]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/rmap.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
42 *
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
44 * ->tasklist_lock
45 * pte map lock
46 */
47
48 #include <linux/mm.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/slab.h>
53 #include <linux/init.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/rcupdate.h>
57 #include <linux/export.h>
58 #include <linux/memcontrol.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/backing-dev.h>
63 #include <linux/page_idle.h>
64
65 #include <asm/tlbflush.h>
66
67 #include <trace/events/tlb.h>
68
69 #include "internal.h"
70
71 static struct kmem_cache *anon_vma_cachep;
72 static struct kmem_cache *anon_vma_chain_cachep;
73
74 static inline struct anon_vma *anon_vma_alloc(void)
75 {
76 struct anon_vma *anon_vma;
77
78 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
79 if (anon_vma) {
80 atomic_set(&anon_vma->refcount, 1);
81 anon_vma->degree = 1; /* Reference for first vma */
82 anon_vma->parent = anon_vma;
83 /*
84 * Initialise the anon_vma root to point to itself. If called
85 * from fork, the root will be reset to the parents anon_vma.
86 */
87 anon_vma->root = anon_vma;
88 }
89
90 return anon_vma;
91 }
92
93 static inline void anon_vma_free(struct anon_vma *anon_vma)
94 {
95 VM_BUG_ON(atomic_read(&anon_vma->refcount));
96
97 /*
98 * Synchronize against page_lock_anon_vma_read() such that
99 * we can safely hold the lock without the anon_vma getting
100 * freed.
101 *
102 * Relies on the full mb implied by the atomic_dec_and_test() from
103 * put_anon_vma() against the acquire barrier implied by
104 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
105 *
106 * page_lock_anon_vma_read() VS put_anon_vma()
107 * down_read_trylock() atomic_dec_and_test()
108 * LOCK MB
109 * atomic_read() rwsem_is_locked()
110 *
111 * LOCK should suffice since the actual taking of the lock must
112 * happen _before_ what follows.
113 */
114 might_sleep();
115 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
116 anon_vma_lock_write(anon_vma);
117 anon_vma_unlock_write(anon_vma);
118 }
119
120 kmem_cache_free(anon_vma_cachep, anon_vma);
121 }
122
123 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
124 {
125 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
126 }
127
128 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
129 {
130 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
131 }
132
133 static void anon_vma_chain_link(struct vm_area_struct *vma,
134 struct anon_vma_chain *avc,
135 struct anon_vma *anon_vma)
136 {
137 avc->vma = vma;
138 avc->anon_vma = anon_vma;
139 list_add(&avc->same_vma, &vma->anon_vma_chain);
140 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
141 }
142
143 /**
144 * __anon_vma_prepare - attach an anon_vma to a memory region
145 * @vma: the memory region in question
146 *
147 * This makes sure the memory mapping described by 'vma' has
148 * an 'anon_vma' attached to it, so that we can associate the
149 * anonymous pages mapped into it with that anon_vma.
150 *
151 * The common case will be that we already have one, which
152 * is handled inline by anon_vma_prepare(). But if
153 * not we either need to find an adjacent mapping that we
154 * can re-use the anon_vma from (very common when the only
155 * reason for splitting a vma has been mprotect()), or we
156 * allocate a new one.
157 *
158 * Anon-vma allocations are very subtle, because we may have
159 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
160 * and that may actually touch the spinlock even in the newly
161 * allocated vma (it depends on RCU to make sure that the
162 * anon_vma isn't actually destroyed).
163 *
164 * As a result, we need to do proper anon_vma locking even
165 * for the new allocation. At the same time, we do not want
166 * to do any locking for the common case of already having
167 * an anon_vma.
168 *
169 * This must be called with the mmap_sem held for reading.
170 */
171 int __anon_vma_prepare(struct vm_area_struct *vma)
172 {
173 struct mm_struct *mm = vma->vm_mm;
174 struct anon_vma *anon_vma, *allocated;
175 struct anon_vma_chain *avc;
176
177 might_sleep();
178
179 avc = anon_vma_chain_alloc(GFP_KERNEL);
180 if (!avc)
181 goto out_enomem;
182
183 anon_vma = find_mergeable_anon_vma(vma);
184 allocated = NULL;
185 if (!anon_vma) {
186 anon_vma = anon_vma_alloc();
187 if (unlikely(!anon_vma))
188 goto out_enomem_free_avc;
189 allocated = anon_vma;
190 }
191
192 anon_vma_lock_write(anon_vma);
193 /* page_table_lock to protect against threads */
194 spin_lock(&mm->page_table_lock);
195 if (likely(!vma->anon_vma)) {
196 vma->anon_vma = anon_vma;
197 anon_vma_chain_link(vma, avc, anon_vma);
198 /* vma reference or self-parent link for new root */
199 anon_vma->degree++;
200 allocated = NULL;
201 avc = NULL;
202 }
203 spin_unlock(&mm->page_table_lock);
204 anon_vma_unlock_write(anon_vma);
205
206 if (unlikely(allocated))
207 put_anon_vma(allocated);
208 if (unlikely(avc))
209 anon_vma_chain_free(avc);
210
211 return 0;
212
213 out_enomem_free_avc:
214 anon_vma_chain_free(avc);
215 out_enomem:
216 return -ENOMEM;
217 }
218
219 /*
220 * This is a useful helper function for locking the anon_vma root as
221 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
222 * have the same vma.
223 *
224 * Such anon_vma's should have the same root, so you'd expect to see
225 * just a single mutex_lock for the whole traversal.
226 */
227 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
228 {
229 struct anon_vma *new_root = anon_vma->root;
230 if (new_root != root) {
231 if (WARN_ON_ONCE(root))
232 up_write(&root->rwsem);
233 root = new_root;
234 down_write(&root->rwsem);
235 }
236 return root;
237 }
238
239 static inline void unlock_anon_vma_root(struct anon_vma *root)
240 {
241 if (root)
242 up_write(&root->rwsem);
243 }
244
245 /*
246 * Attach the anon_vmas from src to dst.
247 * Returns 0 on success, -ENOMEM on failure.
248 *
249 * If dst->anon_vma is NULL this function tries to find and reuse existing
250 * anon_vma which has no vmas and only one child anon_vma. This prevents
251 * degradation of anon_vma hierarchy to endless linear chain in case of
252 * constantly forking task. On the other hand, an anon_vma with more than one
253 * child isn't reused even if there was no alive vma, thus rmap walker has a
254 * good chance of avoiding scanning the whole hierarchy when it searches where
255 * page is mapped.
256 */
257 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
258 {
259 struct anon_vma_chain *avc, *pavc;
260 struct anon_vma *root = NULL;
261
262 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
263 struct anon_vma *anon_vma;
264
265 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
266 if (unlikely(!avc)) {
267 unlock_anon_vma_root(root);
268 root = NULL;
269 avc = anon_vma_chain_alloc(GFP_KERNEL);
270 if (!avc)
271 goto enomem_failure;
272 }
273 anon_vma = pavc->anon_vma;
274 root = lock_anon_vma_root(root, anon_vma);
275 anon_vma_chain_link(dst, avc, anon_vma);
276
277 /*
278 * Reuse existing anon_vma if its degree lower than two,
279 * that means it has no vma and only one anon_vma child.
280 *
281 * Do not chose parent anon_vma, otherwise first child
282 * will always reuse it. Root anon_vma is never reused:
283 * it has self-parent reference and at least one child.
284 */
285 if (!dst->anon_vma && anon_vma != src->anon_vma &&
286 anon_vma->degree < 2)
287 dst->anon_vma = anon_vma;
288 }
289 if (dst->anon_vma)
290 dst->anon_vma->degree++;
291 unlock_anon_vma_root(root);
292 return 0;
293
294 enomem_failure:
295 /*
296 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
297 * decremented in unlink_anon_vmas().
298 * We can safely do this because callers of anon_vma_clone() don't care
299 * about dst->anon_vma if anon_vma_clone() failed.
300 */
301 dst->anon_vma = NULL;
302 unlink_anon_vmas(dst);
303 return -ENOMEM;
304 }
305
306 /*
307 * Attach vma to its own anon_vma, as well as to the anon_vmas that
308 * the corresponding VMA in the parent process is attached to.
309 * Returns 0 on success, non-zero on failure.
310 */
311 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
312 {
313 struct anon_vma_chain *avc;
314 struct anon_vma *anon_vma;
315 int error;
316
317 /* Don't bother if the parent process has no anon_vma here. */
318 if (!pvma->anon_vma)
319 return 0;
320
321 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
322 vma->anon_vma = NULL;
323
324 /*
325 * First, attach the new VMA to the parent VMA's anon_vmas,
326 * so rmap can find non-COWed pages in child processes.
327 */
328 error = anon_vma_clone(vma, pvma);
329 if (error)
330 return error;
331
332 /* An existing anon_vma has been reused, all done then. */
333 if (vma->anon_vma)
334 return 0;
335
336 /* Then add our own anon_vma. */
337 anon_vma = anon_vma_alloc();
338 if (!anon_vma)
339 goto out_error;
340 avc = anon_vma_chain_alloc(GFP_KERNEL);
341 if (!avc)
342 goto out_error_free_anon_vma;
343
344 /*
345 * The root anon_vma's spinlock is the lock actually used when we
346 * lock any of the anon_vmas in this anon_vma tree.
347 */
348 anon_vma->root = pvma->anon_vma->root;
349 anon_vma->parent = pvma->anon_vma;
350 /*
351 * With refcounts, an anon_vma can stay around longer than the
352 * process it belongs to. The root anon_vma needs to be pinned until
353 * this anon_vma is freed, because the lock lives in the root.
354 */
355 get_anon_vma(anon_vma->root);
356 /* Mark this anon_vma as the one where our new (COWed) pages go. */
357 vma->anon_vma = anon_vma;
358 anon_vma_lock_write(anon_vma);
359 anon_vma_chain_link(vma, avc, anon_vma);
360 anon_vma->parent->degree++;
361 anon_vma_unlock_write(anon_vma);
362
363 return 0;
364
365 out_error_free_anon_vma:
366 put_anon_vma(anon_vma);
367 out_error:
368 unlink_anon_vmas(vma);
369 return -ENOMEM;
370 }
371
372 void unlink_anon_vmas(struct vm_area_struct *vma)
373 {
374 struct anon_vma_chain *avc, *next;
375 struct anon_vma *root = NULL;
376
377 /*
378 * Unlink each anon_vma chained to the VMA. This list is ordered
379 * from newest to oldest, ensuring the root anon_vma gets freed last.
380 */
381 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
382 struct anon_vma *anon_vma = avc->anon_vma;
383
384 root = lock_anon_vma_root(root, anon_vma);
385 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
386
387 /*
388 * Leave empty anon_vmas on the list - we'll need
389 * to free them outside the lock.
390 */
391 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
392 anon_vma->parent->degree--;
393 continue;
394 }
395
396 list_del(&avc->same_vma);
397 anon_vma_chain_free(avc);
398 }
399 if (vma->anon_vma)
400 vma->anon_vma->degree--;
401 unlock_anon_vma_root(root);
402
403 /*
404 * Iterate the list once more, it now only contains empty and unlinked
405 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
406 * needing to write-acquire the anon_vma->root->rwsem.
407 */
408 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
409 struct anon_vma *anon_vma = avc->anon_vma;
410
411 VM_WARN_ON(anon_vma->degree);
412 put_anon_vma(anon_vma);
413
414 list_del(&avc->same_vma);
415 anon_vma_chain_free(avc);
416 }
417 }
418
419 static void anon_vma_ctor(void *data)
420 {
421 struct anon_vma *anon_vma = data;
422
423 init_rwsem(&anon_vma->rwsem);
424 atomic_set(&anon_vma->refcount, 0);
425 anon_vma->rb_root = RB_ROOT;
426 }
427
428 void __init anon_vma_init(void)
429 {
430 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
431 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
432 anon_vma_ctor);
433 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
434 SLAB_PANIC|SLAB_ACCOUNT);
435 }
436
437 /*
438 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
439 *
440 * Since there is no serialization what so ever against page_remove_rmap()
441 * the best this function can do is return a locked anon_vma that might
442 * have been relevant to this page.
443 *
444 * The page might have been remapped to a different anon_vma or the anon_vma
445 * returned may already be freed (and even reused).
446 *
447 * In case it was remapped to a different anon_vma, the new anon_vma will be a
448 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
449 * ensure that any anon_vma obtained from the page will still be valid for as
450 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
451 *
452 * All users of this function must be very careful when walking the anon_vma
453 * chain and verify that the page in question is indeed mapped in it
454 * [ something equivalent to page_mapped_in_vma() ].
455 *
456 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
457 * that the anon_vma pointer from page->mapping is valid if there is a
458 * mapcount, we can dereference the anon_vma after observing those.
459 */
460 struct anon_vma *page_get_anon_vma(struct page *page)
461 {
462 struct anon_vma *anon_vma = NULL;
463 unsigned long anon_mapping;
464
465 rcu_read_lock();
466 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
467 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
468 goto out;
469 if (!page_mapped(page))
470 goto out;
471
472 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
473 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
474 anon_vma = NULL;
475 goto out;
476 }
477
478 /*
479 * If this page is still mapped, then its anon_vma cannot have been
480 * freed. But if it has been unmapped, we have no security against the
481 * anon_vma structure being freed and reused (for another anon_vma:
482 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
483 * above cannot corrupt).
484 */
485 if (!page_mapped(page)) {
486 rcu_read_unlock();
487 put_anon_vma(anon_vma);
488 return NULL;
489 }
490 out:
491 rcu_read_unlock();
492
493 return anon_vma;
494 }
495
496 /*
497 * Similar to page_get_anon_vma() except it locks the anon_vma.
498 *
499 * Its a little more complex as it tries to keep the fast path to a single
500 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
501 * reference like with page_get_anon_vma() and then block on the mutex.
502 */
503 struct anon_vma *page_lock_anon_vma_read(struct page *page)
504 {
505 struct anon_vma *anon_vma = NULL;
506 struct anon_vma *root_anon_vma;
507 unsigned long anon_mapping;
508
509 rcu_read_lock();
510 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
511 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
512 goto out;
513 if (!page_mapped(page))
514 goto out;
515
516 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
517 root_anon_vma = READ_ONCE(anon_vma->root);
518 if (down_read_trylock(&root_anon_vma->rwsem)) {
519 /*
520 * If the page is still mapped, then this anon_vma is still
521 * its anon_vma, and holding the mutex ensures that it will
522 * not go away, see anon_vma_free().
523 */
524 if (!page_mapped(page)) {
525 up_read(&root_anon_vma->rwsem);
526 anon_vma = NULL;
527 }
528 goto out;
529 }
530
531 /* trylock failed, we got to sleep */
532 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
533 anon_vma = NULL;
534 goto out;
535 }
536
537 if (!page_mapped(page)) {
538 rcu_read_unlock();
539 put_anon_vma(anon_vma);
540 return NULL;
541 }
542
543 /* we pinned the anon_vma, its safe to sleep */
544 rcu_read_unlock();
545 anon_vma_lock_read(anon_vma);
546
547 if (atomic_dec_and_test(&anon_vma->refcount)) {
548 /*
549 * Oops, we held the last refcount, release the lock
550 * and bail -- can't simply use put_anon_vma() because
551 * we'll deadlock on the anon_vma_lock_write() recursion.
552 */
553 anon_vma_unlock_read(anon_vma);
554 __put_anon_vma(anon_vma);
555 anon_vma = NULL;
556 }
557
558 return anon_vma;
559
560 out:
561 rcu_read_unlock();
562 return anon_vma;
563 }
564
565 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
566 {
567 anon_vma_unlock_read(anon_vma);
568 }
569
570 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
571 /*
572 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
573 * important if a PTE was dirty when it was unmapped that it's flushed
574 * before any IO is initiated on the page to prevent lost writes. Similarly,
575 * it must be flushed before freeing to prevent data leakage.
576 */
577 void try_to_unmap_flush(void)
578 {
579 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
580 int cpu;
581
582 if (!tlb_ubc->flush_required)
583 return;
584
585 cpu = get_cpu();
586
587 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) {
588 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
589 local_flush_tlb();
590 trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
591 }
592
593 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids)
594 flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL);
595 cpumask_clear(&tlb_ubc->cpumask);
596 tlb_ubc->flush_required = false;
597 tlb_ubc->writable = false;
598 put_cpu();
599 }
600
601 /* Flush iff there are potentially writable TLB entries that can race with IO */
602 void try_to_unmap_flush_dirty(void)
603 {
604 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
605
606 if (tlb_ubc->writable)
607 try_to_unmap_flush();
608 }
609
610 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
611 struct page *page, bool writable)
612 {
613 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
614
615 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
616 tlb_ubc->flush_required = true;
617
618 /*
619 * If the PTE was dirty then it's best to assume it's writable. The
620 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
621 * before the page is queued for IO.
622 */
623 if (writable)
624 tlb_ubc->writable = true;
625 }
626
627 /*
628 * Returns true if the TLB flush should be deferred to the end of a batch of
629 * unmap operations to reduce IPIs.
630 */
631 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
632 {
633 bool should_defer = false;
634
635 if (!(flags & TTU_BATCH_FLUSH))
636 return false;
637
638 /* If remote CPUs need to be flushed then defer batch the flush */
639 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
640 should_defer = true;
641 put_cpu();
642
643 return should_defer;
644 }
645 #else
646 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
647 struct page *page, bool writable)
648 {
649 }
650
651 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
652 {
653 return false;
654 }
655 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
656
657 /*
658 * At what user virtual address is page expected in vma?
659 * Caller should check the page is actually part of the vma.
660 */
661 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
662 {
663 unsigned long address;
664 if (PageAnon(page)) {
665 struct anon_vma *page__anon_vma = page_anon_vma(page);
666 /*
667 * Note: swapoff's unuse_vma() is more efficient with this
668 * check, and needs it to match anon_vma when KSM is active.
669 */
670 if (!vma->anon_vma || !page__anon_vma ||
671 vma->anon_vma->root != page__anon_vma->root)
672 return -EFAULT;
673 } else if (page->mapping) {
674 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
675 return -EFAULT;
676 } else
677 return -EFAULT;
678 address = __vma_address(page, vma);
679 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
680 return -EFAULT;
681 return address;
682 }
683
684 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
685 {
686 pgd_t *pgd;
687 pud_t *pud;
688 pmd_t *pmd = NULL;
689 pmd_t pmde;
690
691 pgd = pgd_offset(mm, address);
692 if (!pgd_present(*pgd))
693 goto out;
694
695 pud = pud_offset(pgd, address);
696 if (!pud_present(*pud))
697 goto out;
698
699 pmd = pmd_offset(pud, address);
700 /*
701 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
702 * without holding anon_vma lock for write. So when looking for a
703 * genuine pmde (in which to find pte), test present and !THP together.
704 */
705 pmde = *pmd;
706 barrier();
707 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
708 pmd = NULL;
709 out:
710 return pmd;
711 }
712
713 /*
714 * Check that @page is mapped at @address into @mm.
715 *
716 * If @sync is false, page_check_address may perform a racy check to avoid
717 * the page table lock when the pte is not present (helpful when reclaiming
718 * highly shared pages).
719 *
720 * On success returns with pte mapped and locked.
721 */
722 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
723 unsigned long address, spinlock_t **ptlp, int sync)
724 {
725 pmd_t *pmd;
726 pte_t *pte;
727 spinlock_t *ptl;
728
729 if (unlikely(PageHuge(page))) {
730 /* when pud is not present, pte will be NULL */
731 pte = huge_pte_offset(mm, address);
732 if (!pte)
733 return NULL;
734
735 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
736 goto check;
737 }
738
739 pmd = mm_find_pmd(mm, address);
740 if (!pmd)
741 return NULL;
742
743 pte = pte_offset_map(pmd, address);
744 /* Make a quick check before getting the lock */
745 if (!sync && !pte_present(*pte)) {
746 pte_unmap(pte);
747 return NULL;
748 }
749
750 ptl = pte_lockptr(mm, pmd);
751 check:
752 spin_lock(ptl);
753 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
754 *ptlp = ptl;
755 return pte;
756 }
757 pte_unmap_unlock(pte, ptl);
758 return NULL;
759 }
760
761 /**
762 * page_mapped_in_vma - check whether a page is really mapped in a VMA
763 * @page: the page to test
764 * @vma: the VMA to test
765 *
766 * Returns 1 if the page is mapped into the page tables of the VMA, 0
767 * if the page is not mapped into the page tables of this VMA. Only
768 * valid for normal file or anonymous VMAs.
769 */
770 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
771 {
772 unsigned long address;
773 pte_t *pte;
774 spinlock_t *ptl;
775
776 address = __vma_address(page, vma);
777 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
778 return 0;
779 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
780 if (!pte) /* the page is not in this mm */
781 return 0;
782 pte_unmap_unlock(pte, ptl);
783
784 return 1;
785 }
786
787 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
788 /*
789 * Check that @page is mapped at @address into @mm. In contrast to
790 * page_check_address(), this function can handle transparent huge pages.
791 *
792 * On success returns true with pte mapped and locked. For PMD-mapped
793 * transparent huge pages *@ptep is set to NULL.
794 */
795 bool page_check_address_transhuge(struct page *page, struct mm_struct *mm,
796 unsigned long address, pmd_t **pmdp,
797 pte_t **ptep, spinlock_t **ptlp)
798 {
799 pgd_t *pgd;
800 pud_t *pud;
801 pmd_t *pmd;
802 pte_t *pte;
803 spinlock_t *ptl;
804
805 if (unlikely(PageHuge(page))) {
806 /* when pud is not present, pte will be NULL */
807 pte = huge_pte_offset(mm, address);
808 if (!pte)
809 return false;
810
811 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
812 pmd = NULL;
813 goto check_pte;
814 }
815
816 pgd = pgd_offset(mm, address);
817 if (!pgd_present(*pgd))
818 return false;
819 pud = pud_offset(pgd, address);
820 if (!pud_present(*pud))
821 return false;
822 pmd = pmd_offset(pud, address);
823
824 if (pmd_trans_huge(*pmd)) {
825 ptl = pmd_lock(mm, pmd);
826 if (!pmd_present(*pmd))
827 goto unlock_pmd;
828 if (unlikely(!pmd_trans_huge(*pmd))) {
829 spin_unlock(ptl);
830 goto map_pte;
831 }
832
833 if (pmd_page(*pmd) != page)
834 goto unlock_pmd;
835
836 pte = NULL;
837 goto found;
838 unlock_pmd:
839 spin_unlock(ptl);
840 return false;
841 } else {
842 pmd_t pmde = *pmd;
843
844 barrier();
845 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
846 return false;
847 }
848 map_pte:
849 pte = pte_offset_map(pmd, address);
850 if (!pte_present(*pte)) {
851 pte_unmap(pte);
852 return false;
853 }
854
855 ptl = pte_lockptr(mm, pmd);
856 check_pte:
857 spin_lock(ptl);
858
859 if (!pte_present(*pte)) {
860 pte_unmap_unlock(pte, ptl);
861 return false;
862 }
863
864 /* THP can be referenced by any subpage */
865 if (pte_pfn(*pte) - page_to_pfn(page) >= hpage_nr_pages(page)) {
866 pte_unmap_unlock(pte, ptl);
867 return false;
868 }
869 found:
870 *ptep = pte;
871 *pmdp = pmd;
872 *ptlp = ptl;
873 return true;
874 }
875 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
876
877 struct page_referenced_arg {
878 int mapcount;
879 int referenced;
880 unsigned long vm_flags;
881 struct mem_cgroup *memcg;
882 };
883 /*
884 * arg: page_referenced_arg will be passed
885 */
886 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
887 unsigned long address, void *arg)
888 {
889 struct mm_struct *mm = vma->vm_mm;
890 struct page_referenced_arg *pra = arg;
891 pmd_t *pmd;
892 pte_t *pte;
893 spinlock_t *ptl;
894 int referenced = 0;
895
896 if (!page_check_address_transhuge(page, mm, address, &pmd, &pte, &ptl))
897 return SWAP_AGAIN;
898
899 if (vma->vm_flags & VM_LOCKED) {
900 if (pte)
901 pte_unmap(pte);
902 spin_unlock(ptl);
903 pra->vm_flags |= VM_LOCKED;
904 return SWAP_FAIL; /* To break the loop */
905 }
906
907 if (pte) {
908 if (ptep_clear_flush_young_notify(vma, address, pte)) {
909 /*
910 * Don't treat a reference through a sequentially read
911 * mapping as such. If the page has been used in
912 * another mapping, we will catch it; if this other
913 * mapping is already gone, the unmap path will have
914 * set PG_referenced or activated the page.
915 */
916 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
917 referenced++;
918 }
919 pte_unmap(pte);
920 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
921 if (pmdp_clear_flush_young_notify(vma, address, pmd))
922 referenced++;
923 } else {
924 /* unexpected pmd-mapped page? */
925 WARN_ON_ONCE(1);
926 }
927 spin_unlock(ptl);
928
929 if (referenced)
930 clear_page_idle(page);
931 if (test_and_clear_page_young(page))
932 referenced++;
933
934 if (referenced) {
935 pra->referenced++;
936 pra->vm_flags |= vma->vm_flags;
937 }
938
939 pra->mapcount--;
940 if (!pra->mapcount)
941 return SWAP_SUCCESS; /* To break the loop */
942
943 return SWAP_AGAIN;
944 }
945
946 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
947 {
948 struct page_referenced_arg *pra = arg;
949 struct mem_cgroup *memcg = pra->memcg;
950
951 if (!mm_match_cgroup(vma->vm_mm, memcg))
952 return true;
953
954 return false;
955 }
956
957 /**
958 * page_referenced - test if the page was referenced
959 * @page: the page to test
960 * @is_locked: caller holds lock on the page
961 * @memcg: target memory cgroup
962 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
963 *
964 * Quick test_and_clear_referenced for all mappings to a page,
965 * returns the number of ptes which referenced the page.
966 */
967 int page_referenced(struct page *page,
968 int is_locked,
969 struct mem_cgroup *memcg,
970 unsigned long *vm_flags)
971 {
972 int ret;
973 int we_locked = 0;
974 struct page_referenced_arg pra = {
975 .mapcount = total_mapcount(page),
976 .memcg = memcg,
977 };
978 struct rmap_walk_control rwc = {
979 .rmap_one = page_referenced_one,
980 .arg = (void *)&pra,
981 .anon_lock = page_lock_anon_vma_read,
982 };
983
984 *vm_flags = 0;
985 if (!page_mapped(page))
986 return 0;
987
988 if (!page_rmapping(page))
989 return 0;
990
991 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
992 we_locked = trylock_page(page);
993 if (!we_locked)
994 return 1;
995 }
996
997 /*
998 * If we are reclaiming on behalf of a cgroup, skip
999 * counting on behalf of references from different
1000 * cgroups
1001 */
1002 if (memcg) {
1003 rwc.invalid_vma = invalid_page_referenced_vma;
1004 }
1005
1006 ret = rmap_walk(page, &rwc);
1007 *vm_flags = pra.vm_flags;
1008
1009 if (we_locked)
1010 unlock_page(page);
1011
1012 return pra.referenced;
1013 }
1014
1015 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
1016 unsigned long address, void *arg)
1017 {
1018 struct mm_struct *mm = vma->vm_mm;
1019 pte_t *pte;
1020 spinlock_t *ptl;
1021 int ret = 0;
1022 int *cleaned = arg;
1023
1024 pte = page_check_address(page, mm, address, &ptl, 1);
1025 if (!pte)
1026 goto out;
1027
1028 if (pte_dirty(*pte) || pte_write(*pte)) {
1029 pte_t entry;
1030
1031 flush_cache_page(vma, address, pte_pfn(*pte));
1032 entry = ptep_clear_flush(vma, address, pte);
1033 entry = pte_wrprotect(entry);
1034 entry = pte_mkclean(entry);
1035 set_pte_at(mm, address, pte, entry);
1036 ret = 1;
1037 }
1038
1039 pte_unmap_unlock(pte, ptl);
1040
1041 if (ret) {
1042 mmu_notifier_invalidate_page(mm, address);
1043 (*cleaned)++;
1044 }
1045 out:
1046 return SWAP_AGAIN;
1047 }
1048
1049 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1050 {
1051 if (vma->vm_flags & VM_SHARED)
1052 return false;
1053
1054 return true;
1055 }
1056
1057 int page_mkclean(struct page *page)
1058 {
1059 int cleaned = 0;
1060 struct address_space *mapping;
1061 struct rmap_walk_control rwc = {
1062 .arg = (void *)&cleaned,
1063 .rmap_one = page_mkclean_one,
1064 .invalid_vma = invalid_mkclean_vma,
1065 };
1066
1067 BUG_ON(!PageLocked(page));
1068
1069 if (!page_mapped(page))
1070 return 0;
1071
1072 mapping = page_mapping(page);
1073 if (!mapping)
1074 return 0;
1075
1076 rmap_walk(page, &rwc);
1077
1078 return cleaned;
1079 }
1080 EXPORT_SYMBOL_GPL(page_mkclean);
1081
1082 /**
1083 * page_move_anon_rmap - move a page to our anon_vma
1084 * @page: the page to move to our anon_vma
1085 * @vma: the vma the page belongs to
1086 *
1087 * When a page belongs exclusively to one process after a COW event,
1088 * that page can be moved into the anon_vma that belongs to just that
1089 * process, so the rmap code will not search the parent or sibling
1090 * processes.
1091 */
1092 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1093 {
1094 struct anon_vma *anon_vma = vma->anon_vma;
1095
1096 page = compound_head(page);
1097
1098 VM_BUG_ON_PAGE(!PageLocked(page), page);
1099 VM_BUG_ON_VMA(!anon_vma, vma);
1100
1101 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1102 /*
1103 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1104 * simultaneously, so a concurrent reader (eg page_referenced()'s
1105 * PageAnon()) will not see one without the other.
1106 */
1107 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1108 }
1109
1110 /**
1111 * __page_set_anon_rmap - set up new anonymous rmap
1112 * @page: Page to add to rmap
1113 * @vma: VM area to add page to.
1114 * @address: User virtual address of the mapping
1115 * @exclusive: the page is exclusively owned by the current process
1116 */
1117 static void __page_set_anon_rmap(struct page *page,
1118 struct vm_area_struct *vma, unsigned long address, int exclusive)
1119 {
1120 struct anon_vma *anon_vma = vma->anon_vma;
1121
1122 BUG_ON(!anon_vma);
1123
1124 if (PageAnon(page))
1125 return;
1126
1127 /*
1128 * If the page isn't exclusively mapped into this vma,
1129 * we must use the _oldest_ possible anon_vma for the
1130 * page mapping!
1131 */
1132 if (!exclusive)
1133 anon_vma = anon_vma->root;
1134
1135 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1136 page->mapping = (struct address_space *) anon_vma;
1137 page->index = linear_page_index(vma, address);
1138 }
1139
1140 /**
1141 * __page_check_anon_rmap - sanity check anonymous rmap addition
1142 * @page: the page to add the mapping to
1143 * @vma: the vm area in which the mapping is added
1144 * @address: the user virtual address mapped
1145 */
1146 static void __page_check_anon_rmap(struct page *page,
1147 struct vm_area_struct *vma, unsigned long address)
1148 {
1149 #ifdef CONFIG_DEBUG_VM
1150 /*
1151 * The page's anon-rmap details (mapping and index) are guaranteed to
1152 * be set up correctly at this point.
1153 *
1154 * We have exclusion against page_add_anon_rmap because the caller
1155 * always holds the page locked, except if called from page_dup_rmap,
1156 * in which case the page is already known to be setup.
1157 *
1158 * We have exclusion against page_add_new_anon_rmap because those pages
1159 * are initially only visible via the pagetables, and the pte is locked
1160 * over the call to page_add_new_anon_rmap.
1161 */
1162 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1163 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1164 #endif
1165 }
1166
1167 /**
1168 * page_add_anon_rmap - add pte mapping to an anonymous page
1169 * @page: the page to add the mapping to
1170 * @vma: the vm area in which the mapping is added
1171 * @address: the user virtual address mapped
1172 * @compound: charge the page as compound or small page
1173 *
1174 * The caller needs to hold the pte lock, and the page must be locked in
1175 * the anon_vma case: to serialize mapping,index checking after setting,
1176 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1177 * (but PageKsm is never downgraded to PageAnon).
1178 */
1179 void page_add_anon_rmap(struct page *page,
1180 struct vm_area_struct *vma, unsigned long address, bool compound)
1181 {
1182 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1183 }
1184
1185 /*
1186 * Special version of the above for do_swap_page, which often runs
1187 * into pages that are exclusively owned by the current process.
1188 * Everybody else should continue to use page_add_anon_rmap above.
1189 */
1190 void do_page_add_anon_rmap(struct page *page,
1191 struct vm_area_struct *vma, unsigned long address, int flags)
1192 {
1193 bool compound = flags & RMAP_COMPOUND;
1194 bool first;
1195
1196 if (compound) {
1197 atomic_t *mapcount;
1198 VM_BUG_ON_PAGE(!PageLocked(page), page);
1199 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1200 mapcount = compound_mapcount_ptr(page);
1201 first = atomic_inc_and_test(mapcount);
1202 } else {
1203 first = atomic_inc_and_test(&page->_mapcount);
1204 }
1205
1206 if (first) {
1207 int nr = compound ? hpage_nr_pages(page) : 1;
1208 /*
1209 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1210 * these counters are not modified in interrupt context, and
1211 * pte lock(a spinlock) is held, which implies preemption
1212 * disabled.
1213 */
1214 if (compound)
1215 __inc_node_page_state(page, NR_ANON_THPS);
1216 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1217 }
1218 if (unlikely(PageKsm(page)))
1219 return;
1220
1221 VM_BUG_ON_PAGE(!PageLocked(page), page);
1222
1223 /* address might be in next vma when migration races vma_adjust */
1224 if (first)
1225 __page_set_anon_rmap(page, vma, address,
1226 flags & RMAP_EXCLUSIVE);
1227 else
1228 __page_check_anon_rmap(page, vma, address);
1229 }
1230
1231 /**
1232 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1233 * @page: the page to add the mapping to
1234 * @vma: the vm area in which the mapping is added
1235 * @address: the user virtual address mapped
1236 * @compound: charge the page as compound or small page
1237 *
1238 * Same as page_add_anon_rmap but must only be called on *new* pages.
1239 * This means the inc-and-test can be bypassed.
1240 * Page does not have to be locked.
1241 */
1242 void page_add_new_anon_rmap(struct page *page,
1243 struct vm_area_struct *vma, unsigned long address, bool compound)
1244 {
1245 int nr = compound ? hpage_nr_pages(page) : 1;
1246
1247 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1248 __SetPageSwapBacked(page);
1249 if (compound) {
1250 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1251 /* increment count (starts at -1) */
1252 atomic_set(compound_mapcount_ptr(page), 0);
1253 __inc_node_page_state(page, NR_ANON_THPS);
1254 } else {
1255 /* Anon THP always mapped first with PMD */
1256 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1257 /* increment count (starts at -1) */
1258 atomic_set(&page->_mapcount, 0);
1259 }
1260 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1261 __page_set_anon_rmap(page, vma, address, 1);
1262 }
1263
1264 /**
1265 * page_add_file_rmap - add pte mapping to a file page
1266 * @page: the page to add the mapping to
1267 *
1268 * The caller needs to hold the pte lock.
1269 */
1270 void page_add_file_rmap(struct page *page, bool compound)
1271 {
1272 int i, nr = 1;
1273
1274 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1275 lock_page_memcg(page);
1276 if (compound && PageTransHuge(page)) {
1277 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1278 if (atomic_inc_and_test(&page[i]._mapcount))
1279 nr++;
1280 }
1281 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1282 goto out;
1283 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1284 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1285 } else {
1286 if (PageTransCompound(page) && page_mapping(page)) {
1287 VM_WARN_ON_ONCE(!PageLocked(page));
1288
1289 SetPageDoubleMap(compound_head(page));
1290 if (PageMlocked(page))
1291 clear_page_mlock(compound_head(page));
1292 }
1293 if (!atomic_inc_and_test(&page->_mapcount))
1294 goto out;
1295 }
1296 __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, nr);
1297 mem_cgroup_update_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, nr);
1298 out:
1299 unlock_page_memcg(page);
1300 }
1301
1302 static void page_remove_file_rmap(struct page *page, bool compound)
1303 {
1304 int i, nr = 1;
1305
1306 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1307 lock_page_memcg(page);
1308
1309 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1310 if (unlikely(PageHuge(page))) {
1311 /* hugetlb pages are always mapped with pmds */
1312 atomic_dec(compound_mapcount_ptr(page));
1313 goto out;
1314 }
1315
1316 /* page still mapped by someone else? */
1317 if (compound && PageTransHuge(page)) {
1318 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1319 if (atomic_add_negative(-1, &page[i]._mapcount))
1320 nr++;
1321 }
1322 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1323 goto out;
1324 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1325 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1326 } else {
1327 if (!atomic_add_negative(-1, &page->_mapcount))
1328 goto out;
1329 }
1330
1331 /*
1332 * We use the irq-unsafe __{inc|mod}_zone_page_state because
1333 * these counters are not modified in interrupt context, and
1334 * pte lock(a spinlock) is held, which implies preemption disabled.
1335 */
1336 __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, -nr);
1337 mem_cgroup_update_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, -nr);
1338
1339 if (unlikely(PageMlocked(page)))
1340 clear_page_mlock(page);
1341 out:
1342 unlock_page_memcg(page);
1343 }
1344
1345 static void page_remove_anon_compound_rmap(struct page *page)
1346 {
1347 int i, nr;
1348
1349 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1350 return;
1351
1352 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1353 if (unlikely(PageHuge(page)))
1354 return;
1355
1356 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1357 return;
1358
1359 __dec_node_page_state(page, NR_ANON_THPS);
1360
1361 if (TestClearPageDoubleMap(page)) {
1362 /*
1363 * Subpages can be mapped with PTEs too. Check how many of
1364 * themi are still mapped.
1365 */
1366 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1367 if (atomic_add_negative(-1, &page[i]._mapcount))
1368 nr++;
1369 }
1370 } else {
1371 nr = HPAGE_PMD_NR;
1372 }
1373
1374 if (unlikely(PageMlocked(page)))
1375 clear_page_mlock(page);
1376
1377 if (nr) {
1378 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1379 deferred_split_huge_page(page);
1380 }
1381 }
1382
1383 /**
1384 * page_remove_rmap - take down pte mapping from a page
1385 * @page: page to remove mapping from
1386 * @compound: uncharge the page as compound or small page
1387 *
1388 * The caller needs to hold the pte lock.
1389 */
1390 void page_remove_rmap(struct page *page, bool compound)
1391 {
1392 if (!PageAnon(page))
1393 return page_remove_file_rmap(page, compound);
1394
1395 if (compound)
1396 return page_remove_anon_compound_rmap(page);
1397
1398 /* page still mapped by someone else? */
1399 if (!atomic_add_negative(-1, &page->_mapcount))
1400 return;
1401
1402 /*
1403 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1404 * these counters are not modified in interrupt context, and
1405 * pte lock(a spinlock) is held, which implies preemption disabled.
1406 */
1407 __dec_node_page_state(page, NR_ANON_MAPPED);
1408
1409 if (unlikely(PageMlocked(page)))
1410 clear_page_mlock(page);
1411
1412 if (PageTransCompound(page))
1413 deferred_split_huge_page(compound_head(page));
1414
1415 /*
1416 * It would be tidy to reset the PageAnon mapping here,
1417 * but that might overwrite a racing page_add_anon_rmap
1418 * which increments mapcount after us but sets mapping
1419 * before us: so leave the reset to free_hot_cold_page,
1420 * and remember that it's only reliable while mapped.
1421 * Leaving it set also helps swapoff to reinstate ptes
1422 * faster for those pages still in swapcache.
1423 */
1424 }
1425
1426 struct rmap_private {
1427 enum ttu_flags flags;
1428 int lazyfreed;
1429 };
1430
1431 /*
1432 * @arg: enum ttu_flags will be passed to this argument
1433 */
1434 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1435 unsigned long address, void *arg)
1436 {
1437 struct mm_struct *mm = vma->vm_mm;
1438 pte_t *pte;
1439 pte_t pteval;
1440 spinlock_t *ptl;
1441 int ret = SWAP_AGAIN;
1442 struct rmap_private *rp = arg;
1443 enum ttu_flags flags = rp->flags;
1444
1445 /* munlock has nothing to gain from examining un-locked vmas */
1446 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1447 goto out;
1448
1449 if (flags & TTU_SPLIT_HUGE_PMD) {
1450 split_huge_pmd_address(vma, address,
1451 flags & TTU_MIGRATION, page);
1452 /* check if we have anything to do after split */
1453 if (page_mapcount(page) == 0)
1454 goto out;
1455 }
1456
1457 pte = page_check_address(page, mm, address, &ptl,
1458 PageTransCompound(page));
1459 if (!pte)
1460 goto out;
1461
1462 /*
1463 * If the page is mlock()d, we cannot swap it out.
1464 * If it's recently referenced (perhaps page_referenced
1465 * skipped over this mm) then we should reactivate it.
1466 */
1467 if (!(flags & TTU_IGNORE_MLOCK)) {
1468 if (vma->vm_flags & VM_LOCKED) {
1469 /* PTE-mapped THP are never mlocked */
1470 if (!PageTransCompound(page)) {
1471 /*
1472 * Holding pte lock, we do *not* need
1473 * mmap_sem here
1474 */
1475 mlock_vma_page(page);
1476 }
1477 ret = SWAP_MLOCK;
1478 goto out_unmap;
1479 }
1480 if (flags & TTU_MUNLOCK)
1481 goto out_unmap;
1482 }
1483 if (!(flags & TTU_IGNORE_ACCESS)) {
1484 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1485 ret = SWAP_FAIL;
1486 goto out_unmap;
1487 }
1488 }
1489
1490 /* Nuke the page table entry. */
1491 flush_cache_page(vma, address, page_to_pfn(page));
1492 if (should_defer_flush(mm, flags)) {
1493 /*
1494 * We clear the PTE but do not flush so potentially a remote
1495 * CPU could still be writing to the page. If the entry was
1496 * previously clean then the architecture must guarantee that
1497 * a clear->dirty transition on a cached TLB entry is written
1498 * through and traps if the PTE is unmapped.
1499 */
1500 pteval = ptep_get_and_clear(mm, address, pte);
1501
1502 set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
1503 } else {
1504 pteval = ptep_clear_flush(vma, address, pte);
1505 }
1506
1507 /* Move the dirty bit to the physical page now the pte is gone. */
1508 if (pte_dirty(pteval))
1509 set_page_dirty(page);
1510
1511 /* Update high watermark before we lower rss */
1512 update_hiwater_rss(mm);
1513
1514 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1515 if (PageHuge(page)) {
1516 hugetlb_count_sub(1 << compound_order(page), mm);
1517 } else {
1518 dec_mm_counter(mm, mm_counter(page));
1519 }
1520 set_pte_at(mm, address, pte,
1521 swp_entry_to_pte(make_hwpoison_entry(page)));
1522 } else if (pte_unused(pteval)) {
1523 /*
1524 * The guest indicated that the page content is of no
1525 * interest anymore. Simply discard the pte, vmscan
1526 * will take care of the rest.
1527 */
1528 dec_mm_counter(mm, mm_counter(page));
1529 } else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1530 swp_entry_t entry;
1531 pte_t swp_pte;
1532 /*
1533 * Store the pfn of the page in a special migration
1534 * pte. do_swap_page() will wait until the migration
1535 * pte is removed and then restart fault handling.
1536 */
1537 entry = make_migration_entry(page, pte_write(pteval));
1538 swp_pte = swp_entry_to_pte(entry);
1539 if (pte_soft_dirty(pteval))
1540 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1541 set_pte_at(mm, address, pte, swp_pte);
1542 } else if (PageAnon(page)) {
1543 swp_entry_t entry = { .val = page_private(page) };
1544 pte_t swp_pte;
1545 /*
1546 * Store the swap location in the pte.
1547 * See handle_pte_fault() ...
1548 */
1549 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1550
1551 if (!PageDirty(page) && (flags & TTU_LZFREE)) {
1552 /* It's a freeable page by MADV_FREE */
1553 dec_mm_counter(mm, MM_ANONPAGES);
1554 rp->lazyfreed++;
1555 goto discard;
1556 }
1557
1558 if (swap_duplicate(entry) < 0) {
1559 set_pte_at(mm, address, pte, pteval);
1560 ret = SWAP_FAIL;
1561 goto out_unmap;
1562 }
1563 if (list_empty(&mm->mmlist)) {
1564 spin_lock(&mmlist_lock);
1565 if (list_empty(&mm->mmlist))
1566 list_add(&mm->mmlist, &init_mm.mmlist);
1567 spin_unlock(&mmlist_lock);
1568 }
1569 dec_mm_counter(mm, MM_ANONPAGES);
1570 inc_mm_counter(mm, MM_SWAPENTS);
1571 swp_pte = swp_entry_to_pte(entry);
1572 if (pte_soft_dirty(pteval))
1573 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1574 set_pte_at(mm, address, pte, swp_pte);
1575 } else
1576 dec_mm_counter(mm, mm_counter_file(page));
1577
1578 discard:
1579 page_remove_rmap(page, PageHuge(page));
1580 put_page(page);
1581
1582 out_unmap:
1583 pte_unmap_unlock(pte, ptl);
1584 if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
1585 mmu_notifier_invalidate_page(mm, address);
1586 out:
1587 return ret;
1588 }
1589
1590 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1591 {
1592 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1593
1594 if (!maybe_stack)
1595 return false;
1596
1597 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1598 VM_STACK_INCOMPLETE_SETUP)
1599 return true;
1600
1601 return false;
1602 }
1603
1604 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1605 {
1606 return is_vma_temporary_stack(vma);
1607 }
1608
1609 static int page_mapcount_is_zero(struct page *page)
1610 {
1611 return !page_mapcount(page);
1612 }
1613
1614 /**
1615 * try_to_unmap - try to remove all page table mappings to a page
1616 * @page: the page to get unmapped
1617 * @flags: action and flags
1618 *
1619 * Tries to remove all the page table entries which are mapping this
1620 * page, used in the pageout path. Caller must hold the page lock.
1621 * Return values are:
1622 *
1623 * SWAP_SUCCESS - we succeeded in removing all mappings
1624 * SWAP_AGAIN - we missed a mapping, try again later
1625 * SWAP_FAIL - the page is unswappable
1626 * SWAP_MLOCK - page is mlocked.
1627 */
1628 int try_to_unmap(struct page *page, enum ttu_flags flags)
1629 {
1630 int ret;
1631 struct rmap_private rp = {
1632 .flags = flags,
1633 .lazyfreed = 0,
1634 };
1635
1636 struct rmap_walk_control rwc = {
1637 .rmap_one = try_to_unmap_one,
1638 .arg = &rp,
1639 .done = page_mapcount_is_zero,
1640 .anon_lock = page_lock_anon_vma_read,
1641 };
1642
1643 /*
1644 * During exec, a temporary VMA is setup and later moved.
1645 * The VMA is moved under the anon_vma lock but not the
1646 * page tables leading to a race where migration cannot
1647 * find the migration ptes. Rather than increasing the
1648 * locking requirements of exec(), migration skips
1649 * temporary VMAs until after exec() completes.
1650 */
1651 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1652 rwc.invalid_vma = invalid_migration_vma;
1653
1654 if (flags & TTU_RMAP_LOCKED)
1655 ret = rmap_walk_locked(page, &rwc);
1656 else
1657 ret = rmap_walk(page, &rwc);
1658
1659 if (ret != SWAP_MLOCK && !page_mapcount(page)) {
1660 ret = SWAP_SUCCESS;
1661 if (rp.lazyfreed && !PageDirty(page))
1662 ret = SWAP_LZFREE;
1663 }
1664 return ret;
1665 }
1666
1667 static int page_not_mapped(struct page *page)
1668 {
1669 return !page_mapped(page);
1670 };
1671
1672 /**
1673 * try_to_munlock - try to munlock a page
1674 * @page: the page to be munlocked
1675 *
1676 * Called from munlock code. Checks all of the VMAs mapping the page
1677 * to make sure nobody else has this page mlocked. The page will be
1678 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1679 *
1680 * Return values are:
1681 *
1682 * SWAP_AGAIN - no vma is holding page mlocked, or,
1683 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1684 * SWAP_FAIL - page cannot be located at present
1685 * SWAP_MLOCK - page is now mlocked.
1686 */
1687 int try_to_munlock(struct page *page)
1688 {
1689 int ret;
1690 struct rmap_private rp = {
1691 .flags = TTU_MUNLOCK,
1692 .lazyfreed = 0,
1693 };
1694
1695 struct rmap_walk_control rwc = {
1696 .rmap_one = try_to_unmap_one,
1697 .arg = &rp,
1698 .done = page_not_mapped,
1699 .anon_lock = page_lock_anon_vma_read,
1700
1701 };
1702
1703 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1704
1705 ret = rmap_walk(page, &rwc);
1706 return ret;
1707 }
1708
1709 void __put_anon_vma(struct anon_vma *anon_vma)
1710 {
1711 struct anon_vma *root = anon_vma->root;
1712
1713 anon_vma_free(anon_vma);
1714 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1715 anon_vma_free(root);
1716 }
1717
1718 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1719 struct rmap_walk_control *rwc)
1720 {
1721 struct anon_vma *anon_vma;
1722
1723 if (rwc->anon_lock)
1724 return rwc->anon_lock(page);
1725
1726 /*
1727 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1728 * because that depends on page_mapped(); but not all its usages
1729 * are holding mmap_sem. Users without mmap_sem are required to
1730 * take a reference count to prevent the anon_vma disappearing
1731 */
1732 anon_vma = page_anon_vma(page);
1733 if (!anon_vma)
1734 return NULL;
1735
1736 anon_vma_lock_read(anon_vma);
1737 return anon_vma;
1738 }
1739
1740 /*
1741 * rmap_walk_anon - do something to anonymous page using the object-based
1742 * rmap method
1743 * @page: the page to be handled
1744 * @rwc: control variable according to each walk type
1745 *
1746 * Find all the mappings of a page using the mapping pointer and the vma chains
1747 * contained in the anon_vma struct it points to.
1748 *
1749 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1750 * where the page was found will be held for write. So, we won't recheck
1751 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1752 * LOCKED.
1753 */
1754 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1755 bool locked)
1756 {
1757 struct anon_vma *anon_vma;
1758 pgoff_t pgoff;
1759 struct anon_vma_chain *avc;
1760 int ret = SWAP_AGAIN;
1761
1762 if (locked) {
1763 anon_vma = page_anon_vma(page);
1764 /* anon_vma disappear under us? */
1765 VM_BUG_ON_PAGE(!anon_vma, page);
1766 } else {
1767 anon_vma = rmap_walk_anon_lock(page, rwc);
1768 }
1769 if (!anon_vma)
1770 return ret;
1771
1772 pgoff = page_to_pgoff(page);
1773 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1774 struct vm_area_struct *vma = avc->vma;
1775 unsigned long address = vma_address(page, vma);
1776
1777 cond_resched();
1778
1779 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1780 continue;
1781
1782 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1783 if (ret != SWAP_AGAIN)
1784 break;
1785 if (rwc->done && rwc->done(page))
1786 break;
1787 }
1788
1789 if (!locked)
1790 anon_vma_unlock_read(anon_vma);
1791 return ret;
1792 }
1793
1794 /*
1795 * rmap_walk_file - do something to file page using the object-based rmap method
1796 * @page: the page to be handled
1797 * @rwc: control variable according to each walk type
1798 *
1799 * Find all the mappings of a page using the mapping pointer and the vma chains
1800 * contained in the address_space struct it points to.
1801 *
1802 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1803 * where the page was found will be held for write. So, we won't recheck
1804 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1805 * LOCKED.
1806 */
1807 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1808 bool locked)
1809 {
1810 struct address_space *mapping = page_mapping(page);
1811 pgoff_t pgoff;
1812 struct vm_area_struct *vma;
1813 int ret = SWAP_AGAIN;
1814
1815 /*
1816 * The page lock not only makes sure that page->mapping cannot
1817 * suddenly be NULLified by truncation, it makes sure that the
1818 * structure at mapping cannot be freed and reused yet,
1819 * so we can safely take mapping->i_mmap_rwsem.
1820 */
1821 VM_BUG_ON_PAGE(!PageLocked(page), page);
1822
1823 if (!mapping)
1824 return ret;
1825
1826 pgoff = page_to_pgoff(page);
1827 if (!locked)
1828 i_mmap_lock_read(mapping);
1829 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1830 unsigned long address = vma_address(page, vma);
1831
1832 cond_resched();
1833
1834 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1835 continue;
1836
1837 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1838 if (ret != SWAP_AGAIN)
1839 goto done;
1840 if (rwc->done && rwc->done(page))
1841 goto done;
1842 }
1843
1844 done:
1845 if (!locked)
1846 i_mmap_unlock_read(mapping);
1847 return ret;
1848 }
1849
1850 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1851 {
1852 if (unlikely(PageKsm(page)))
1853 return rmap_walk_ksm(page, rwc);
1854 else if (PageAnon(page))
1855 return rmap_walk_anon(page, rwc, false);
1856 else
1857 return rmap_walk_file(page, rwc, false);
1858 }
1859
1860 /* Like rmap_walk, but caller holds relevant rmap lock */
1861 int rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1862 {
1863 /* no ksm support for now */
1864 VM_BUG_ON_PAGE(PageKsm(page), page);
1865 if (PageAnon(page))
1866 return rmap_walk_anon(page, rwc, true);
1867 else
1868 return rmap_walk_file(page, rwc, true);
1869 }
1870
1871 #ifdef CONFIG_HUGETLB_PAGE
1872 /*
1873 * The following three functions are for anonymous (private mapped) hugepages.
1874 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1875 * and no lru code, because we handle hugepages differently from common pages.
1876 */
1877 static void __hugepage_set_anon_rmap(struct page *page,
1878 struct vm_area_struct *vma, unsigned long address, int exclusive)
1879 {
1880 struct anon_vma *anon_vma = vma->anon_vma;
1881
1882 BUG_ON(!anon_vma);
1883
1884 if (PageAnon(page))
1885 return;
1886 if (!exclusive)
1887 anon_vma = anon_vma->root;
1888
1889 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1890 page->mapping = (struct address_space *) anon_vma;
1891 page->index = linear_page_index(vma, address);
1892 }
1893
1894 void hugepage_add_anon_rmap(struct page *page,
1895 struct vm_area_struct *vma, unsigned long address)
1896 {
1897 struct anon_vma *anon_vma = vma->anon_vma;
1898 int first;
1899
1900 BUG_ON(!PageLocked(page));
1901 BUG_ON(!anon_vma);
1902 /* address might be in next vma when migration races vma_adjust */
1903 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1904 if (first)
1905 __hugepage_set_anon_rmap(page, vma, address, 0);
1906 }
1907
1908 void hugepage_add_new_anon_rmap(struct page *page,
1909 struct vm_area_struct *vma, unsigned long address)
1910 {
1911 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1912 atomic_set(compound_mapcount_ptr(page), 0);
1913 __hugepage_set_anon_rmap(page, vma, address, 1);
1914 }
1915 #endif /* CONFIG_HUGETLB_PAGE */