.
762 *
763 * The concept of a buddy system is to maintain direct-mapped table
764 * (containing bit values) for memory blocks of various "orders".
765 * The bottom level table contains the map for the smallest allocatable
766 * units of memory (here, pages), and each level above it describes
767 * pairs of units from the levels below, hence, "buddies".
768 * At a high level, all that happens here is marking the table entry
769 * at the bottom level available, and propagating the changes upward
770 * as necessary, plus some accounting needed to play nicely with other
771 * parts of the VM system.
772 * At each level, we keep a list of pages, which are heads of continuous
773 * free pages of length of (1 << order) and marked with _mapcount
774 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
775 * field.
776 * So when we are allocating or freeing one, we can derive the state of the
777 * other. That is, if we allocate a small block, and both were
778 * free, the remainder of the region must be split into blocks.
779 * If a block is freed, and its buddy is also free, then this
780 * triggers coalescing into a block of larger size.
781 *
782 * -- nyc
783 */
784
785 static inline void __free_one_page(struct page *page,
786 unsigned long pfn,
787 struct zone *zone, unsigned int order,
788 int migratetype)
789 {
790 unsigned long page_idx;
791 unsigned long combined_idx;
792 unsigned long uninitialized_var(buddy_idx);
793 struct page *buddy;
794 unsigned int max_order;
795
796 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
797
798 VM_BUG_ON(!zone_is_initialized(zone));
799 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
800
801 VM_BUG_ON(migratetype == -1);
802 if (likely(!is_migrate_isolate(migratetype)))
803 __mod_zone_freepage_state(zone, 1 << order, migratetype);
804
805 page_idx = pfn & ((1 << MAX_ORDER) - 1);
806
807 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
808 VM_BUG_ON_PAGE(bad_range(zone, page), page);
809
810 continue_merging:
811 while (order < max_order - 1) {
812 buddy_idx = __find_buddy_index(page_idx, order);
813 buddy = page + (buddy_idx - page_idx);
814 if (!page_is_buddy(page, buddy, order))
815 goto done_merging;
816 /*
817 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
818 * merge with it and move up one order.
819 */
820 if (page_is_guard(buddy)) {
821 clear_page_guard(zone, buddy, order, migratetype);
822 } else {
823 list_del(&buddy->lru);
824 zone->free_area[order].nr_free--;
825 rmv_page_order(buddy);
826 }
827 combined_idx = buddy_idx & page_idx;
828 page = page + (combined_idx - page_idx);
829 page_idx = combined_idx;
830 order++;
831 }
832 if (max_order < MAX_ORDER) {
833 /* If we are here, it means order is >= pageblock_order.
834 * We want to prevent merge between freepages on isolate
835 * pageblock and normal pageblock. Without this, pageblock
836 * isolation could cause incorrect freepage or CMA accounting.
837 *
838 * We don't want to hit this code for the more frequent
839 * low-order merging.
840 */
841 if (unlikely(has_isolate_pageblock(zone))) {
842 int buddy_mt;
843
844 buddy_idx = __find_buddy_index(page_idx, order);
845 buddy = page + (buddy_idx - page_idx);
846 buddy_mt = get_pageblock_migratetype(buddy);
847
848 if (migratetype != buddy_mt
849 && (is_migrate_isolate(migratetype) ||
850 is_migrate_isolate(buddy_mt)))
851 goto done_merging;
852 }
853 max_order++;
854 goto continue_merging;
855 }
856
857 done_merging:
858 set_page_order(page, order);
859
860 /*
861 * If this is not the largest possible page, check if the buddy
862 * of the next-highest order is free. If it is, it's possible
863 * that pages are being freed that will coalesce soon. In case,
864 * that is happening, add the free page to the tail of the list
865 * so it's less likely to be used soon and more likely to be merged
866 * as a higher order page
867 */
868 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
869 struct page *higher_page, *higher_buddy;
870 combined_idx = buddy_idx & page_idx;
871 higher_page = page + (combined_idx - page_idx);
872 buddy_idx = __find_buddy_index(combined_idx, order + 1);
873 higher_buddy = higher_page + (buddy_idx - combined_idx);
874 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
875 list_add_tail(&page->lru,
876 &zone->free_area[order].free_list[migratetype]);
877 goto out;
878 }
879 }
880
881 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
882 out:
883 zone->free_area[order].nr_free++;
884 }
885
886 /*
887 * A bad page could be due to a number of fields. Instead of multiple branches,
888 * try and check multiple fields with one check. The caller must do a detailed
889 * check if necessary.
890 */
891 static inline bool page_expected_state(struct page *page,
892 unsigned long check_flags)
893 {
894 if (unlikely(atomic_read(&page->_mapcount) != -1))
895 return false;
896
897 if (unlikely((unsigned long)page->mapping |
898 page_ref_count(page) |
899 #ifdef CONFIG_MEMCG
900 (unsigned long)page->mem_cgroup |
901 #endif
902 (page->flags & check_flags)))
903 return false;
904
905 return true;
906 }
907
908 static void free_pages_check_bad(struct page *page)
909 {
910 const char *bad_reason;
911 unsigned long bad_flags;
912
913 bad_reason = NULL;
914 bad_flags = 0;
915
916 if (unlikely(atomic_read(&page->_mapcount) != -1))
917 bad_reason = "nonzero mapcount";
918 if (unlikely(page->mapping != NULL))
919 bad_reason = "non-NULL mapping";
920 if (unlikely(page_ref_count(page) != 0))
921 bad_reason = "nonzero _refcount";
922 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
923 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
924 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
925 }
926 #ifdef CONFIG_MEMCG
927 if (unlikely(page->mem_cgroup))
928 bad_reason = "page still charged to cgroup";
929 #endif
930 bad_page(page, bad_reason, bad_flags);
931 }
932
933 static inline int free_pages_check(struct page *page)
934 {
935 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
936 return 0;
937
938 /* Something has gone sideways, find it */
939 free_pages_check_bad(page);
940 return 1;
941 }
942
943 static int free_tail_pages_check(struct page *head_page, struct page *page)
944 {
945 int ret = 1;
946
947 /*
948 * We rely page->lru.next never has bit 0 set, unless the page
949 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
950 */
951 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
952
953 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
954 ret = 0;
955 goto out;
956 }
957 switch (page - head_page) {
958 case 1:
959 /* the first tail page: ->mapping is compound_mapcount() */
960 if (unlikely(compound_mapcount(page))) {
961 bad_page(page, "nonzero compound_mapcount", 0);
962 goto out;
963 }
964 break;
965 case 2:
966 /*
967 * the second tail page: ->mapping is
968 * page_deferred_list().next -- ignore value.
969 */
970 break;
971 default:
972 if (page->mapping != TAIL_MAPPING) {
973 bad_page(page, "corrupted mapping in tail page", 0);
974 goto out;
975 }
976 break;
977 }
978 if (unlikely(!PageTail(page))) {
979 bad_page(page, "PageTail not set", 0);
980 goto out;
981 }
982 if (unlikely(compound_head(page) != head_page)) {
983 bad_page(page, "compound_head not consistent", 0);
984 goto out;
985 }
986 ret = 0;
987 out:
988 page->mapping = NULL;
989 clear_compound_head(page);
990 return ret;
991 }
992
993 static __always_inline bool free_pages_prepare(struct page *page,
994 unsigned int order, bool check_free)
995 {
996 int bad = 0;
997
998 VM_BUG_ON_PAGE(PageTail(page), page);
999
1000 trace_mm_page_free(page, order);
1001 kmemcheck_free_shadow(page, order);
1002
1003 /*
1004 * Check tail pages before head page information is cleared to
1005 * avoid checking PageCompound for order-0 pages.
1006 */
1007 if (unlikely(order)) {
1008 bool compound = PageCompound(page);
1009 int i;
1010
1011 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1012
1013 if (compound)
1014 ClearPageDoubleMap(page);
1015 for (i = 1; i < (1 << order); i++) {
1016 if (compound)
1017 bad += free_tail_pages_check(page, page + i);
1018 if (unlikely(free_pages_check(page + i))) {
1019 bad++;
1020 continue;
1021 }
1022 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1023 }
1024 }
1025 if (PageMappingFlags(page))
1026 page->mapping = NULL;
1027 if (memcg_kmem_enabled() && PageKmemcg(page))
1028 memcg_kmem_uncharge(page, order);
1029 if (check_free)
1030 bad += free_pages_check(page);
1031 if (bad)
1032 return false;
1033
1034 page_cpupid_reset_last(page);
1035 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 reset_page_owner(page, order);
1037
1038 if (!PageHighMem(page)) {
1039 debug_check_no_locks_freed(page_address(page),
1040 PAGE_SIZE << order);
1041 debug_check_no_obj_freed(page_address(page),
1042 PAGE_SIZE << order);
1043 }
1044 arch_free_page(page, order);
1045 kernel_poison_pages(page, 1 << order, 0);
1046 kernel_map_pages(page, 1 << order, 0);
1047 kasan_free_pages(page, order);
1048
1049 return true;
1050 }
1051
1052 #ifdef CONFIG_DEBUG_VM
1053 static inline bool free_pcp_prepare(struct page *page)
1054 {
1055 return free_pages_prepare(page, 0, true);
1056 }
1057
1058 static inline bool bulkfree_pcp_prepare(struct page *page)
1059 {
1060 return false;
1061 }
1062 #else
1063 static bool free_pcp_prepare(struct page *page)
1064 {
1065 return free_pages_prepare(page, 0, false);
1066 }
1067
1068 static bool bulkfree_pcp_prepare(struct page *page)
1069 {
1070 return free_pages_check(page);
1071 }
1072 #endif /* CONFIG_DEBUG_VM */
1073
1074 /*
1075 * Frees a number of pages from the PCP lists
1076 * Assumes all pages on list are in same zone, and of same order.
1077 * count is the number of pages to free.
1078 *
1079 * If the zone was previously in an "all pages pinned" state then look to
1080 * see if this freeing clears that state.
1081 *
1082 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1083 * pinned" detection logic.
1084 */
1085 static void free_pcppages_bulk(struct zone *zone, int count,
1086 struct per_cpu_pages *pcp)
1087 {
1088 int migratetype = 0;
1089 int batch_free = 0;
1090 unsigned long nr_scanned;
1091 bool isolated_pageblocks;
1092
1093 spin_lock(&zone->lock);
1094 isolated_pageblocks = has_isolate_pageblock(zone);
1095 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1096 if (nr_scanned)
1097 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1098
1099 while (count) {
1100 struct page *page;
1101 struct list_head *list;
1102
1103 /*
1104 * Remove pages from lists in a round-robin fashion. A
1105 * batch_free count is maintained that is incremented when an
1106 * empty list is encountered. This is so more pages are freed
1107 * off fuller lists instead of spinning excessively around empty
1108 * lists
1109 */
1110 do {
1111 batch_free++;
1112 if (++migratetype == MIGRATE_PCPTYPES)
1113 migratetype = 0;
1114 list = &pcp->lists[migratetype];
1115 } while (list_empty(list));
1116
1117 /* This is the only non-empty list. Free them all. */
1118 if (batch_free == MIGRATE_PCPTYPES)
1119 batch_free = count;
1120
1121 do {
1122 int mt; /* migratetype of the to-be-freed page */
1123
1124 page = list_last_entry(list, struct page, lru);
1125 /* must delete as __free_one_page list manipulates */
1126 list_del(&page->lru);
1127
1128 mt = get_pcppage_migratetype(page);
1129 /* MIGRATE_ISOLATE page should not go to pcplists */
1130 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1131 /* Pageblock could have been isolated meanwhile */
1132 if (unlikely(isolated_pageblocks))
1133 mt = get_pageblock_migratetype(page);
1134
1135 if (bulkfree_pcp_prepare(page))
1136 continue;
1137
1138 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1139 trace_mm_page_pcpu_drain(page, 0, mt);
1140 } while (--count && --batch_free && !list_empty(list));
1141 }
1142 spin_unlock(&zone->lock);
1143 }
1144
1145 static void free_one_page(struct zone *zone,
1146 struct page *page, unsigned long pfn,
1147 unsigned int order,
1148 int migratetype)
1149 {
1150 unsigned long nr_scanned;
1151 spin_lock(&zone->lock);
1152 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1153 if (nr_scanned)
1154 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1155
1156 if (unlikely(has_isolate_pageblock(zone) ||
1157 is_migrate_isolate(migratetype))) {
1158 migratetype = get_pfnblock_migratetype(page, pfn);
1159 }
1160 __free_one_page(page, pfn, zone, order, migratetype);
1161 spin_unlock(&zone->lock);
1162 }
1163
1164 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1165 unsigned long zone, int nid)
1166 {
1167 set_page_links(page, zone, nid, pfn);
1168 init_page_count(page);
1169 page_mapcount_reset(page);
1170 page_cpupid_reset_last(page);
1171
1172 INIT_LIST_HEAD(&page->lru);
1173 #ifdef WANT_PAGE_VIRTUAL
1174 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1175 if (!is_highmem_idx(zone))
1176 set_page_address(page, __va(pfn << PAGE_SHIFT));
1177 #endif
1178 }
1179
1180 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1181 int nid)
1182 {
1183 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1184 }
1185
1186 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1187 static void init_reserved_page(unsigned long pfn)
1188 {
1189 pg_data_t *pgdat;
1190 int nid, zid;
1191
1192 if (!early_page_uninitialised(pfn))
1193 return;
1194
1195 nid = early_pfn_to_nid(pfn);
1196 pgdat = NODE_DATA(nid);
1197
1198 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1199 struct zone *zone = &pgdat->node_zones[zid];
1200
1201 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1202 break;
1203 }
1204 __init_single_pfn(pfn, zid, nid);
1205 }
1206 #else
1207 static inline void init_reserved_page(unsigned long pfn)
1208 {
1209 }
1210 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1211
1212 /*
1213 * Initialised pages do not have PageReserved set. This function is
1214 * called for each range allocated by the bootmem allocator and
1215 * marks the pages PageReserved. The remaining valid pages are later
1216 * sent to the buddy page allocator.
1217 */
1218 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1219 {
1220 unsigned long start_pfn = PFN_DOWN(start);
1221 unsigned long end_pfn = PFN_UP(end);
1222
1223 for (; start_pfn < end_pfn; start_pfn++) {
1224 if (pfn_valid(start_pfn)) {
1225 struct page *page = pfn_to_page(start_pfn);
1226
1227 init_reserved_page(start_pfn);
1228
1229 /* Avoid false-positive PageTail() */
1230 INIT_LIST_HEAD(&page->lru);
1231
1232 SetPageReserved(page);
1233 }
1234 }
1235 }
1236
1237 static void __free_pages_ok(struct page *page, unsigned int order)
1238 {
1239 unsigned long flags;
1240 int migratetype;
1241 unsigned long pfn = page_to_pfn(page);
1242
1243 if (!free_pages_prepare(page, order, true))
1244 return;
1245
1246 migratetype = get_pfnblock_migratetype(page, pfn);
1247 local_irq_save(flags);
1248 __count_vm_events(PGFREE, 1 << order);
1249 free_one_page(page_zone(page), page, pfn, order, migratetype);
1250 local_irq_restore(flags);
1251 }
1252
1253 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1254 {
1255 unsigned int nr_pages = 1 << order;
1256 struct page *p = page;
1257 unsigned int loop;
1258
1259 prefetchw(p);
1260 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1261 prefetchw(p + 1);
1262 __ClearPageReserved(p);
1263 set_page_count(p, 0);
1264 }
1265 __ClearPageReserved(p);
1266 set_page_count(p, 0);
1267
1268 page_zone(page)->managed_pages += nr_pages;
1269 set_page_refcounted(page);
1270 __free_pages(page, order);
1271 }
1272
1273 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1274 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1275
1276 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1277
1278 int __meminit early_pfn_to_nid(unsigned long pfn)
1279 {
1280 static DEFINE_SPINLOCK(early_pfn_lock);
1281 int nid;
1282
1283 spin_lock(&early_pfn_lock);
1284 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1285 if (nid < 0)
1286 nid = first_online_node;
1287 spin_unlock(&early_pfn_lock);
1288
1289 return nid;
1290 }
1291 #endif
1292
1293 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1294 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1295 struct mminit_pfnnid_cache *state)
1296 {
1297 int nid;
1298
1299 nid = __early_pfn_to_nid(pfn, state);
1300 if (nid >= 0 && nid != node)
1301 return false;
1302 return true;
1303 }
1304
1305 /* Only safe to use early in boot when initialisation is single-threaded */
1306 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1307 {
1308 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1309 }
1310
1311 #else
1312
1313 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1314 {
1315 return true;
1316 }
1317 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1318 struct mminit_pfnnid_cache *state)
1319 {
1320 return true;
1321 }
1322 #endif
1323
1324
1325 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1326 unsigned int order)
1327 {
1328 if (early_page_uninitialised(pfn))
1329 return;
1330 return __free_pages_boot_core(page, order);
1331 }
1332
1333 /*
1334 * Check that the whole (or subset of) a pageblock given by the interval of
1335 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1336 * with the migration of free compaction scanner. The scanners then need to
1337 * use only pfn_valid_within() check for arches that allow holes within
1338 * pageblocks.
1339 *
1340 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1341 *
1342 * It's possible on some configurations to have a setup like node0 node1 node0
1343 * i.e. it's possible that all pages within a zones range of pages do not
1344 * belong to a single zone. We assume that a border between node0 and node1
1345 * can occur within a single pageblock, but not a node0 node1 node0
1346 * interleaving within a single pageblock. It is therefore sufficient to check
1347 * the first and last page of a pageblock and avoid checking each individual
1348 * page in a pageblock.
1349 */
1350 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1351 unsigned long end_pfn, struct zone *zone)
1352 {
1353 struct page *start_page;
1354 struct page *end_page;
1355
1356 /* end_pfn is one past the range we are checking */
1357 end_pfn--;
1358
1359 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1360 return NULL;
1361
1362 start_page = pfn_to_page(start_pfn);
1363
1364 if (page_zone(start_page) != zone)
1365 return NULL;
1366
1367 end_page = pfn_to_page(end_pfn);
1368
1369 /* This gives a shorter code than deriving page_zone(end_page) */
1370 if (page_zone_id(start_page) != page_zone_id(end_page))
1371 return NULL;
1372
1373 return start_page;
1374 }
1375
1376 void set_zone_contiguous(struct zone *zone)
1377 {
1378 unsigned long block_start_pfn = zone->zone_start_pfn;
1379 unsigned long block_end_pfn;
1380
1381 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1382 for (; block_start_pfn < zone_end_pfn(zone);
1383 block_start_pfn = block_end_pfn,
1384 block_end_pfn += pageblock_nr_pages) {
1385
1386 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1387
1388 if (!__pageblock_pfn_to_page(block_start_pfn,
1389 block_end_pfn, zone))
1390 return;
1391 }
1392
1393 /* We confirm that there is no hole */
1394 zone->contiguous = true;
1395 }
1396
1397 void clear_zone_contiguous(struct zone *zone)
1398 {
1399 zone->contiguous = false;
1400 }
1401
1402 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1403 static void __init deferred_free_range(struct page *page,
1404 unsigned long pfn, int nr_pages)
1405 {
1406 int i;
1407
1408 if (!page)
1409 return;
1410
1411 /* Free a large naturally-aligned chunk if possible */
1412 if (nr_pages == pageblock_nr_pages &&
1413 (pfn & (pageblock_nr_pages - 1)) == 0) {
1414 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1415 __free_pages_boot_core(page, pageblock_order);
1416 return;
1417 }
1418
1419 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1420 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1421 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1422 __free_pages_boot_core(page, 0);
1423 }
1424 }
1425
1426 /* Completion tracking for deferred_init_memmap() threads */
1427 static atomic_t pgdat_init_n_undone __initdata;
1428 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1429
1430 static inline void __init pgdat_init_report_one_done(void)
1431 {
1432 if (atomic_dec_and_test(&pgdat_init_n_undone))
1433 complete(&pgdat_init_all_done_comp);
1434 }
1435
1436 /* Initialise remaining memory on a node */
1437 static int __init deferred_init_memmap(void *data)
1438 {
1439 pg_data_t *pgdat = data;
1440 int nid = pgdat->node_id;
1441 struct mminit_pfnnid_cache nid_init_state = { };
1442 unsigned long start = jiffies;
1443 unsigned long nr_pages = 0;
1444 unsigned long walk_start, walk_end;
1445 int i, zid;
1446 struct zone *zone;
1447 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1448 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1449
1450 if (first_init_pfn == ULONG_MAX) {
1451 pgdat_init_report_one_done();
1452 return 0;
1453 }
1454
1455 /* Bind memory initialisation thread to a local node if possible */
1456 if (!cpumask_empty(cpumask))
1457 set_cpus_allowed_ptr(current, cpumask);
1458
1459 /* Sanity check boundaries */
1460 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1461 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1462 pgdat->first_deferred_pfn = ULONG_MAX;
1463
1464 /* Only the highest zone is deferred so find it */
1465 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1466 zone = pgdat->node_zones + zid;
1467 if (first_init_pfn < zone_end_pfn(zone))
1468 break;
1469 }
1470
1471 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1472 unsigned long pfn, end_pfn;
1473 struct page *page = NULL;
1474 struct page *free_base_page = NULL;
1475 unsigned long free_base_pfn = 0;
1476 int nr_to_free = 0;
1477
1478 end_pfn = min(walk_end, zone_end_pfn(zone));
1479 pfn = first_init_pfn;
1480 if (pfn < walk_start)
1481 pfn = walk_start;
1482 if (pfn < zone->zone_start_pfn)
1483 pfn = zone->zone_start_pfn;
1484
1485 for (; pfn < end_pfn; pfn++) {
1486 if (!pfn_valid_within(pfn))
1487 goto free_range;
1488
1489 /*
1490 * Ensure pfn_valid is checked every
1491 * pageblock_nr_pages for memory holes
1492 */
1493 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1494 if (!pfn_valid(pfn)) {
1495 page = NULL;
1496 goto free_range;
1497 }
1498 }
1499
1500 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1501 page = NULL;
1502 goto free_range;
1503 }
1504
1505 /* Minimise pfn page lookups and scheduler checks */
1506 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1507 page++;
1508 } else {
1509 nr_pages += nr_to_free;
1510 deferred_free_range(free_base_page,
1511 free_base_pfn, nr_to_free);
1512 free_base_page = NULL;
1513 free_base_pfn = nr_to_free = 0;
1514
1515 page = pfn_to_page(pfn);
1516 cond_resched();
1517 }
1518
1519 if (page->flags) {
1520 VM_BUG_ON(page_zone(page) != zone);
1521 goto free_range;
1522 }
1523
1524 __init_single_page(page, pfn, zid, nid);
1525 if (!free_base_page) {
1526 free_base_page = page;
1527 free_base_pfn = pfn;
1528 nr_to_free = 0;
1529 }
1530 nr_to_free++;
1531
1532 /* Where possible, batch up pages for a single free */
1533 continue;
1534 free_range:
1535 /* Free the current block of pages to allocator */
1536 nr_pages += nr_to_free;
1537 deferred_free_range(free_base_page, free_base_pfn,
1538 nr_to_free);
1539 free_base_page = NULL;
1540 free_base_pfn = nr_to_free = 0;
1541 }
1542 /* Free the last block of pages to allocator */
1543 nr_pages += nr_to_free;
1544 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1545
1546 first_init_pfn = max(end_pfn, first_init_pfn);
1547 }
1548
1549 /* Sanity check that the next zone really is unpopulated */
1550 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1551
1552 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1553 jiffies_to_msecs(jiffies - start));
1554
1555 pgdat_init_report_one_done();
1556 return 0;
1557 }
1558 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1559
1560 void __init page_alloc_init_late(void)
1561 {
1562 struct zone *zone;
1563
1564 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1565 int nid;
1566
1567 /* There will be num_node_state(N_MEMORY) threads */
1568 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1569 for_each_node_state(nid, N_MEMORY) {
1570 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1571 }
1572
1573 /* Block until all are initialised */
1574 wait_for_completion(&pgdat_init_all_done_comp);
1575
1576 /* Reinit limits that are based on free pages after the kernel is up */
1577 files_maxfiles_init();
1578 #endif
1579
1580 for_each_populated_zone(zone)
1581 set_zone_contiguous(zone);
1582 }
1583
1584 #ifdef CONFIG_CMA
1585 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1586 void __init init_cma_reserved_pageblock(struct page *page)
1587 {
1588 unsigned i = pageblock_nr_pages;
1589 struct page *p = page;
1590
1591 do {
1592 __ClearPageReserved(p);
1593 set_page_count(p, 0);
1594 } while (++p, --i);
1595
1596 set_pageblock_migratetype(page, MIGRATE_CMA);
1597
1598 if (pageblock_order >= MAX_ORDER) {
1599 i = pageblock_nr_pages;
1600 p = page;
1601 do {
1602 set_page_refcounted(p);
1603 __free_pages(p, MAX_ORDER - 1);
1604 p += MAX_ORDER_NR_PAGES;
1605 } while (i -= MAX_ORDER_NR_PAGES);
1606 } else {
1607 set_page_refcounted(page);
1608 __free_pages(page, pageblock_order);
1609 }
1610
1611 adjust_managed_page_count(page, pageblock_nr_pages);
1612 }
1613 #endif
1614
1615 /*
1616 * The order of subdivision here is critical for the IO subsystem.
1617 * Please do not alter this order without good reasons and regression
1618 * testing. Specifically, as large blocks of memory are subdivided,
1619 * the order in which smaller blocks are delivered depends on the order
1620 * they're subdivided in this function. This is the primary factor
1621 * influencing the order in which pages are delivered to the IO
1622 * subsystem according to empirical testing, and this is also justified
1623 * by considering the behavior of a buddy system containing a single
1624 * large block of memory acted on by a series of small allocations.
1625 * This behavior is a critical factor in sglist merging's success.
1626 *
1627 * -- nyc
1628 */
1629 static inline void expand(struct zone *zone, struct page *page,
1630 int low, int high, struct free_area *area,
1631 int migratetype)
1632 {
1633 unsigned long size = 1 << high;
1634
1635 while (high > low) {
1636 area--;
1637 high--;
1638 size >>= 1;
1639 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1640
1641 /*
1642 * Mark as guard pages (or page), that will allow to
1643 * merge back to allocator when buddy will be freed.
1644 * Corresponding page table entries will not be touched,
1645 * pages will stay not present in virtual address space
1646 */
1647 if (set_page_guard(zone, &page[size], high, migratetype))
1648 continue;
1649
1650 list_add(&page[size].lru, &area->free_list[migratetype]);
1651 area->nr_free++;
1652 set_page_order(&page[size], high);
1653 }
1654 }
1655
1656 static void check_new_page_bad(struct page *page)
1657 {
1658 const char *bad_reason = NULL;
1659 unsigned long bad_flags = 0;
1660
1661 if (unlikely(atomic_read(&page->_mapcount) != -1))
1662 bad_reason = "nonzero mapcount";
1663 if (unlikely(page->mapping != NULL))
1664 bad_reason = "non-NULL mapping";
1665 if (unlikely(page_ref_count(page) != 0))
1666 bad_reason = "nonzero _count";
1667 if (unlikely(page->flags & __PG_HWPOISON)) {
1668 bad_reason = "HWPoisoned (hardware-corrupted)";
1669 bad_flags = __PG_HWPOISON;
1670 /* Don't complain about hwpoisoned pages */
1671 page_mapcount_reset(page); /* remove PageBuddy */
1672 return;
1673 }
1674 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1675 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1676 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1677 }
1678 #ifdef CONFIG_MEMCG
1679 if (unlikely(page->mem_cgroup))
1680 bad_reason = "page still charged to cgroup";
1681 #endif
1682 bad_page(page, bad_reason, bad_flags);
1683 }
1684
1685 /*
1686 * This page is about to be returned from the page allocator
1687 */
1688 static inline int check_new_page(struct page *page)
1689 {
1690 if (likely(page_expected_state(page,
1691 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1692 return 0;
1693
1694 check_new_page_bad(page);
1695 return 1;
1696 }
1697
1698 static inline bool free_pages_prezeroed(bool poisoned)
1699 {
1700 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1701 page_poisoning_enabled() && poisoned;
1702 }
1703
1704 #ifdef CONFIG_DEBUG_VM
1705 static bool check_pcp_refill(struct page *page)
1706 {
1707 return false;
1708 }
1709
1710 static bool check_new_pcp(struct page *page)
1711 {
1712 return check_new_page(page);
1713 }
1714 #else
1715 static bool check_pcp_refill(struct page *page)
1716 {
1717 return check_new_page(page);
1718 }
1719 static bool check_new_pcp(struct page *page)
1720 {
1721 return false;
1722 }
1723 #endif /* CONFIG_DEBUG_VM */
1724
1725 static bool check_new_pages(struct page *page, unsigned int order)
1726 {
1727 int i;
1728 for (i = 0; i < (1 << order); i++) {
1729 struct page *p = page + i;
1730
1731 if (unlikely(check_new_page(p)))
1732 return true;
1733 }
1734
1735 return false;
1736 }
1737
1738 inline void post_alloc_hook(struct page *page, unsigned int order,
1739 gfp_t gfp_flags)
1740 {
1741 set_page_private(page, 0);
1742 set_page_refcounted(page);
1743
1744 arch_alloc_page(page, order);
1745 kernel_map_pages(page, 1 << order, 1);
1746 kernel_poison_pages(page, 1 << order, 1);
1747 kasan_alloc_pages(page, order);
1748 set_page_owner(page, order, gfp_flags);
1749 }
1750
1751 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1752 unsigned int alloc_flags)
1753 {
1754 int i;
1755 bool poisoned = true;
1756
1757 for (i = 0; i < (1 << order); i++) {
1758 struct page *p = page + i;
1759 if (poisoned)
1760 poisoned &= page_is_poisoned(p);
1761 }
1762
1763 post_alloc_hook(page, order, gfp_flags);
1764
1765 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1766 for (i = 0; i < (1 << order); i++)
1767 clear_highpage(page + i);
1768
1769 if (order && (gfp_flags & __GFP_COMP))
1770 prep_compound_page(page, order);
1771
1772 /*
1773 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1774 * allocate the page. The expectation is that the caller is taking
1775 * steps that will free more memory. The caller should avoid the page
1776 * being used for !PFMEMALLOC purposes.
1777 */
1778 if (alloc_flags & ALLOC_NO_WATERMARKS)
1779 set_page_pfmemalloc(page);
1780 else
1781 clear_page_pfmemalloc(page);
1782 }
1783
1784 /*
1785 * Go through the free lists for the given migratetype and remove
1786 * the smallest available page from the freelists
1787 */
1788 static inline
1789 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1790 int migratetype)
1791 {
1792 unsigned int current_order;
1793 struct free_area *area;
1794 struct page *page;
1795
1796 /* Find a page of the appropriate size in the preferred list */
1797 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1798 area = &(zone->free_area[current_order]);
1799 page = list_first_entry_or_null(&area->free_list[migratetype],
1800 struct page, lru);
1801 if (!page)
1802 continue;
1803 list_del(&page->lru);
1804 rmv_page_order(page);
1805 area->nr_free--;
1806 expand(zone, page, order, current_order, area, migratetype);
1807 set_pcppage_migratetype(page, migratetype);
1808 return page;
1809 }
1810
1811 return NULL;
1812 }
1813
1814
1815 /*
1816 * This array describes the order lists are fallen back to when
1817 * the free lists for the desirable migrate type are depleted
1818 */
1819 static int fallbacks[MIGRATE_TYPES][4] = {
1820 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1821 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1822 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1823 #ifdef CONFIG_CMA
1824 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1825 #endif
1826 #ifdef CONFIG_MEMORY_ISOLATION
1827 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1828 #endif
1829 };
1830
1831 #ifdef CONFIG_CMA
1832 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1833 unsigned int order)
1834 {
1835 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1836 }
1837 #else
1838 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1839 unsigned int order) { return NULL; }
1840 #endif
1841
1842 /*
1843 * Move the free pages in a range to the free lists of the requested type.
1844 * Note that start_page and end_pages are not aligned on a pageblock
1845 * boundary. If alignment is required, use move_freepages_block()
1846 */
1847 int move_freepages(struct zone *zone,
1848 struct page *start_page, struct page *end_page,
1849 int migratetype)
1850 {
1851 struct page *page;
1852 unsigned int order;
1853 int pages_moved = 0;
1854
1855 #ifndef CONFIG_HOLES_IN_ZONE
1856 /*
1857 * page_zone is not safe to call in this context when
1858 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1859 * anyway as we check zone boundaries in move_freepages_block().
1860 * Remove at a later date when no bug reports exist related to
1861 * grouping pages by mobility
1862 */
1863 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1864 #endif
1865
1866 for (page = start_page; page <= end_page;) {
1867 if (!pfn_valid_within(page_to_pfn(page))) {
1868 page++;
1869 continue;
1870 }
1871
1872 /* Make sure we are not inadvertently changing nodes */
1873 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1874
1875 if (!PageBuddy(page)) {
1876 page++;
1877 continue;
1878 }
1879
1880 order = page_order(page);
1881 list_move(&page->lru,
1882 &zone->free_area[order].free_list[migratetype]);
1883 page += 1 << order;
1884 pages_moved += 1 << order;
1885 }
1886
1887 return pages_moved;
1888 }
1889
1890 int move_freepages_block(struct zone *zone, struct page *page,
1891 int migratetype)
1892 {
1893 unsigned long start_pfn, end_pfn;
1894 struct page *start_page, *end_page;
1895
1896 start_pfn = page_to_pfn(page);
1897 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1898 start_page = pfn_to_page(start_pfn);
1899 end_page = start_page + pageblock_nr_pages - 1;
1900 end_pfn = start_pfn + pageblock_nr_pages - 1;
1901
1902 /* Do not cross zone boundaries */
1903 if (!zone_spans_pfn(zone, start_pfn))
1904 start_page = page;
1905 if (!zone_spans_pfn(zone, end_pfn))
1906 return 0;
1907
1908 return move_freepages(zone, start_page, end_page, migratetype);
1909 }
1910
1911 static void change_pageblock_range(struct page *pageblock_page,
1912 int start_order, int migratetype)
1913 {
1914 int nr_pageblocks = 1 << (start_order - pageblock_order);
1915
1916 while (nr_pageblocks--) {
1917 set_pageblock_migratetype(pageblock_page, migratetype);
1918 pageblock_page += pageblock_nr_pages;
1919 }
1920 }
1921
1922 /*
1923 * When we are falling back to another migratetype during allocation, try to
1924 * steal extra free pages from the same pageblocks to satisfy further
1925 * allocations, instead of polluting multiple pageblocks.
1926 *
1927 * If we are stealing a relatively large buddy page, it is likely there will
1928 * be more free pages in the pageblock, so try to steal them all. For
1929 * reclaimable and unmovable allocations, we steal regardless of page size,
1930 * as fragmentation caused by those allocations polluting movable pageblocks
1931 * is worse than movable allocations stealing from unmovable and reclaimable
1932 * pageblocks.
1933 */
1934 static bool can_steal_fallback(unsigned int order, int start_mt)
1935 {
1936 /*
1937 * Leaving this order check is intended, although there is
1938 * relaxed order check in next check. The reason is that
1939 * we can actually steal whole pageblock if this condition met,
1940 * but, below check doesn't guarantee it and that is just heuristic
1941 * so could be changed anytime.
1942 */
1943 if (order >= pageblock_order)
1944 return true;
1945
1946 if (order >= pageblock_order / 2 ||
1947 start_mt == MIGRATE_RECLAIMABLE ||
1948 start_mt == MIGRATE_UNMOVABLE ||
1949 page_group_by_mobility_disabled)
1950 return true;
1951
1952 return false;
1953 }
1954
1955 /*
1956 * This function implements actual steal behaviour. If order is large enough,
1957 * we can steal whole pageblock. If not, we first move freepages in this
1958 * pageblock and check whether half of pages are moved or not. If half of
1959 * pages are moved, we can change migratetype of pageblock and permanently
1960 * use it's pages as requested migratetype in the future.
1961 */
1962 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1963 int start_type)
1964 {
1965 unsigned int current_order = page_order(page);
1966 int pages;
1967
1968 /* Take ownership for orders >= pageblock_order */
1969 if (current_order >= pageblock_order) {
1970 change_pageblock_range(page, current_order, start_type);
1971 return;
1972 }
1973
1974 pages = move_freepages_block(zone, page, start_type);
1975
1976 /* Claim the whole block if over half of it is free */
1977 if (pages >= (1 << (pageblock_order-1)) ||
1978 page_group_by_mobility_disabled)
1979 set_pageblock_migratetype(page, start_type);
1980 }
1981
1982 /*
1983 * Check whether there is a suitable fallback freepage with requested order.
1984 * If only_stealable is true, this function returns fallback_mt only if
1985 * we can steal other freepages all together. This would help to reduce
1986 * fragmentation due to mixed migratetype pages in one pageblock.
1987 */
1988 int find_suitable_fallback(struct free_area *area, unsigned int order,
1989 int migratetype, bool only_stealable, bool *can_steal)
1990 {
1991 int i;
1992 int fallback_mt;
1993
1994 if (area->nr_free == 0)
1995 return -1;
1996
1997 *can_steal = false;
1998 for (i = 0;; i++) {
1999 fallback_mt = fallbacks[migratetype][i];
2000 if (fallback_mt == MIGRATE_TYPES)
2001 break;
2002
2003 if (list_empty(&area->free_list[fallback_mt]))
2004 continue;
2005
2006 if (can_steal_fallback(order, migratetype))
2007 *can_steal = true;
2008
2009 if (!only_stealable)
2010 return fallback_mt;
2011
2012 if (*can_steal)
2013 return fallback_mt;
2014 }
2015
2016 return -1;
2017 }
2018
2019 /*
2020 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2021 * there are no empty page blocks that contain a page with a suitable order
2022 */
2023 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2024 unsigned int alloc_order)
2025 {
2026 int mt;
2027 unsigned long max_managed, flags;
2028
2029 /*
2030 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2031 * Check is race-prone but harmless.
2032 */
2033 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2034 if (zone->nr_reserved_highatomic >= max_managed)
2035 return;
2036
2037 spin_lock_irqsave(&zone->lock, flags);
2038
2039 /* Recheck the nr_reserved_highatomic limit under the lock */
2040 if (zone->nr_reserved_highatomic >= max_managed)
2041 goto out_unlock;
2042
2043 /* Yoink! */
2044 mt = get_pageblock_migratetype(page);
2045 if (mt != MIGRATE_HIGHATOMIC &&
2046 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2047 zone->nr_reserved_highatomic += pageblock_nr_pages;
2048 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2049 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2050 }
2051
2052 out_unlock:
2053 spin_unlock_irqrestore(&zone->lock, flags);
2054 }
2055
2056 /*
2057 * Used when an allocation is about to fail under memory pressure. This
2058 * potentially hurts the reliability of high-order allocations when under
2059 * intense memory pressure but failed atomic allocations should be easier
2060 * to recover from than an OOM.
2061 *
2062 * If @force is true, try to unreserve a pageblock even though highatomic
2063 * pageblock is exhausted.
2064 */
2065 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2066 bool force)
2067 {
2068 struct zonelist *zonelist = ac->zonelist;
2069 unsigned long flags;
2070 struct zoneref *z;
2071 struct zone *zone;
2072 struct page *page;
2073 int order;
2074 bool ret;
2075
2076 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2077 ac->nodemask) {
2078 /*
2079 * Preserve at least one pageblock unless memory pressure
2080 * is really high.
2081 */
2082 if (!force && zone->nr_reserved_highatomic <=
2083 pageblock_nr_pages)
2084 continue;
2085
2086 spin_lock_irqsave(&zone->lock, flags);
2087 for (order = 0; order < MAX_ORDER; order++) {
2088 struct free_area *area = &(zone->free_area[order]);
2089
2090 page = list_first_entry_or_null(
2091 &area->free_list[MIGRATE_HIGHATOMIC],
2092 struct page, lru);
2093 if (!page)
2094 continue;
2095
2096 /*
2097 * In page freeing path, migratetype change is racy so
2098 * we can counter several free pages in a pageblock
2099 * in this loop althoug we changed the pageblock type
2100 * from highatomic to ac->migratetype. So we should
2101 * adjust the count once.
2102 */
2103 if (get_pageblock_migratetype(page) ==
2104 MIGRATE_HIGHATOMIC) {
2105 /*
2106 * It should never happen but changes to
2107 * locking could inadvertently allow a per-cpu
2108 * drain to add pages to MIGRATE_HIGHATOMIC
2109 * while unreserving so be safe and watch for
2110 * underflows.
2111 */
2112 zone->nr_reserved_highatomic -= min(
2113 pageblock_nr_pages,
2114 zone->nr_reserved_highatomic);
2115 }
2116
2117 /*
2118 * Convert to ac->migratetype and avoid the normal
2119 * pageblock stealing heuristics. Minimally, the caller
2120 * is doing the work and needs the pages. More
2121 * importantly, if the block was always converted to
2122 * MIGRATE_UNMOVABLE or another type then the number
2123 * of pageblocks that cannot be completely freed
2124 * may increase.
2125 */
2126 set_pageblock_migratetype(page, ac->migratetype);
2127 ret = move_freepages_block(zone, page, ac->migratetype);
2128 if (ret) {
2129 spin_unlock_irqrestore(&zone->lock, flags);
2130 return ret;
2131 }
2132 }
2133 spin_unlock_irqrestore(&zone->lock, flags);
2134 }
2135
2136 return false;
2137 }
2138
2139 /* Remove an element from the buddy allocator from the fallback list */
2140 static inline struct page *
2141 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2142 {
2143 struct free_area *area;
2144 unsigned int current_order;
2145 struct page *page;
2146 int fallback_mt;
2147 bool can_steal;
2148
2149 /* Find the largest possible block of pages in the other list */
2150 for (current_order = MAX_ORDER-1;
2151 current_order >= order && current_order <= MAX_ORDER-1;
2152 --current_order) {
2153 area = &(zone->free_area[current_order]);
2154 fallback_mt = find_suitable_fallback(area, current_order,
2155 start_migratetype, false, &can_steal);
2156 if (fallback_mt == -1)
2157 continue;
2158
2159 page = list_first_entry(&area->free_list[fallback_mt],
2160 struct page, lru);
2161 if (can_steal &&
2162 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
2163 steal_suitable_fallback(zone, page, start_migratetype);
2164
2165 /* Remove the page from the freelists */
2166 area->nr_free--;
2167 list_del(&page->lru);
2168 rmv_page_order(page);
2169
2170 expand(zone, page, order, current_order, area,
2171 start_migratetype);
2172 /*
2173 * The pcppage_migratetype may differ from pageblock's
2174 * migratetype depending on the decisions in
2175 * find_suitable_fallback(). This is OK as long as it does not
2176 * differ for MIGRATE_CMA pageblocks. Those can be used as
2177 * fallback only via special __rmqueue_cma_fallback() function
2178 */
2179 set_pcppage_migratetype(page, start_migratetype);
2180
2181 trace_mm_page_alloc_extfrag(page, order, current_order,
2182 start_migratetype, fallback_mt);
2183
2184 return page;
2185 }
2186
2187 return NULL;
2188 }
2189
2190 /*
2191 * Do the hard work of removing an element from the buddy allocator.
2192 * Call me with the zone->lock already held.
2193 */
2194 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2195 int migratetype)
2196 {
2197 struct page *page;
2198
2199 page = __rmqueue_smallest(zone, order, migratetype);
2200 if (unlikely(!page)) {
2201 if (migratetype == MIGRATE_MOVABLE)
2202 page = __rmqueue_cma_fallback(zone, order);
2203
2204 if (!page)
2205 page = __rmqueue_fallback(zone, order, migratetype);
2206 }
2207
2208 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2209 return page;
2210 }
2211
2212 /*
2213 * Obtain a specified number of elements from the buddy allocator, all under
2214 * a single hold of the lock, for efficiency. Add them to the supplied list.
2215 * Returns the number of new pages which were placed at *list.
2216 */
2217 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2218 unsigned long count, struct list_head *list,
2219 int migratetype, bool cold)
2220 {
2221 int i, alloced = 0;
2222
2223 spin_lock(&zone->lock);
2224 for (i = 0; i < count; ++i) {
2225 struct page *page = __rmqueue(zone, order, migratetype);
2226 if (unlikely(page == NULL))
2227 break;
2228
2229 if (unlikely(check_pcp_refill(page)))
2230 continue;
2231
2232 /*
2233 * Split buddy pages returned by expand() are received here
2234 * in physical page order. The page is added to the callers and
2235 * list and the list head then moves forward. From the callers
2236 * perspective, the linked list is ordered by page number in
2237 * some conditions. This is useful for IO devices that can
2238 * merge IO requests if the physical pages are ordered
2239 * properly.
2240 */
2241 if (likely(!cold))
2242 list_add(&page->lru, list);
2243 else
2244 list_add_tail(&page->lru, list);
2245 list = &page->lru;
2246 alloced++;
2247 if (is_migrate_cma(get_pcppage_migratetype(page)))
2248 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2249 -(1 << order));
2250 }
2251
2252 /*
2253 * i pages were removed from the buddy list even if some leak due
2254 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2255 * on i. Do not confuse with 'alloced' which is the number of
2256 * pages added to the pcp list.
2257 */
2258 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2259 spin_unlock(&zone->lock);
2260 return alloced;
2261 }
2262
2263 #ifdef CONFIG_NUMA
2264 /*
2265 * Called from the vmstat counter updater to drain pagesets of this
2266 * currently executing processor on remote nodes after they have
2267 * expired.
2268 *
2269 * Note that this function must be called with the thread pinned to
2270 * a single processor.
2271 */
2272 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2273 {
2274 unsigned long flags;
2275 int to_drain, batch;
2276
2277 local_irq_save(flags);
2278 batch = READ_ONCE(pcp->batch);
2279 to_drain = min(pcp->count, batch);
2280 if (to_drain > 0) {
2281 free_pcppages_bulk(zone, to_drain, pcp);
2282 pcp->count -= to_drain;
2283 }
2284 local_irq_restore(flags);
2285 }
2286 #endif
2287
2288 /*
2289 * Drain pcplists of the indicated processor and zone.
2290 *
2291 * The processor must either be the current processor and the
2292 * thread pinned to the current processor or a processor that
2293 * is not online.
2294 */
2295 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2296 {
2297 unsigned long flags;
2298 struct per_cpu_pageset *pset;
2299 struct per_cpu_pages *pcp;
2300
2301 local_irq_save(flags);
2302 pset = per_cpu_ptr(zone->pageset, cpu);
2303
2304 pcp = &pset->pcp;
2305 if (pcp->count) {
2306 free_pcppages_bulk(zone, pcp->count, pcp);
2307 pcp->count = 0;
2308 }
2309 local_irq_restore(flags);
2310 }
2311
2312 /*
2313 * Drain pcplists of all zones on the indicated processor.
2314 *
2315 * The processor must either be the current processor and the
2316 * thread pinned to the current processor or a processor that
2317 * is not online.
2318 */
2319 static void drain_pages(unsigned int cpu)
2320 {
2321 struct zone *zone;
2322
2323 for_each_populated_zone(zone) {
2324 drain_pages_zone(cpu, zone);
2325 }
2326 }
2327
2328 /*
2329 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2330 *
2331 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2332 * the single zone's pages.
2333 */
2334 void drain_local_pages(struct zone *zone)
2335 {
2336 int cpu = smp_processor_id();
2337
2338 if (zone)
2339 drain_pages_zone(cpu, zone);
2340 else
2341 drain_pages(cpu);
2342 }
2343
2344 /*
2345 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2346 *
2347 * When zone parameter is non-NULL, spill just the single zone's pages.
2348 *
2349 * Note that this code is protected against sending an IPI to an offline
2350 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2351 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2352 * nothing keeps CPUs from showing up after we populated the cpumask and
2353 * before the call to on_each_cpu_mask().
2354 */
2355 void drain_all_pages(struct zone *zone)
2356 {
2357 int cpu;
2358
2359 /*
2360 * Allocate in the BSS so we wont require allocation in
2361 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2362 */
2363 static cpumask_t cpus_with_pcps;
2364
2365 /*
2366 * We don't care about racing with CPU hotplug event
2367 * as offline notification will cause the notified
2368 * cpu to drain that CPU pcps and on_each_cpu_mask
2369 * disables preemption as part of its processing
2370 */
2371 for_each_online_cpu(cpu) {
2372 struct per_cpu_pageset *pcp;
2373 struct zone *z;
2374 bool has_pcps = false;
2375
2376 if (zone) {
2377 pcp = per_cpu_ptr(zone->pageset, cpu);
2378 if (pcp->pcp.count)
2379 has_pcps = true;
2380 } else {
2381 for_each_populated_zone(z) {
2382 pcp = per_cpu_ptr(z->pageset, cpu);
2383 if (pcp->pcp.count) {
2384 has_pcps = true;
2385 break;
2386 }
2387 }
2388 }
2389
2390 if (has_pcps)
2391 cpumask_set_cpu(cpu, &cpus_with_pcps);
2392 else
2393 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2394 }
2395 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2396 zone, 1);
2397 }
2398
2399 #ifdef CONFIG_HIBERNATION
2400
2401 void mark_free_pages(struct zone *zone)
2402 {
2403 unsigned long pfn, max_zone_pfn;
2404 unsigned long flags;
2405 unsigned int order, t;
2406 struct page *page;
2407
2408 if (zone_is_empty(zone))
2409 return;
2410
2411 spin_lock_irqsave(&zone->lock, flags);
2412
2413 max_zone_pfn = zone_end_pfn(zone);
2414 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2415 if (pfn_valid(pfn)) {
2416 page = pfn_to_page(pfn);
2417
2418 if (page_zone(page) != zone)
2419 continue;
2420
2421 if (!swsusp_page_is_forbidden(page))
2422 swsusp_unset_page_free(page);
2423 }
2424
2425 for_each_migratetype_order(order, t) {
2426 list_for_each_entry(page,
2427 &zone->free_area[order].free_list[t], lru) {
2428 unsigned long i;
2429
2430 pfn = page_to_pfn(page);
2431 for (i = 0; i < (1UL << order); i++)
2432 swsusp_set_page_free(pfn_to_page(pfn + i));
2433 }
2434 }
2435 spin_unlock_irqrestore(&zone->lock, flags);
2436 }
2437 #endif /* CONFIG_PM */
2438
2439 /*
2440 * Free a 0-order page
2441 * cold == true ? free a cold page : free a hot page
2442 */
2443 void free_hot_cold_page(struct page *page, bool cold)
2444 {
2445 struct zone *zone = page_zone(page);
2446 struct per_cpu_pages *pcp;
2447 unsigned long flags;
2448 unsigned long pfn = page_to_pfn(page);
2449 int migratetype;
2450
2451 if (!free_pcp_prepare(page))
2452 return;
2453
2454 migratetype = get_pfnblock_migratetype(page, pfn);
2455 set_pcppage_migratetype(page, migratetype);
2456 local_irq_save(flags);
2457 __count_vm_event(PGFREE);
2458
2459 /*
2460 * We only track unmovable, reclaimable and movable on pcp lists.
2461 * Free ISOLATE pages back to the allocator because they are being
2462 * offlined but treat RESERVE as movable pages so we can get those
2463 * areas back if necessary. Otherwise, we may have to free
2464 * excessively into the page allocator
2465 */
2466 if (migratetype >= MIGRATE_PCPTYPES) {
2467 if (unlikely(is_migrate_isolate(migratetype))) {
2468 free_one_page(zone, page, pfn, 0, migratetype);
2469 goto out;
2470 }
2471 migratetype = MIGRATE_MOVABLE;
2472 }
2473
2474 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2475 if (!cold)
2476 list_add(&page->lru, &pcp->lists[migratetype]);
2477 else
2478 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2479 pcp->count++;
2480 if (pcp->count >= pcp->high) {
2481 unsigned long batch = READ_ONCE(pcp->batch);
2482 free_pcppages_bulk(zone, batch, pcp);
2483 pcp->count -= batch;
2484 }
2485
2486 out:
2487 local_irq_restore(flags);
2488 }
2489
2490 /*
2491 * Free a list of 0-order pages
2492 */
2493 void free_hot_cold_page_list(struct list_head *list, bool cold)
2494 {
2495 struct page *page, *next;
2496
2497 list_for_each_entry_safe(page, next, list, lru) {
2498 trace_mm_page_free_batched(page, cold);
2499 free_hot_cold_page(page, cold);
2500 }
2501 }
2502
2503 /*
2504 * split_page takes a non-compound higher-order page, and splits it into
2505 * n (1<<order) sub-pages: page[0..n]
2506 * Each sub-page must be freed individually.
2507 *
2508 * Note: this is probably too low level an operation for use in drivers.
2509 * Please consult with lkml before using this in your driver.
2510 */
2511 void split_page(struct page *page, unsigned int order)
2512 {
2513 int i;
2514
2515 VM_BUG_ON_PAGE(PageCompound(page), page);
2516 VM_BUG_ON_PAGE(!page_count(page), page);
2517
2518 #ifdef CONFIG_KMEMCHECK
2519 /*
2520 * Split shadow pages too, because free(page[0]) would
2521 * otherwise free the whole shadow.
2522 */
2523 if (kmemcheck_page_is_tracked(page))
2524 split_page(virt_to_page(page[0].shadow), order);
2525 #endif
2526
2527 for (i = 1; i < (1 << order); i++)
2528 set_page_refcounted(page + i);
2529 split_page_owner(page, order);
2530 }
2531 EXPORT_SYMBOL_GPL(split_page);
2532
2533 int __isolate_free_page(struct page *page, unsigned int order)
2534 {
2535 unsigned long watermark;
2536 struct zone *zone;
2537 int mt;
2538
2539 BUG_ON(!PageBuddy(page));
2540
2541 zone = page_zone(page);
2542 mt = get_pageblock_migratetype(page);
2543
2544 if (!is_migrate_isolate(mt)) {
2545 /*
2546 * Obey watermarks as if the page was being allocated. We can
2547 * emulate a high-order watermark check with a raised order-0
2548 * watermark, because we already know our high-order page
2549 * exists.
2550 */
2551 watermark = min_wmark_pages(zone) + (1UL << order);
2552 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2553 return 0;
2554
2555 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2556 }
2557
2558 /* Remove page from free list */
2559 list_del(&page->lru);
2560 zone->free_area[order].nr_free--;
2561 rmv_page_order(page);
2562
2563 /*
2564 * Set the pageblock if the isolated page is at least half of a
2565 * pageblock
2566 */
2567 if (order >= pageblock_order - 1) {
2568 struct page *endpage = page + (1 << order) - 1;
2569 for (; page < endpage; page += pageblock_nr_pages) {
2570 int mt = get_pageblock_migratetype(page);
2571 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2572 && mt != MIGRATE_HIGHATOMIC)
2573 set_pageblock_migratetype(page,
2574 MIGRATE_MOVABLE);
2575 }
2576 }
2577
2578
2579 return 1UL << order;
2580 }
2581
2582 /*
2583 * Update NUMA hit/miss statistics
2584 *
2585 * Must be called with interrupts disabled.
2586 */
2587 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2588 {
2589 #ifdef CONFIG_NUMA
2590 enum zone_stat_item local_stat = NUMA_LOCAL;
2591
2592 if (z->node != numa_node_id())
2593 local_stat = NUMA_OTHER;
2594
2595 if (z->node == preferred_zone->node)
2596 __inc_zone_state(z, NUMA_HIT);
2597 else {
2598 __inc_zone_state(z, NUMA_MISS);
2599 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2600 }
2601 __inc_zone_state(z, local_stat);
2602 #endif
2603 }
2604
2605 /*
2606 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2607 */
2608 static inline
2609 struct page *buffered_rmqueue(struct zone *preferred_zone,
2610 struct zone *zone, unsigned int order,
2611 gfp_t gfp_flags, unsigned int alloc_flags,
2612 int migratetype)
2613 {
2614 unsigned long flags;
2615 struct page *page;
2616 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2617
2618 if (likely(order == 0)) {
2619 struct per_cpu_pages *pcp;
2620 struct list_head *list;
2621
2622 local_irq_save(flags);
2623 do {
2624 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2625 list = &pcp->lists[migratetype];
2626 if (list_empty(list)) {
2627 pcp->count += rmqueue_bulk(zone, 0,
2628 pcp->batch, list,
2629 migratetype, cold);
2630 if (unlikely(list_empty(list)))
2631 goto failed;
2632 }
2633
2634 if (cold)
2635 page = list_last_entry(list, struct page, lru);
2636 else
2637 page = list_first_entry(list, struct page, lru);
2638
2639 list_del(&page->lru);
2640 pcp->count--;
2641
2642 } while (check_new_pcp(page));
2643 } else {
2644 /*
2645 * We most definitely don't want callers attempting to
2646 * allocate greater than order-1 page units with __GFP_NOFAIL.
2647 */
2648 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2649 spin_lock_irqsave(&zone->lock, flags);
2650
2651 do {
2652 page = NULL;
2653 if (alloc_flags & ALLOC_HARDER) {
2654 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2655 if (page)
2656 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2657 }
2658 if (!page)
2659 page = __rmqueue(zone, order, migratetype);
2660 } while (page && check_new_pages(page, order));
2661 spin_unlock(&zone->lock);
2662 if (!page)
2663 goto failed;
2664 __mod_zone_freepage_state(zone, -(1 << order),
2665 get_pcppage_migratetype(page));
2666 }
2667
2668 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2669 zone_statistics(preferred_zone, zone);
2670 local_irq_restore(flags);
2671
2672 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2673 return page;
2674
2675 failed:
2676 local_irq_restore(flags);
2677 return NULL;
2678 }
2679
2680 #ifdef CONFIG_FAIL_PAGE_ALLOC
2681
2682 static struct {
2683 struct fault_attr attr;
2684
2685 bool ignore_gfp_highmem;
2686 bool ignore_gfp_reclaim;
2687 u32 min_order;
2688 } fail_page_alloc = {
2689 .attr = FAULT_ATTR_INITIALIZER,
2690 .ignore_gfp_reclaim = true,
2691 .ignore_gfp_highmem = true,
2692 .min_order = 1,
2693 };
2694
2695 static int __init setup_fail_page_alloc(char *str)
2696 {
2697 return setup_fault_attr(&fail_page_alloc.attr, str);
2698 }
2699 __setup("fail_page_alloc=", setup_fail_page_alloc);
2700
2701 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2702 {
2703 if (order < fail_page_alloc.min_order)
2704 return false;
2705 if (gfp_mask & __GFP_NOFAIL)
2706 return false;
2707 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2708 return false;
2709 if (fail_page_alloc.ignore_gfp_reclaim &&
2710 (gfp_mask & __GFP_DIRECT_RECLAIM))
2711 return false;
2712
2713 return should_fail(&fail_page_alloc.attr, 1 << order);
2714 }
2715
2716 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2717
2718 static int __init fail_page_alloc_debugfs(void)
2719 {
2720 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2721 struct dentry *dir;
2722
2723 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2724 &fail_page_alloc.attr);
2725 if (IS_ERR(dir))
2726 return PTR_ERR(dir);
2727
2728 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2729 &fail_page_alloc.ignore_gfp_reclaim))
2730 goto fail;
2731 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2732 &fail_page_alloc.ignore_gfp_highmem))
2733 goto fail;
2734 if (!debugfs_create_u32("min-order", mode, dir,
2735 &fail_page_alloc.min_order))
2736 goto fail;
2737
2738 return 0;
2739 fail:
2740 debugfs_remove_recursive(dir);
2741
2742 return -ENOMEM;
2743 }
2744
2745 late_initcall(fail_page_alloc_debugfs);
2746
2747 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2748
2749 #else /* CONFIG_FAIL_PAGE_ALLOC */
2750
2751 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2752 {
2753 return false;
2754 }
2755
2756 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2757
2758 /*
2759 * Return true if free base pages are above 'mark'. For high-order checks it
2760 * will return true of the order-0 watermark is reached and there is at least
2761 * one free page of a suitable size. Checking now avoids taking the zone lock
2762 * to check in the allocation paths if no pages are free.
2763 */
2764 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2765 int classzone_idx, unsigned int alloc_flags,
2766 long free_pages)
2767 {
2768 long min = mark;
2769 int o;
2770 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2771
2772 /* free_pages may go negative - that's OK */
2773 free_pages -= (1 << order) - 1;
2774
2775 if (alloc_flags & ALLOC_HIGH)
2776 min -= min / 2;
2777
2778 /*
2779 * If the caller does not have rights to ALLOC_HARDER then subtract
2780 * the high-atomic reserves. This will over-estimate the size of the
2781 * atomic reserve but it avoids a search.
2782 */
2783 if (likely(!alloc_harder))
2784 free_pages -= z->nr_reserved_highatomic;
2785 else
2786 min -= min / 4;
2787
2788 #ifdef CONFIG_CMA
2789 /* If allocation can't use CMA areas don't use free CMA pages */
2790 if (!(alloc_flags & ALLOC_CMA))
2791 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2792 #endif
2793
2794 /*
2795 * Check watermarks for an order-0 allocation request. If these
2796 * are not met, then a high-order request also cannot go ahead
2797 * even if a suitable page happened to be free.
2798 */
2799 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2800 return false;
2801
2802 /* If this is an order-0 request then the watermark is fine */
2803 if (!order)
2804 return true;
2805
2806 /* For a high-order request, check at least one suitable page is free */
2807 for (o = order; o < MAX_ORDER; o++) {
2808 struct free_area *area = &z->free_area[o];
2809 int mt;
2810
2811 if (!area->nr_free)
2812 continue;
2813
2814 if (alloc_harder)
2815 return true;
2816
2817 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2818 if (!list_empty(&area->free_list[mt]))
2819 return true;
2820 }
2821
2822 #ifdef CONFIG_CMA
2823 if ((alloc_flags & ALLOC_CMA) &&
2824 !list_empty(&area->free_list[MIGRATE_CMA])) {
2825 return true;
2826 }
2827 #endif
2828 }
2829 return false;
2830 }
2831
2832 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2833 int classzone_idx, unsigned int alloc_flags)
2834 {
2835 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2836 zone_page_state(z, NR_FREE_PAGES));
2837 }
2838
2839 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2840 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2841 {
2842 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2843 long cma_pages = 0;
2844
2845 #ifdef CONFIG_CMA
2846 /* If allocation can't use CMA areas don't use free CMA pages */
2847 if (!(alloc_flags & ALLOC_CMA))
2848 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2849 #endif
2850
2851 /*
2852 * Fast check for order-0 only. If this fails then the reserves
2853 * need to be calculated. There is a corner case where the check
2854 * passes but only the high-order atomic reserve are free. If
2855 * the caller is !atomic then it'll uselessly search the free
2856 * list. That corner case is then slower but it is harmless.
2857 */
2858 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2859 return true;
2860
2861 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2862 free_pages);
2863 }
2864
2865 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2866 unsigned long mark, int classzone_idx)
2867 {
2868 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2869
2870 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2871 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2872
2873 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2874 free_pages);
2875 }
2876
2877 #ifdef CONFIG_NUMA
2878 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2879 {
2880 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2881 RECLAIM_DISTANCE;
2882 }
2883 #else /* CONFIG_NUMA */
2884 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2885 {
2886 return true;
2887 }
2888 #endif /* CONFIG_NUMA */
2889
2890 /*
2891 * get_page_from_freelist goes through the zonelist trying to allocate
2892 * a page.
2893 */
2894 static struct page *
2895 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2896 const struct alloc_context *ac)
2897 {
2898 struct zoneref *z = ac->preferred_zoneref;
2899 struct zone *zone;
2900 struct pglist_data *last_pgdat_dirty_limit = NULL;
2901
2902 /*
2903 * Scan zonelist, looking for a zone with enough free.
2904 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2905 */
2906 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2907 ac->nodemask) {
2908 struct page *page;
2909 unsigned long mark;
2910
2911 if (cpusets_enabled() &&
2912 (alloc_flags & ALLOC_CPUSET) &&
2913 !__cpuset_zone_allowed(zone, gfp_mask))
2914 continue;
2915 /*
2916 * When allocating a page cache page for writing, we
2917 * want to get it from a node that is within its dirty
2918 * limit, such that no single node holds more than its
2919 * proportional share of globally allowed dirty pages.
2920 * The dirty limits take into account the node's
2921 * lowmem reserves and high watermark so that kswapd
2922 * should be able to balance it without having to
2923 * write pages from its LRU list.
2924 *
2925 * XXX: For now, allow allocations to potentially
2926 * exceed the per-node dirty limit in the slowpath
2927 * (spread_dirty_pages unset) before going into reclaim,
2928 * which is important when on a NUMA setup the allowed
2929 * nodes are together not big enough to reach the
2930 * global limit. The proper fix for these situations
2931 * will require awareness of nodes in the
2932 * dirty-throttling and the flusher threads.
2933 */
2934 if (ac->spread_dirty_pages) {
2935 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2936 continue;
2937
2938 if (!node_dirty_ok(zone->zone_pgdat)) {
2939 last_pgdat_dirty_limit = zone->zone_pgdat;
2940 continue;
2941 }
2942 }
2943
2944 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2945 if (!zone_watermark_fast(zone, order, mark,
2946 ac_classzone_idx(ac), alloc_flags)) {
2947 int ret;
2948
2949 /* Checked here to keep the fast path fast */
2950 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2951 if (alloc_flags & ALLOC_NO_WATERMARKS)
2952 goto try_this_zone;
2953
2954 if (node_reclaim_mode == 0 ||
2955 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2956 continue;
2957
2958 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2959 switch (ret) {
2960 case NODE_RECLAIM_NOSCAN:
2961 /* did not scan */
2962 continue;
2963 case NODE_RECLAIM_FULL:
2964 /* scanned but unreclaimable */
2965 continue;
2966 default:
2967 /* did we reclaim enough */
2968 if (zone_watermark_ok(zone, order, mark,
2969 ac_classzone_idx(ac), alloc_flags))
2970 goto try_this_zone;
2971
2972 continue;
2973 }
2974 }
2975
2976 try_this_zone:
2977 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2978 gfp_mask, alloc_flags, ac->migratetype);
2979 if (page) {
2980 prep_new_page(page, order, gfp_mask, alloc_flags);
2981
2982 /*
2983 * If this is a high-order atomic allocation then check
2984 * if the pageblock should be reserved for the future
2985 */
2986 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2987 reserve_highatomic_pageblock(page, zone, order);
2988
2989 return page;
2990 }
2991 }
2992
2993 return NULL;
2994 }
2995
2996 /*
2997 * Large machines with many possible nodes should not always dump per-node
2998 * meminfo in irq context.
2999 */
3000 static inline bool should_suppress_show_mem(void)
3001 {
3002 bool ret = false;
3003
3004 #if NODES_SHIFT > 8
3005 ret = in_interrupt();
3006 #endif
3007 return ret;
3008 }
3009
3010 static DEFINE_RATELIMIT_STATE(nopage_rs,
3011 DEFAULT_RATELIMIT_INTERVAL,
3012 DEFAULT_RATELIMIT_BURST);
3013
3014 void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
3015 {
3016 unsigned int filter = SHOW_MEM_FILTER_NODES;
3017 struct va_format vaf;
3018 va_list args;
3019
3020 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3021 debug_guardpage_minorder() > 0)
3022 return;
3023
3024 /*
3025 * This documents exceptions given to allocations in certain
3026 * contexts that are allowed to allocate outside current's set
3027 * of allowed nodes.
3028 */
3029 if (!(gfp_mask & __GFP_NOMEMALLOC))
3030 if (test_thread_flag(TIF_MEMDIE) ||
3031 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3032 filter &= ~SHOW_MEM_FILTER_NODES;
3033 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3034 filter &= ~SHOW_MEM_FILTER_NODES;
3035
3036 pr_warn("%s: ", current->comm);
3037
3038 va_start(args, fmt);
3039 vaf.fmt = fmt;
3040 vaf.va = &args;
3041 pr_cont("%pV", &vaf);
3042 va_end(args);
3043
3044 pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
3045
3046 dump_stack();
3047 if (!should_suppress_show_mem())
3048 show_mem(filter);
3049 }
3050
3051 static inline struct page *
3052 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3053 const struct alloc_context *ac, unsigned long *did_some_progress)
3054 {
3055 struct oom_control oc = {
3056 .zonelist = ac->zonelist,
3057 .nodemask = ac->nodemask,
3058 .memcg = NULL,
3059 .gfp_mask = gfp_mask,
3060 .order = order,
3061 };
3062 struct page *page;
3063
3064 *did_some_progress = 0;
3065
3066 /*
3067 * Acquire the oom lock. If that fails, somebody else is
3068 * making progress for us.
3069 */
3070 if (!mutex_trylock(&oom_lock)) {
3071 *did_some_progress = 1;
3072 schedule_timeout_uninterruptible(1);
3073 return NULL;
3074 }
3075
3076 /*
3077 * Go through the zonelist yet one more time, keep very high watermark
3078 * here, this is only to catch a parallel oom killing, we must fail if
3079 * we're still under heavy pressure.
3080 */
3081 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3082 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3083 if (page)
3084 goto out;
3085
3086 if (!(gfp_mask & __GFP_NOFAIL)) {
3087 /* Coredumps can quickly deplete all memory reserves */
3088 if (current->flags & PF_DUMPCORE)
3089 goto out;
3090 /* The OOM killer will not help higher order allocs */
3091 if (order > PAGE_ALLOC_COSTLY_ORDER)
3092 goto out;
3093 /* The OOM killer does not needlessly kill tasks for lowmem */
3094 if (ac->high_zoneidx < ZONE_NORMAL)
3095 goto out;
3096 if (pm_suspended_storage())
3097 goto out;
3098 /*
3099 * XXX: GFP_NOFS allocations should rather fail than rely on
3100 * other request to make a forward progress.
3101 * We are in an unfortunate situation where out_of_memory cannot
3102 * do much for this context but let's try it to at least get
3103 * access to memory reserved if the current task is killed (see
3104 * out_of_memory). Once filesystems are ready to handle allocation
3105 * failures more gracefully we should just bail out here.
3106 */
3107
3108 /* The OOM killer may not free memory on a specific node */
3109 if (gfp_mask & __GFP_THISNODE)
3110 goto out;
3111 }
3112 /* Exhausted what can be done so it's blamo time */
3113 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3114 *did_some_progress = 1;
3115
3116 if (gfp_mask & __GFP_NOFAIL) {
3117 page = get_page_from_freelist(gfp_mask, order,
3118 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3119 /*
3120 * fallback to ignore cpuset restriction if our nodes
3121 * are depleted
3122 */
3123 if (!page)
3124 page = get_page_from_freelist(gfp_mask, order,
3125 ALLOC_NO_WATERMARKS, ac);
3126 }
3127 }
3128 out:
3129 mutex_unlock(&oom_lock);
3130 return page;
3131 }
3132
3133 /*
3134 * Maximum number of compaction retries wit a progress before OOM
3135 * killer is consider as the only way to move forward.
3136 */
3137 #define MAX_COMPACT_RETRIES 16
3138
3139 #ifdef CONFIG_COMPACTION
3140 /* Try memory compaction for high-order allocations before reclaim */
3141 static struct page *
3142 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3143 unsigned int alloc_flags, const struct alloc_context *ac,
3144 enum compact_priority prio, enum compact_result *compact_result)
3145 {
3146 struct page *page;
3147
3148 if (!order)
3149 return NULL;
3150
3151 current->flags |= PF_MEMALLOC;
3152 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3153 prio);
3154 current->flags &= ~PF_MEMALLOC;
3155
3156 if (*compact_result <= COMPACT_INACTIVE)
3157 return NULL;
3158
3159 /*
3160 * At least in one zone compaction wasn't deferred or skipped, so let's
3161 * count a compaction stall
3162 */
3163 count_vm_event(COMPACTSTALL);
3164
3165 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3166
3167 if (page) {
3168 struct zone *zone = page_zone(page);
3169
3170 zone->compact_blockskip_flush = false;
3171 compaction_defer_reset(zone, order, true);
3172 count_vm_event(COMPACTSUCCESS);
3173 return page;
3174 }
3175
3176 /*
3177 * It's bad if compaction run occurs and fails. The most likely reason
3178 * is that pages exist, but not enough to satisfy watermarks.
3179 */
3180 count_vm_event(COMPACTFAIL);
3181
3182 cond_resched();
3183
3184 return NULL;
3185 }
3186
3187 static inline bool
3188 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3189 enum compact_result compact_result,
3190 enum compact_priority *compact_priority,
3191 int *compaction_retries)
3192 {
3193 int max_retries = MAX_COMPACT_RETRIES;
3194 int min_priority;
3195
3196 if (!order)
3197 return false;
3198
3199 if (compaction_made_progress(compact_result))
3200 (*compaction_retries)++;
3201
3202 /*
3203 * compaction considers all the zone as desperately out of memory
3204 * so it doesn't really make much sense to retry except when the
3205 * failure could be caused by insufficient priority
3206 */
3207 if (compaction_failed(compact_result))
3208 goto check_priority;
3209
3210 /*
3211 * make sure the compaction wasn't deferred or didn't bail out early
3212 * due to locks contention before we declare that we should give up.
3213 * But do not retry if the given zonelist is not suitable for
3214 * compaction.
3215 */
3216 if (compaction_withdrawn(compact_result))
3217 return compaction_zonelist_suitable(ac, order, alloc_flags);
3218
3219 /*
3220 * !costly requests are much more important than __GFP_REPEAT
3221 * costly ones because they are de facto nofail and invoke OOM
3222 * killer to move on while costly can fail and users are ready
3223 * to cope with that. 1/4 retries is rather arbitrary but we
3224 * would need much more detailed feedback from compaction to
3225 * make a better decision.
3226 */
3227 if (order > PAGE_ALLOC_COSTLY_ORDER)
3228 max_retries /= 4;
3229 if (*compaction_retries <= max_retries)
3230 return true;
3231
3232 /*
3233 * Make sure there are attempts at the highest priority if we exhausted
3234 * all retries or failed at the lower priorities.
3235 */
3236 check_priority:
3237 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3238 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3239 if (*compact_priority > min_priority) {
3240 (*compact_priority)--;
3241 *compaction_retries = 0;
3242 return true;
3243 }
3244 return false;
3245 }
3246 #else
3247 static inline struct page *
3248 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3249 unsigned int alloc_flags, const struct alloc_context *ac,
3250 enum compact_priority prio, enum compact_result *compact_result)
3251 {
3252 *compact_result = COMPACT_SKIPPED;
3253 return NULL;
3254 }
3255
3256 static inline bool
3257 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3258 enum compact_result compact_result,
3259 enum compact_priority *compact_priority,
3260 int *compaction_retries)
3261 {
3262 struct zone *zone;
3263 struct zoneref *z;
3264
3265 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3266 return false;
3267
3268 /*
3269 * There are setups with compaction disabled which would prefer to loop
3270 * inside the allocator rather than hit the oom killer prematurely.
3271 * Let's give them a good hope and keep retrying while the order-0
3272 * watermarks are OK.
3273 */
3274 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3275 ac->nodemask) {
3276 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3277 ac_classzone_idx(ac), alloc_flags))
3278 return true;
3279 }
3280 return false;
3281 }
3282 #endif /* CONFIG_COMPACTION */
3283
3284 /* Perform direct synchronous page reclaim */
3285 static int
3286 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3287 const struct alloc_context *ac)
3288 {
3289 struct reclaim_state reclaim_state;
3290 int progress;
3291
3292 cond_resched();
3293
3294 /* We now go into synchronous reclaim */
3295 cpuset_memory_pressure_bump();
3296 current->flags |= PF_MEMALLOC;
3297 lockdep_set_current_reclaim_state(gfp_mask);
3298 reclaim_state.reclaimed_slab = 0;
3299 current->reclaim_state = &reclaim_state;
3300
3301 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3302 ac->nodemask);
3303
3304 current->reclaim_state = NULL;
3305 lockdep_clear_current_reclaim_state();
3306 current->flags &= ~PF_MEMALLOC;
3307
3308 cond_resched();
3309
3310 return progress;
3311 }
3312
3313 /* The really slow allocator path where we enter direct reclaim */
3314 static inline struct page *
3315 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3316 unsigned int alloc_flags, const struct alloc_context *ac,
3317 unsigned long *did_some_progress)
3318 {
3319 struct page *page = NULL;
3320 bool drained = false;
3321
3322 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3323 if (unlikely(!(*did_some_progress)))
3324 return NULL;
3325
3326 retry:
3327 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3328
3329 /*
3330 * If an allocation failed after direct reclaim, it could be because
3331 * pages are pinned on the per-cpu lists or in high alloc reserves.
3332 * Shrink them them and try again
3333 */
3334 if (!page && !drained) {
3335 unreserve_highatomic_pageblock(ac, false);
3336 drain_all_pages(NULL);
3337 drained = true;
3338 goto retry;
3339 }
3340
3341 return page;
3342 }
3343
3344 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3345 {
3346 struct zoneref *z;
3347 struct zone *zone;
3348 pg_data_t *last_pgdat = NULL;
3349
3350 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3351 ac->high_zoneidx, ac->nodemask) {
3352 if (last_pgdat != zone->zone_pgdat)
3353 wakeup_kswapd(zone, order, ac->high_zoneidx);
3354 last_pgdat = zone->zone_pgdat;
3355 }
3356 }
3357
3358 static inline unsigned int
3359 gfp_to_alloc_flags(gfp_t gfp_mask)
3360 {
3361 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3362
3363 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3364 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3365
3366 /*
3367 * The caller may dip into page reserves a bit more if the caller
3368 * cannot run direct reclaim, or if the caller has realtime scheduling
3369 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3370 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3371 */
3372 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3373
3374 if (gfp_mask & __GFP_ATOMIC) {
3375 /*
3376 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3377 * if it can't schedule.
3378 */
3379 if (!(gfp_mask & __GFP_NOMEMALLOC))
3380 alloc_flags |= ALLOC_HARDER;
3381 /*
3382 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3383 * comment for __cpuset_node_allowed().
3384 */
3385 alloc_flags &= ~ALLOC_CPUSET;
3386 } else if (unlikely(rt_task(current)) && !in_interrupt())
3387 alloc_flags |= ALLOC_HARDER;
3388
3389 #ifdef CONFIG_CMA
3390 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3391 alloc_flags |= ALLOC_CMA;
3392 #endif
3393 return alloc_flags;
3394 }
3395
3396 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3397 {
3398 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3399 return false;
3400
3401 if (gfp_mask & __GFP_MEMALLOC)
3402 return true;
3403 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3404 return true;
3405 if (!in_interrupt() &&
3406 ((current->flags & PF_MEMALLOC) ||
3407 unlikely(test_thread_flag(TIF_MEMDIE))))
3408 return true;
3409
3410 return false;
3411 }
3412
3413 /*
3414 * Maximum number of reclaim retries without any progress before OOM killer
3415 * is consider as the only way to move forward.
3416 */
3417 #define MAX_RECLAIM_RETRIES 16
3418
3419 /*
3420 * Checks whether it makes sense to retry the reclaim to make a forward progress
3421 * for the given allocation request.
3422 * The reclaim feedback represented by did_some_progress (any progress during
3423 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3424 * any progress in a row) is considered as well as the reclaimable pages on the
3425 * applicable zone list (with a backoff mechanism which is a function of
3426 * no_progress_loops).
3427 *
3428 * Returns true if a retry is viable or false to enter the oom path.
3429 */
3430 static inline bool
3431 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3432 struct alloc_context *ac, int alloc_flags,
3433 bool did_some_progress, int *no_progress_loops)
3434 {
3435 struct zone *zone;
3436 struct zoneref *z;
3437
3438 /*
3439 * Costly allocations might have made a progress but this doesn't mean
3440 * their order will become available due to high fragmentation so
3441 * always increment the no progress counter for them
3442 */
3443 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3444 *no_progress_loops = 0;
3445 else
3446 (*no_progress_loops)++;
3447
3448 /*
3449 * Make sure we converge to OOM if we cannot make any progress
3450 * several times in the row.
3451 */
3452 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3453 /* Before OOM, exhaust highatomic_reserve */
3454 return unreserve_highatomic_pageblock(ac, true);
3455 }
3456
3457 /*
3458 * Keep reclaiming pages while there is a chance this will lead
3459 * somewhere. If none of the target zones can satisfy our allocation
3460 * request even if all reclaimable pages are considered then we are
3461 * screwed and have to go OOM.
3462 */
3463 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3464 ac->nodemask) {
3465 unsigned long available;
3466 unsigned long reclaimable;
3467
3468 available = reclaimable = zone_reclaimable_pages(zone);
3469 available -= DIV_ROUND_UP((*no_progress_loops) * available,
3470 MAX_RECLAIM_RETRIES);
3471 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3472
3473 /*
3474 * Would the allocation succeed if we reclaimed the whole
3475 * available?
3476 */
3477 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3478 ac_classzone_idx(ac), alloc_flags, available)) {
3479 /*
3480 * If we didn't make any progress and have a lot of
3481 * dirty + writeback pages then we should wait for
3482 * an IO to complete to slow down the reclaim and
3483 * prevent from pre mature OOM
3484 */
3485 if (!did_some_progress) {
3486 unsigned long write_pending;
3487
3488 write_pending = zone_page_state_snapshot(zone,
3489 NR_ZONE_WRITE_PENDING);
3490
3491 if (2 * write_pending > reclaimable) {
3492 congestion_wait(BLK_RW_ASYNC, HZ/10);
3493 return true;
3494 }
3495 }
3496
3497 /*
3498 * Memory allocation/reclaim might be called from a WQ
3499 * context and the current implementation of the WQ
3500 * concurrency control doesn't recognize that
3501 * a particular WQ is congested if the worker thread is
3502 * looping without ever sleeping. Therefore we have to
3503 * do a short sleep here rather than calling
3504 * cond_resched().
3505 */
3506 if (current->flags & PF_WQ_WORKER)
3507 schedule_timeout_uninterruptible(1);
3508 else
3509 cond_resched();
3510
3511 return true;
3512 }
3513 }
3514
3515 return false;
3516 }
3517
3518 static inline struct page *
3519 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3520 struct alloc_context *ac)
3521 {
3522 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3523 struct page *page = NULL;
3524 unsigned int alloc_flags;
3525 unsigned long did_some_progress;
3526 enum compact_priority compact_priority;
3527 enum compact_result compact_result;
3528 int compaction_retries;
3529 int no_progress_loops;
3530 unsigned long alloc_start = jiffies;
3531 unsigned int stall_timeout = 10 * HZ;
3532 unsigned int cpuset_mems_cookie;
3533
3534 /*
3535 * In the slowpath, we sanity check order to avoid ever trying to
3536 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3537 * be using allocators in order of preference for an area that is
3538 * too large.
3539 */
3540 if (order >= MAX_ORDER) {
3541 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3542 return NULL;
3543 }
3544
3545 /*
3546 * We also sanity check to catch abuse of atomic reserves being used by
3547 * callers that are not in atomic context.
3548 */
3549 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3550 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3551 gfp_mask &= ~__GFP_ATOMIC;
3552
3553 retry_cpuset:
3554 compaction_retries = 0;
3555 no_progress_loops = 0;
3556 compact_priority = DEF_COMPACT_PRIORITY;
3557 cpuset_mems_cookie = read_mems_allowed_begin();
3558 /*
3559 * We need to recalculate the starting point for the zonelist iterator
3560 * because we might have used different nodemask in the fast path, or
3561 * there was a cpuset modification and we are retrying - otherwise we
3562 * could end up iterating over non-eligible zones endlessly.
3563 */
3564 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3565 ac->high_zoneidx, ac->nodemask);
3566 if (!ac->preferred_zoneref->zone)
3567 goto nopage;
3568
3569
3570 /*
3571 * The fast path uses conservative alloc_flags to succeed only until
3572 * kswapd needs to be woken up, and to avoid the cost of setting up
3573 * alloc_flags precisely. So we do that now.
3574 */
3575 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3576
3577 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3578 wake_all_kswapds(order, ac);
3579
3580 /*
3581 * The adjusted alloc_flags might result in immediate success, so try
3582 * that first
3583 */
3584 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3585 if (page)
3586 goto got_pg;
3587
3588 /*
3589 * For costly allocations, try direct compaction first, as it's likely
3590 * that we have enough base pages and don't need to reclaim. Don't try
3591 * that for allocations that are allowed to ignore watermarks, as the
3592 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3593 */
3594 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3595 !gfp_pfmemalloc_allowed(gfp_mask)) {
3596 page = __alloc_pages_direct_compact(gfp_mask, order,
3597 alloc_flags, ac,
3598 INIT_COMPACT_PRIORITY,
3599 &compact_result);
3600 if (page)
3601 goto got_pg;
3602
3603 /*
3604 * Checks for costly allocations with __GFP_NORETRY, which
3605 * includes THP page fault allocations
3606 */
3607 if (gfp_mask & __GFP_NORETRY) {
3608 /*
3609 * If compaction is deferred for high-order allocations,
3610 * it is because sync compaction recently failed. If
3611 * this is the case and the caller requested a THP
3612 * allocation, we do not want to heavily disrupt the
3613 * system, so we fail the allocation instead of entering
3614 * direct reclaim.
3615 */
3616 if (compact_result == COMPACT_DEFERRED)
3617 goto nopage;
3618
3619 /*
3620 * Looks like reclaim/compaction is worth trying, but
3621 * sync compaction could be very expensive, so keep
3622 * using async compaction.
3623 */
3624 compact_priority = INIT_COMPACT_PRIORITY;
3625 }
3626 }
3627
3628 retry:
3629 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3630 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3631 wake_all_kswapds(order, ac);
3632
3633 if (gfp_pfmemalloc_allowed(gfp_mask))
3634 alloc_flags = ALLOC_NO_WATERMARKS;
3635
3636 /*
3637 * Reset the zonelist iterators if memory policies can be ignored.
3638 * These allocations are high priority and system rather than user
3639 * orientated.
3640 */
3641 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3642 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3643 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3644 ac->high_zoneidx, ac->nodemask);
3645 }
3646
3647 /* Attempt with potentially adjusted zonelist and alloc_flags */
3648 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3649 if (page)
3650 goto got_pg;
3651
3652 /* Caller is not willing to reclaim, we can't balance anything */
3653 if (!can_direct_reclaim) {
3654 /*
3655 * All existing users of the __GFP_NOFAIL are blockable, so warn
3656 * of any new users that actually allow this type of allocation
3657 * to fail.
3658 */
3659 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3660 goto nopage;
3661 }
3662
3663 /* Avoid recursion of direct reclaim */
3664 if (current->flags & PF_MEMALLOC) {
3665 /*
3666 * __GFP_NOFAIL request from this context is rather bizarre
3667 * because we cannot reclaim anything and only can loop waiting
3668 * for somebody to do a work for us.
3669 */
3670 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3671 cond_resched();
3672 goto retry;
3673 }
3674 goto nopage;
3675 }
3676
3677 /* Avoid allocations with no watermarks from looping endlessly */
3678 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3679 goto nopage;
3680
3681
3682 /* Try direct reclaim and then allocating */
3683 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3684 &did_some_progress);
3685 if (page)
3686 goto got_pg;
3687
3688 /* Try direct compaction and then allocating */
3689 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3690 compact_priority, &compact_result);
3691 if (page)
3692 goto got_pg;
3693
3694 /* Do not loop if specifically requested */
3695 if (gfp_mask & __GFP_NORETRY)
3696 goto nopage;
3697
3698 /*
3699 * Do not retry costly high order allocations unless they are
3700 * __GFP_REPEAT
3701 */
3702 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3703 goto nopage;
3704
3705 /* Make sure we know about allocations which stall for too long */
3706 if (time_after(jiffies, alloc_start + stall_timeout)) {
3707 warn_alloc(gfp_mask,
3708 "page allocation stalls for %ums, order:%u",
3709 jiffies_to_msecs(jiffies-alloc_start), order);
3710 stall_timeout += 10 * HZ;
3711 }
3712
3713 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3714 did_some_progress > 0, &no_progress_loops))
3715 goto retry;
3716
3717 /*
3718 * It doesn't make any sense to retry for the compaction if the order-0
3719 * reclaim is not able to make any progress because the current
3720 * implementation of the compaction depends on the sufficient amount
3721 * of free memory (see __compaction_suitable)
3722 */
3723 if (did_some_progress > 0 &&
3724 should_compact_retry(ac, order, alloc_flags,
3725 compact_result, &compact_priority,
3726 &compaction_retries))
3727 goto retry;
3728
3729 /*
3730 * It's possible we raced with cpuset update so the OOM would be
3731 * premature (see below the nopage: label for full explanation).
3732 */
3733 if (read_mems_allowed_retry(cpuset_mems_cookie))
3734 goto retry_cpuset;
3735
3736 /* Reclaim has failed us, start killing things */
3737 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3738 if (page)
3739 goto got_pg;
3740
3741 /* Retry as long as the OOM killer is making progress */
3742 if (did_some_progress) {
3743 no_progress_loops = 0;
3744 goto retry;
3745 }
3746
3747 nopage:
3748 /*
3749 * When updating a task's mems_allowed or mempolicy nodemask, it is
3750 * possible to race with parallel threads in such a way that our
3751 * allocation can fail while the mask is being updated. If we are about
3752 * to fail, check if the cpuset changed during allocation and if so,
3753 * retry.
3754 */
3755 if (read_mems_allowed_retry(cpuset_mems_cookie))
3756 goto retry_cpuset;
3757
3758 warn_alloc(gfp_mask,
3759 "page allocation failure: order:%u", order);
3760 got_pg:
3761 return page;
3762 }
3763
3764 /*
3765 * This is the 'heart' of the zoned buddy allocator.
3766 */
3767 struct page *
3768 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3769 struct zonelist *zonelist, nodemask_t *nodemask)
3770 {
3771 struct page *page;
3772 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3773 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3774 struct alloc_context ac = {
3775 .high_zoneidx = gfp_zone(gfp_mask),
3776 .zonelist = zonelist,
3777 .nodemask = nodemask,
3778 .migratetype = gfpflags_to_migratetype(gfp_mask),
3779 };
3780
3781 if (cpusets_enabled()) {
3782 alloc_mask |= __GFP_HARDWALL;
3783 alloc_flags |= ALLOC_CPUSET;
3784 if (!ac.nodemask)
3785 ac.nodemask = &cpuset_current_mems_allowed;
3786 }
3787
3788 gfp_mask &= gfp_allowed_mask;
3789
3790 lockdep_trace_alloc(gfp_mask);
3791
3792 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3793
3794 if (should_fail_alloc_page(gfp_mask, order))
3795 return NULL;
3796
3797 /*
3798 * Check the zones suitable for the gfp_mask contain at least one
3799 * valid zone. It's possible to have an empty zonelist as a result
3800 * of __GFP_THISNODE and a memoryless node
3801 */
3802 if (unlikely(!zonelist->_zonerefs->zone))
3803 return NULL;
3804
3805 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3806 alloc_flags |= ALLOC_CMA;
3807
3808 /* Dirty zone balancing only done in the fast path */
3809 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3810
3811 /*
3812 * The preferred zone is used for statistics but crucially it is
3813 * also used as the starting point for the zonelist iterator. It
3814 * may get reset for allocations that ignore memory policies.
3815 */
3816 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3817 ac.high_zoneidx, ac.nodemask);
3818 if (!ac.preferred_zoneref->zone) {
3819 page = NULL;
3820 /*
3821 * This might be due to race with cpuset_current_mems_allowed
3822 * update, so make sure we retry with original nodemask in the
3823 * slow path.
3824 */
3825 goto no_zone;
3826 }
3827
3828 /* First allocation attempt */
3829 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3830 if (likely(page))
3831 goto out;
3832
3833 no_zone:
3834 /*
3835 * Runtime PM, block IO and its error handling path can deadlock
3836 * because I/O on the device might not complete.
3837 */
3838 alloc_mask = memalloc_noio_flags(gfp_mask);
3839 ac.spread_dirty_pages = false;
3840
3841 /*
3842 * Restore the original nodemask if it was potentially replaced with
3843 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3844 */
3845 if (unlikely(ac.nodemask != nodemask))
3846 ac.nodemask = nodemask;
3847
3848 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3849
3850 out:
3851 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3852 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3853 __free_pages(page, order);
3854 page = NULL;
3855 }
3856
3857 if (kmemcheck_enabled && page)
3858 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3859
3860 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3861
3862 return page;
3863 }
3864 EXPORT_SYMBOL(__alloc_pages_nodemask);
3865
3866 /*
3867 * Common helper functions.
3868 */
3869 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3870 {
3871 struct page *page;
3872
3873 /*
3874 * __get_free_pages() returns a 32-bit address, which cannot represent
3875 * a highmem page
3876 */
3877 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3878
3879 page = alloc_pages(gfp_mask, order);
3880 if (!page)
3881 return 0;
3882 return (unsigned long) page_address(page);
3883 }
3884 EXPORT_SYMBOL(__get_free_pages);
3885
3886 unsigned long get_zeroed_page(gfp_t gfp_mask)
3887 {
3888 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3889 }
3890 EXPORT_SYMBOL(get_zeroed_page);
3891
3892 void __free_pages(struct page *page, unsigned int order)
3893 {
3894 if (put_page_testzero(page)) {
3895 if (order == 0)
3896 free_hot_cold_page(page, false);
3897 else
3898 __free_pages_ok(page, order);
3899 }
3900 }
3901
3902 EXPORT_SYMBOL(__free_pages);
3903
3904 void free_pages(unsigned long addr, unsigned int order)
3905 {
3906 if (addr != 0) {
3907 VM_BUG_ON(!virt_addr_valid((void *)addr));
3908 __free_pages(virt_to_page((void *)addr), order);
3909 }
3910 }
3911
3912 EXPORT_SYMBOL(free_pages);
3913
3914 /*
3915 * Page Fragment:
3916 * An arbitrary-length arbitrary-offset area of memory which resides
3917 * within a 0 or higher order page. Multiple fragments within that page
3918 * are individually refcounted, in the page's reference counter.
3919 *
3920 * The page_frag functions below provide a simple allocation framework for
3921 * page fragments. This is used by the network stack and network device
3922 * drivers to provide a backing region of memory for use as either an
3923 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3924 */
3925 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
3926 gfp_t gfp_mask)
3927 {
3928 struct page *page = NULL;
3929 gfp_t gfp = gfp_mask;
3930
3931 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3932 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3933 __GFP_NOMEMALLOC;
3934 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3935 PAGE_FRAG_CACHE_MAX_ORDER);
3936 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3937 #endif
3938 if (unlikely(!page))
3939 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3940
3941 nc->va = page ? page_address(page) : NULL;
3942
3943 return page;
3944 }
3945
3946 void __page_frag_cache_drain(struct page *page, unsigned int count)
3947 {
3948 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
3949
3950 if (page_ref_sub_and_test(page, count)) {
3951 unsigned int order = compound_order(page);
3952
3953 if (order == 0)
3954 free_hot_cold_page(page, false);
3955 else
3956 __free_pages_ok(page, order);
3957 }
3958 }
3959 EXPORT_SYMBOL(__page_frag_cache_drain);
3960
3961 void *page_frag_alloc(struct page_frag_cache *nc,
3962 unsigned int fragsz, gfp_t gfp_mask)
3963 {
3964 unsigned int size = PAGE_SIZE;
3965 struct page *page;
3966 int offset;
3967
3968 if (unlikely(!nc->va)) {
3969 refill:
3970 page = __page_frag_cache_refill(nc, gfp_mask);
3971 if (!page)
3972 return NULL;
3973
3974 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3975 /* if size can vary use size else just use PAGE_SIZE */
3976 size = nc->size;
3977 #endif
3978 /* Even if we own the page, we do not use atomic_set().
3979 * This would break get_page_unless_zero() users.
3980 */
3981 page_ref_add(page, size - 1);
3982
3983 /* reset page count bias and offset to start of new frag */
3984 nc->pfmemalloc = page_is_pfmemalloc(page);
3985 nc->pagecnt_bias = size;
3986 nc->offset = size;
3987 }
3988
3989 offset = nc->offset - fragsz;
3990 if (unlikely(offset < 0)) {
3991 page = virt_to_page(nc->va);
3992
3993 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3994 goto refill;
3995
3996 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3997 /* if size can vary use size else just use PAGE_SIZE */
3998 size = nc->size;
3999 #endif
4000 /* OK, page count is 0, we can safely set it */
4001 set_page_count(page, size);
4002
4003 /* reset page count bias and offset to start of new frag */
4004 nc->pagecnt_bias = size;
4005 offset = size - fragsz;
4006 }
4007
4008 nc->pagecnt_bias--;
4009 nc->offset = offset;
4010
4011 return nc->va + offset;
4012 }
4013 EXPORT_SYMBOL(page_frag_alloc);
4014
4015 /*
4016 * Frees a page fragment allocated out of either a compound or order 0 page.
4017 */
4018 void page_frag_free(void *addr)
4019 {
4020 struct page *page = virt_to_head_page(addr);
4021
4022 if (unlikely(put_page_testzero(page)))
4023 __free_pages_ok(page, compound_order(page));
4024 }
4025 EXPORT_SYMBOL(page_frag_free);
4026
4027 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4028 size_t size)
4029 {
4030 if (addr) {
4031 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4032 unsigned long used = addr + PAGE_ALIGN(size);
4033
4034 split_page(virt_to_page((void *)addr), order);
4035 while (used < alloc_end) {
4036 free_page(used);
4037 used += PAGE_SIZE;
4038 }
4039 }
4040 return (void *)addr;
4041 }
4042
4043 /**
4044 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4045 * @size: the number of bytes to allocate
4046 * @gfp_mask: GFP flags for the allocation
4047 *
4048 * This function is similar to alloc_pages(), except that it allocates the
4049 * minimum number of pages to satisfy the request. alloc_pages() can only
4050 * allocate memory in power-of-two pages.
4051 *
4052 * This function is also limited by MAX_ORDER.
4053 *
4054 * Memory allocated by this function must be released by free_pages_exact().
4055 */
4056 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4057 {
4058 unsigned int order = get_order(size);
4059 unsigned long addr;
4060
4061 addr = __get_free_pages(gfp_mask, order);
4062 return make_alloc_exact(addr, order, size);
4063 }
4064 EXPORT_SYMBOL(alloc_pages_exact);
4065
4066 /**
4067 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4068 * pages on a node.
4069 * @nid: the preferred node ID where memory should be allocated
4070 * @size: the number of bytes to allocate
4071 * @gfp_mask: GFP flags for the allocation
4072 *
4073 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4074 * back.
4075 */
4076 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4077 {
4078 unsigned int order = get_order(size);
4079 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4080 if (!p)
4081 return NULL;
4082 return make_alloc_exact((unsigned long)page_address(p), order, size);
4083 }
4084
4085 /**
4086 * free_pages_exact - release memory allocated via alloc_pages_exact()
4087 * @virt: the value returned by alloc_pages_exact.
4088 * @size: size of allocation, same value as passed to alloc_pages_exact().
4089 *
4090 * Release the memory allocated by a previous call to alloc_pages_exact.
4091 */
4092 void free_pages_exact(void *virt, size_t size)
4093 {
4094 unsigned long addr = (unsigned long)virt;
4095 unsigned long end = addr + PAGE_ALIGN(size);
4096
4097 while (addr < end) {
4098 free_page(addr);
4099 addr += PAGE_SIZE;
4100 }
4101 }
4102 EXPORT_SYMBOL(free_pages_exact);
4103
4104 /**
4105 * nr_free_zone_pages - count number of pages beyond high watermark
4106 * @offset: The zone index of the highest zone
4107 *
4108 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4109 * high watermark within all zones at or below a given zone index. For each
4110 * zone, the number of pages is calculated as:
4111 * managed_pages - high_pages
4112 */
4113 static unsigned long nr_free_zone_pages(int offset)
4114 {
4115 struct zoneref *z;
4116 struct zone *zone;
4117
4118 /* Just pick one node, since fallback list is circular */
4119 unsigned long sum = 0;
4120
4121 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4122
4123 for_each_zone_zonelist(zone, z, zonelist, offset) {
4124 unsigned long size = zone->managed_pages;
4125 unsigned long high = high_wmark_pages(zone);
4126 if (size > high)
4127 sum += size - high;
4128 }
4129
4130 return sum;
4131 }
4132
4133 /**
4134 * nr_free_buffer_pages - count number of pages beyond high watermark
4135 *
4136 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4137 * watermark within ZONE_DMA and ZONE_NORMAL.
4138 */
4139 unsigned long nr_free_buffer_pages(void)
4140 {
4141 return nr_free_zone_pages(gfp_zone(GFP_USER));
4142 }
4143 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4144
4145 /**
4146 * nr_free_pagecache_pages - count number of pages beyond high watermark
4147 *
4148 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4149 * high watermark within all zones.
4150 */
4151 unsigned long nr_free_pagecache_pages(void)
4152 {
4153 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4154 }
4155
4156 static inline void show_node(struct zone *zone)
4157 {
4158 if (IS_ENABLED(CONFIG_NUMA))
4159 printk("Node %d ", zone_to_nid(zone));
4160 }
4161
4162 long si_mem_available(void)
4163 {
4164 long available;
4165 unsigned long pagecache;
4166 unsigned long wmark_low = 0;
4167 unsigned long pages[NR_LRU_LISTS];
4168 struct zone *zone;
4169 int lru;
4170
4171 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4172 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4173
4174 for_each_zone(zone)
4175 wmark_low += zone->watermark[WMARK_LOW];
4176
4177 /*
4178 * Estimate the amount of memory available for userspace allocations,
4179 * without causing swapping.
4180 */
4181 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4182
4183 /*
4184 * Not all the page cache can be freed, otherwise the system will
4185 * start swapping. Assume at least half of the page cache, or the
4186 * low watermark worth of cache, needs to stay.
4187 */
4188 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4189 pagecache -= min(pagecache / 2, wmark_low);
4190 available += pagecache;
4191
4192 /*
4193 * Part of the reclaimable slab consists of items that are in use,
4194 * and cannot be freed. Cap this estimate at the low watermark.
4195 */
4196 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4197 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4198
4199 if (available < 0)
4200 available = 0;
4201 return available;
4202 }
4203 EXPORT_SYMBOL_GPL(si_mem_available);
4204
4205 void si_meminfo(struct sysinfo *val)
4206 {
4207 val->totalram = totalram_pages;
4208 val->sharedram = global_node_page_state(NR_SHMEM);
4209 val->freeram = global_page_state(NR_FREE_PAGES);
4210 val->bufferram = nr_blockdev_pages();
4211 val->totalhigh = totalhigh_pages;
4212 val->freehigh = nr_free_highpages();
4213 val->mem_unit = PAGE_SIZE;
4214 }
4215
4216 EXPORT_SYMBOL(si_meminfo);
4217
4218 #ifdef CONFIG_NUMA
4219 void si_meminfo_node(struct sysinfo *val, int nid)
4220 {
4221 int zone_type; /* needs to be signed */
4222 unsigned long managed_pages = 0;
4223 unsigned long managed_highpages = 0;
4224 unsigned long free_highpages = 0;
4225 pg_data_t *pgdat = NODE_DATA(nid);
4226
4227 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4228 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4229 val->totalram = managed_pages;
4230 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4231 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4232 #ifdef CONFIG_HIGHMEM
4233 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4234 struct zone *zone = &pgdat->node_zones[zone_type];
4235
4236 if (is_highmem(zone)) {
4237 managed_highpages += zone->managed_pages;
4238 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4239 }
4240 }
4241 val->totalhigh = managed_highpages;
4242 val->freehigh = free_highpages;
4243 #else
4244 val->totalhigh = managed_highpages;
4245 val->freehigh = free_highpages;
4246 #endif
4247 val->mem_unit = PAGE_SIZE;
4248 }
4249 #endif
4250
4251 /*
4252 * Determine whether the node should be displayed or not, depending on whether
4253 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4254 */
4255 bool skip_free_areas_node(unsigned int flags, int nid)
4256 {
4257 bool ret = false;
4258 unsigned int cpuset_mems_cookie;
4259
4260 if (!(flags & SHOW_MEM_FILTER_NODES))
4261 goto out;
4262
4263 do {
4264 cpuset_mems_cookie = read_mems_allowed_begin();
4265 ret = !node_isset(nid, cpuset_current_mems_allowed);
4266 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4267 out:
4268 return ret;
4269 }
4270
4271 #define K(x) ((x) << (PAGE_SHIFT-10))
4272
4273 static void show_migration_types(unsigned char type)
4274 {
4275 static const char types[MIGRATE_TYPES] = {
4276 [MIGRATE_UNMOVABLE] = 'U',
4277 [MIGRATE_MOVABLE] = 'M',
4278 [MIGRATE_RECLAIMABLE] = 'E',
4279 [MIGRATE_HIGHATOMIC] = 'H',
4280 #ifdef CONFIG_CMA
4281 [MIGRATE_CMA] = 'C',
4282 #endif
4283 #ifdef CONFIG_MEMORY_ISOLATION
4284 [MIGRATE_ISOLATE] = 'I',
4285 #endif
4286 };
4287 char tmp[MIGRATE_TYPES + 1];
4288 char *p = tmp;
4289 int i;
4290
4291 for (i = 0; i < MIGRATE_TYPES; i++) {
4292 if (type & (1 << i))
4293 *p++ = types[i];
4294 }
4295
4296 *p = '\0';
4297 printk(KERN_CONT "(%s) ", tmp);
4298 }
4299
4300 /*
4301 * Show free area list (used inside shift_scroll-lock stuff)
4302 * We also calculate the percentage fragmentation. We do this by counting the
4303 * memory on each free list with the exception of the first item on the list.
4304 *
4305 * Bits in @filter:
4306 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4307 * cpuset.
4308 */
4309 void show_free_areas(unsigned int filter)
4310 {
4311 unsigned long free_pcp = 0;
4312 int cpu;
4313 struct zone *zone;
4314 pg_data_t *pgdat;
4315
4316 for_each_populated_zone(zone) {
4317 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4318 continue;
4319
4320 for_each_online_cpu(cpu)
4321 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4322 }
4323
4324 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4325 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4326 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4327 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4328 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4329 " free:%lu free_pcp:%lu free_cma:%lu\n",
4330 global_node_page_state(NR_ACTIVE_ANON),
4331 global_node_page_state(NR_INACTIVE_ANON),
4332 global_node_page_state(NR_ISOLATED_ANON),
4333 global_node_page_state(NR_ACTIVE_FILE),
4334 global_node_page_state(NR_INACTIVE_FILE),
4335 global_node_page_state(NR_ISOLATED_FILE),
4336 global_node_page_state(NR_UNEVICTABLE),
4337 global_node_page_state(NR_FILE_DIRTY),
4338 global_node_page_state(NR_WRITEBACK),
4339 global_node_page_state(NR_UNSTABLE_NFS),
4340 global_page_state(NR_SLAB_RECLAIMABLE),
4341 global_page_state(NR_SLAB_UNRECLAIMABLE),
4342 global_node_page_state(NR_FILE_MAPPED),
4343 global_node_page_state(NR_SHMEM),
4344 global_page_state(NR_PAGETABLE),
4345 global_page_state(NR_BOUNCE),
4346 global_page_state(NR_FREE_PAGES),
4347 free_pcp,
4348 global_page_state(NR_FREE_CMA_PAGES));
4349
4350 for_each_online_pgdat(pgdat) {
4351 printk("Node %d"
4352 " active_anon:%lukB"
4353 " inactive_anon:%lukB"
4354 " active_file:%lukB"
4355 " inactive_file:%lukB"
4356 " unevictable:%lukB"
4357 " isolated(anon):%lukB"
4358 " isolated(file):%lukB"
4359 " mapped:%lukB"
4360 " dirty:%lukB"
4361 " writeback:%lukB"
4362 " shmem:%lukB"
4363 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4364 " shmem_thp: %lukB"
4365 " shmem_pmdmapped: %lukB"
4366 " anon_thp: %lukB"
4367 #endif
4368 " writeback_tmp:%lukB"
4369 " unstable:%lukB"
4370 " pages_scanned:%lu"
4371 " all_unreclaimable? %s"
4372 "\n",
4373 pgdat->node_id,
4374 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4375 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4376 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4377 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4378 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4379 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4380 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4381 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4382 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4383 K(node_page_state(pgdat, NR_WRITEBACK)),
4384 K(node_page_state(pgdat, NR_SHMEM)),
4385 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4386 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4387 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4388 * HPAGE_PMD_NR),
4389 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4390 #endif
4391 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4392 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4393 node_page_state(pgdat, NR_PAGES_SCANNED),
4394 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4395 }
4396
4397 for_each_populated_zone(zone) {
4398 int i;
4399
4400 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4401 continue;
4402
4403 free_pcp = 0;
4404 for_each_online_cpu(cpu)
4405 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4406
4407 show_node(zone);
4408 printk(KERN_CONT
4409 "%s"
4410 " free:%lukB"
4411 " min:%lukB"
4412 " low:%lukB"
4413 " high:%lukB"
4414 " active_anon:%lukB"
4415 " inactive_anon:%lukB"
4416 " active_file:%lukB"
4417 " inactive_file:%lukB"
4418 " unevictable:%lukB"
4419 " writepending:%lukB"
4420 " present:%lukB"
4421 " managed:%lukB"
4422 " mlocked:%lukB"
4423 " slab_reclaimable:%lukB"
4424 " slab_unreclaimable:%lukB"
4425 " kernel_stack:%lukB"
4426 " pagetables:%lukB"
4427 " bounce:%lukB"
4428 " free_pcp:%lukB"
4429 " local_pcp:%ukB"
4430 " free_cma:%lukB"
4431 "\n",
4432 zone->name,
4433 K(zone_page_state(zone, NR_FREE_PAGES)),
4434 K(min_wmark_pages(zone)),
4435 K(low_wmark_pages(zone)),
4436 K(high_wmark_pages(zone)),
4437 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4438 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4439 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4440 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4441 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4442 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4443 K(zone->present_pages),
4444 K(zone->managed_pages),
4445 K(zone_page_state(zone, NR_MLOCK)),
4446 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4447 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4448 zone_page_state(zone, NR_KERNEL_STACK_KB),
4449 K(zone_page_state(zone, NR_PAGETABLE)),
4450 K(zone_page_state(zone, NR_BOUNCE)),
4451 K(free_pcp),
4452 K(this_cpu_read(zone->pageset->pcp.count)),
4453 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4454 printk("lowmem_reserve[]:");
4455 for (i = 0; i < MAX_NR_ZONES; i++)
4456 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4457 printk(KERN_CONT "\n");
4458 }
4459
4460 for_each_populated_zone(zone) {
4461 unsigned int order;
4462 unsigned long nr[MAX_ORDER], flags, total = 0;
4463 unsigned char types[MAX_ORDER];
4464
4465 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4466 continue;
4467 show_node(zone);
4468 printk(KERN_CONT "%s: ", zone->name);
4469
4470 spin_lock_irqsave(&zone->lock, flags);
4471 for (order = 0; order < MAX_ORDER; order++) {
4472 struct free_area *area = &zone->free_area[order];
4473 int type;
4474
4475 nr[order] = area->nr_free;
4476 total += nr[order] << order;
4477
4478 types[order] = 0;
4479 for (type = 0; type < MIGRATE_TYPES; type++) {
4480 if (!list_empty(&area->free_list[type]))
4481 types[order] |= 1 << type;
4482 }
4483 }
4484 spin_unlock_irqrestore(&zone->lock, flags);
4485 for (order = 0; order < MAX_ORDER; order++) {
4486 printk(KERN_CONT "%lu*%lukB ",
4487 nr[order], K(1UL) << order);
4488 if (nr[order])
4489 show_migration_types(types[order]);
4490 }
4491 printk(KERN_CONT "= %lukB\n", K(total));
4492 }
4493
4494 hugetlb_show_meminfo();
4495
4496 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4497
4498 show_swap_cache_info();
4499 }
4500
4501 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4502 {
4503 zoneref->zone = zone;
4504 zoneref->zone_idx = zone_idx(zone);
4505 }
4506
4507 /*
4508 * Builds allocation fallback zone lists.
4509 *
4510 * Add all populated zones of a node to the zonelist.
4511 */
4512 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4513 int nr_zones)
4514 {
4515 struct zone *zone;
4516 enum zone_type zone_type = MAX_NR_ZONES;
4517
4518 do {
4519 zone_type--;
4520 zone = pgdat->node_zones + zone_type;
4521 if (managed_zone(zone)) {
4522 zoneref_set_zone(zone,
4523 &zonelist->_zonerefs[nr_zones++]);
4524 check_highest_zone(zone_type);
4525 }
4526 } while (zone_type);
4527
4528 return nr_zones;
4529 }
4530
4531
4532 /*
4533 * zonelist_order:
4534 * 0 = automatic detection of better ordering.
4535 * 1 = order by ([node] distance, -zonetype)
4536 * 2 = order by (-zonetype, [node] distance)
4537 *
4538 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4539 * the same zonelist. So only NUMA can configure this param.
4540 */
4541 #define ZONELIST_ORDER_DEFAULT 0
4542 #define ZONELIST_ORDER_NODE 1
4543 #define ZONELIST_ORDER_ZONE 2
4544
4545 /* zonelist order in the kernel.
4546 * set_zonelist_order() will set this to NODE or ZONE.
4547 */
4548 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4549 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4550
4551
4552 #ifdef CONFIG_NUMA
4553 /* The value user specified ....changed by config */
4554 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4555 /* string for sysctl */
4556 #define NUMA_ZONELIST_ORDER_LEN 16
4557 char numa_zonelist_order[16] = "default";
4558
4559 /*
4560 * interface for configure zonelist ordering.
4561 * command line option "numa_zonelist_order"
4562 * = "[dD]efault - default, automatic configuration.
4563 * = "[nN]ode - order by node locality, then by zone within node
4564 * = "[zZ]one - order by zone, then by locality within zone
4565 */
4566
4567 static int __parse_numa_zonelist_order(char *s)
4568 {
4569 if (*s == 'd' || *s == 'D') {
4570 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4571 } else if (*s == 'n' || *s == 'N') {
4572 user_zonelist_order = ZONELIST_ORDER_NODE;
4573 } else if (*s == 'z' || *s == 'Z') {
4574 user_zonelist_order = ZONELIST_ORDER_ZONE;
4575 } else {
4576 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4577 return -EINVAL;
4578 }
4579 return 0;
4580 }
4581
4582 static __init int setup_numa_zonelist_order(char *s)
4583 {
4584 int ret;
4585
4586 if (!s)
4587 return 0;
4588
4589 ret = __parse_numa_zonelist_order(s);
4590 if (ret == 0)
4591 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4592
4593 return ret;
4594 }
4595 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4596
4597 /*
4598 * sysctl handler for numa_zonelist_order
4599 */
4600 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4601 void __user *buffer, size_t *length,
4602 loff_t *ppos)
4603 {
4604 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4605 int ret;
4606 static DEFINE_MUTEX(zl_order_mutex);
4607
4608 mutex_lock(&zl_order_mutex);
4609 if (write) {
4610 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4611 ret = -EINVAL;
4612 goto out;
4613 }
4614 strcpy(saved_string, (char *)table->data);
4615 }
4616 ret = proc_dostring(table, write, buffer, length, ppos);
4617 if (ret)
4618 goto out;
4619 if (write) {
4620 int oldval = user_zonelist_order;
4621
4622 ret = __parse_numa_zonelist_order((char *)table->data);
4623 if (ret) {
4624 /*
4625 * bogus value. restore saved string
4626 */
4627 strncpy((char *)table->data, saved_string,
4628 NUMA_ZONELIST_ORDER_LEN);
4629 user_zonelist_order = oldval;
4630 } else if (oldval != user_zonelist_order) {
4631 mutex_lock(&zonelists_mutex);
4632 build_all_zonelists(NULL, NULL);
4633 mutex_unlock(&zonelists_mutex);
4634 }
4635 }
4636 out:
4637 mutex_unlock(&zl_order_mutex);
4638 return ret;
4639 }
4640
4641
4642 #define MAX_NODE_LOAD (nr_online_nodes)
4643 static int node_load[MAX_NUMNODES];
4644
4645 /**
4646 * find_next_best_node - find the next node that should appear in a given node's fallback list
4647 * @node: node whose fallback list we're appending
4648 * @used_node_mask: nodemask_t of already used nodes
4649 *
4650 * We use a number of factors to determine which is the next node that should
4651 * appear on a given node's fallback list. The node should not have appeared
4652 * already in @node's fallback list, and it should be the next closest node
4653 * according to the distance array (which contains arbitrary distance values
4654 * from each node to each node in the system), and should also prefer nodes
4655 * with no CPUs, since presumably they'll have very little allocation pressure
4656 * on them otherwise.
4657 * It returns -1 if no node is found.
4658 */
4659 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4660 {
4661 int n, val;
4662 int min_val = INT_MAX;
4663 int best_node = NUMA_NO_NODE;
4664 const struct cpumask *tmp = cpumask_of_node(0);
4665
4666 /* Use the local node if we haven't already */
4667 if (!node_isset(node, *used_node_mask)) {
4668 node_set(node, *used_node_mask);
4669 return node;
4670 }
4671
4672 for_each_node_state(n, N_MEMORY) {
4673
4674 /* Don't want a node to appear more than once */
4675 if (node_isset(n, *used_node_mask))
4676 continue;
4677
4678 /* Use the distance array to find the distance */
4679 val = node_distance(node, n);
4680
4681 /* Penalize nodes under us ("prefer the next node") */
4682 val += (n < node);
4683
4684 /* Give preference to headless and unused nodes */
4685 tmp = cpumask_of_node(n);
4686 if (!cpumask_empty(tmp))
4687 val += PENALTY_FOR_NODE_WITH_CPUS;
4688
4689 /* Slight preference for less loaded node */
4690 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4691 val += node_load[n];
4692
4693 if (val < min_val) {
4694 min_val = val;
4695 best_node = n;
4696 }
4697 }
4698
4699 if (best_node >= 0)
4700 node_set(best_node, *used_node_mask);
4701
4702 return best_node;
4703 }
4704
4705
4706 /*
4707 * Build zonelists ordered by node and zones within node.
4708 * This results in maximum locality--normal zone overflows into local
4709 * DMA zone, if any--but risks exhausting DMA zone.
4710 */
4711 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4712 {
4713 int j;
4714 struct zonelist *zonelist;
4715
4716 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4717 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4718 ;
4719 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4720 zonelist->_zonerefs[j].zone = NULL;
4721 zonelist->_zonerefs[j].zone_idx = 0;
4722 }
4723
4724 /*
4725 * Build gfp_thisnode zonelists
4726 */
4727 static void build_thisnode_zonelists(pg_data_t *pgdat)
4728 {
4729 int j;
4730 struct zonelist *zonelist;
4731
4732 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4733 j = build_zonelists_node(pgdat, zonelist, 0);
4734 zonelist->_zonerefs[j].zone = NULL;
4735 zonelist->_zonerefs[j].zone_idx = 0;
4736 }
4737
4738 /*
4739 * Build zonelists ordered by zone and nodes within zones.
4740 * This results in conserving DMA zone[s] until all Normal memory is
4741 * exhausted, but results in overflowing to remote node while memory
4742 * may still exist in local DMA zone.
4743 */
4744 static int node_order[MAX_NUMNODES];
4745
4746 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4747 {
4748 int pos, j, node;
4749 int zone_type; /* needs to be signed */
4750 struct zone *z;
4751 struct zonelist *zonelist;
4752
4753 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4754 pos = 0;
4755 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4756 for (j = 0; j < nr_nodes; j++) {
4757 node = node_order[j];
4758 z = &NODE_DATA(node)->node_zones[zone_type];
4759 if (managed_zone(z)) {
4760 zoneref_set_zone(z,
4761 &zonelist->_zonerefs[pos++]);
4762 check_highest_zone(zone_type);
4763 }
4764 }
4765 }
4766 zonelist->_zonerefs[pos].zone = NULL;
4767 zonelist->_zonerefs[pos].zone_idx = 0;
4768 }
4769
4770 #if defined(CONFIG_64BIT)
4771 /*
4772 * Devices that require DMA32/DMA are relatively rare and do not justify a
4773 * penalty to every machine in case the specialised case applies. Default
4774 * to Node-ordering on 64-bit NUMA machines
4775 */
4776 static int default_zonelist_order(void)
4777 {
4778 return ZONELIST_ORDER_NODE;
4779 }
4780 #else
4781 /*
4782 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4783 * by the kernel. If processes running on node 0 deplete the low memory zone
4784 * then reclaim will occur more frequency increasing stalls and potentially
4785 * be easier to OOM if a large percentage of the zone is under writeback or
4786 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4787 * Hence, default to zone ordering on 32-bit.
4788 */
4789 static int default_zonelist_order(void)
4790 {
4791 return ZONELIST_ORDER_ZONE;
4792 }
4793 #endif /* CONFIG_64BIT */
4794
4795 static void set_zonelist_order(void)
4796 {
4797 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4798 current_zonelist_order = default_zonelist_order();
4799 else
4800 current_zonelist_order = user_zonelist_order;
4801 }
4802
4803 static void build_zonelists(pg_data_t *pgdat)
4804 {
4805 int i, node, load;
4806 nodemask_t used_mask;
4807 int local_node, prev_node;
4808 struct zonelist *zonelist;
4809 unsigned int order = current_zonelist_order;
4810
4811 /* initialize zonelists */
4812 for (i = 0; i < MAX_ZONELISTS; i++) {
4813 zonelist = pgdat->node_zonelists + i;
4814 zonelist->_zonerefs[0].zone = NULL;
4815 zonelist->_zonerefs[0].zone_idx = 0;
4816 }
4817
4818 /* NUMA-aware ordering of nodes */
4819 local_node = pgdat->node_id;
4820 load = nr_online_nodes;
4821 prev_node = local_node;
4822 nodes_clear(used_mask);
4823
4824 memset(node_order, 0, sizeof(node_order));
4825 i = 0;
4826
4827 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4828 /*
4829 * We don't want to pressure a particular node.
4830 * So adding penalty to the first node in same
4831 * distance group to make it round-robin.
4832 */
4833 if (node_distance(local_node, node) !=
4834 node_distance(local_node, prev_node))
4835 node_load[node] = load;
4836
4837 prev_node = node;
4838 load--;
4839 if (order == ZONELIST_ORDER_NODE)
4840 build_zonelists_in_node_order(pgdat, node);
4841 else
4842 node_order[i++] = node; /* remember order */
4843 }
4844
4845 if (order == ZONELIST_ORDER_ZONE) {
4846 /* calculate node order -- i.e., DMA last! */
4847 build_zonelists_in_zone_order(pgdat, i);
4848 }
4849
4850 build_thisnode_zonelists(pgdat);
4851 }
4852
4853 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4854 /*
4855 * Return node id of node used for "local" allocations.
4856 * I.e., first node id of first zone in arg node's generic zonelist.
4857 * Used for initializing percpu 'numa_mem', which is used primarily
4858 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4859 */
4860 int local_memory_node(int node)
4861 {
4862 struct zoneref *z;
4863
4864 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4865 gfp_zone(GFP_KERNEL),
4866 NULL);
4867 return z->zone->node;
4868 }
4869 #endif
4870
4871 static void setup_min_unmapped_ratio(void);
4872 static void setup_min_slab_ratio(void);
4873 #else /* CONFIG_NUMA */
4874
4875 static void set_zonelist_order(void)
4876 {
4877 current_zonelist_order = ZONELIST_ORDER_ZONE;
4878 }
4879
4880 static void build_zonelists(pg_data_t *pgdat)
4881 {
4882 int node, local_node;
4883 enum zone_type j;
4884 struct zonelist *zonelist;
4885
4886 local_node = pgdat->node_id;
4887
4888 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4889 j = build_zonelists_node(pgdat, zonelist, 0);
4890
4891 /*
4892 * Now we build the zonelist so that it contains the zones
4893 * of all the other nodes.
4894 * We don't want to pressure a particular node, so when
4895 * building the zones for node N, we make sure that the
4896 * zones coming right after the local ones are those from
4897 * node N+1 (modulo N)
4898 */
4899 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4900 if (!node_online(node))
4901 continue;
4902 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4903 }
4904 for (node = 0; node < local_node; node++) {
4905 if (!node_online(node))
4906 continue;
4907 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4908 }
4909
4910 zonelist->_zonerefs[j].zone = NULL;
4911 zonelist->_zonerefs[j].zone_idx = 0;
4912 }
4913
4914 #endif /* CONFIG_NUMA */
4915
4916 /*
4917 * Boot pageset table. One per cpu which is going to be used for all
4918 * zones and all nodes. The parameters will be set in such a way
4919 * that an item put on a list will immediately be handed over to
4920 * the buddy list. This is safe since pageset manipulation is done
4921 * with interrupts disabled.
4922 *
4923 * The boot_pagesets must be kept even after bootup is complete for
4924 * unused processors and/or zones. They do play a role for bootstrapping
4925 * hotplugged processors.
4926 *
4927 * zoneinfo_show() and maybe other functions do
4928 * not check if the processor is online before following the pageset pointer.
4929 * Other parts of the kernel may not check if the zone is available.
4930 */
4931 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4932 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4933 static void setup_zone_pageset(struct zone *zone);
4934
4935 /*
4936 * Global mutex to protect against size modification of zonelists
4937 * as well as to serialize pageset setup for the new populated zone.
4938 */
4939 DEFINE_MUTEX(zonelists_mutex);
4940
4941 /* return values int ....just for stop_machine() */
4942 static int __build_all_zonelists(void *data)
4943 {
4944 int nid;
4945 int cpu;
4946 pg_data_t *self = data;
4947
4948 #ifdef CONFIG_NUMA
4949 memset(node_load, 0, sizeof(node_load));
4950 #endif
4951
4952 if (self && !node_online(self->node_id)) {
4953 build_zonelists(self);
4954 }
4955
4956 for_each_online_node(nid) {
4957 pg_data_t *pgdat = NODE_DATA(nid);
4958
4959 build_zonelists(pgdat);
4960 }
4961
4962 /*
4963 * Initialize the boot_pagesets that are going to be used
4964 * for bootstrapping processors. The real pagesets for
4965 * each zone will be allocated later when the per cpu
4966 * allocator is available.
4967 *
4968 * boot_pagesets are used also for bootstrapping offline
4969 * cpus if the system is already booted because the pagesets
4970 * are needed to initialize allocators on a specific cpu too.
4971 * F.e. the percpu allocator needs the page allocator which
4972 * needs the percpu allocator in order to allocate its pagesets
4973 * (a chicken-egg dilemma).
4974 */
4975 for_each_possible_cpu(cpu) {
4976 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4977
4978 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4979 /*
4980 * We now know the "local memory node" for each node--
4981 * i.e., the node of the first zone in the generic zonelist.
4982 * Set up numa_mem percpu variable for on-line cpus. During
4983 * boot, only the boot cpu should be on-line; we'll init the
4984 * secondary cpus' numa_mem as they come on-line. During
4985 * node/memory hotplug, we'll fixup all on-line cpus.
4986 */
4987 if (cpu_online(cpu))
4988 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4989 #endif
4990 }
4991
4992 return 0;
4993 }
4994
4995 static noinline void __init
4996 build_all_zonelists_init(void)
4997 {
4998 __build_all_zonelists(NULL);
4999 mminit_verify_zonelist();
5000 cpuset_init_current_mems_allowed();
5001 }
5002
5003 /*
5004 * Called with zonelists_mutex held always
5005 * unless system_state == SYSTEM_BOOTING.
5006 *
5007 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5008 * [we're only called with non-NULL zone through __meminit paths] and
5009 * (2) call of __init annotated helper build_all_zonelists_init
5010 * [protected by SYSTEM_BOOTING].
5011 */
5012 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5013 {
5014 set_zonelist_order();
5015
5016 if (system_state == SYSTEM_BOOTING) {
5017 build_all_zonelists_init();
5018 } else {
5019 #ifdef CONFIG_MEMORY_HOTPLUG
5020 if (zone)
5021 setup_zone_pageset(zone);
5022 #endif
5023 /* we have to stop all cpus to guarantee there is no user
5024 of zonelist */
5025 stop_machine(__build_all_zonelists, pgdat, NULL);
5026 /* cpuset refresh routine should be here */
5027 }
5028 vm_total_pages = nr_free_pagecache_pages();
5029 /*
5030 * Disable grouping by mobility if the number of pages in the
5031 * system is too low to allow the mechanism to work. It would be
5032 * more accurate, but expensive to check per-zone. This check is
5033 * made on memory-hotadd so a system can start with mobility
5034 * disabled and enable it later
5035 */
5036 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5037 page_group_by_mobility_disabled = 1;
5038 else
5039 page_group_by_mobility_disabled = 0;
5040
5041 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5042 nr_online_nodes,
5043 zonelist_order_name[current_zonelist_order],
5044 page_group_by_mobility_disabled ? "off" : "on",
5045 vm_total_pages);
5046 #ifdef CONFIG_NUMA
5047 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5048 #endif
5049 }
5050
5051 /*
5052 * Initially all pages are reserved - free ones are freed
5053 * up by free_all_bootmem() once the early boot process is
5054 * done. Non-atomic initialization, single-pass.
5055 */
5056 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5057 unsigned long start_pfn, enum memmap_context context)
5058 {
5059 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5060 unsigned long end_pfn = start_pfn + size;
5061 pg_data_t *pgdat = NODE_DATA(nid);
5062 unsigned long pfn;
5063 unsigned long nr_initialised = 0;
5064 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5065 struct memblock_region *r = NULL, *tmp;
5066 #endif
5067
5068 if (highest_memmap_pfn < end_pfn - 1)
5069 highest_memmap_pfn = end_pfn - 1;
5070
5071 /*
5072 * Honor reservation requested by the driver for this ZONE_DEVICE
5073 * memory
5074 */
5075 if (altmap && start_pfn == altmap->base_pfn)
5076 start_pfn += altmap->reserve;
5077
5078 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5079 /*
5080 * There can be holes in boot-time mem_map[]s handed to this
5081 * function. They do not exist on hotplugged memory.
5082 */
5083 if (context != MEMMAP_EARLY)
5084 goto not_early;
5085
5086 if (!early_pfn_valid(pfn))
5087 continue;
5088 if (!early_pfn_in_nid(pfn, nid))
5089 continue;
5090 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5091 break;
5092
5093 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5094 /*
5095 * Check given memblock attribute by firmware which can affect
5096 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5097 * mirrored, it's an overlapped memmap init. skip it.
5098 */
5099 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5100 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5101 for_each_memblock(memory, tmp)
5102 if (pfn < memblock_region_memory_end_pfn(tmp))
5103 break;
5104 r = tmp;
5105 }
5106 if (pfn >= memblock_region_memory_base_pfn(r) &&
5107 memblock_is_mirror(r)) {
5108 /* already initialized as NORMAL */
5109 pfn = memblock_region_memory_end_pfn(r);
5110 continue;
5111 }
5112 }
5113 #endif
5114
5115 not_early:
5116 /*
5117 * Mark the block movable so that blocks are reserved for
5118 * movable at startup. This will force kernel allocations
5119 * to reserve their blocks rather than leaking throughout
5120 * the address space during boot when many long-lived
5121 * kernel allocations are made.
5122 *
5123 * bitmap is created for zone's valid pfn range. but memmap
5124 * can be created for invalid pages (for alignment)
5125 * check here not to call set_pageblock_migratetype() against
5126 * pfn out of zone.
5127 */
5128 if (!(pfn & (pageblock_nr_pages - 1))) {
5129 struct page *page = pfn_to_page(pfn);
5130
5131 __init_single_page(page, pfn, zone, nid);
5132 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5133 } else {
5134 __init_single_pfn(pfn, zone, nid);
5135 }
5136 }
5137 }
5138
5139 static void __meminit zone_init_free_lists(struct zone *zone)
5140 {
5141 unsigned int order, t;
5142 for_each_migratetype_order(order, t) {
5143 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5144 zone->free_area[order].nr_free = 0;
5145 }
5146 }
5147
5148 #ifndef __HAVE_ARCH_MEMMAP_INIT
5149 #define memmap_init(size, nid, zone, start_pfn) \
5150 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5151 #endif
5152
5153 static int zone_batchsize(struct zone *zone)
5154 {
5155 #ifdef CONFIG_MMU
5156 int batch;
5157
5158 /*
5159 * The per-cpu-pages pools are set to around 1000th of the
5160 * size of the zone. But no more than 1/2 of a meg.
5161 *
5162 * OK, so we don't know how big the cache is. So guess.
5163 */
5164 batch = zone->managed_pages / 1024;
5165 if (batch * PAGE_SIZE > 512 * 1024)
5166 batch = (512 * 1024) / PAGE_SIZE;
5167 batch /= 4; /* We effectively *= 4 below */
5168 if (batch < 1)
5169 batch = 1;
5170
5171 /*
5172 * Clamp the batch to a 2^n - 1 value. Having a power
5173 * of 2 value was found to be more likely to have
5174 * suboptimal cache aliasing properties in some cases.
5175 *
5176 * For example if 2 tasks are alternately allocating
5177 * batches of pages, one task can end up with a lot
5178 * of pages of one half of the possible page colors
5179 * and the other with pages of the other colors.
5180 */
5181 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5182
5183 return batch;
5184
5185 #else
5186 /* The deferral and batching of frees should be suppressed under NOMMU
5187 * conditions.
5188 *
5189 * The problem is that NOMMU needs to be able to allocate large chunks
5190 * of contiguous memory as there's no hardware page translation to
5191 * assemble apparent contiguous memory from discontiguous pages.
5192 *
5193 * Queueing large contiguous runs of pages for batching, however,
5194 * causes the pages to actually be freed in smaller chunks. As there
5195 * can be a significant delay between the individual batches being
5196 * recycled, this leads to the once large chunks of space being
5197 * fragmented and becoming unavailable for high-order allocations.
5198 */
5199 return 0;
5200 #endif
5201 }
5202
5203 /*
5204 * pcp->high and pcp->batch values are related and dependent on one another:
5205 * ->batch must never be higher then ->high.
5206 * The following function updates them in a safe manner without read side
5207 * locking.
5208 *
5209 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5210 * those fields changing asynchronously (acording the the above rule).
5211 *
5212 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5213 * outside of boot time (or some other assurance that no concurrent updaters
5214 * exist).
5215 */
5216 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5217 unsigned long batch)
5218 {
5219 /* start with a fail safe value for batch */
5220 pcp->batch = 1;
5221 smp_wmb();
5222
5223 /* Update high, then batch, in order */
5224 pcp->high = high;
5225 smp_wmb();
5226
5227 pcp->batch = batch;
5228 }
5229
5230 /* a companion to pageset_set_high() */
5231 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5232 {
5233 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5234 }
5235
5236 static void pageset_init(struct per_cpu_pageset *p)
5237 {
5238 struct per_cpu_pages *pcp;
5239 int migratetype;
5240
5241 memset(p, 0, sizeof(*p));
5242
5243 pcp = &p->pcp;
5244 pcp->count = 0;
5245 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5246 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5247 }
5248
5249 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5250 {
5251 pageset_init(p);
5252 pageset_set_batch(p, batch);
5253 }
5254
5255 /*
5256 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5257 * to the value high for the pageset p.
5258 */
5259 static void pageset_set_high(struct per_cpu_pageset *p,
5260 unsigned long high)
5261 {
5262 unsigned long batch = max(1UL, high / 4);
5263 if ((high / 4) > (PAGE_SHIFT * 8))
5264 batch = PAGE_SHIFT * 8;
5265
5266 pageset_update(&p->pcp, high, batch);
5267 }
5268
5269 static void pageset_set_high_and_batch(struct zone *zone,
5270 struct per_cpu_pageset *pcp)
5271 {
5272 if (percpu_pagelist_fraction)
5273 pageset_set_high(pcp,
5274 (zone->managed_pages /
5275 percpu_pagelist_fraction));
5276 else
5277 pageset_set_batch(pcp, zone_batchsize(zone));
5278 }
5279
5280 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5281 {
5282 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5283
5284 pageset_init(pcp);
5285 pageset_set_high_and_batch(zone, pcp);
5286 }
5287
5288 static void __meminit setup_zone_pageset(struct zone *zone)
5289 {
5290 int cpu;
5291 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5292 for_each_possible_cpu(cpu)
5293 zone_pageset_init(zone, cpu);
5294 }
5295
5296 /*
5297 * Allocate per cpu pagesets and initialize them.
5298 * Before this call only boot pagesets were available.
5299 */
5300 void __init setup_per_cpu_pageset(void)
5301 {
5302 struct pglist_data *pgdat;
5303 struct zone *zone;
5304
5305 for_each_populated_zone(zone)
5306 setup_zone_pageset(zone);
5307
5308 for_each_online_pgdat(pgdat)
5309 pgdat->per_cpu_nodestats =
5310 alloc_percpu(struct per_cpu_nodestat);
5311 }
5312
5313 static __meminit void zone_pcp_init(struct zone *zone)
5314 {
5315 /*
5316 * per cpu subsystem is not up at this point. The following code
5317 * relies on the ability of the linker to provide the
5318 * offset of a (static) per cpu variable into the per cpu area.
5319 */
5320 zone->pageset = &boot_pageset;
5321
5322 if (populated_zone(zone))
5323 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5324 zone->name, zone->present_pages,
5325 zone_batchsize(zone));
5326 }
5327
5328 int __meminit init_currently_empty_zone(struct zone *zone,
5329 unsigned long zone_start_pfn,
5330 unsigned long size)
5331 {
5332 struct pglist_data *pgdat = zone->zone_pgdat;
5333
5334 pgdat->nr_zones = zone_idx(zone) + 1;
5335
5336 zone->zone_start_pfn = zone_start_pfn;
5337
5338 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5339 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5340 pgdat->node_id,
5341 (unsigned long)zone_idx(zone),
5342 zone_start_pfn, (zone_start_pfn + size));
5343
5344 zone_init_free_lists(zone);
5345 zone->initialized = 1;
5346
5347 return 0;
5348 }
5349
5350 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5351 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5352
5353 /*
5354 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5355 */
5356 int __meminit __early_pfn_to_nid(unsigned long pfn,
5357 struct mminit_pfnnid_cache *state)
5358 {
5359 unsigned long start_pfn, end_pfn;
5360 int nid;
5361
5362 if (state->last_start <= pfn && pfn < state->last_end)
5363 return state->last_nid;
5364
5365 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5366 if (nid != -1) {
5367 state->last_start = start_pfn;
5368 state->last_end = end_pfn;
5369 state->last_nid = nid;
5370 }
5371
5372 return nid;
5373 }
5374 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5375
5376 /**
5377 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5378 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5379 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5380 *
5381 * If an architecture guarantees that all ranges registered contain no holes
5382 * and may be freed, this this function may be used instead of calling
5383 * memblock_free_early_nid() manually.
5384 */
5385 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5386 {
5387 unsigned long start_pfn, end_pfn;
5388 int i, this_nid;
5389
5390 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5391 start_pfn = min(start_pfn, max_low_pfn);
5392 end_pfn = min(end_pfn, max_low_pfn);
5393
5394 if (start_pfn < end_pfn)
5395 memblock_free_early_nid(PFN_PHYS(start_pfn),
5396 (end_pfn - start_pfn) << PAGE_SHIFT,
5397 this_nid);
5398 }
5399 }
5400
5401 /**
5402 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5403 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5404 *
5405 * If an architecture guarantees that all ranges registered contain no holes and may
5406 * be freed, this function may be used instead of calling memory_present() manually.
5407 */
5408 void __init sparse_memory_present_with_active_regions(int nid)
5409 {
5410 unsigned long start_pfn, end_pfn;
5411 int i, this_nid;
5412
5413 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5414 memory_present(this_nid, start_pfn, end_pfn);
5415 }
5416
5417 /**
5418 * get_pfn_range_for_nid - Return the start and end page frames for a node
5419 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5420 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5421 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5422 *
5423 * It returns the start and end page frame of a node based on information
5424 * provided by memblock_set_node(). If called for a node
5425 * with no available memory, a warning is printed and the start and end
5426 * PFNs will be 0.
5427 */
5428 void __meminit get_pfn_range_for_nid(unsigned int nid,
5429 unsigned long *start_pfn, unsigned long *end_pfn)
5430 {
5431 unsigned long this_start_pfn, this_end_pfn;
5432 int i;
5433
5434 *start_pfn = -1UL;
5435 *end_pfn = 0;
5436
5437 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5438 *start_pfn = min(*start_pfn, this_start_pfn);
5439 *end_pfn = max(*end_pfn, this_end_pfn);
5440 }
5441
5442 if (*start_pfn == -1UL)
5443 *start_pfn = 0;
5444 }
5445
5446 /*
5447 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5448 * assumption is made that zones within a node are ordered in monotonic
5449 * increasing memory addresses so that the "highest" populated zone is used
5450 */
5451 static void __init find_usable_zone_for_movable(void)
5452 {
5453 int zone_index;
5454 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5455 if (zone_index == ZONE_MOVABLE)
5456 continue;
5457
5458 if (arch_zone_highest_possible_pfn[zone_index] >
5459 arch_zone_lowest_possible_pfn[zone_index])
5460 break;
5461 }
5462
5463 VM_BUG_ON(zone_index == -1);
5464 movable_zone = zone_index;
5465 }
5466
5467 /*
5468 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5469 * because it is sized independent of architecture. Unlike the other zones,
5470 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5471 * in each node depending on the size of each node and how evenly kernelcore
5472 * is distributed. This helper function adjusts the zone ranges
5473 * provided by the architecture for a given node by using the end of the
5474 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5475 * zones within a node are in order of monotonic increases memory addresses
5476 */
5477 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5478 unsigned long zone_type,
5479 unsigned long node_start_pfn,
5480 unsigned long node_end_pfn,
5481 unsigned long *zone_start_pfn,
5482 unsigned long *zone_end_pfn)
5483 {
5484 /* Only adjust if ZONE_MOVABLE is on this node */
5485 if (zone_movable_pfn[nid]) {
5486 /* Size ZONE_MOVABLE */
5487 if (zone_type == ZONE_MOVABLE) {
5488 *zone_start_pfn = zone_movable_pfn[nid];
5489 *zone_end_pfn = min(node_end_pfn,
5490 arch_zone_highest_possible_pfn[movable_zone]);
5491
5492 /* Adjust for ZONE_MOVABLE starting within this range */
5493 } else if (!mirrored_kernelcore &&
5494 *zone_start_pfn < zone_movable_pfn[nid] &&
5495 *zone_end_pfn > zone_movable_pfn[nid]) {
5496 *zone_end_pfn = zone_movable_pfn[nid];
5497
5498 /* Check if this whole range is within ZONE_MOVABLE */
5499 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5500 *zone_start_pfn = *zone_end_pfn;
5501 }
5502 }
5503
5504 /*
5505 * Return the number of pages a zone spans in a node, including holes
5506 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5507 */
5508 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5509 unsigned long zone_type,
5510 unsigned long node_start_pfn,
5511 unsigned long node_end_pfn,
5512 unsigned long *zone_start_pfn,
5513 unsigned long *zone_end_pfn,
5514 unsigned long *ignored)
5515 {
5516 /* When hotadd a new node from cpu_up(), the node should be empty */
5517 if (!node_start_pfn && !node_end_pfn)
5518 return 0;
5519
5520 /* Get the start and end of the zone */
5521 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5522 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5523 adjust_zone_range_for_zone_movable(nid, zone_type,
5524 node_start_pfn, node_end_pfn,
5525 zone_start_pfn, zone_end_pfn);
5526
5527 /* Check that this node has pages within the zone's required range */
5528 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5529 return 0;
5530
5531 /* Move the zone boundaries inside the node if necessary */
5532 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5533 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5534
5535 /* Return the spanned pages */
5536 return *zone_end_pfn - *zone_start_pfn;
5537 }
5538
5539 /*
5540 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5541 * then all holes in the requested range will be accounted for.
5542 */
5543 unsigned long __meminit __absent_pages_in_range(int nid,
5544 unsigned long range_start_pfn,
5545 unsigned long range_end_pfn)
5546 {
5547 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5548 unsigned long start_pfn, end_pfn;
5549 int i;
5550
5551 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5552 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5553 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5554 nr_absent -= end_pfn - start_pfn;
5555 }
5556 return nr_absent;
5557 }
5558
5559 /**
5560 * absent_pages_in_range - Return number of page frames in holes within a range
5561 * @start_pfn: The start PFN to start searching for holes
5562 * @end_pfn: The end PFN to stop searching for holes
5563 *
5564 * It returns the number of pages frames in memory holes within a range.
5565 */
5566 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5567 unsigned long end_pfn)
5568 {
5569 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5570 }
5571
5572 /* Return the number of page frames in holes in a zone on a node */
5573 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5574 unsigned long zone_type,
5575 unsigned long node_start_pfn,
5576 unsigned long node_end_pfn,
5577 unsigned long *ignored)
5578 {
5579 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5580 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5581 unsigned long zone_start_pfn, zone_end_pfn;
5582 unsigned long nr_absent;
5583
5584 /* When hotadd a new node from cpu_up(), the node should be empty */
5585 if (!node_start_pfn && !node_end_pfn)
5586 return 0;
5587
5588 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5589 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5590
5591 adjust_zone_range_for_zone_movable(nid, zone_type,
5592 node_start_pfn, node_end_pfn,
5593 &zone_start_pfn, &zone_end_pfn);
5594 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5595
5596 /*
5597 * ZONE_MOVABLE handling.
5598 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5599 * and vice versa.
5600 */
5601 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5602 unsigned long start_pfn, end_pfn;
5603 struct memblock_region *r;
5604
5605 for_each_memblock(memory, r) {
5606 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5607 zone_start_pfn, zone_end_pfn);
5608 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5609 zone_start_pfn, zone_end_pfn);
5610
5611 if (zone_type == ZONE_MOVABLE &&
5612 memblock_is_mirror(r))
5613 nr_absent += end_pfn - start_pfn;
5614
5615 if (zone_type == ZONE_NORMAL &&
5616 !memblock_is_mirror(r))
5617 nr_absent += end_pfn - start_pfn;
5618 }
5619 }
5620
5621 return nr_absent;
5622 }
5623
5624 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5625 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5626 unsigned long zone_type,
5627 unsigned long node_start_pfn,
5628 unsigned long node_end_pfn,
5629 unsigned long *zone_start_pfn,
5630 unsigned long *zone_end_pfn,
5631 unsigned long *zones_size)
5632 {
5633 unsigned int zone;
5634
5635 *zone_start_pfn = node_start_pfn;
5636 for (zone = 0; zone < zone_type; zone++)
5637 *zone_start_pfn += zones_size[zone];
5638
5639 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5640
5641 return zones_size[zone_type];
5642 }
5643
5644 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5645 unsigned long zone_type,
5646 unsigned long node_start_pfn,
5647 unsigned long node_end_pfn,
5648 unsigned long *zholes_size)
5649 {
5650 if (!zholes_size)
5651 return 0;
5652
5653 return zholes_size[zone_type];
5654 }
5655
5656 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5657
5658 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5659 unsigned long node_start_pfn,
5660 unsigned long node_end_pfn,
5661 unsigned long *zones_size,
5662 unsigned long *zholes_size)
5663 {
5664 unsigned long realtotalpages = 0, totalpages = 0;
5665 enum zone_type i;
5666
5667 for (i = 0; i < MAX_NR_ZONES; i++) {
5668 struct zone *zone = pgdat->node_zones + i;
5669 unsigned long zone_start_pfn, zone_end_pfn;
5670 unsigned long size, real_size;
5671
5672 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5673 node_start_pfn,
5674 node_end_pfn,
5675 &zone_start_pfn,
5676 &zone_end_pfn,
5677 zones_size);
5678 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5679 node_start_pfn, node_end_pfn,
5680 zholes_size);
5681 if (size)
5682 zone->zone_start_pfn = zone_start_pfn;
5683 else
5684 zone->zone_start_pfn = 0;
5685 zone->spanned_pages = size;
5686 zone->present_pages = real_size;
5687
5688 totalpages += size;
5689 realtotalpages += real_size;
5690 }
5691
5692 pgdat->node_spanned_pages = totalpages;
5693 pgdat->node_present_pages = realtotalpages;
5694 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5695 realtotalpages);
5696 }
5697
5698 #ifndef CONFIG_SPARSEMEM
5699 /*
5700 * Calculate the size of the zone->blockflags rounded to an unsigned long
5701 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5702 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5703 * round what is now in bits to nearest long in bits, then return it in
5704 * bytes.
5705 */
5706 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5707 {
5708 unsigned long usemapsize;
5709
5710 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5711 usemapsize = roundup(zonesize, pageblock_nr_pages);
5712 usemapsize = usemapsize >> pageblock_order;
5713 usemapsize *= NR_PAGEBLOCK_BITS;
5714 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5715
5716 return usemapsize / 8;
5717 }
5718
5719 static void __init setup_usemap(struct pglist_data *pgdat,
5720 struct zone *zone,
5721 unsigned long zone_start_pfn,
5722 unsigned long zonesize)
5723 {
5724 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5725 zone->pageblock_flags = NULL;
5726 if (usemapsize)
5727 zone->pageblock_flags =
5728 memblock_virt_alloc_node_nopanic(usemapsize,
5729 pgdat->node_id);
5730 }
5731 #else
5732 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5733 unsigned long zone_start_pfn, unsigned long zonesize) {}
5734 #endif /* CONFIG_SPARSEMEM */
5735
5736 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5737
5738 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5739 void __paginginit set_pageblock_order(void)
5740 {
5741 unsigned int order;
5742
5743 /* Check that pageblock_nr_pages has not already been setup */
5744 if (pageblock_order)
5745 return;
5746
5747 if (HPAGE_SHIFT > PAGE_SHIFT)
5748 order = HUGETLB_PAGE_ORDER;
5749 else
5750 order = MAX_ORDER - 1;
5751
5752 /*
5753 * Assume the largest contiguous order of interest is a huge page.
5754 * This value may be variable depending on boot parameters on IA64 and
5755 * powerpc.
5756 */
5757 pageblock_order = order;
5758 }
5759 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5760
5761 /*
5762 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5763 * is unused as pageblock_order is set at compile-time. See
5764 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5765 * the kernel config
5766 */
5767 void __paginginit set_pageblock_order(void)
5768 {
5769 }
5770
5771 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5772
5773 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5774 unsigned long present_pages)
5775 {
5776 unsigned long pages = spanned_pages;
5777
5778 /*
5779 * Provide a more accurate estimation if there are holes within
5780 * the zone and SPARSEMEM is in use. If there are holes within the
5781 * zone, each populated memory region may cost us one or two extra
5782 * memmap pages due to alignment because memmap pages for each
5783 * populated regions may not naturally algined on page boundary.
5784 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5785 */
5786 if (spanned_pages > present_pages + (present_pages >> 4) &&
5787 IS_ENABLED(CONFIG_SPARSEMEM))
5788 pages = present_pages;
5789
5790 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5791 }
5792
5793 /*
5794 * Set up the zone data structures:
5795 * - mark all pages reserved
5796 * - mark all memory queues empty
5797 * - clear the memory bitmaps
5798 *
5799 * NOTE: pgdat should get zeroed by caller.
5800 */
5801 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5802 {
5803 enum zone_type j;
5804 int nid = pgdat->node_id;
5805 int ret;
5806
5807 pgdat_resize_init(pgdat);
5808 #ifdef CONFIG_NUMA_BALANCING
5809 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5810 pgdat->numabalancing_migrate_nr_pages = 0;
5811 pgdat->numabalancing_migrate_next_window = jiffies;
5812 #endif
5813 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5814 spin_lock_init(&pgdat->split_queue_lock);
5815 INIT_LIST_HEAD(&pgdat->split_queue);
5816 pgdat->split_queue_len = 0;
5817 #endif
5818 init_waitqueue_head(&pgdat->kswapd_wait);
5819 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5820 #ifdef CONFIG_COMPACTION
5821 init_waitqueue_head(&pgdat->kcompactd_wait);
5822 #endif
5823 pgdat_page_ext_init(pgdat);
5824 spin_lock_init(&pgdat->lru_lock);
5825 lruvec_init(node_lruvec(pgdat));
5826
5827 for (j = 0; j < MAX_NR_ZONES; j++) {
5828 struct zone *zone = pgdat->node_zones + j;
5829 unsigned long size, realsize, freesize, memmap_pages;
5830 unsigned long zone_start_pfn = zone->zone_start_pfn;
5831
5832 size = zone->spanned_pages;
5833 realsize = freesize = zone->present_pages;
5834
5835 /*
5836 * Adjust freesize so that it accounts for how much memory
5837 * is used by this zone for memmap. This affects the watermark
5838 * and per-cpu initialisations
5839 */
5840 memmap_pages = calc_memmap_size(size, realsize);
5841 if (!is_highmem_idx(j)) {
5842 if (freesize >= memmap_pages) {
5843 freesize -= memmap_pages;
5844 if (memmap_pages)
5845 printk(KERN_DEBUG
5846 " %s zone: %lu pages used for memmap\n",
5847 zone_names[j], memmap_pages);
5848 } else
5849 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5850 zone_names[j], memmap_pages, freesize);
5851 }
5852
5853 /* Account for reserved pages */
5854 if (j == 0 && freesize > dma_reserve) {
5855 freesize -= dma_reserve;
5856 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5857 zone_names[0], dma_reserve);
5858 }
5859
5860 if (!is_highmem_idx(j))
5861 nr_kernel_pages += freesize;
5862 /* Charge for highmem memmap if there are enough kernel pages */
5863 else if (nr_kernel_pages > memmap_pages * 2)
5864 nr_kernel_pages -= memmap_pages;
5865 nr_all_pages += freesize;
5866
5867 /*
5868 * Set an approximate value for lowmem here, it will be adjusted
5869 * when the bootmem allocator frees pages into the buddy system.
5870 * And all highmem pages will be managed by the buddy system.
5871 */
5872 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5873 #ifdef CONFIG_NUMA
5874 zone->node = nid;
5875 #endif
5876 zone->name = zone_names[j];
5877 zone->zone_pgdat = pgdat;
5878 spin_lock_init(&zone->lock);
5879 zone_seqlock_init(zone);
5880 zone_pcp_init(zone);
5881
5882 if (!size)
5883 continue;
5884
5885 set_pageblock_order();
5886 setup_usemap(pgdat, zone, zone_start_pfn, size);
5887 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5888 BUG_ON(ret);
5889 memmap_init(size, nid, j, zone_start_pfn);
5890 }
5891 }
5892
5893 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
5894 {
5895 unsigned long __maybe_unused start = 0;
5896 unsigned long __maybe_unused offset = 0;
5897
5898 /* Skip empty nodes */
5899 if (!pgdat->node_spanned_pages)
5900 return;
5901
5902 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5903 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5904 offset = pgdat->node_start_pfn - start;
5905 /* ia64 gets its own node_mem_map, before this, without bootmem */
5906 if (!pgdat->node_mem_map) {
5907 unsigned long size, end;
5908 struct page *map;
5909
5910 /*
5911 * The zone's endpoints aren't required to be MAX_ORDER
5912 * aligned but the node_mem_map endpoints must be in order
5913 * for the buddy allocator to function correctly.
5914 */
5915 end = pgdat_end_pfn(pgdat);
5916 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5917 size = (end - start) * sizeof(struct page);
5918 map = alloc_remap(pgdat->node_id, size);
5919 if (!map)
5920 map = memblock_virt_alloc_node_nopanic(size,
5921 pgdat->node_id);
5922 pgdat->node_mem_map = map + offset;
5923 }
5924 #ifndef CONFIG_NEED_MULTIPLE_NODES
5925 /*
5926 * With no DISCONTIG, the global mem_map is just set as node 0's
5927 */
5928 if (pgdat == NODE_DATA(0)) {
5929 mem_map = NODE_DATA(0)->node_mem_map;
5930 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5931 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5932 mem_map -= offset;
5933 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5934 }
5935 #endif
5936 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5937 }
5938
5939 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5940 unsigned long node_start_pfn, unsigned long *zholes_size)
5941 {
5942 pg_data_t *pgdat = NODE_DATA(nid);
5943 unsigned long start_pfn = 0;
5944 unsigned long end_pfn = 0;
5945
5946 /* pg_data_t should be reset to zero when it's allocated */
5947 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5948
5949 reset_deferred_meminit(pgdat);
5950 pgdat->node_id = nid;
5951 pgdat->node_start_pfn = node_start_pfn;
5952 pgdat->per_cpu_nodestats = NULL;
5953 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5954 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5955 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5956 (u64)start_pfn << PAGE_SHIFT,
5957 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5958 #else
5959 start_pfn = node_start_pfn;
5960 #endif
5961 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5962 zones_size, zholes_size);
5963
5964 alloc_node_mem_map(pgdat);
5965 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5966 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5967 nid, (unsigned long)pgdat,
5968 (unsigned long)pgdat->node_mem_map);
5969 #endif
5970
5971 free_area_init_core(pgdat);
5972 }
5973
5974 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5975
5976 #if MAX_NUMNODES > 1
5977 /*
5978 * Figure out the number of possible node ids.
5979 */
5980 void __init setup_nr_node_ids(void)
5981 {
5982 unsigned int highest;
5983
5984 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5985 nr_node_ids = highest + 1;
5986 }
5987 #endif
5988
5989 /**
5990 * node_map_pfn_alignment - determine the maximum internode alignment
5991 *
5992 * This function should be called after node map is populated and sorted.
5993 * It calculates the maximum power of two alignment which can distinguish
5994 * all the nodes.
5995 *
5996 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5997 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5998 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5999 * shifted, 1GiB is enough and this function will indicate so.
6000 *
6001 * This is used to test whether pfn -> nid mapping of the chosen memory
6002 * model has fine enough granularity to avoid incorrect mapping for the
6003 * populated node map.
6004 *
6005 * Returns the determined alignment in pfn's. 0 if there is no alignment
6006 * requirement (single node).
6007 */
6008 unsigned long __init node_map_pfn_alignment(void)
6009 {
6010 unsigned long accl_mask = 0, last_end = 0;
6011 unsigned long start, end, mask;
6012 int last_nid = -1;
6013 int i, nid;
6014
6015 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6016 if (!start || last_nid < 0 || last_nid == nid) {
6017 last_nid = nid;
6018 last_end = end;
6019 continue;
6020 }
6021
6022 /*
6023 * Start with a mask granular enough to pin-point to the
6024 * start pfn and tick off bits one-by-one until it becomes
6025 * too coarse to separate the current node from the last.
6026 */
6027 mask = ~((1 << __ffs(start)) - 1);
6028 while (mask && last_end <= (start & (mask << 1)))
6029 mask <<= 1;
6030
6031 /* accumulate all internode masks */
6032 accl_mask |= mask;
6033 }
6034
6035 /* convert mask to number of pages */
6036 return ~accl_mask + 1;
6037 }
6038
6039 /* Find the lowest pfn for a node */
6040 static unsigned long __init find_min_pfn_for_node(int nid)
6041 {
6042 unsigned long min_pfn = ULONG_MAX;
6043 unsigned long start_pfn;
6044 int i;
6045
6046 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6047 min_pfn = min(min_pfn, start_pfn);
6048
6049 if (min_pfn == ULONG_MAX) {
6050 pr_warn("Could not find start_pfn for node %d\n", nid);
6051 return 0;
6052 }
6053
6054 return min_pfn;
6055 }
6056
6057 /**
6058 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6059 *
6060 * It returns the minimum PFN based on information provided via
6061 * memblock_set_node().
6062 */
6063 unsigned long __init find_min_pfn_with_active_regions(void)
6064 {
6065 return find_min_pfn_for_node(MAX_NUMNODES);
6066 }
6067
6068 /*
6069 * early_calculate_totalpages()
6070 * Sum pages in active regions for movable zone.
6071 * Populate N_MEMORY for calculating usable_nodes.
6072 */
6073 static unsigned long __init early_calculate_totalpages(void)
6074 {
6075 unsigned long totalpages = 0;
6076 unsigned long start_pfn, end_pfn;
6077 int i, nid;
6078
6079 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6080 unsigned long pages = end_pfn - start_pfn;
6081
6082 totalpages += pages;
6083 if (pages)
6084 node_set_state(nid, N_MEMORY);
6085 }
6086 return totalpages;
6087 }
6088
6089 /*
6090 * Find the PFN the Movable zone begins in each node. Kernel memory
6091 * is spread evenly between nodes as long as the nodes have enough
6092 * memory. When they don't, some nodes will have more kernelcore than
6093 * others
6094 */
6095 static void __init find_zone_movable_pfns_for_nodes(void)
6096 {
6097 int i, nid;
6098 unsigned long usable_startpfn;
6099 unsigned long kernelcore_node, kernelcore_remaining;
6100 /* save the state before borrow the nodemask */
6101 nodemask_t saved_node_state = node_states[N_MEMORY];
6102 unsigned long totalpages = early_calculate_totalpages();
6103 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6104 struct memblock_region *r;
6105
6106 /* Need to find movable_zone earlier when movable_node is specified. */
6107 find_usable_zone_for_movable();
6108
6109 /*
6110 * If movable_node is specified, ignore kernelcore and movablecore
6111 * options.
6112 */
6113 if (movable_node_is_enabled()) {
6114 for_each_memblock(memory, r) {
6115 if (!memblock_is_hotpluggable(r))
6116 continue;
6117
6118 nid = r->nid;
6119
6120 usable_startpfn = PFN_DOWN(r->base);
6121 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6122 min(usable_startpfn, zone_movable_pfn[nid]) :
6123 usable_startpfn;
6124 }
6125
6126 goto out2;
6127 }
6128
6129 /*
6130 * If kernelcore=mirror is specified, ignore movablecore option
6131 */
6132 if (mirrored_kernelcore) {
6133 bool mem_below_4gb_not_mirrored = false;
6134
6135 for_each_memblock(memory, r) {
6136 if (memblock_is_mirror(r))
6137 continue;
6138
6139 nid = r->nid;
6140
6141 usable_startpfn = memblock_region_memory_base_pfn(r);
6142
6143 if (usable_startpfn < 0x100000) {
6144 mem_below_4gb_not_mirrored = true;
6145 continue;
6146 }
6147
6148 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6149 min(usable_startpfn, zone_movable_pfn[nid]) :
6150 usable_startpfn;
6151 }
6152
6153 if (mem_below_4gb_not_mirrored)
6154 pr_warn("This configuration results in unmirrored kernel memory.");
6155
6156 goto out2;
6157 }
6158
6159 /*
6160 * If movablecore=nn[KMG] was specified, calculate what size of
6161 * kernelcore that corresponds so that memory usable for
6162 * any allocation type is evenly spread. If both kernelcore
6163 * and movablecore are specified, then the value of kernelcore
6164 * will be used for required_kernelcore if it's greater than
6165 * what movablecore would have allowed.
6166 */
6167 if (required_movablecore) {
6168 unsigned long corepages;
6169
6170 /*
6171 * Round-up so that ZONE_MOVABLE is at least as large as what
6172 * was requested by the user
6173 */
6174 required_movablecore =
6175 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6176 required_movablecore = min(totalpages, required_movablecore);
6177 corepages = totalpages - required_movablecore;
6178
6179 required_kernelcore = max(required_kernelcore, corepages);
6180 }
6181
6182 /*
6183 * If kernelcore was not specified or kernelcore size is larger
6184 * than totalpages, there is no ZONE_MOVABLE.
6185 */
6186 if (!required_kernelcore || required_kernelcore >= totalpages)
6187 goto out;
6188
6189 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6190 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6191
6192 restart:
6193 /* Spread kernelcore memory as evenly as possible throughout nodes */
6194 kernelcore_node = required_kernelcore / usable_nodes;
6195 for_each_node_state(nid, N_MEMORY) {
6196 unsigned long start_pfn, end_pfn;
6197
6198 /*
6199 * Recalculate kernelcore_node if the division per node
6200 * now exceeds what is necessary to satisfy the requested
6201 * amount of memory for the kernel
6202 */
6203 if (required_kernelcore < kernelcore_node)
6204 kernelcore_node = required_kernelcore / usable_nodes;
6205
6206 /*
6207 * As the map is walked, we track how much memory is usable
6208 * by the kernel using kernelcore_remaining. When it is
6209 * 0, the rest of the node is usable by ZONE_MOVABLE
6210 */
6211 kernelcore_remaining = kernelcore_node;
6212
6213 /* Go through each range of PFNs within this node */
6214 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6215 unsigned long size_pages;
6216
6217 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6218 if (start_pfn >= end_pfn)
6219 continue;
6220
6221 /* Account for what is only usable for kernelcore */
6222 if (start_pfn < usable_startpfn) {
6223 unsigned long kernel_pages;
6224 kernel_pages = min(end_pfn, usable_startpfn)
6225 - start_pfn;
6226
6227 kernelcore_remaining -= min(kernel_pages,
6228 kernelcore_remaining);
6229 required_kernelcore -= min(kernel_pages,
6230 required_kernelcore);
6231
6232 /* Continue if range is now fully accounted */
6233 if (end_pfn <= usable_startpfn) {
6234
6235 /*
6236 * Push zone_movable_pfn to the end so
6237 * that if we have to rebalance
6238 * kernelcore across nodes, we will
6239 * not double account here
6240 */
6241 zone_movable_pfn[nid] = end_pfn;
6242 continue;
6243 }
6244 start_pfn = usable_startpfn;
6245 }
6246
6247 /*
6248 * The usable PFN range for ZONE_MOVABLE is from
6249 * start_pfn->end_pfn. Calculate size_pages as the
6250 * number of pages used as kernelcore
6251 */
6252 size_pages = end_pfn - start_pfn;
6253 if (size_pages > kernelcore_remaining)
6254 size_pages = kernelcore_remaining;
6255 zone_movable_pfn[nid] = start_pfn + size_pages;
6256
6257 /*
6258 * Some kernelcore has been met, update counts and
6259 * break if the kernelcore for this node has been
6260 * satisfied
6261 */
6262 required_kernelcore -= min(required_kernelcore,
6263 size_pages);
6264 kernelcore_remaining -= size_pages;
6265 if (!kernelcore_remaining)
6266 break;
6267 }
6268 }
6269
6270 /*
6271 * If there is still required_kernelcore, we do another pass with one
6272 * less node in the count. This will push zone_movable_pfn[nid] further
6273 * along on the nodes that still have memory until kernelcore is
6274 * satisfied
6275 */
6276 usable_nodes--;
6277 if (usable_nodes && required_kernelcore > usable_nodes)
6278 goto restart;
6279
6280 out2:
6281 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6282 for (nid = 0; nid < MAX_NUMNODES; nid++)
6283 zone_movable_pfn[nid] =
6284 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6285
6286 out:
6287 /* restore the node_state */
6288 node_states[N_MEMORY] = saved_node_state;
6289 }
6290
6291 /* Any regular or high memory on that node ? */
6292 static void check_for_memory(pg_data_t *pgdat, int nid)
6293 {
6294 enum zone_type zone_type;
6295
6296 if (N_MEMORY == N_NORMAL_MEMORY)
6297 return;
6298
6299 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6300 struct zone *zone = &pgdat->node_zones[zone_type];
6301 if (populated_zone(zone)) {
6302 node_set_state(nid, N_HIGH_MEMORY);
6303 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6304 zone_type <= ZONE_NORMAL)
6305 node_set_state(nid, N_NORMAL_MEMORY);
6306 break;
6307 }
6308 }
6309 }
6310
6311 /**
6312 * free_area_init_nodes - Initialise all pg_data_t and zone data
6313 * @max_zone_pfn: an array of max PFNs for each zone
6314 *
6315 * This will call free_area_init_node() for each active node in the system.
6316 * Using the page ranges provided by memblock_set_node(), the size of each
6317 * zone in each node and their holes is calculated. If the maximum PFN
6318 * between two adjacent zones match, it is assumed that the zone is empty.
6319 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6320 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6321 * starts where the previous one ended. For example, ZONE_DMA32 starts
6322 * at arch_max_dma_pfn.
6323 */
6324 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6325 {
6326 unsigned long start_pfn, end_pfn;
6327 int i, nid;
6328
6329 /* Record where the zone boundaries are */
6330 memset(arch_zone_lowest_possible_pfn, 0,
6331 sizeof(arch_zone_lowest_possible_pfn));
6332 memset(arch_zone_highest_possible_pfn, 0,
6333 sizeof(arch_zone_highest_possible_pfn));
6334
6335 start_pfn = find_min_pfn_with_active_regions();
6336
6337 for (i = 0; i < MAX_NR_ZONES; i++) {
6338 if (i == ZONE_MOVABLE)
6339 continue;
6340
6341 end_pfn = max(max_zone_pfn[i], start_pfn);
6342 arch_zone_lowest_possible_pfn[i] = start_pfn;
6343 arch_zone_highest_possible_pfn[i] = end_pfn;
6344
6345 start_pfn = end_pfn;
6346 }
6347 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6348 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6349
6350 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6351 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6352 find_zone_movable_pfns_for_nodes();
6353
6354 /* Print out the zone ranges */
6355 pr_info("Zone ranges:\n");
6356 for (i = 0; i < MAX_NR_ZONES; i++) {
6357 if (i == ZONE_MOVABLE)
6358 continue;
6359 pr_info(" %-8s ", zone_names[i]);
6360 if (arch_zone_lowest_possible_pfn[i] ==
6361 arch_zone_highest_possible_pfn[i])
6362 pr_cont("empty\n");
6363 else
6364 pr_cont("[mem %#018Lx-%#018Lx]\n",
6365 (u64)arch_zone_lowest_possible_pfn[i]
6366 << PAGE_SHIFT,
6367 ((u64)arch_zone_highest_possible_pfn[i]
6368 << PAGE_SHIFT) - 1);
6369 }
6370
6371 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6372 pr_info("Movable zone start for each node\n");
6373 for (i = 0; i < MAX_NUMNODES; i++) {
6374 if (zone_movable_pfn[i])
6375 pr_info(" Node %d: %#018Lx\n", i,
6376 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6377 }
6378
6379 /* Print out the early node map */
6380 pr_info("Early memory node ranges\n");
6381 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6382 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6383 (u64)start_pfn << PAGE_SHIFT,
6384 ((u64)end_pfn << PAGE_SHIFT) - 1);
6385
6386 /* Initialise every node */
6387 mminit_verify_pageflags_layout();
6388 setup_nr_node_ids();
6389 for_each_online_node(nid) {
6390 pg_data_t *pgdat = NODE_DATA(nid);
6391 free_area_init_node(nid, NULL,
6392 find_min_pfn_for_node(nid), NULL);
6393
6394 /* Any memory on that node */
6395 if (pgdat->node_present_pages)
6396 node_set_state(nid, N_MEMORY);
6397 check_for_memory(pgdat, nid);
6398 }
6399 }
6400
6401 static int __init cmdline_parse_core(char *p, unsigned long *core)
6402 {
6403 unsigned long long coremem;
6404 if (!p)
6405 return -EINVAL;
6406
6407 coremem = memparse(p, &p);
6408 *core = coremem >> PAGE_SHIFT;
6409
6410 /* Paranoid check that UL is enough for the coremem value */
6411 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6412
6413 return 0;
6414 }
6415
6416 /*
6417 * kernelcore=size sets the amount of memory for use for allocations that
6418 * cannot be reclaimed or migrated.
6419 */
6420 static int __init cmdline_parse_kernelcore(char *p)
6421 {
6422 /* parse kernelcore=mirror */
6423 if (parse_option_str(p, "mirror")) {
6424 mirrored_kernelcore = true;
6425 return 0;
6426 }
6427
6428 return cmdline_parse_core(p, &required_kernelcore);
6429 }
6430
6431 /*
6432 * movablecore=size sets the amount of memory for use for allocations that
6433 * can be reclaimed or migrated.
6434 */
6435 static int __init cmdline_parse_movablecore(char *p)
6436 {
6437 return cmdline_parse_core(p, &required_movablecore);
6438 }
6439
6440 early_param("kernelcore", cmdline_parse_kernelcore);
6441 early_param("movablecore", cmdline_parse_movablecore);
6442
6443 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6444
6445 void adjust_managed_page_count(struct page *page, long count)
6446 {
6447 spin_lock(&managed_page_count_lock);
6448 page_zone(page)->managed_pages += count;
6449 totalram_pages += count;
6450 #ifdef CONFIG_HIGHMEM
6451 if (PageHighMem(page))
6452 totalhigh_pages += count;
6453 #endif
6454 spin_unlock(&managed_page_count_lock);
6455 }
6456 EXPORT_SYMBOL(adjust_managed_page_count);
6457
6458 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6459 {
6460 void *pos;
6461 unsigned long pages = 0;
6462
6463 start = (void *)PAGE_ALIGN((unsigned long)start);
6464 end = (void *)((unsigned long)end & PAGE_MASK);
6465 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6466 if ((unsigned int)poison <= 0xFF)
6467 memset(pos, poison, PAGE_SIZE);
6468 free_reserved_page(virt_to_page(pos));
6469 }
6470
6471 if (pages && s)
6472 pr_info("Freeing %s memory: %ldK\n",
6473 s, pages << (PAGE_SHIFT - 10));
6474
6475 return pages;
6476 }
6477 EXPORT_SYMBOL(free_reserved_area);
6478
6479 #ifdef CONFIG_HIGHMEM
6480 void free_highmem_page(struct page *page)
6481 {
6482 __free_reserved_page(page);
6483 totalram_pages++;
6484 page_zone(page)->managed_pages++;
6485 totalhigh_pages++;
6486 }
6487 #endif
6488
6489
6490 void __init mem_init_print_info(const char *str)
6491 {
6492 unsigned long physpages, codesize, datasize, rosize, bss_size;
6493 unsigned long init_code_size, init_data_size;
6494
6495 physpages = get_num_physpages();
6496 codesize = _etext - _stext;
6497 datasize = _edata - _sdata;
6498 rosize = __end_rodata - __start_rodata;
6499 bss_size = __bss_stop - __bss_start;
6500 init_data_size = __init_end - __init_begin;
6501 init_code_size = _einittext - _sinittext;
6502
6503 /*
6504 * Detect special cases and adjust section sizes accordingly:
6505 * 1) .init.* may be embedded into .data sections
6506 * 2) .init.text.* may be out of [__init_begin, __init_end],
6507 * please refer to arch/tile/kernel/vmlinux.lds.S.
6508 * 3) .rodata.* may be embedded into .text or .data sections.
6509 */
6510 #define adj_init_size(start, end, size, pos, adj) \
6511 do { \
6512 if (start <= pos && pos < end && size > adj) \
6513 size -= adj; \
6514 } while (0)
6515
6516 adj_init_size(__init_begin, __init_end, init_data_size,
6517 _sinittext, init_code_size);
6518 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6519 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6520 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6521 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6522
6523 #undef adj_init_size
6524
6525 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6526 #ifdef CONFIG_HIGHMEM
6527 ", %luK highmem"
6528 #endif
6529 "%s%s)\n",
6530 nr_free_pages() << (PAGE_SHIFT - 10),
6531 physpages << (PAGE_SHIFT - 10),
6532 codesize >> 10, datasize >> 10, rosize >> 10,
6533 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6534 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6535 totalcma_pages << (PAGE_SHIFT - 10),
6536 #ifdef CONFIG_HIGHMEM
6537 totalhigh_pages << (PAGE_SHIFT - 10),
6538 #endif
6539 str ? ", " : "", str ? str : "");
6540 }
6541
6542 /**
6543 * set_dma_reserve - set the specified number of pages reserved in the first zone
6544 * @new_dma_reserve: The number of pages to mark reserved
6545 *
6546 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6547 * In the DMA zone, a significant percentage may be consumed by kernel image
6548 * and other unfreeable allocations which can skew the watermarks badly. This
6549 * function may optionally be used to account for unfreeable pages in the
6550 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6551 * smaller per-cpu batchsize.
6552 */
6553 void __init set_dma_reserve(unsigned long new_dma_reserve)
6554 {
6555 dma_reserve = new_dma_reserve;
6556 }
6557
6558 void __init free_area_init(unsigned long *zones_size)
6559 {
6560 free_area_init_node(0, zones_size,
6561 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6562 }
6563
6564 static int page_alloc_cpu_dead(unsigned int cpu)
6565 {
6566
6567 lru_add_drain_cpu(cpu);
6568 drain_pages(cpu);
6569
6570 /*
6571 * Spill the event counters of the dead processor
6572 * into the current processors event counters.
6573 * This artificially elevates the count of the current
6574 * processor.
6575 */
6576 vm_events_fold_cpu(cpu);
6577
6578 /*
6579 * Zero the differential counters of the dead processor
6580 * so that the vm statistics are consistent.
6581 *
6582 * This is only okay since the processor is dead and cannot
6583 * race with what we are doing.
6584 */
6585 cpu_vm_stats_fold(cpu);
6586 return 0;
6587 }
6588
6589 void __init page_alloc_init(void)
6590 {
6591 int ret;
6592
6593 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6594 "mm/page_alloc:dead", NULL,
6595 page_alloc_cpu_dead);
6596 WARN_ON(ret < 0);
6597 }
6598
6599 /*
6600 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6601 * or min_free_kbytes changes.
6602 */
6603 static void calculate_totalreserve_pages(void)
6604 {
6605 struct pglist_data *pgdat;
6606 unsigned long reserve_pages = 0;
6607 enum zone_type i, j;
6608
6609 for_each_online_pgdat(pgdat) {
6610
6611 pgdat->totalreserve_pages = 0;
6612
6613 for (i = 0; i < MAX_NR_ZONES; i++) {
6614 struct zone *zone = pgdat->node_zones + i;
6615 long max = 0;
6616
6617 /* Find valid and maximum lowmem_reserve in the zone */
6618 for (j = i; j < MAX_NR_ZONES; j++) {
6619 if (zone->lowmem_reserve[j] > max)
6620 max = zone->lowmem_reserve[j];
6621 }
6622
6623 /* we treat the high watermark as reserved pages. */
6624 max += high_wmark_pages(zone);
6625
6626 if (max > zone->managed_pages)
6627 max = zone->managed_pages;
6628
6629 pgdat->totalreserve_pages += max;
6630
6631 reserve_pages += max;
6632 }
6633 }
6634 totalreserve_pages = reserve_pages;
6635 }
6636
6637 /*
6638 * setup_per_zone_lowmem_reserve - called whenever
6639 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6640 * has a correct pages reserved value, so an adequate number of
6641 * pages are left in the zone after a successful __alloc_pages().
6642 */
6643 static void setup_per_zone_lowmem_reserve(void)
6644 {
6645 struct pglist_data *pgdat;
6646 enum zone_type j, idx;
6647
6648 for_each_online_pgdat(pgdat) {
6649 for (j = 0; j < MAX_NR_ZONES; j++) {
6650 struct zone *zone = pgdat->node_zones + j;
6651 unsigned long managed_pages = zone->managed_pages;
6652
6653 zone->lowmem_reserve[j] = 0;
6654
6655 idx = j;
6656 while (idx) {
6657 struct zone *lower_zone;
6658
6659 idx--;
6660
6661 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6662 sysctl_lowmem_reserve_ratio[idx] = 1;
6663
6664 lower_zone = pgdat->node_zones + idx;
6665 lower_zone->lowmem_reserve[j] = managed_pages /
6666 sysctl_lowmem_reserve_ratio[idx];
6667 managed_pages += lower_zone->managed_pages;
6668 }
6669 }
6670 }
6671
6672 /* update totalreserve_pages */
6673 calculate_totalreserve_pages();
6674 }
6675
6676 static void __setup_per_zone_wmarks(void)
6677 {
6678 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6679 unsigned long lowmem_pages = 0;
6680 struct zone *zone;
6681 unsigned long flags;
6682
6683 /* Calculate total number of !ZONE_HIGHMEM pages */
6684 for_each_zone(zone) {
6685 if (!is_highmem(zone))
6686 lowmem_pages += zone->managed_pages;
6687 }
6688
6689 for_each_zone(zone) {
6690 u64 tmp;
6691
6692 spin_lock_irqsave(&zone->lock, flags);
6693 tmp = (u64)pages_min * zone->managed_pages;
6694 do_div(tmp, lowmem_pages);
6695 if (is_highmem(zone)) {
6696 /*
6697 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6698 * need highmem pages, so cap pages_min to a small
6699 * value here.
6700 *
6701 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6702 * deltas control asynch page reclaim, and so should
6703 * not be capped for highmem.
6704 */
6705 unsigned long min_pages;
6706
6707 min_pages = zone->managed_pages / 1024;
6708 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6709 zone->watermark[WMARK_MIN] = min_pages;
6710 } else {
6711 /*
6712 * If it's a lowmem zone, reserve a number of pages
6713 * proportionate to the zone's size.
6714 */
6715 zone->watermark[WMARK_MIN] = tmp;
6716 }
6717
6718 /*
6719 * Set the kswapd watermarks distance according to the
6720 * scale factor in proportion to available memory, but
6721 * ensure a minimum size on small systems.
6722 */
6723 tmp = max_t(u64, tmp >> 2,
6724 mult_frac(zone->managed_pages,
6725 watermark_scale_factor, 10000));
6726
6727 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6728 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6729
6730 spin_unlock_irqrestore(&zone->lock, flags);
6731 }
6732
6733 /* update totalreserve_pages */
6734 calculate_totalreserve_pages();
6735 }
6736
6737 /**
6738 * setup_per_zone_wmarks - called when min_free_kbytes changes
6739 * or when memory is hot-{added|removed}
6740 *
6741 * Ensures that the watermark[min,low,high] values for each zone are set
6742 * correctly with respect to min_free_kbytes.
6743 */
6744 void setup_per_zone_wmarks(void)
6745 {
6746 mutex_lock(&zonelists_mutex);
6747 __setup_per_zone_wmarks();
6748 mutex_unlock(&zonelists_mutex);
6749 }
6750
6751 /*
6752 * Initialise min_free_kbytes.
6753 *
6754 * For small machines we want it small (128k min). For large machines
6755 * we want it large (64MB max). But it is not linear, because network
6756 * bandwidth does not increase linearly with machine size. We use
6757 *
6758 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6759 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6760 *
6761 * which yields
6762 *
6763 * 16MB: 512k
6764 * 32MB: 724k
6765 * 64MB: 1024k
6766 * 128MB: 1448k
6767 * 256MB: 2048k
6768 * 512MB: 2896k
6769 * 1024MB: 4096k
6770 * 2048MB: 5792k
6771 * 4096MB: 8192k
6772 * 8192MB: 11584k
6773 * 16384MB: 16384k
6774 */
6775 int __meminit init_per_zone_wmark_min(void)
6776 {
6777 unsigned long lowmem_kbytes;
6778 int new_min_free_kbytes;
6779
6780 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6781 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6782
6783 if (new_min_free_kbytes > user_min_free_kbytes) {
6784 min_free_kbytes = new_min_free_kbytes;
6785 if (min_free_kbytes < 128)
6786 min_free_kbytes = 128;
6787 if (min_free_kbytes > 65536)
6788 min_free_kbytes = 65536;
6789 } else {
6790 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6791 new_min_free_kbytes, user_min_free_kbytes);
6792 }
6793 setup_per_zone_wmarks();
6794 refresh_zone_stat_thresholds();
6795 setup_per_zone_lowmem_reserve();
6796
6797 #ifdef CONFIG_NUMA
6798 setup_min_unmapped_ratio();
6799 setup_min_slab_ratio();
6800 #endif
6801
6802 return 0;
6803 }
6804 core_initcall(init_per_zone_wmark_min)
6805
6806 /*
6807 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6808 * that we can call two helper functions whenever min_free_kbytes
6809 * changes.
6810 */
6811 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6812 void __user *buffer, size_t *length, loff_t *ppos)
6813 {
6814 int rc;
6815
6816 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6817 if (rc)
6818 return rc;
6819
6820 if (write) {
6821 user_min_free_kbytes = min_free_kbytes;
6822 setup_per_zone_wmarks();
6823 }
6824 return 0;
6825 }
6826
6827 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6828 void __user *buffer, size_t *length, loff_t *ppos)
6829 {
6830 int rc;
6831
6832 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6833 if (rc)
6834 return rc;
6835
6836 if (write)
6837 setup_per_zone_wmarks();
6838
6839 return 0;
6840 }
6841
6842 #ifdef CONFIG_NUMA
6843 static void setup_min_unmapped_ratio(void)
6844 {
6845 pg_data_t *pgdat;
6846 struct zone *zone;
6847
6848 for_each_online_pgdat(pgdat)
6849 pgdat->min_unmapped_pages = 0;
6850
6851 for_each_zone(zone)
6852 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6853 sysctl_min_unmapped_ratio) / 100;
6854 }
6855
6856
6857 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6858 void __user *buffer, size_t *length, loff_t *ppos)
6859 {
6860 int rc;
6861
6862 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6863 if (rc)
6864 return rc;
6865
6866 setup_min_unmapped_ratio();
6867
6868 return 0;
6869 }
6870
6871 static void setup_min_slab_ratio(void)
6872 {
6873 pg_data_t *pgdat;
6874 struct zone *zone;
6875
6876 for_each_online_pgdat(pgdat)
6877 pgdat->min_slab_pages = 0;
6878
6879 for_each_zone(zone)
6880 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6881 sysctl_min_slab_ratio) / 100;
6882 }
6883
6884 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6885 void __user *buffer, size_t *length, loff_t *ppos)
6886 {
6887 int rc;
6888
6889 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6890 if (rc)
6891 return rc;
6892
6893 setup_min_slab_ratio();
6894
6895 return 0;
6896 }
6897 #endif
6898
6899 /*
6900 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6901 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6902 * whenever sysctl_lowmem_reserve_ratio changes.
6903 *
6904 * The reserve ratio obviously has absolutely no relation with the
6905 * minimum watermarks. The lowmem reserve ratio can only make sense
6906 * if in function of the boot time zone sizes.
6907 */
6908 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6909 void __user *buffer, size_t *length, loff_t *ppos)
6910 {
6911 proc_dointvec_minmax(table, write, buffer, length, ppos);
6912 setup_per_zone_lowmem_reserve();
6913 return 0;
6914 }
6915
6916 /*
6917 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6918 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6919 * pagelist can have before it gets flushed back to buddy allocator.
6920 */
6921 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6922 void __user *buffer, size_t *length, loff_t *ppos)
6923 {
6924 struct zone *zone;
6925 int old_percpu_pagelist_fraction;
6926 int ret;
6927
6928 mutex_lock(&pcp_batch_high_lock);
6929 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6930
6931 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6932 if (!write || ret < 0)
6933 goto out;
6934
6935 /* Sanity checking to avoid pcp imbalance */
6936 if (percpu_pagelist_fraction &&
6937 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6938 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6939 ret = -EINVAL;
6940 goto out;
6941 }
6942
6943 /* No change? */
6944 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6945 goto out;
6946
6947 for_each_populated_zone(zone) {
6948 unsigned int cpu;
6949
6950 for_each_possible_cpu(cpu)
6951 pageset_set_high_and_batch(zone,
6952 per_cpu_ptr(zone->pageset, cpu));
6953 }
6954 out:
6955 mutex_unlock(&pcp_batch_high_lock);
6956 return ret;
6957 }
6958
6959 #ifdef CONFIG_NUMA
6960 int hashdist = HASHDIST_DEFAULT;
6961
6962 static int __init set_hashdist(char *str)
6963 {
6964 if (!str)
6965 return 0;
6966 hashdist = simple_strtoul(str, &str, 0);
6967 return 1;
6968 }
6969 __setup("hashdist=", set_hashdist);
6970 #endif
6971
6972 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
6973 /*
6974 * Returns the number of pages that arch has reserved but
6975 * is not known to alloc_large_system_hash().
6976 */
6977 static unsigned long __init arch_reserved_kernel_pages(void)
6978 {
6979 return 0;
6980 }
6981 #endif
6982
6983 /*
6984 * allocate a large system hash table from bootmem
6985 * - it is assumed that the hash table must contain an exact power-of-2
6986 * quantity of entries
6987 * - limit is the number of hash buckets, not the total allocation size
6988 */
6989 void *__init alloc_large_system_hash(const char *tablename,
6990 unsigned long bucketsize,
6991 unsigned long numentries,
6992 int scale,
6993 int flags,
6994 unsigned int *_hash_shift,
6995 unsigned int *_hash_mask,
6996 unsigned long low_limit,
6997 unsigned long high_limit)
6998 {
6999 unsigned long long max = high_limit;
7000 unsigned long log2qty, size;
7001 void *table = NULL;
7002
7003 /* allow the kernel cmdline to have a say */
7004 if (!numentries) {
7005 /* round applicable memory size up to nearest megabyte */
7006 numentries = nr_kernel_pages;
7007 numentries -= arch_reserved_kernel_pages();
7008
7009 /* It isn't necessary when PAGE_SIZE >= 1MB */
7010 if (PAGE_SHIFT < 20)
7011 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7012
7013 /* limit to 1 bucket per 2^scale bytes of low memory */
7014 if (scale > PAGE_SHIFT)
7015 numentries >>= (scale - PAGE_SHIFT);
7016 else
7017 numentries <<= (PAGE_SHIFT - scale);
7018
7019 /* Make sure we've got at least a 0-order allocation.. */
7020 if (unlikely(flags & HASH_SMALL)) {
7021 /* Makes no sense without HASH_EARLY */
7022 WARN_ON(!(flags & HASH_EARLY));
7023 if (!(numentries >> *_hash_shift)) {
7024 numentries = 1UL << *_hash_shift;
7025 BUG_ON(!numentries);
7026 }
7027 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7028 numentries = PAGE_SIZE / bucketsize;
7029 }
7030 numentries = roundup_pow_of_two(numentries);
7031
7032 /* limit allocation size to 1/16 total memory by default */
7033 if (max == 0) {
7034 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7035 do_div(max, bucketsize);
7036 }
7037 max = min(max, 0x80000000ULL);
7038
7039 if (numentries < low_limit)
7040 numentries = low_limit;
7041 if (numentries > max)
7042 numentries = max;
7043
7044 log2qty = ilog2(numentries);
7045
7046 do {
7047 size = bucketsize << log2qty;
7048 if (flags & HASH_EARLY)
7049 table = memblock_virt_alloc_nopanic(size, 0);
7050 else if (hashdist)
7051 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7052 else {
7053 /*
7054 * If bucketsize is not a power-of-two, we may free
7055 * some pages at the end of hash table which
7056 * alloc_pages_exact() automatically does
7057 */
7058 if (get_order(size) < MAX_ORDER) {
7059 table = alloc_pages_exact(size, GFP_ATOMIC);
7060 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7061 }
7062 }
7063 } while (!table && size > PAGE_SIZE && --log2qty);
7064
7065 if (!table)
7066 panic("Failed to allocate %s hash table\n", tablename);
7067
7068 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7069 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7070
7071 if (_hash_shift)
7072 *_hash_shift = log2qty;
7073 if (_hash_mask)
7074 *_hash_mask = (1 << log2qty) - 1;
7075
7076 return table;
7077 }
7078
7079 /*
7080 * This function checks whether pageblock includes unmovable pages or not.
7081 * If @count is not zero, it is okay to include less @count unmovable pages
7082 *
7083 * PageLRU check without isolation or lru_lock could race so that
7084 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7085 * expect this function should be exact.
7086 */
7087 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7088 bool skip_hwpoisoned_pages)
7089 {
7090 unsigned long pfn, iter, found;
7091 int mt;
7092
7093 /*
7094 * For avoiding noise data, lru_add_drain_all() should be called
7095 * If ZONE_MOVABLE, the zone never contains unmovable pages
7096 */
7097 if (zone_idx(zone) == ZONE_MOVABLE)
7098 return false;
7099 mt = get_pageblock_migratetype(page);
7100 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7101 return false;
7102
7103 pfn = page_to_pfn(page);
7104 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7105 unsigned long check = pfn + iter;
7106
7107 if (!pfn_valid_within(check))
7108 continue;
7109
7110 page = pfn_to_page(check);
7111
7112 /*
7113 * Hugepages are not in LRU lists, but they're movable.
7114 * We need not scan over tail pages bacause we don't
7115 * handle each tail page individually in migration.
7116 */
7117 if (PageHuge(page)) {
7118 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7119 continue;
7120 }
7121
7122 /*
7123 * We can't use page_count without pin a page
7124 * because another CPU can free compound page.
7125 * This check already skips compound tails of THP
7126 * because their page->_refcount is zero at all time.
7127 */
7128 if (!page_ref_count(page)) {
7129 if (PageBuddy(page))
7130 iter += (1 << page_order(page)) - 1;
7131 continue;
7132 }
7133
7134 /*
7135 * The HWPoisoned page may be not in buddy system, and
7136 * page_count() is not 0.
7137 */
7138 if (skip_hwpoisoned_pages && PageHWPoison(page))
7139 continue;
7140
7141 if (!PageLRU(page))
7142 found++;
7143 /*
7144 * If there are RECLAIMABLE pages, we need to check
7145 * it. But now, memory offline itself doesn't call
7146 * shrink_node_slabs() and it still to be fixed.
7147 */
7148 /*
7149 * If the page is not RAM, page_count()should be 0.
7150 * we don't need more check. This is an _used_ not-movable page.
7151 *
7152 * The problematic thing here is PG_reserved pages. PG_reserved
7153 * is set to both of a memory hole page and a _used_ kernel
7154 * page at boot.
7155 */
7156 if (found > count)
7157 return true;
7158 }
7159 return false;
7160 }
7161
7162 bool is_pageblock_removable_nolock(struct page *page)
7163 {
7164 struct zone *zone;
7165 unsigned long pfn;
7166
7167 /*
7168 * We have to be careful here because we are iterating over memory
7169 * sections which are not zone aware so we might end up outside of
7170 * the zone but still within the section.
7171 * We have to take care about the node as well. If the node is offline
7172 * its NODE_DATA will be NULL - see page_zone.
7173 */
7174 if (!node_online(page_to_nid(page)))
7175 return false;
7176
7177 zone = page_zone(page);
7178 pfn = page_to_pfn(page);
7179 if (!zone_spans_pfn(zone, pfn))
7180 return false;
7181
7182 return !has_unmovable_pages(zone, page, 0, true);
7183 }
7184
7185 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7186
7187 static unsigned long pfn_max_align_down(unsigned long pfn)
7188 {
7189 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7190 pageblock_nr_pages) - 1);
7191 }
7192
7193 static unsigned long pfn_max_align_up(unsigned long pfn)
7194 {
7195 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7196 pageblock_nr_pages));
7197 }
7198
7199 /* [start, end) must belong to a single zone. */
7200 static int __alloc_contig_migrate_range(struct compact_control *cc,
7201 unsigned long start, unsigned long end)
7202 {
7203 /* This function is based on compact_zone() from compaction.c. */
7204 unsigned long nr_reclaimed;
7205 unsigned long pfn = start;
7206 unsigned int tries = 0;
7207 int ret = 0;
7208
7209 migrate_prep();
7210
7211 while (pfn < end || !list_empty(&cc->migratepages)) {
7212 if (fatal_signal_pending(current)) {
7213 ret = -EINTR;
7214 break;
7215 }
7216
7217 if (list_empty(&cc->migratepages)) {
7218 cc->nr_migratepages = 0;
7219 pfn = isolate_migratepages_range(cc, pfn, end);
7220 if (!pfn) {
7221 ret = -EINTR;
7222 break;
7223 }
7224 tries = 0;
7225 } else if (++tries == 5) {
7226 ret = ret < 0 ? ret : -EBUSY;
7227 break;
7228 }
7229
7230 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7231 &cc->migratepages);
7232 cc->nr_migratepages -= nr_reclaimed;
7233
7234 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7235 NULL, 0, cc->mode, MR_CMA);
7236 }
7237 if (ret < 0) {
7238 putback_movable_pages(&cc->migratepages);
7239 return ret;
7240 }
7241 return 0;
7242 }
7243
7244 /**
7245 * alloc_contig_range() -- tries to allocate given range of pages
7246 * @start: start PFN to allocate
7247 * @end: one-past-the-last PFN to allocate
7248 * @migratetype: migratetype of the underlaying pageblocks (either
7249 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7250 * in range must have the same migratetype and it must
7251 * be either of the two.
7252 *
7253 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7254 * aligned, however it's the caller's responsibility to guarantee that
7255 * we are the only thread that changes migrate type of pageblocks the
7256 * pages fall in.
7257 *
7258 * The PFN range must belong to a single zone.
7259 *
7260 * Returns zero on success or negative error code. On success all
7261 * pages which PFN is in [start, end) are allocated for the caller and
7262 * need to be freed with free_contig_range().
7263 */
7264 int alloc_contig_range(unsigned long start, unsigned long end,
7265 unsigned migratetype)
7266 {
7267 unsigned long outer_start, outer_end;
7268 unsigned int order;
7269 int ret = 0;
7270
7271 struct compact_control cc = {
7272 .nr_migratepages = 0,
7273 .order = -1,
7274 .zone = page_zone(pfn_to_page(start)),
7275 .mode = MIGRATE_SYNC,
7276 .ignore_skip_hint = true,
7277 .gfp_mask = GFP_KERNEL,
7278 };
7279 INIT_LIST_HEAD(&cc.migratepages);
7280
7281 /*
7282 * What we do here is we mark all pageblocks in range as
7283 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7284 * have different sizes, and due to the way page allocator
7285 * work, we align the range to biggest of the two pages so
7286 * that page allocator won't try to merge buddies from
7287 * different pageblocks and change MIGRATE_ISOLATE to some
7288 * other migration type.
7289 *
7290 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7291 * migrate the pages from an unaligned range (ie. pages that
7292 * we are interested in). This will put all the pages in
7293 * range back to page allocator as MIGRATE_ISOLATE.
7294 *
7295 * When this is done, we take the pages in range from page
7296 * allocator removing them from the buddy system. This way
7297 * page allocator will never consider using them.
7298 *
7299 * This lets us mark the pageblocks back as
7300 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7301 * aligned range but not in the unaligned, original range are
7302 * put back to page allocator so that buddy can use them.
7303 */
7304
7305 ret = start_isolate_page_range(pfn_max_align_down(start),
7306 pfn_max_align_up(end), migratetype,
7307 false);
7308 if (ret)
7309 return ret;
7310
7311 /*
7312 * In case of -EBUSY, we'd like to know which page causes problem.
7313 * So, just fall through. We will check it in test_pages_isolated().
7314 */
7315 ret = __alloc_contig_migrate_range(&cc, start, end);
7316 if (ret && ret != -EBUSY)
7317 goto done;
7318
7319 /*
7320 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7321 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7322 * more, all pages in [start, end) are free in page allocator.
7323 * What we are going to do is to allocate all pages from
7324 * [start, end) (that is remove them from page allocator).
7325 *
7326 * The only problem is that pages at the beginning and at the
7327 * end of interesting range may be not aligned with pages that
7328 * page allocator holds, ie. they can be part of higher order
7329 * pages. Because of this, we reserve the bigger range and
7330 * once this is done free the pages we are not interested in.
7331 *
7332 * We don't have to hold zone->lock here because the pages are
7333 * isolated thus they won't get removed from buddy.
7334 */
7335
7336 lru_add_drain_all();
7337 drain_all_pages(cc.zone);
7338
7339 order = 0;
7340 outer_start = start;
7341 while (!PageBuddy(pfn_to_page(outer_start))) {
7342 if (++order >= MAX_ORDER) {
7343 outer_start = start;
7344 break;
7345 }
7346 outer_start &= ~0UL << order;
7347 }
7348
7349 if (outer_start != start) {
7350 order = page_order(pfn_to_page(outer_start));
7351
7352 /*
7353 * outer_start page could be small order buddy page and
7354 * it doesn't include start page. Adjust outer_start
7355 * in this case to report failed page properly
7356 * on tracepoint in test_pages_isolated()
7357 */
7358 if (outer_start + (1UL << order) <= start)
7359 outer_start = start;
7360 }
7361
7362 /* Make sure the range is really isolated. */
7363 if (test_pages_isolated(outer_start, end, false)) {
7364 pr_info("%s: [%lx, %lx) PFNs busy\n",
7365 __func__, outer_start, end);
7366 ret = -EBUSY;
7367 goto done;
7368 }
7369
7370 /* Grab isolated pages from freelists. */
7371 outer_end = isolate_freepages_range(&cc, outer_start, end);
7372 if (!outer_end) {
7373 ret = -EBUSY;
7374 goto done;
7375 }
7376
7377 /* Free head and tail (if any) */
7378 if (start != outer_start)
7379 free_contig_range(outer_start, start - outer_start);
7380 if (end != outer_end)
7381 free_contig_range(end, outer_end - end);
7382
7383 done:
7384 undo_isolate_page_range(pfn_max_align_down(start),
7385 pfn_max_align_up(end), migratetype);
7386 return ret;
7387 }
7388
7389 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7390 {
7391 unsigned int count = 0;
7392
7393 for (; nr_pages--; pfn++) {
7394 struct page *page = pfn_to_page(pfn);
7395
7396 count += page_count(page) != 1;
7397 __free_page(page);
7398 }
7399 WARN(count != 0, "%d pages are still in use!\n", count);
7400 }
7401 #endif
7402
7403 #ifdef CONFIG_MEMORY_HOTPLUG
7404 /*
7405 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7406 * page high values need to be recalulated.
7407 */
7408 void __meminit zone_pcp_update(struct zone *zone)
7409 {
7410 unsigned cpu;
7411 mutex_lock(&pcp_batch_high_lock);
7412 for_each_possible_cpu(cpu)
7413 pageset_set_high_and_batch(zone,
7414 per_cpu_ptr(zone->pageset, cpu));
7415 mutex_unlock(&pcp_batch_high_lock);
7416 }
7417 #endif
7418
7419 void zone_pcp_reset(struct zone *zone)
7420 {
7421 unsigned long flags;
7422 int cpu;
7423 struct per_cpu_pageset *pset;
7424
7425 /* avoid races with drain_pages() */
7426 local_irq_save(flags);
7427 if (zone->pageset != &boot_pageset) {
7428 for_each_online_cpu(cpu) {
7429 pset = per_cpu_ptr(zone->pageset, cpu);
7430 drain_zonestat(zone, pset);
7431 }
7432 free_percpu(zone->pageset);
7433 zone->pageset = &boot_pageset;
7434 }
7435 local_irq_restore(flags);
7436 }
7437
7438 #ifdef CONFIG_MEMORY_HOTREMOVE
7439 /*
7440 * All pages in the range must be in a single zone and isolated
7441 * before calling this.
7442 */
7443 void
7444 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7445 {
7446 struct page *page;
7447 struct zone *zone;
7448 unsigned int order, i;
7449 unsigned long pfn;
7450 unsigned long flags;
7451 /* find the first valid pfn */
7452 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7453 if (pfn_valid(pfn))
7454 break;
7455 if (pfn == end_pfn)
7456 return;
7457 zone = page_zone(pfn_to_page(pfn));
7458 spin_lock_irqsave(&zone->lock, flags);
7459 pfn = start_pfn;
7460 while (pfn < end_pfn) {
7461 if (!pfn_valid(pfn)) {
7462 pfn++;
7463 continue;
7464 }
7465 page = pfn_to_page(pfn);
7466 /*
7467 * The HWPoisoned page may be not in buddy system, and
7468 * page_count() is not 0.
7469 */
7470 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7471 pfn++;
7472 SetPageReserved(page);
7473 continue;
7474 }
7475
7476 BUG_ON(page_count(page));
7477 BUG_ON(!PageBuddy(page));
7478 order = page_order(page);
7479 #ifdef CONFIG_DEBUG_VM
7480 pr_info("remove from free list %lx %d %lx\n",
7481 pfn, 1 << order, end_pfn);
7482 #endif
7483 list_del(&page->lru);
7484 rmv_page_order(page);
7485 zone->free_area[order].nr_free--;
7486 for (i = 0; i < (1 << order); i++)
7487 SetPageReserved((page+i));
7488 pfn += (1 << order);
7489 }
7490 spin_unlock_irqrestore(&zone->lock, flags);
7491 }
7492 #endif
7493
7494 bool is_free_buddy_page(struct page *page)
7495 {
7496 struct zone *zone = page_zone(page);
7497 unsigned long pfn = page_to_pfn(page);
7498 unsigned long flags;
7499 unsigned int order;
7500
7501 spin_lock_irqsave(&zone->lock, flags);
7502 for (order = 0; order < MAX_ORDER; order++) {
7503 struct page *page_head = page - (pfn & ((1 << order) - 1));
7504
7505 if (PageBuddy(page_head) && page_order(page_head) >= order)
7506 break;
7507 }
7508 spin_unlock_irqrestore(&zone->lock, flags);
7509
7510 return order < MAX_ORDER;
7511 }