]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/shmem.c
mm/gup: check for protnone only if it is a PTE entry
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
36
37 static struct vfsmount *shm_mnt;
38
39 #ifdef CONFIG_SHMEM
40 /*
41 * This virtual memory filesystem is heavily based on the ramfs. It
42 * extends ramfs by the ability to use swap and honor resource limits
43 * which makes it a completely usable filesystem.
44 */
45
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
73
74 #include <linux/uaccess.h>
75 #include <asm/pgtable.h>
76
77 #include "internal.h"
78
79 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
80 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
81
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
84
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
87
88 /*
89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90 * inode->i_private (with i_mutex making sure that it has only one user at
91 * a time): we would prefer not to enlarge the shmem inode just for that.
92 */
93 struct shmem_falloc {
94 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95 pgoff_t start; /* start of range currently being fallocated */
96 pgoff_t next; /* the next page offset to be fallocated */
97 pgoff_t nr_falloced; /* how many new pages have been fallocated */
98 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
99 };
100
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
103 {
104 return totalram_pages / 2;
105 }
106
107 static unsigned long shmem_default_max_inodes(void)
108 {
109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110 }
111 #endif
112
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 struct page **pagep, enum sgp_type sgp,
118 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
119
120 int shmem_getpage(struct inode *inode, pgoff_t index,
121 struct page **pagep, enum sgp_type sgp)
122 {
123 return shmem_getpage_gfp(inode, index, pagep, sgp,
124 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
125 }
126
127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128 {
129 return sb->s_fs_info;
130 }
131
132 /*
133 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134 * for shared memory and for shared anonymous (/dev/zero) mappings
135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136 * consistent with the pre-accounting of private mappings ...
137 */
138 static inline int shmem_acct_size(unsigned long flags, loff_t size)
139 {
140 return (flags & VM_NORESERVE) ?
141 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
142 }
143
144 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145 {
146 if (!(flags & VM_NORESERVE))
147 vm_unacct_memory(VM_ACCT(size));
148 }
149
150 static inline int shmem_reacct_size(unsigned long flags,
151 loff_t oldsize, loff_t newsize)
152 {
153 if (!(flags & VM_NORESERVE)) {
154 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155 return security_vm_enough_memory_mm(current->mm,
156 VM_ACCT(newsize) - VM_ACCT(oldsize));
157 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
159 }
160 return 0;
161 }
162
163 /*
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow large sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168 */
169 static inline int shmem_acct_block(unsigned long flags, long pages)
170 {
171 if (!(flags & VM_NORESERVE))
172 return 0;
173
174 return security_vm_enough_memory_mm(current->mm,
175 pages * VM_ACCT(PAGE_SIZE));
176 }
177
178 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179 {
180 if (flags & VM_NORESERVE)
181 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
182 }
183
184 static const struct super_operations shmem_ops;
185 static const struct address_space_operations shmem_aops;
186 static const struct file_operations shmem_file_operations;
187 static const struct inode_operations shmem_inode_operations;
188 static const struct inode_operations shmem_dir_inode_operations;
189 static const struct inode_operations shmem_special_inode_operations;
190 static const struct vm_operations_struct shmem_vm_ops;
191 static struct file_system_type shmem_fs_type;
192
193 static LIST_HEAD(shmem_swaplist);
194 static DEFINE_MUTEX(shmem_swaplist_mutex);
195
196 static int shmem_reserve_inode(struct super_block *sb)
197 {
198 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
199 if (sbinfo->max_inodes) {
200 spin_lock(&sbinfo->stat_lock);
201 if (!sbinfo->free_inodes) {
202 spin_unlock(&sbinfo->stat_lock);
203 return -ENOSPC;
204 }
205 sbinfo->free_inodes--;
206 spin_unlock(&sbinfo->stat_lock);
207 }
208 return 0;
209 }
210
211 static void shmem_free_inode(struct super_block *sb)
212 {
213 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
214 if (sbinfo->max_inodes) {
215 spin_lock(&sbinfo->stat_lock);
216 sbinfo->free_inodes++;
217 spin_unlock(&sbinfo->stat_lock);
218 }
219 }
220
221 /**
222 * shmem_recalc_inode - recalculate the block usage of an inode
223 * @inode: inode to recalc
224 *
225 * We have to calculate the free blocks since the mm can drop
226 * undirtied hole pages behind our back.
227 *
228 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
229 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
230 *
231 * It has to be called with the spinlock held.
232 */
233 static void shmem_recalc_inode(struct inode *inode)
234 {
235 struct shmem_inode_info *info = SHMEM_I(inode);
236 long freed;
237
238 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
239 if (freed > 0) {
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241 if (sbinfo->max_blocks)
242 percpu_counter_add(&sbinfo->used_blocks, -freed);
243 info->alloced -= freed;
244 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
245 shmem_unacct_blocks(info->flags, freed);
246 }
247 }
248
249 bool shmem_charge(struct inode *inode, long pages)
250 {
251 struct shmem_inode_info *info = SHMEM_I(inode);
252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253 unsigned long flags;
254
255 if (shmem_acct_block(info->flags, pages))
256 return false;
257 spin_lock_irqsave(&info->lock, flags);
258 info->alloced += pages;
259 inode->i_blocks += pages * BLOCKS_PER_PAGE;
260 shmem_recalc_inode(inode);
261 spin_unlock_irqrestore(&info->lock, flags);
262 inode->i_mapping->nrpages += pages;
263
264 if (!sbinfo->max_blocks)
265 return true;
266 if (percpu_counter_compare(&sbinfo->used_blocks,
267 sbinfo->max_blocks - pages) > 0) {
268 inode->i_mapping->nrpages -= pages;
269 spin_lock_irqsave(&info->lock, flags);
270 info->alloced -= pages;
271 shmem_recalc_inode(inode);
272 spin_unlock_irqrestore(&info->lock, flags);
273 shmem_unacct_blocks(info->flags, pages);
274 return false;
275 }
276 percpu_counter_add(&sbinfo->used_blocks, pages);
277 return true;
278 }
279
280 void shmem_uncharge(struct inode *inode, long pages)
281 {
282 struct shmem_inode_info *info = SHMEM_I(inode);
283 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
284 unsigned long flags;
285
286 spin_lock_irqsave(&info->lock, flags);
287 info->alloced -= pages;
288 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
289 shmem_recalc_inode(inode);
290 spin_unlock_irqrestore(&info->lock, flags);
291
292 if (sbinfo->max_blocks)
293 percpu_counter_sub(&sbinfo->used_blocks, pages);
294 shmem_unacct_blocks(info->flags, pages);
295 }
296
297 /*
298 * Replace item expected in radix tree by a new item, while holding tree lock.
299 */
300 static int shmem_radix_tree_replace(struct address_space *mapping,
301 pgoff_t index, void *expected, void *replacement)
302 {
303 struct radix_tree_node *node;
304 void **pslot;
305 void *item;
306
307 VM_BUG_ON(!expected);
308 VM_BUG_ON(!replacement);
309 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
310 if (!item)
311 return -ENOENT;
312 if (item != expected)
313 return -ENOENT;
314 __radix_tree_replace(&mapping->page_tree, node, pslot,
315 replacement, NULL, NULL);
316 return 0;
317 }
318
319 /*
320 * Sometimes, before we decide whether to proceed or to fail, we must check
321 * that an entry was not already brought back from swap by a racing thread.
322 *
323 * Checking page is not enough: by the time a SwapCache page is locked, it
324 * might be reused, and again be SwapCache, using the same swap as before.
325 */
326 static bool shmem_confirm_swap(struct address_space *mapping,
327 pgoff_t index, swp_entry_t swap)
328 {
329 void *item;
330
331 rcu_read_lock();
332 item = radix_tree_lookup(&mapping->page_tree, index);
333 rcu_read_unlock();
334 return item == swp_to_radix_entry(swap);
335 }
336
337 /*
338 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
339 *
340 * SHMEM_HUGE_NEVER:
341 * disables huge pages for the mount;
342 * SHMEM_HUGE_ALWAYS:
343 * enables huge pages for the mount;
344 * SHMEM_HUGE_WITHIN_SIZE:
345 * only allocate huge pages if the page will be fully within i_size,
346 * also respect fadvise()/madvise() hints;
347 * SHMEM_HUGE_ADVISE:
348 * only allocate huge pages if requested with fadvise()/madvise();
349 */
350
351 #define SHMEM_HUGE_NEVER 0
352 #define SHMEM_HUGE_ALWAYS 1
353 #define SHMEM_HUGE_WITHIN_SIZE 2
354 #define SHMEM_HUGE_ADVISE 3
355
356 /*
357 * Special values.
358 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
359 *
360 * SHMEM_HUGE_DENY:
361 * disables huge on shm_mnt and all mounts, for emergency use;
362 * SHMEM_HUGE_FORCE:
363 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
364 *
365 */
366 #define SHMEM_HUGE_DENY (-1)
367 #define SHMEM_HUGE_FORCE (-2)
368
369 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
370 /* ifdef here to avoid bloating shmem.o when not necessary */
371
372 int shmem_huge __read_mostly;
373
374 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
375 static int shmem_parse_huge(const char *str)
376 {
377 if (!strcmp(str, "never"))
378 return SHMEM_HUGE_NEVER;
379 if (!strcmp(str, "always"))
380 return SHMEM_HUGE_ALWAYS;
381 if (!strcmp(str, "within_size"))
382 return SHMEM_HUGE_WITHIN_SIZE;
383 if (!strcmp(str, "advise"))
384 return SHMEM_HUGE_ADVISE;
385 if (!strcmp(str, "deny"))
386 return SHMEM_HUGE_DENY;
387 if (!strcmp(str, "force"))
388 return SHMEM_HUGE_FORCE;
389 return -EINVAL;
390 }
391
392 static const char *shmem_format_huge(int huge)
393 {
394 switch (huge) {
395 case SHMEM_HUGE_NEVER:
396 return "never";
397 case SHMEM_HUGE_ALWAYS:
398 return "always";
399 case SHMEM_HUGE_WITHIN_SIZE:
400 return "within_size";
401 case SHMEM_HUGE_ADVISE:
402 return "advise";
403 case SHMEM_HUGE_DENY:
404 return "deny";
405 case SHMEM_HUGE_FORCE:
406 return "force";
407 default:
408 VM_BUG_ON(1);
409 return "bad_val";
410 }
411 }
412 #endif
413
414 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
415 struct shrink_control *sc, unsigned long nr_to_split)
416 {
417 LIST_HEAD(list), *pos, *next;
418 LIST_HEAD(to_remove);
419 struct inode *inode;
420 struct shmem_inode_info *info;
421 struct page *page;
422 unsigned long batch = sc ? sc->nr_to_scan : 128;
423 int removed = 0, split = 0;
424
425 if (list_empty(&sbinfo->shrinklist))
426 return SHRINK_STOP;
427
428 spin_lock(&sbinfo->shrinklist_lock);
429 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
430 info = list_entry(pos, struct shmem_inode_info, shrinklist);
431
432 /* pin the inode */
433 inode = igrab(&info->vfs_inode);
434
435 /* inode is about to be evicted */
436 if (!inode) {
437 list_del_init(&info->shrinklist);
438 removed++;
439 goto next;
440 }
441
442 /* Check if there's anything to gain */
443 if (round_up(inode->i_size, PAGE_SIZE) ==
444 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
445 list_move(&info->shrinklist, &to_remove);
446 removed++;
447 goto next;
448 }
449
450 list_move(&info->shrinklist, &list);
451 next:
452 if (!--batch)
453 break;
454 }
455 spin_unlock(&sbinfo->shrinklist_lock);
456
457 list_for_each_safe(pos, next, &to_remove) {
458 info = list_entry(pos, struct shmem_inode_info, shrinklist);
459 inode = &info->vfs_inode;
460 list_del_init(&info->shrinklist);
461 iput(inode);
462 }
463
464 list_for_each_safe(pos, next, &list) {
465 int ret;
466
467 info = list_entry(pos, struct shmem_inode_info, shrinklist);
468 inode = &info->vfs_inode;
469
470 if (nr_to_split && split >= nr_to_split) {
471 iput(inode);
472 continue;
473 }
474
475 page = find_lock_page(inode->i_mapping,
476 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
477 if (!page)
478 goto drop;
479
480 if (!PageTransHuge(page)) {
481 unlock_page(page);
482 put_page(page);
483 goto drop;
484 }
485
486 ret = split_huge_page(page);
487 unlock_page(page);
488 put_page(page);
489
490 if (ret) {
491 /* split failed: leave it on the list */
492 iput(inode);
493 continue;
494 }
495
496 split++;
497 drop:
498 list_del_init(&info->shrinklist);
499 removed++;
500 iput(inode);
501 }
502
503 spin_lock(&sbinfo->shrinklist_lock);
504 list_splice_tail(&list, &sbinfo->shrinklist);
505 sbinfo->shrinklist_len -= removed;
506 spin_unlock(&sbinfo->shrinklist_lock);
507
508 return split;
509 }
510
511 static long shmem_unused_huge_scan(struct super_block *sb,
512 struct shrink_control *sc)
513 {
514 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
515
516 if (!READ_ONCE(sbinfo->shrinklist_len))
517 return SHRINK_STOP;
518
519 return shmem_unused_huge_shrink(sbinfo, sc, 0);
520 }
521
522 static long shmem_unused_huge_count(struct super_block *sb,
523 struct shrink_control *sc)
524 {
525 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
526 return READ_ONCE(sbinfo->shrinklist_len);
527 }
528 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
529
530 #define shmem_huge SHMEM_HUGE_DENY
531
532 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
533 struct shrink_control *sc, unsigned long nr_to_split)
534 {
535 return 0;
536 }
537 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
538
539 /*
540 * Like add_to_page_cache_locked, but error if expected item has gone.
541 */
542 static int shmem_add_to_page_cache(struct page *page,
543 struct address_space *mapping,
544 pgoff_t index, void *expected)
545 {
546 int error, nr = hpage_nr_pages(page);
547
548 VM_BUG_ON_PAGE(PageTail(page), page);
549 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
550 VM_BUG_ON_PAGE(!PageLocked(page), page);
551 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
552 VM_BUG_ON(expected && PageTransHuge(page));
553
554 page_ref_add(page, nr);
555 page->mapping = mapping;
556 page->index = index;
557
558 spin_lock_irq(&mapping->tree_lock);
559 if (PageTransHuge(page)) {
560 void __rcu **results;
561 pgoff_t idx;
562 int i;
563
564 error = 0;
565 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
566 &results, &idx, index, 1) &&
567 idx < index + HPAGE_PMD_NR) {
568 error = -EEXIST;
569 }
570
571 if (!error) {
572 for (i = 0; i < HPAGE_PMD_NR; i++) {
573 error = radix_tree_insert(&mapping->page_tree,
574 index + i, page + i);
575 VM_BUG_ON(error);
576 }
577 count_vm_event(THP_FILE_ALLOC);
578 }
579 } else if (!expected) {
580 error = radix_tree_insert(&mapping->page_tree, index, page);
581 } else {
582 error = shmem_radix_tree_replace(mapping, index, expected,
583 page);
584 }
585
586 if (!error) {
587 mapping->nrpages += nr;
588 if (PageTransHuge(page))
589 __inc_node_page_state(page, NR_SHMEM_THPS);
590 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
591 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
592 spin_unlock_irq(&mapping->tree_lock);
593 } else {
594 page->mapping = NULL;
595 spin_unlock_irq(&mapping->tree_lock);
596 page_ref_sub(page, nr);
597 }
598 return error;
599 }
600
601 /*
602 * Like delete_from_page_cache, but substitutes swap for page.
603 */
604 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
605 {
606 struct address_space *mapping = page->mapping;
607 int error;
608
609 VM_BUG_ON_PAGE(PageCompound(page), page);
610
611 spin_lock_irq(&mapping->tree_lock);
612 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
613 page->mapping = NULL;
614 mapping->nrpages--;
615 __dec_node_page_state(page, NR_FILE_PAGES);
616 __dec_node_page_state(page, NR_SHMEM);
617 spin_unlock_irq(&mapping->tree_lock);
618 put_page(page);
619 BUG_ON(error);
620 }
621
622 /*
623 * Remove swap entry from radix tree, free the swap and its page cache.
624 */
625 static int shmem_free_swap(struct address_space *mapping,
626 pgoff_t index, void *radswap)
627 {
628 void *old;
629
630 spin_lock_irq(&mapping->tree_lock);
631 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
632 spin_unlock_irq(&mapping->tree_lock);
633 if (old != radswap)
634 return -ENOENT;
635 free_swap_and_cache(radix_to_swp_entry(radswap));
636 return 0;
637 }
638
639 /*
640 * Determine (in bytes) how many of the shmem object's pages mapped by the
641 * given offsets are swapped out.
642 *
643 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
644 * as long as the inode doesn't go away and racy results are not a problem.
645 */
646 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
647 pgoff_t start, pgoff_t end)
648 {
649 struct radix_tree_iter iter;
650 void **slot;
651 struct page *page;
652 unsigned long swapped = 0;
653
654 rcu_read_lock();
655
656 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
657 if (iter.index >= end)
658 break;
659
660 page = radix_tree_deref_slot(slot);
661
662 if (radix_tree_deref_retry(page)) {
663 slot = radix_tree_iter_retry(&iter);
664 continue;
665 }
666
667 if (radix_tree_exceptional_entry(page))
668 swapped++;
669
670 if (need_resched()) {
671 slot = radix_tree_iter_resume(slot, &iter);
672 cond_resched_rcu();
673 }
674 }
675
676 rcu_read_unlock();
677
678 return swapped << PAGE_SHIFT;
679 }
680
681 /*
682 * Determine (in bytes) how many of the shmem object's pages mapped by the
683 * given vma is swapped out.
684 *
685 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
686 * as long as the inode doesn't go away and racy results are not a problem.
687 */
688 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
689 {
690 struct inode *inode = file_inode(vma->vm_file);
691 struct shmem_inode_info *info = SHMEM_I(inode);
692 struct address_space *mapping = inode->i_mapping;
693 unsigned long swapped;
694
695 /* Be careful as we don't hold info->lock */
696 swapped = READ_ONCE(info->swapped);
697
698 /*
699 * The easier cases are when the shmem object has nothing in swap, or
700 * the vma maps it whole. Then we can simply use the stats that we
701 * already track.
702 */
703 if (!swapped)
704 return 0;
705
706 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
707 return swapped << PAGE_SHIFT;
708
709 /* Here comes the more involved part */
710 return shmem_partial_swap_usage(mapping,
711 linear_page_index(vma, vma->vm_start),
712 linear_page_index(vma, vma->vm_end));
713 }
714
715 /*
716 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
717 */
718 void shmem_unlock_mapping(struct address_space *mapping)
719 {
720 struct pagevec pvec;
721 pgoff_t indices[PAGEVEC_SIZE];
722 pgoff_t index = 0;
723
724 pagevec_init(&pvec, 0);
725 /*
726 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
727 */
728 while (!mapping_unevictable(mapping)) {
729 /*
730 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
731 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
732 */
733 pvec.nr = find_get_entries(mapping, index,
734 PAGEVEC_SIZE, pvec.pages, indices);
735 if (!pvec.nr)
736 break;
737 index = indices[pvec.nr - 1] + 1;
738 pagevec_remove_exceptionals(&pvec);
739 check_move_unevictable_pages(pvec.pages, pvec.nr);
740 pagevec_release(&pvec);
741 cond_resched();
742 }
743 }
744
745 /*
746 * Remove range of pages and swap entries from radix tree, and free them.
747 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
748 */
749 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
750 bool unfalloc)
751 {
752 struct address_space *mapping = inode->i_mapping;
753 struct shmem_inode_info *info = SHMEM_I(inode);
754 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
755 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
756 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
757 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
758 struct pagevec pvec;
759 pgoff_t indices[PAGEVEC_SIZE];
760 long nr_swaps_freed = 0;
761 pgoff_t index;
762 int i;
763
764 if (lend == -1)
765 end = -1; /* unsigned, so actually very big */
766
767 pagevec_init(&pvec, 0);
768 index = start;
769 while (index < end) {
770 pvec.nr = find_get_entries(mapping, index,
771 min(end - index, (pgoff_t)PAGEVEC_SIZE),
772 pvec.pages, indices);
773 if (!pvec.nr)
774 break;
775 for (i = 0; i < pagevec_count(&pvec); i++) {
776 struct page *page = pvec.pages[i];
777
778 index = indices[i];
779 if (index >= end)
780 break;
781
782 if (radix_tree_exceptional_entry(page)) {
783 if (unfalloc)
784 continue;
785 nr_swaps_freed += !shmem_free_swap(mapping,
786 index, page);
787 continue;
788 }
789
790 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
791
792 if (!trylock_page(page))
793 continue;
794
795 if (PageTransTail(page)) {
796 /* Middle of THP: zero out the page */
797 clear_highpage(page);
798 unlock_page(page);
799 continue;
800 } else if (PageTransHuge(page)) {
801 if (index == round_down(end, HPAGE_PMD_NR)) {
802 /*
803 * Range ends in the middle of THP:
804 * zero out the page
805 */
806 clear_highpage(page);
807 unlock_page(page);
808 continue;
809 }
810 index += HPAGE_PMD_NR - 1;
811 i += HPAGE_PMD_NR - 1;
812 }
813
814 if (!unfalloc || !PageUptodate(page)) {
815 VM_BUG_ON_PAGE(PageTail(page), page);
816 if (page_mapping(page) == mapping) {
817 VM_BUG_ON_PAGE(PageWriteback(page), page);
818 truncate_inode_page(mapping, page);
819 }
820 }
821 unlock_page(page);
822 }
823 pagevec_remove_exceptionals(&pvec);
824 pagevec_release(&pvec);
825 cond_resched();
826 index++;
827 }
828
829 if (partial_start) {
830 struct page *page = NULL;
831 shmem_getpage(inode, start - 1, &page, SGP_READ);
832 if (page) {
833 unsigned int top = PAGE_SIZE;
834 if (start > end) {
835 top = partial_end;
836 partial_end = 0;
837 }
838 zero_user_segment(page, partial_start, top);
839 set_page_dirty(page);
840 unlock_page(page);
841 put_page(page);
842 }
843 }
844 if (partial_end) {
845 struct page *page = NULL;
846 shmem_getpage(inode, end, &page, SGP_READ);
847 if (page) {
848 zero_user_segment(page, 0, partial_end);
849 set_page_dirty(page);
850 unlock_page(page);
851 put_page(page);
852 }
853 }
854 if (start >= end)
855 return;
856
857 index = start;
858 while (index < end) {
859 cond_resched();
860
861 pvec.nr = find_get_entries(mapping, index,
862 min(end - index, (pgoff_t)PAGEVEC_SIZE),
863 pvec.pages, indices);
864 if (!pvec.nr) {
865 /* If all gone or hole-punch or unfalloc, we're done */
866 if (index == start || end != -1)
867 break;
868 /* But if truncating, restart to make sure all gone */
869 index = start;
870 continue;
871 }
872 for (i = 0; i < pagevec_count(&pvec); i++) {
873 struct page *page = pvec.pages[i];
874
875 index = indices[i];
876 if (index >= end)
877 break;
878
879 if (radix_tree_exceptional_entry(page)) {
880 if (unfalloc)
881 continue;
882 if (shmem_free_swap(mapping, index, page)) {
883 /* Swap was replaced by page: retry */
884 index--;
885 break;
886 }
887 nr_swaps_freed++;
888 continue;
889 }
890
891 lock_page(page);
892
893 if (PageTransTail(page)) {
894 /* Middle of THP: zero out the page */
895 clear_highpage(page);
896 unlock_page(page);
897 /*
898 * Partial thp truncate due 'start' in middle
899 * of THP: don't need to look on these pages
900 * again on !pvec.nr restart.
901 */
902 if (index != round_down(end, HPAGE_PMD_NR))
903 start++;
904 continue;
905 } else if (PageTransHuge(page)) {
906 if (index == round_down(end, HPAGE_PMD_NR)) {
907 /*
908 * Range ends in the middle of THP:
909 * zero out the page
910 */
911 clear_highpage(page);
912 unlock_page(page);
913 continue;
914 }
915 index += HPAGE_PMD_NR - 1;
916 i += HPAGE_PMD_NR - 1;
917 }
918
919 if (!unfalloc || !PageUptodate(page)) {
920 VM_BUG_ON_PAGE(PageTail(page), page);
921 if (page_mapping(page) == mapping) {
922 VM_BUG_ON_PAGE(PageWriteback(page), page);
923 truncate_inode_page(mapping, page);
924 } else {
925 /* Page was replaced by swap: retry */
926 unlock_page(page);
927 index--;
928 break;
929 }
930 }
931 unlock_page(page);
932 }
933 pagevec_remove_exceptionals(&pvec);
934 pagevec_release(&pvec);
935 index++;
936 }
937
938 spin_lock_irq(&info->lock);
939 info->swapped -= nr_swaps_freed;
940 shmem_recalc_inode(inode);
941 spin_unlock_irq(&info->lock);
942 }
943
944 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
945 {
946 shmem_undo_range(inode, lstart, lend, false);
947 inode->i_ctime = inode->i_mtime = current_time(inode);
948 }
949 EXPORT_SYMBOL_GPL(shmem_truncate_range);
950
951 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
952 struct kstat *stat)
953 {
954 struct inode *inode = dentry->d_inode;
955 struct shmem_inode_info *info = SHMEM_I(inode);
956
957 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
958 spin_lock_irq(&info->lock);
959 shmem_recalc_inode(inode);
960 spin_unlock_irq(&info->lock);
961 }
962 generic_fillattr(inode, stat);
963 return 0;
964 }
965
966 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
967 {
968 struct inode *inode = d_inode(dentry);
969 struct shmem_inode_info *info = SHMEM_I(inode);
970 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
971 int error;
972
973 error = setattr_prepare(dentry, attr);
974 if (error)
975 return error;
976
977 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
978 loff_t oldsize = inode->i_size;
979 loff_t newsize = attr->ia_size;
980
981 /* protected by i_mutex */
982 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
983 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
984 return -EPERM;
985
986 if (newsize != oldsize) {
987 error = shmem_reacct_size(SHMEM_I(inode)->flags,
988 oldsize, newsize);
989 if (error)
990 return error;
991 i_size_write(inode, newsize);
992 inode->i_ctime = inode->i_mtime = current_time(inode);
993 }
994 if (newsize <= oldsize) {
995 loff_t holebegin = round_up(newsize, PAGE_SIZE);
996 if (oldsize > holebegin)
997 unmap_mapping_range(inode->i_mapping,
998 holebegin, 0, 1);
999 if (info->alloced)
1000 shmem_truncate_range(inode,
1001 newsize, (loff_t)-1);
1002 /* unmap again to remove racily COWed private pages */
1003 if (oldsize > holebegin)
1004 unmap_mapping_range(inode->i_mapping,
1005 holebegin, 0, 1);
1006
1007 /*
1008 * Part of the huge page can be beyond i_size: subject
1009 * to shrink under memory pressure.
1010 */
1011 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1012 spin_lock(&sbinfo->shrinklist_lock);
1013 if (list_empty(&info->shrinklist)) {
1014 list_add_tail(&info->shrinklist,
1015 &sbinfo->shrinklist);
1016 sbinfo->shrinklist_len++;
1017 }
1018 spin_unlock(&sbinfo->shrinklist_lock);
1019 }
1020 }
1021 }
1022
1023 setattr_copy(inode, attr);
1024 if (attr->ia_valid & ATTR_MODE)
1025 error = posix_acl_chmod(inode, inode->i_mode);
1026 return error;
1027 }
1028
1029 static void shmem_evict_inode(struct inode *inode)
1030 {
1031 struct shmem_inode_info *info = SHMEM_I(inode);
1032 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1033
1034 if (inode->i_mapping->a_ops == &shmem_aops) {
1035 shmem_unacct_size(info->flags, inode->i_size);
1036 inode->i_size = 0;
1037 shmem_truncate_range(inode, 0, (loff_t)-1);
1038 if (!list_empty(&info->shrinklist)) {
1039 spin_lock(&sbinfo->shrinklist_lock);
1040 if (!list_empty(&info->shrinklist)) {
1041 list_del_init(&info->shrinklist);
1042 sbinfo->shrinklist_len--;
1043 }
1044 spin_unlock(&sbinfo->shrinklist_lock);
1045 }
1046 if (!list_empty(&info->swaplist)) {
1047 mutex_lock(&shmem_swaplist_mutex);
1048 list_del_init(&info->swaplist);
1049 mutex_unlock(&shmem_swaplist_mutex);
1050 }
1051 }
1052
1053 simple_xattrs_free(&info->xattrs);
1054 WARN_ON(inode->i_blocks);
1055 shmem_free_inode(inode->i_sb);
1056 clear_inode(inode);
1057 }
1058
1059 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1060 {
1061 struct radix_tree_iter iter;
1062 void **slot;
1063 unsigned long found = -1;
1064 unsigned int checked = 0;
1065
1066 rcu_read_lock();
1067 radix_tree_for_each_slot(slot, root, &iter, 0) {
1068 if (*slot == item) {
1069 found = iter.index;
1070 break;
1071 }
1072 checked++;
1073 if ((checked % 4096) != 0)
1074 continue;
1075 slot = radix_tree_iter_resume(slot, &iter);
1076 cond_resched_rcu();
1077 }
1078
1079 rcu_read_unlock();
1080 return found;
1081 }
1082
1083 /*
1084 * If swap found in inode, free it and move page from swapcache to filecache.
1085 */
1086 static int shmem_unuse_inode(struct shmem_inode_info *info,
1087 swp_entry_t swap, struct page **pagep)
1088 {
1089 struct address_space *mapping = info->vfs_inode.i_mapping;
1090 void *radswap;
1091 pgoff_t index;
1092 gfp_t gfp;
1093 int error = 0;
1094
1095 radswap = swp_to_radix_entry(swap);
1096 index = find_swap_entry(&mapping->page_tree, radswap);
1097 if (index == -1)
1098 return -EAGAIN; /* tell shmem_unuse we found nothing */
1099
1100 /*
1101 * Move _head_ to start search for next from here.
1102 * But be careful: shmem_evict_inode checks list_empty without taking
1103 * mutex, and there's an instant in list_move_tail when info->swaplist
1104 * would appear empty, if it were the only one on shmem_swaplist.
1105 */
1106 if (shmem_swaplist.next != &info->swaplist)
1107 list_move_tail(&shmem_swaplist, &info->swaplist);
1108
1109 gfp = mapping_gfp_mask(mapping);
1110 if (shmem_should_replace_page(*pagep, gfp)) {
1111 mutex_unlock(&shmem_swaplist_mutex);
1112 error = shmem_replace_page(pagep, gfp, info, index);
1113 mutex_lock(&shmem_swaplist_mutex);
1114 /*
1115 * We needed to drop mutex to make that restrictive page
1116 * allocation, but the inode might have been freed while we
1117 * dropped it: although a racing shmem_evict_inode() cannot
1118 * complete without emptying the radix_tree, our page lock
1119 * on this swapcache page is not enough to prevent that -
1120 * free_swap_and_cache() of our swap entry will only
1121 * trylock_page(), removing swap from radix_tree whatever.
1122 *
1123 * We must not proceed to shmem_add_to_page_cache() if the
1124 * inode has been freed, but of course we cannot rely on
1125 * inode or mapping or info to check that. However, we can
1126 * safely check if our swap entry is still in use (and here
1127 * it can't have got reused for another page): if it's still
1128 * in use, then the inode cannot have been freed yet, and we
1129 * can safely proceed (if it's no longer in use, that tells
1130 * nothing about the inode, but we don't need to unuse swap).
1131 */
1132 if (!page_swapcount(*pagep))
1133 error = -ENOENT;
1134 }
1135
1136 /*
1137 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1138 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1139 * beneath us (pagelock doesn't help until the page is in pagecache).
1140 */
1141 if (!error)
1142 error = shmem_add_to_page_cache(*pagep, mapping, index,
1143 radswap);
1144 if (error != -ENOMEM) {
1145 /*
1146 * Truncation and eviction use free_swap_and_cache(), which
1147 * only does trylock page: if we raced, best clean up here.
1148 */
1149 delete_from_swap_cache(*pagep);
1150 set_page_dirty(*pagep);
1151 if (!error) {
1152 spin_lock_irq(&info->lock);
1153 info->swapped--;
1154 spin_unlock_irq(&info->lock);
1155 swap_free(swap);
1156 }
1157 }
1158 return error;
1159 }
1160
1161 /*
1162 * Search through swapped inodes to find and replace swap by page.
1163 */
1164 int shmem_unuse(swp_entry_t swap, struct page *page)
1165 {
1166 struct list_head *this, *next;
1167 struct shmem_inode_info *info;
1168 struct mem_cgroup *memcg;
1169 int error = 0;
1170
1171 /*
1172 * There's a faint possibility that swap page was replaced before
1173 * caller locked it: caller will come back later with the right page.
1174 */
1175 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1176 goto out;
1177
1178 /*
1179 * Charge page using GFP_KERNEL while we can wait, before taking
1180 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1181 * Charged back to the user (not to caller) when swap account is used.
1182 */
1183 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1184 false);
1185 if (error)
1186 goto out;
1187 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1188 error = -EAGAIN;
1189
1190 mutex_lock(&shmem_swaplist_mutex);
1191 list_for_each_safe(this, next, &shmem_swaplist) {
1192 info = list_entry(this, struct shmem_inode_info, swaplist);
1193 if (info->swapped)
1194 error = shmem_unuse_inode(info, swap, &page);
1195 else
1196 list_del_init(&info->swaplist);
1197 cond_resched();
1198 if (error != -EAGAIN)
1199 break;
1200 /* found nothing in this: move on to search the next */
1201 }
1202 mutex_unlock(&shmem_swaplist_mutex);
1203
1204 if (error) {
1205 if (error != -ENOMEM)
1206 error = 0;
1207 mem_cgroup_cancel_charge(page, memcg, false);
1208 } else
1209 mem_cgroup_commit_charge(page, memcg, true, false);
1210 out:
1211 unlock_page(page);
1212 put_page(page);
1213 return error;
1214 }
1215
1216 /*
1217 * Move the page from the page cache to the swap cache.
1218 */
1219 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1220 {
1221 struct shmem_inode_info *info;
1222 struct address_space *mapping;
1223 struct inode *inode;
1224 swp_entry_t swap;
1225 pgoff_t index;
1226
1227 VM_BUG_ON_PAGE(PageCompound(page), page);
1228 BUG_ON(!PageLocked(page));
1229 mapping = page->mapping;
1230 index = page->index;
1231 inode = mapping->host;
1232 info = SHMEM_I(inode);
1233 if (info->flags & VM_LOCKED)
1234 goto redirty;
1235 if (!total_swap_pages)
1236 goto redirty;
1237
1238 /*
1239 * Our capabilities prevent regular writeback or sync from ever calling
1240 * shmem_writepage; but a stacking filesystem might use ->writepage of
1241 * its underlying filesystem, in which case tmpfs should write out to
1242 * swap only in response to memory pressure, and not for the writeback
1243 * threads or sync.
1244 */
1245 if (!wbc->for_reclaim) {
1246 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1247 goto redirty;
1248 }
1249
1250 /*
1251 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1252 * value into swapfile.c, the only way we can correctly account for a
1253 * fallocated page arriving here is now to initialize it and write it.
1254 *
1255 * That's okay for a page already fallocated earlier, but if we have
1256 * not yet completed the fallocation, then (a) we want to keep track
1257 * of this page in case we have to undo it, and (b) it may not be a
1258 * good idea to continue anyway, once we're pushing into swap. So
1259 * reactivate the page, and let shmem_fallocate() quit when too many.
1260 */
1261 if (!PageUptodate(page)) {
1262 if (inode->i_private) {
1263 struct shmem_falloc *shmem_falloc;
1264 spin_lock(&inode->i_lock);
1265 shmem_falloc = inode->i_private;
1266 if (shmem_falloc &&
1267 !shmem_falloc->waitq &&
1268 index >= shmem_falloc->start &&
1269 index < shmem_falloc->next)
1270 shmem_falloc->nr_unswapped++;
1271 else
1272 shmem_falloc = NULL;
1273 spin_unlock(&inode->i_lock);
1274 if (shmem_falloc)
1275 goto redirty;
1276 }
1277 clear_highpage(page);
1278 flush_dcache_page(page);
1279 SetPageUptodate(page);
1280 }
1281
1282 swap = get_swap_page();
1283 if (!swap.val)
1284 goto redirty;
1285
1286 if (mem_cgroup_try_charge_swap(page, swap))
1287 goto free_swap;
1288
1289 /*
1290 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1291 * if it's not already there. Do it now before the page is
1292 * moved to swap cache, when its pagelock no longer protects
1293 * the inode from eviction. But don't unlock the mutex until
1294 * we've incremented swapped, because shmem_unuse_inode() will
1295 * prune a !swapped inode from the swaplist under this mutex.
1296 */
1297 mutex_lock(&shmem_swaplist_mutex);
1298 if (list_empty(&info->swaplist))
1299 list_add_tail(&info->swaplist, &shmem_swaplist);
1300
1301 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1302 spin_lock_irq(&info->lock);
1303 shmem_recalc_inode(inode);
1304 info->swapped++;
1305 spin_unlock_irq(&info->lock);
1306
1307 swap_shmem_alloc(swap);
1308 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1309
1310 mutex_unlock(&shmem_swaplist_mutex);
1311 BUG_ON(page_mapped(page));
1312 swap_writepage(page, wbc);
1313 return 0;
1314 }
1315
1316 mutex_unlock(&shmem_swaplist_mutex);
1317 free_swap:
1318 swapcache_free(swap);
1319 redirty:
1320 set_page_dirty(page);
1321 if (wbc->for_reclaim)
1322 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1323 unlock_page(page);
1324 return 0;
1325 }
1326
1327 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1328 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1329 {
1330 char buffer[64];
1331
1332 if (!mpol || mpol->mode == MPOL_DEFAULT)
1333 return; /* show nothing */
1334
1335 mpol_to_str(buffer, sizeof(buffer), mpol);
1336
1337 seq_printf(seq, ",mpol=%s", buffer);
1338 }
1339
1340 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1341 {
1342 struct mempolicy *mpol = NULL;
1343 if (sbinfo->mpol) {
1344 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1345 mpol = sbinfo->mpol;
1346 mpol_get(mpol);
1347 spin_unlock(&sbinfo->stat_lock);
1348 }
1349 return mpol;
1350 }
1351 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1352 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1353 {
1354 }
1355 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1356 {
1357 return NULL;
1358 }
1359 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1360 #ifndef CONFIG_NUMA
1361 #define vm_policy vm_private_data
1362 #endif
1363
1364 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1365 struct shmem_inode_info *info, pgoff_t index)
1366 {
1367 /* Create a pseudo vma that just contains the policy */
1368 vma->vm_start = 0;
1369 /* Bias interleave by inode number to distribute better across nodes */
1370 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1371 vma->vm_ops = NULL;
1372 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1373 }
1374
1375 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1376 {
1377 /* Drop reference taken by mpol_shared_policy_lookup() */
1378 mpol_cond_put(vma->vm_policy);
1379 }
1380
1381 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1382 struct shmem_inode_info *info, pgoff_t index)
1383 {
1384 struct vm_area_struct pvma;
1385 struct page *page;
1386
1387 shmem_pseudo_vma_init(&pvma, info, index);
1388 page = swapin_readahead(swap, gfp, &pvma, 0);
1389 shmem_pseudo_vma_destroy(&pvma);
1390
1391 return page;
1392 }
1393
1394 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1395 struct shmem_inode_info *info, pgoff_t index)
1396 {
1397 struct vm_area_struct pvma;
1398 struct inode *inode = &info->vfs_inode;
1399 struct address_space *mapping = inode->i_mapping;
1400 pgoff_t idx, hindex;
1401 void __rcu **results;
1402 struct page *page;
1403
1404 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1405 return NULL;
1406
1407 hindex = round_down(index, HPAGE_PMD_NR);
1408 rcu_read_lock();
1409 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1410 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1411 rcu_read_unlock();
1412 return NULL;
1413 }
1414 rcu_read_unlock();
1415
1416 shmem_pseudo_vma_init(&pvma, info, hindex);
1417 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1418 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1419 shmem_pseudo_vma_destroy(&pvma);
1420 if (page)
1421 prep_transhuge_page(page);
1422 return page;
1423 }
1424
1425 static struct page *shmem_alloc_page(gfp_t gfp,
1426 struct shmem_inode_info *info, pgoff_t index)
1427 {
1428 struct vm_area_struct pvma;
1429 struct page *page;
1430
1431 shmem_pseudo_vma_init(&pvma, info, index);
1432 page = alloc_page_vma(gfp, &pvma, 0);
1433 shmem_pseudo_vma_destroy(&pvma);
1434
1435 return page;
1436 }
1437
1438 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1439 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1440 pgoff_t index, bool huge)
1441 {
1442 struct page *page;
1443 int nr;
1444 int err = -ENOSPC;
1445
1446 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1447 huge = false;
1448 nr = huge ? HPAGE_PMD_NR : 1;
1449
1450 if (shmem_acct_block(info->flags, nr))
1451 goto failed;
1452 if (sbinfo->max_blocks) {
1453 if (percpu_counter_compare(&sbinfo->used_blocks,
1454 sbinfo->max_blocks - nr) > 0)
1455 goto unacct;
1456 percpu_counter_add(&sbinfo->used_blocks, nr);
1457 }
1458
1459 if (huge)
1460 page = shmem_alloc_hugepage(gfp, info, index);
1461 else
1462 page = shmem_alloc_page(gfp, info, index);
1463 if (page) {
1464 __SetPageLocked(page);
1465 __SetPageSwapBacked(page);
1466 return page;
1467 }
1468
1469 err = -ENOMEM;
1470 if (sbinfo->max_blocks)
1471 percpu_counter_add(&sbinfo->used_blocks, -nr);
1472 unacct:
1473 shmem_unacct_blocks(info->flags, nr);
1474 failed:
1475 return ERR_PTR(err);
1476 }
1477
1478 /*
1479 * When a page is moved from swapcache to shmem filecache (either by the
1480 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1481 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1482 * ignorance of the mapping it belongs to. If that mapping has special
1483 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1484 * we may need to copy to a suitable page before moving to filecache.
1485 *
1486 * In a future release, this may well be extended to respect cpuset and
1487 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1488 * but for now it is a simple matter of zone.
1489 */
1490 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1491 {
1492 return page_zonenum(page) > gfp_zone(gfp);
1493 }
1494
1495 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1496 struct shmem_inode_info *info, pgoff_t index)
1497 {
1498 struct page *oldpage, *newpage;
1499 struct address_space *swap_mapping;
1500 pgoff_t swap_index;
1501 int error;
1502
1503 oldpage = *pagep;
1504 swap_index = page_private(oldpage);
1505 swap_mapping = page_mapping(oldpage);
1506
1507 /*
1508 * We have arrived here because our zones are constrained, so don't
1509 * limit chance of success by further cpuset and node constraints.
1510 */
1511 gfp &= ~GFP_CONSTRAINT_MASK;
1512 newpage = shmem_alloc_page(gfp, info, index);
1513 if (!newpage)
1514 return -ENOMEM;
1515
1516 get_page(newpage);
1517 copy_highpage(newpage, oldpage);
1518 flush_dcache_page(newpage);
1519
1520 __SetPageLocked(newpage);
1521 __SetPageSwapBacked(newpage);
1522 SetPageUptodate(newpage);
1523 set_page_private(newpage, swap_index);
1524 SetPageSwapCache(newpage);
1525
1526 /*
1527 * Our caller will very soon move newpage out of swapcache, but it's
1528 * a nice clean interface for us to replace oldpage by newpage there.
1529 */
1530 spin_lock_irq(&swap_mapping->tree_lock);
1531 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1532 newpage);
1533 if (!error) {
1534 __inc_node_page_state(newpage, NR_FILE_PAGES);
1535 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1536 }
1537 spin_unlock_irq(&swap_mapping->tree_lock);
1538
1539 if (unlikely(error)) {
1540 /*
1541 * Is this possible? I think not, now that our callers check
1542 * both PageSwapCache and page_private after getting page lock;
1543 * but be defensive. Reverse old to newpage for clear and free.
1544 */
1545 oldpage = newpage;
1546 } else {
1547 mem_cgroup_migrate(oldpage, newpage);
1548 lru_cache_add_anon(newpage);
1549 *pagep = newpage;
1550 }
1551
1552 ClearPageSwapCache(oldpage);
1553 set_page_private(oldpage, 0);
1554
1555 unlock_page(oldpage);
1556 put_page(oldpage);
1557 put_page(oldpage);
1558 return error;
1559 }
1560
1561 /*
1562 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1563 *
1564 * If we allocate a new one we do not mark it dirty. That's up to the
1565 * vm. If we swap it in we mark it dirty since we also free the swap
1566 * entry since a page cannot live in both the swap and page cache.
1567 *
1568 * fault_mm and fault_type are only supplied by shmem_fault:
1569 * otherwise they are NULL.
1570 */
1571 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1572 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1573 struct mm_struct *fault_mm, int *fault_type)
1574 {
1575 struct address_space *mapping = inode->i_mapping;
1576 struct shmem_inode_info *info = SHMEM_I(inode);
1577 struct shmem_sb_info *sbinfo;
1578 struct mm_struct *charge_mm;
1579 struct mem_cgroup *memcg;
1580 struct page *page;
1581 swp_entry_t swap;
1582 enum sgp_type sgp_huge = sgp;
1583 pgoff_t hindex = index;
1584 int error;
1585 int once = 0;
1586 int alloced = 0;
1587
1588 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1589 return -EFBIG;
1590 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1591 sgp = SGP_CACHE;
1592 repeat:
1593 swap.val = 0;
1594 page = find_lock_entry(mapping, index);
1595 if (radix_tree_exceptional_entry(page)) {
1596 swap = radix_to_swp_entry(page);
1597 page = NULL;
1598 }
1599
1600 if (sgp <= SGP_CACHE &&
1601 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1602 error = -EINVAL;
1603 goto unlock;
1604 }
1605
1606 if (page && sgp == SGP_WRITE)
1607 mark_page_accessed(page);
1608
1609 /* fallocated page? */
1610 if (page && !PageUptodate(page)) {
1611 if (sgp != SGP_READ)
1612 goto clear;
1613 unlock_page(page);
1614 put_page(page);
1615 page = NULL;
1616 }
1617 if (page || (sgp == SGP_READ && !swap.val)) {
1618 *pagep = page;
1619 return 0;
1620 }
1621
1622 /*
1623 * Fast cache lookup did not find it:
1624 * bring it back from swap or allocate.
1625 */
1626 sbinfo = SHMEM_SB(inode->i_sb);
1627 charge_mm = fault_mm ? : current->mm;
1628
1629 if (swap.val) {
1630 /* Look it up and read it in.. */
1631 page = lookup_swap_cache(swap);
1632 if (!page) {
1633 /* Or update major stats only when swapin succeeds?? */
1634 if (fault_type) {
1635 *fault_type |= VM_FAULT_MAJOR;
1636 count_vm_event(PGMAJFAULT);
1637 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1638 }
1639 /* Here we actually start the io */
1640 page = shmem_swapin(swap, gfp, info, index);
1641 if (!page) {
1642 error = -ENOMEM;
1643 goto failed;
1644 }
1645 }
1646
1647 /* We have to do this with page locked to prevent races */
1648 lock_page(page);
1649 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1650 !shmem_confirm_swap(mapping, index, swap)) {
1651 error = -EEXIST; /* try again */
1652 goto unlock;
1653 }
1654 if (!PageUptodate(page)) {
1655 error = -EIO;
1656 goto failed;
1657 }
1658 wait_on_page_writeback(page);
1659
1660 if (shmem_should_replace_page(page, gfp)) {
1661 error = shmem_replace_page(&page, gfp, info, index);
1662 if (error)
1663 goto failed;
1664 }
1665
1666 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1667 false);
1668 if (!error) {
1669 error = shmem_add_to_page_cache(page, mapping, index,
1670 swp_to_radix_entry(swap));
1671 /*
1672 * We already confirmed swap under page lock, and make
1673 * no memory allocation here, so usually no possibility
1674 * of error; but free_swap_and_cache() only trylocks a
1675 * page, so it is just possible that the entry has been
1676 * truncated or holepunched since swap was confirmed.
1677 * shmem_undo_range() will have done some of the
1678 * unaccounting, now delete_from_swap_cache() will do
1679 * the rest.
1680 * Reset swap.val? No, leave it so "failed" goes back to
1681 * "repeat": reading a hole and writing should succeed.
1682 */
1683 if (error) {
1684 mem_cgroup_cancel_charge(page, memcg, false);
1685 delete_from_swap_cache(page);
1686 }
1687 }
1688 if (error)
1689 goto failed;
1690
1691 mem_cgroup_commit_charge(page, memcg, true, false);
1692
1693 spin_lock_irq(&info->lock);
1694 info->swapped--;
1695 shmem_recalc_inode(inode);
1696 spin_unlock_irq(&info->lock);
1697
1698 if (sgp == SGP_WRITE)
1699 mark_page_accessed(page);
1700
1701 delete_from_swap_cache(page);
1702 set_page_dirty(page);
1703 swap_free(swap);
1704
1705 } else {
1706 /* shmem_symlink() */
1707 if (mapping->a_ops != &shmem_aops)
1708 goto alloc_nohuge;
1709 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1710 goto alloc_nohuge;
1711 if (shmem_huge == SHMEM_HUGE_FORCE)
1712 goto alloc_huge;
1713 switch (sbinfo->huge) {
1714 loff_t i_size;
1715 pgoff_t off;
1716 case SHMEM_HUGE_NEVER:
1717 goto alloc_nohuge;
1718 case SHMEM_HUGE_WITHIN_SIZE:
1719 off = round_up(index, HPAGE_PMD_NR);
1720 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1721 if (i_size >= HPAGE_PMD_SIZE &&
1722 i_size >> PAGE_SHIFT >= off)
1723 goto alloc_huge;
1724 /* fallthrough */
1725 case SHMEM_HUGE_ADVISE:
1726 if (sgp_huge == SGP_HUGE)
1727 goto alloc_huge;
1728 /* TODO: implement fadvise() hints */
1729 goto alloc_nohuge;
1730 }
1731
1732 alloc_huge:
1733 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1734 index, true);
1735 if (IS_ERR(page)) {
1736 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1737 index, false);
1738 }
1739 if (IS_ERR(page)) {
1740 int retry = 5;
1741 error = PTR_ERR(page);
1742 page = NULL;
1743 if (error != -ENOSPC)
1744 goto failed;
1745 /*
1746 * Try to reclaim some spece by splitting a huge page
1747 * beyond i_size on the filesystem.
1748 */
1749 while (retry--) {
1750 int ret;
1751 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1752 if (ret == SHRINK_STOP)
1753 break;
1754 if (ret)
1755 goto alloc_nohuge;
1756 }
1757 goto failed;
1758 }
1759
1760 if (PageTransHuge(page))
1761 hindex = round_down(index, HPAGE_PMD_NR);
1762 else
1763 hindex = index;
1764
1765 if (sgp == SGP_WRITE)
1766 __SetPageReferenced(page);
1767
1768 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1769 PageTransHuge(page));
1770 if (error)
1771 goto unacct;
1772 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1773 compound_order(page));
1774 if (!error) {
1775 error = shmem_add_to_page_cache(page, mapping, hindex,
1776 NULL);
1777 radix_tree_preload_end();
1778 }
1779 if (error) {
1780 mem_cgroup_cancel_charge(page, memcg,
1781 PageTransHuge(page));
1782 goto unacct;
1783 }
1784 mem_cgroup_commit_charge(page, memcg, false,
1785 PageTransHuge(page));
1786 lru_cache_add_anon(page);
1787
1788 spin_lock_irq(&info->lock);
1789 info->alloced += 1 << compound_order(page);
1790 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1791 shmem_recalc_inode(inode);
1792 spin_unlock_irq(&info->lock);
1793 alloced = true;
1794
1795 if (PageTransHuge(page) &&
1796 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1797 hindex + HPAGE_PMD_NR - 1) {
1798 /*
1799 * Part of the huge page is beyond i_size: subject
1800 * to shrink under memory pressure.
1801 */
1802 spin_lock(&sbinfo->shrinklist_lock);
1803 if (list_empty(&info->shrinklist)) {
1804 list_add_tail(&info->shrinklist,
1805 &sbinfo->shrinklist);
1806 sbinfo->shrinklist_len++;
1807 }
1808 spin_unlock(&sbinfo->shrinklist_lock);
1809 }
1810
1811 /*
1812 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1813 */
1814 if (sgp == SGP_FALLOC)
1815 sgp = SGP_WRITE;
1816 clear:
1817 /*
1818 * Let SGP_WRITE caller clear ends if write does not fill page;
1819 * but SGP_FALLOC on a page fallocated earlier must initialize
1820 * it now, lest undo on failure cancel our earlier guarantee.
1821 */
1822 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1823 struct page *head = compound_head(page);
1824 int i;
1825
1826 for (i = 0; i < (1 << compound_order(head)); i++) {
1827 clear_highpage(head + i);
1828 flush_dcache_page(head + i);
1829 }
1830 SetPageUptodate(head);
1831 }
1832 }
1833
1834 /* Perhaps the file has been truncated since we checked */
1835 if (sgp <= SGP_CACHE &&
1836 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1837 if (alloced) {
1838 ClearPageDirty(page);
1839 delete_from_page_cache(page);
1840 spin_lock_irq(&info->lock);
1841 shmem_recalc_inode(inode);
1842 spin_unlock_irq(&info->lock);
1843 }
1844 error = -EINVAL;
1845 goto unlock;
1846 }
1847 *pagep = page + index - hindex;
1848 return 0;
1849
1850 /*
1851 * Error recovery.
1852 */
1853 unacct:
1854 if (sbinfo->max_blocks)
1855 percpu_counter_sub(&sbinfo->used_blocks,
1856 1 << compound_order(page));
1857 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1858
1859 if (PageTransHuge(page)) {
1860 unlock_page(page);
1861 put_page(page);
1862 goto alloc_nohuge;
1863 }
1864 failed:
1865 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1866 error = -EEXIST;
1867 unlock:
1868 if (page) {
1869 unlock_page(page);
1870 put_page(page);
1871 }
1872 if (error == -ENOSPC && !once++) {
1873 spin_lock_irq(&info->lock);
1874 shmem_recalc_inode(inode);
1875 spin_unlock_irq(&info->lock);
1876 goto repeat;
1877 }
1878 if (error == -EEXIST) /* from above or from radix_tree_insert */
1879 goto repeat;
1880 return error;
1881 }
1882
1883 /*
1884 * This is like autoremove_wake_function, but it removes the wait queue
1885 * entry unconditionally - even if something else had already woken the
1886 * target.
1887 */
1888 static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1889 {
1890 int ret = default_wake_function(wait, mode, sync, key);
1891 list_del_init(&wait->task_list);
1892 return ret;
1893 }
1894
1895 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1896 {
1897 struct inode *inode = file_inode(vma->vm_file);
1898 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1899 enum sgp_type sgp;
1900 int error;
1901 int ret = VM_FAULT_LOCKED;
1902
1903 /*
1904 * Trinity finds that probing a hole which tmpfs is punching can
1905 * prevent the hole-punch from ever completing: which in turn
1906 * locks writers out with its hold on i_mutex. So refrain from
1907 * faulting pages into the hole while it's being punched. Although
1908 * shmem_undo_range() does remove the additions, it may be unable to
1909 * keep up, as each new page needs its own unmap_mapping_range() call,
1910 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1911 *
1912 * It does not matter if we sometimes reach this check just before the
1913 * hole-punch begins, so that one fault then races with the punch:
1914 * we just need to make racing faults a rare case.
1915 *
1916 * The implementation below would be much simpler if we just used a
1917 * standard mutex or completion: but we cannot take i_mutex in fault,
1918 * and bloating every shmem inode for this unlikely case would be sad.
1919 */
1920 if (unlikely(inode->i_private)) {
1921 struct shmem_falloc *shmem_falloc;
1922
1923 spin_lock(&inode->i_lock);
1924 shmem_falloc = inode->i_private;
1925 if (shmem_falloc &&
1926 shmem_falloc->waitq &&
1927 vmf->pgoff >= shmem_falloc->start &&
1928 vmf->pgoff < shmem_falloc->next) {
1929 wait_queue_head_t *shmem_falloc_waitq;
1930 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1931
1932 ret = VM_FAULT_NOPAGE;
1933 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1934 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1935 /* It's polite to up mmap_sem if we can */
1936 up_read(&vma->vm_mm->mmap_sem);
1937 ret = VM_FAULT_RETRY;
1938 }
1939
1940 shmem_falloc_waitq = shmem_falloc->waitq;
1941 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1942 TASK_UNINTERRUPTIBLE);
1943 spin_unlock(&inode->i_lock);
1944 schedule();
1945
1946 /*
1947 * shmem_falloc_waitq points into the shmem_fallocate()
1948 * stack of the hole-punching task: shmem_falloc_waitq
1949 * is usually invalid by the time we reach here, but
1950 * finish_wait() does not dereference it in that case;
1951 * though i_lock needed lest racing with wake_up_all().
1952 */
1953 spin_lock(&inode->i_lock);
1954 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1955 spin_unlock(&inode->i_lock);
1956 return ret;
1957 }
1958 spin_unlock(&inode->i_lock);
1959 }
1960
1961 sgp = SGP_CACHE;
1962 if (vma->vm_flags & VM_HUGEPAGE)
1963 sgp = SGP_HUGE;
1964 else if (vma->vm_flags & VM_NOHUGEPAGE)
1965 sgp = SGP_NOHUGE;
1966
1967 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1968 gfp, vma->vm_mm, &ret);
1969 if (error)
1970 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1971 return ret;
1972 }
1973
1974 unsigned long shmem_get_unmapped_area(struct file *file,
1975 unsigned long uaddr, unsigned long len,
1976 unsigned long pgoff, unsigned long flags)
1977 {
1978 unsigned long (*get_area)(struct file *,
1979 unsigned long, unsigned long, unsigned long, unsigned long);
1980 unsigned long addr;
1981 unsigned long offset;
1982 unsigned long inflated_len;
1983 unsigned long inflated_addr;
1984 unsigned long inflated_offset;
1985
1986 if (len > TASK_SIZE)
1987 return -ENOMEM;
1988
1989 get_area = current->mm->get_unmapped_area;
1990 addr = get_area(file, uaddr, len, pgoff, flags);
1991
1992 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1993 return addr;
1994 if (IS_ERR_VALUE(addr))
1995 return addr;
1996 if (addr & ~PAGE_MASK)
1997 return addr;
1998 if (addr > TASK_SIZE - len)
1999 return addr;
2000
2001 if (shmem_huge == SHMEM_HUGE_DENY)
2002 return addr;
2003 if (len < HPAGE_PMD_SIZE)
2004 return addr;
2005 if (flags & MAP_FIXED)
2006 return addr;
2007 /*
2008 * Our priority is to support MAP_SHARED mapped hugely;
2009 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2010 * But if caller specified an address hint, respect that as before.
2011 */
2012 if (uaddr)
2013 return addr;
2014
2015 if (shmem_huge != SHMEM_HUGE_FORCE) {
2016 struct super_block *sb;
2017
2018 if (file) {
2019 VM_BUG_ON(file->f_op != &shmem_file_operations);
2020 sb = file_inode(file)->i_sb;
2021 } else {
2022 /*
2023 * Called directly from mm/mmap.c, or drivers/char/mem.c
2024 * for "/dev/zero", to create a shared anonymous object.
2025 */
2026 if (IS_ERR(shm_mnt))
2027 return addr;
2028 sb = shm_mnt->mnt_sb;
2029 }
2030 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2031 return addr;
2032 }
2033
2034 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2035 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2036 return addr;
2037 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2038 return addr;
2039
2040 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2041 if (inflated_len > TASK_SIZE)
2042 return addr;
2043 if (inflated_len < len)
2044 return addr;
2045
2046 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2047 if (IS_ERR_VALUE(inflated_addr))
2048 return addr;
2049 if (inflated_addr & ~PAGE_MASK)
2050 return addr;
2051
2052 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2053 inflated_addr += offset - inflated_offset;
2054 if (inflated_offset > offset)
2055 inflated_addr += HPAGE_PMD_SIZE;
2056
2057 if (inflated_addr > TASK_SIZE - len)
2058 return addr;
2059 return inflated_addr;
2060 }
2061
2062 #ifdef CONFIG_NUMA
2063 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2064 {
2065 struct inode *inode = file_inode(vma->vm_file);
2066 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2067 }
2068
2069 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2070 unsigned long addr)
2071 {
2072 struct inode *inode = file_inode(vma->vm_file);
2073 pgoff_t index;
2074
2075 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2076 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2077 }
2078 #endif
2079
2080 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2081 {
2082 struct inode *inode = file_inode(file);
2083 struct shmem_inode_info *info = SHMEM_I(inode);
2084 int retval = -ENOMEM;
2085
2086 spin_lock_irq(&info->lock);
2087 if (lock && !(info->flags & VM_LOCKED)) {
2088 if (!user_shm_lock(inode->i_size, user))
2089 goto out_nomem;
2090 info->flags |= VM_LOCKED;
2091 mapping_set_unevictable(file->f_mapping);
2092 }
2093 if (!lock && (info->flags & VM_LOCKED) && user) {
2094 user_shm_unlock(inode->i_size, user);
2095 info->flags &= ~VM_LOCKED;
2096 mapping_clear_unevictable(file->f_mapping);
2097 }
2098 retval = 0;
2099
2100 out_nomem:
2101 spin_unlock_irq(&info->lock);
2102 return retval;
2103 }
2104
2105 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2106 {
2107 file_accessed(file);
2108 vma->vm_ops = &shmem_vm_ops;
2109 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2110 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2111 (vma->vm_end & HPAGE_PMD_MASK)) {
2112 khugepaged_enter(vma, vma->vm_flags);
2113 }
2114 return 0;
2115 }
2116
2117 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2118 umode_t mode, dev_t dev, unsigned long flags)
2119 {
2120 struct inode *inode;
2121 struct shmem_inode_info *info;
2122 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2123
2124 if (shmem_reserve_inode(sb))
2125 return NULL;
2126
2127 inode = new_inode(sb);
2128 if (inode) {
2129 inode->i_ino = get_next_ino();
2130 inode_init_owner(inode, dir, mode);
2131 inode->i_blocks = 0;
2132 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2133 inode->i_generation = get_seconds();
2134 info = SHMEM_I(inode);
2135 memset(info, 0, (char *)inode - (char *)info);
2136 spin_lock_init(&info->lock);
2137 info->seals = F_SEAL_SEAL;
2138 info->flags = flags & VM_NORESERVE;
2139 INIT_LIST_HEAD(&info->shrinklist);
2140 INIT_LIST_HEAD(&info->swaplist);
2141 simple_xattrs_init(&info->xattrs);
2142 cache_no_acl(inode);
2143
2144 switch (mode & S_IFMT) {
2145 default:
2146 inode->i_op = &shmem_special_inode_operations;
2147 init_special_inode(inode, mode, dev);
2148 break;
2149 case S_IFREG:
2150 inode->i_mapping->a_ops = &shmem_aops;
2151 inode->i_op = &shmem_inode_operations;
2152 inode->i_fop = &shmem_file_operations;
2153 mpol_shared_policy_init(&info->policy,
2154 shmem_get_sbmpol(sbinfo));
2155 break;
2156 case S_IFDIR:
2157 inc_nlink(inode);
2158 /* Some things misbehave if size == 0 on a directory */
2159 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2160 inode->i_op = &shmem_dir_inode_operations;
2161 inode->i_fop = &simple_dir_operations;
2162 break;
2163 case S_IFLNK:
2164 /*
2165 * Must not load anything in the rbtree,
2166 * mpol_free_shared_policy will not be called.
2167 */
2168 mpol_shared_policy_init(&info->policy, NULL);
2169 break;
2170 }
2171 } else
2172 shmem_free_inode(sb);
2173 return inode;
2174 }
2175
2176 bool shmem_mapping(struct address_space *mapping)
2177 {
2178 if (!mapping->host)
2179 return false;
2180
2181 return mapping->host->i_sb->s_op == &shmem_ops;
2182 }
2183
2184 #ifdef CONFIG_TMPFS
2185 static const struct inode_operations shmem_symlink_inode_operations;
2186 static const struct inode_operations shmem_short_symlink_operations;
2187
2188 #ifdef CONFIG_TMPFS_XATTR
2189 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2190 #else
2191 #define shmem_initxattrs NULL
2192 #endif
2193
2194 static int
2195 shmem_write_begin(struct file *file, struct address_space *mapping,
2196 loff_t pos, unsigned len, unsigned flags,
2197 struct page **pagep, void **fsdata)
2198 {
2199 struct inode *inode = mapping->host;
2200 struct shmem_inode_info *info = SHMEM_I(inode);
2201 pgoff_t index = pos >> PAGE_SHIFT;
2202
2203 /* i_mutex is held by caller */
2204 if (unlikely(info->seals)) {
2205 if (info->seals & F_SEAL_WRITE)
2206 return -EPERM;
2207 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2208 return -EPERM;
2209 }
2210
2211 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2212 }
2213
2214 static int
2215 shmem_write_end(struct file *file, struct address_space *mapping,
2216 loff_t pos, unsigned len, unsigned copied,
2217 struct page *page, void *fsdata)
2218 {
2219 struct inode *inode = mapping->host;
2220
2221 if (pos + copied > inode->i_size)
2222 i_size_write(inode, pos + copied);
2223
2224 if (!PageUptodate(page)) {
2225 struct page *head = compound_head(page);
2226 if (PageTransCompound(page)) {
2227 int i;
2228
2229 for (i = 0; i < HPAGE_PMD_NR; i++) {
2230 if (head + i == page)
2231 continue;
2232 clear_highpage(head + i);
2233 flush_dcache_page(head + i);
2234 }
2235 }
2236 if (copied < PAGE_SIZE) {
2237 unsigned from = pos & (PAGE_SIZE - 1);
2238 zero_user_segments(page, 0, from,
2239 from + copied, PAGE_SIZE);
2240 }
2241 SetPageUptodate(head);
2242 }
2243 set_page_dirty(page);
2244 unlock_page(page);
2245 put_page(page);
2246
2247 return copied;
2248 }
2249
2250 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2251 {
2252 struct file *file = iocb->ki_filp;
2253 struct inode *inode = file_inode(file);
2254 struct address_space *mapping = inode->i_mapping;
2255 pgoff_t index;
2256 unsigned long offset;
2257 enum sgp_type sgp = SGP_READ;
2258 int error = 0;
2259 ssize_t retval = 0;
2260 loff_t *ppos = &iocb->ki_pos;
2261
2262 /*
2263 * Might this read be for a stacking filesystem? Then when reading
2264 * holes of a sparse file, we actually need to allocate those pages,
2265 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2266 */
2267 if (!iter_is_iovec(to))
2268 sgp = SGP_CACHE;
2269
2270 index = *ppos >> PAGE_SHIFT;
2271 offset = *ppos & ~PAGE_MASK;
2272
2273 for (;;) {
2274 struct page *page = NULL;
2275 pgoff_t end_index;
2276 unsigned long nr, ret;
2277 loff_t i_size = i_size_read(inode);
2278
2279 end_index = i_size >> PAGE_SHIFT;
2280 if (index > end_index)
2281 break;
2282 if (index == end_index) {
2283 nr = i_size & ~PAGE_MASK;
2284 if (nr <= offset)
2285 break;
2286 }
2287
2288 error = shmem_getpage(inode, index, &page, sgp);
2289 if (error) {
2290 if (error == -EINVAL)
2291 error = 0;
2292 break;
2293 }
2294 if (page) {
2295 if (sgp == SGP_CACHE)
2296 set_page_dirty(page);
2297 unlock_page(page);
2298 }
2299
2300 /*
2301 * We must evaluate after, since reads (unlike writes)
2302 * are called without i_mutex protection against truncate
2303 */
2304 nr = PAGE_SIZE;
2305 i_size = i_size_read(inode);
2306 end_index = i_size >> PAGE_SHIFT;
2307 if (index == end_index) {
2308 nr = i_size & ~PAGE_MASK;
2309 if (nr <= offset) {
2310 if (page)
2311 put_page(page);
2312 break;
2313 }
2314 }
2315 nr -= offset;
2316
2317 if (page) {
2318 /*
2319 * If users can be writing to this page using arbitrary
2320 * virtual addresses, take care about potential aliasing
2321 * before reading the page on the kernel side.
2322 */
2323 if (mapping_writably_mapped(mapping))
2324 flush_dcache_page(page);
2325 /*
2326 * Mark the page accessed if we read the beginning.
2327 */
2328 if (!offset)
2329 mark_page_accessed(page);
2330 } else {
2331 page = ZERO_PAGE(0);
2332 get_page(page);
2333 }
2334
2335 /*
2336 * Ok, we have the page, and it's up-to-date, so
2337 * now we can copy it to user space...
2338 */
2339 ret = copy_page_to_iter(page, offset, nr, to);
2340 retval += ret;
2341 offset += ret;
2342 index += offset >> PAGE_SHIFT;
2343 offset &= ~PAGE_MASK;
2344
2345 put_page(page);
2346 if (!iov_iter_count(to))
2347 break;
2348 if (ret < nr) {
2349 error = -EFAULT;
2350 break;
2351 }
2352 cond_resched();
2353 }
2354
2355 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2356 file_accessed(file);
2357 return retval ? retval : error;
2358 }
2359
2360 /*
2361 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2362 */
2363 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2364 pgoff_t index, pgoff_t end, int whence)
2365 {
2366 struct page *page;
2367 struct pagevec pvec;
2368 pgoff_t indices[PAGEVEC_SIZE];
2369 bool done = false;
2370 int i;
2371
2372 pagevec_init(&pvec, 0);
2373 pvec.nr = 1; /* start small: we may be there already */
2374 while (!done) {
2375 pvec.nr = find_get_entries(mapping, index,
2376 pvec.nr, pvec.pages, indices);
2377 if (!pvec.nr) {
2378 if (whence == SEEK_DATA)
2379 index = end;
2380 break;
2381 }
2382 for (i = 0; i < pvec.nr; i++, index++) {
2383 if (index < indices[i]) {
2384 if (whence == SEEK_HOLE) {
2385 done = true;
2386 break;
2387 }
2388 index = indices[i];
2389 }
2390 page = pvec.pages[i];
2391 if (page && !radix_tree_exceptional_entry(page)) {
2392 if (!PageUptodate(page))
2393 page = NULL;
2394 }
2395 if (index >= end ||
2396 (page && whence == SEEK_DATA) ||
2397 (!page && whence == SEEK_HOLE)) {
2398 done = true;
2399 break;
2400 }
2401 }
2402 pagevec_remove_exceptionals(&pvec);
2403 pagevec_release(&pvec);
2404 pvec.nr = PAGEVEC_SIZE;
2405 cond_resched();
2406 }
2407 return index;
2408 }
2409
2410 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2411 {
2412 struct address_space *mapping = file->f_mapping;
2413 struct inode *inode = mapping->host;
2414 pgoff_t start, end;
2415 loff_t new_offset;
2416
2417 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2418 return generic_file_llseek_size(file, offset, whence,
2419 MAX_LFS_FILESIZE, i_size_read(inode));
2420 inode_lock(inode);
2421 /* We're holding i_mutex so we can access i_size directly */
2422
2423 if (offset < 0)
2424 offset = -EINVAL;
2425 else if (offset >= inode->i_size)
2426 offset = -ENXIO;
2427 else {
2428 start = offset >> PAGE_SHIFT;
2429 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2430 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2431 new_offset <<= PAGE_SHIFT;
2432 if (new_offset > offset) {
2433 if (new_offset < inode->i_size)
2434 offset = new_offset;
2435 else if (whence == SEEK_DATA)
2436 offset = -ENXIO;
2437 else
2438 offset = inode->i_size;
2439 }
2440 }
2441
2442 if (offset >= 0)
2443 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2444 inode_unlock(inode);
2445 return offset;
2446 }
2447
2448 /*
2449 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2450 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2451 */
2452 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2453 #define LAST_SCAN 4 /* about 150ms max */
2454
2455 static void shmem_tag_pins(struct address_space *mapping)
2456 {
2457 struct radix_tree_iter iter;
2458 void **slot;
2459 pgoff_t start;
2460 struct page *page;
2461
2462 lru_add_drain();
2463 start = 0;
2464 rcu_read_lock();
2465
2466 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2467 page = radix_tree_deref_slot(slot);
2468 if (!page || radix_tree_exception(page)) {
2469 if (radix_tree_deref_retry(page)) {
2470 slot = radix_tree_iter_retry(&iter);
2471 continue;
2472 }
2473 } else if (page_count(page) - page_mapcount(page) > 1) {
2474 spin_lock_irq(&mapping->tree_lock);
2475 radix_tree_tag_set(&mapping->page_tree, iter.index,
2476 SHMEM_TAG_PINNED);
2477 spin_unlock_irq(&mapping->tree_lock);
2478 }
2479
2480 if (need_resched()) {
2481 slot = radix_tree_iter_resume(slot, &iter);
2482 cond_resched_rcu();
2483 }
2484 }
2485 rcu_read_unlock();
2486 }
2487
2488 /*
2489 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2490 * via get_user_pages(), drivers might have some pending I/O without any active
2491 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2492 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2493 * them to be dropped.
2494 * The caller must guarantee that no new user will acquire writable references
2495 * to those pages to avoid races.
2496 */
2497 static int shmem_wait_for_pins(struct address_space *mapping)
2498 {
2499 struct radix_tree_iter iter;
2500 void **slot;
2501 pgoff_t start;
2502 struct page *page;
2503 int error, scan;
2504
2505 shmem_tag_pins(mapping);
2506
2507 error = 0;
2508 for (scan = 0; scan <= LAST_SCAN; scan++) {
2509 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2510 break;
2511
2512 if (!scan)
2513 lru_add_drain_all();
2514 else if (schedule_timeout_killable((HZ << scan) / 200))
2515 scan = LAST_SCAN;
2516
2517 start = 0;
2518 rcu_read_lock();
2519 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2520 start, SHMEM_TAG_PINNED) {
2521
2522 page = radix_tree_deref_slot(slot);
2523 if (radix_tree_exception(page)) {
2524 if (radix_tree_deref_retry(page)) {
2525 slot = radix_tree_iter_retry(&iter);
2526 continue;
2527 }
2528
2529 page = NULL;
2530 }
2531
2532 if (page &&
2533 page_count(page) - page_mapcount(page) != 1) {
2534 if (scan < LAST_SCAN)
2535 goto continue_resched;
2536
2537 /*
2538 * On the last scan, we clean up all those tags
2539 * we inserted; but make a note that we still
2540 * found pages pinned.
2541 */
2542 error = -EBUSY;
2543 }
2544
2545 spin_lock_irq(&mapping->tree_lock);
2546 radix_tree_tag_clear(&mapping->page_tree,
2547 iter.index, SHMEM_TAG_PINNED);
2548 spin_unlock_irq(&mapping->tree_lock);
2549 continue_resched:
2550 if (need_resched()) {
2551 slot = radix_tree_iter_resume(slot, &iter);
2552 cond_resched_rcu();
2553 }
2554 }
2555 rcu_read_unlock();
2556 }
2557
2558 return error;
2559 }
2560
2561 #define F_ALL_SEALS (F_SEAL_SEAL | \
2562 F_SEAL_SHRINK | \
2563 F_SEAL_GROW | \
2564 F_SEAL_WRITE)
2565
2566 int shmem_add_seals(struct file *file, unsigned int seals)
2567 {
2568 struct inode *inode = file_inode(file);
2569 struct shmem_inode_info *info = SHMEM_I(inode);
2570 int error;
2571
2572 /*
2573 * SEALING
2574 * Sealing allows multiple parties to share a shmem-file but restrict
2575 * access to a specific subset of file operations. Seals can only be
2576 * added, but never removed. This way, mutually untrusted parties can
2577 * share common memory regions with a well-defined policy. A malicious
2578 * peer can thus never perform unwanted operations on a shared object.
2579 *
2580 * Seals are only supported on special shmem-files and always affect
2581 * the whole underlying inode. Once a seal is set, it may prevent some
2582 * kinds of access to the file. Currently, the following seals are
2583 * defined:
2584 * SEAL_SEAL: Prevent further seals from being set on this file
2585 * SEAL_SHRINK: Prevent the file from shrinking
2586 * SEAL_GROW: Prevent the file from growing
2587 * SEAL_WRITE: Prevent write access to the file
2588 *
2589 * As we don't require any trust relationship between two parties, we
2590 * must prevent seals from being removed. Therefore, sealing a file
2591 * only adds a given set of seals to the file, it never touches
2592 * existing seals. Furthermore, the "setting seals"-operation can be
2593 * sealed itself, which basically prevents any further seal from being
2594 * added.
2595 *
2596 * Semantics of sealing are only defined on volatile files. Only
2597 * anonymous shmem files support sealing. More importantly, seals are
2598 * never written to disk. Therefore, there's no plan to support it on
2599 * other file types.
2600 */
2601
2602 if (file->f_op != &shmem_file_operations)
2603 return -EINVAL;
2604 if (!(file->f_mode & FMODE_WRITE))
2605 return -EPERM;
2606 if (seals & ~(unsigned int)F_ALL_SEALS)
2607 return -EINVAL;
2608
2609 inode_lock(inode);
2610
2611 if (info->seals & F_SEAL_SEAL) {
2612 error = -EPERM;
2613 goto unlock;
2614 }
2615
2616 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2617 error = mapping_deny_writable(file->f_mapping);
2618 if (error)
2619 goto unlock;
2620
2621 error = shmem_wait_for_pins(file->f_mapping);
2622 if (error) {
2623 mapping_allow_writable(file->f_mapping);
2624 goto unlock;
2625 }
2626 }
2627
2628 info->seals |= seals;
2629 error = 0;
2630
2631 unlock:
2632 inode_unlock(inode);
2633 return error;
2634 }
2635 EXPORT_SYMBOL_GPL(shmem_add_seals);
2636
2637 int shmem_get_seals(struct file *file)
2638 {
2639 if (file->f_op != &shmem_file_operations)
2640 return -EINVAL;
2641
2642 return SHMEM_I(file_inode(file))->seals;
2643 }
2644 EXPORT_SYMBOL_GPL(shmem_get_seals);
2645
2646 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2647 {
2648 long error;
2649
2650 switch (cmd) {
2651 case F_ADD_SEALS:
2652 /* disallow upper 32bit */
2653 if (arg > UINT_MAX)
2654 return -EINVAL;
2655
2656 error = shmem_add_seals(file, arg);
2657 break;
2658 case F_GET_SEALS:
2659 error = shmem_get_seals(file);
2660 break;
2661 default:
2662 error = -EINVAL;
2663 break;
2664 }
2665
2666 return error;
2667 }
2668
2669 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2670 loff_t len)
2671 {
2672 struct inode *inode = file_inode(file);
2673 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2674 struct shmem_inode_info *info = SHMEM_I(inode);
2675 struct shmem_falloc shmem_falloc;
2676 pgoff_t start, index, end;
2677 int error;
2678
2679 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2680 return -EOPNOTSUPP;
2681
2682 inode_lock(inode);
2683
2684 if (mode & FALLOC_FL_PUNCH_HOLE) {
2685 struct address_space *mapping = file->f_mapping;
2686 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2687 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2688 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2689
2690 /* protected by i_mutex */
2691 if (info->seals & F_SEAL_WRITE) {
2692 error = -EPERM;
2693 goto out;
2694 }
2695
2696 shmem_falloc.waitq = &shmem_falloc_waitq;
2697 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2698 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2699 spin_lock(&inode->i_lock);
2700 inode->i_private = &shmem_falloc;
2701 spin_unlock(&inode->i_lock);
2702
2703 if ((u64)unmap_end > (u64)unmap_start)
2704 unmap_mapping_range(mapping, unmap_start,
2705 1 + unmap_end - unmap_start, 0);
2706 shmem_truncate_range(inode, offset, offset + len - 1);
2707 /* No need to unmap again: hole-punching leaves COWed pages */
2708
2709 spin_lock(&inode->i_lock);
2710 inode->i_private = NULL;
2711 wake_up_all(&shmem_falloc_waitq);
2712 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2713 spin_unlock(&inode->i_lock);
2714 error = 0;
2715 goto out;
2716 }
2717
2718 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2719 error = inode_newsize_ok(inode, offset + len);
2720 if (error)
2721 goto out;
2722
2723 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2724 error = -EPERM;
2725 goto out;
2726 }
2727
2728 start = offset >> PAGE_SHIFT;
2729 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2730 /* Try to avoid a swapstorm if len is impossible to satisfy */
2731 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2732 error = -ENOSPC;
2733 goto out;
2734 }
2735
2736 shmem_falloc.waitq = NULL;
2737 shmem_falloc.start = start;
2738 shmem_falloc.next = start;
2739 shmem_falloc.nr_falloced = 0;
2740 shmem_falloc.nr_unswapped = 0;
2741 spin_lock(&inode->i_lock);
2742 inode->i_private = &shmem_falloc;
2743 spin_unlock(&inode->i_lock);
2744
2745 for (index = start; index < end; index++) {
2746 struct page *page;
2747
2748 /*
2749 * Good, the fallocate(2) manpage permits EINTR: we may have
2750 * been interrupted because we are using up too much memory.
2751 */
2752 if (signal_pending(current))
2753 error = -EINTR;
2754 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2755 error = -ENOMEM;
2756 else
2757 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2758 if (error) {
2759 /* Remove the !PageUptodate pages we added */
2760 if (index > start) {
2761 shmem_undo_range(inode,
2762 (loff_t)start << PAGE_SHIFT,
2763 ((loff_t)index << PAGE_SHIFT) - 1, true);
2764 }
2765 goto undone;
2766 }
2767
2768 /*
2769 * Inform shmem_writepage() how far we have reached.
2770 * No need for lock or barrier: we have the page lock.
2771 */
2772 shmem_falloc.next++;
2773 if (!PageUptodate(page))
2774 shmem_falloc.nr_falloced++;
2775
2776 /*
2777 * If !PageUptodate, leave it that way so that freeable pages
2778 * can be recognized if we need to rollback on error later.
2779 * But set_page_dirty so that memory pressure will swap rather
2780 * than free the pages we are allocating (and SGP_CACHE pages
2781 * might still be clean: we now need to mark those dirty too).
2782 */
2783 set_page_dirty(page);
2784 unlock_page(page);
2785 put_page(page);
2786 cond_resched();
2787 }
2788
2789 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2790 i_size_write(inode, offset + len);
2791 inode->i_ctime = current_time(inode);
2792 undone:
2793 spin_lock(&inode->i_lock);
2794 inode->i_private = NULL;
2795 spin_unlock(&inode->i_lock);
2796 out:
2797 inode_unlock(inode);
2798 return error;
2799 }
2800
2801 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2802 {
2803 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2804
2805 buf->f_type = TMPFS_MAGIC;
2806 buf->f_bsize = PAGE_SIZE;
2807 buf->f_namelen = NAME_MAX;
2808 if (sbinfo->max_blocks) {
2809 buf->f_blocks = sbinfo->max_blocks;
2810 buf->f_bavail =
2811 buf->f_bfree = sbinfo->max_blocks -
2812 percpu_counter_sum(&sbinfo->used_blocks);
2813 }
2814 if (sbinfo->max_inodes) {
2815 buf->f_files = sbinfo->max_inodes;
2816 buf->f_ffree = sbinfo->free_inodes;
2817 }
2818 /* else leave those fields 0 like simple_statfs */
2819 return 0;
2820 }
2821
2822 /*
2823 * File creation. Allocate an inode, and we're done..
2824 */
2825 static int
2826 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2827 {
2828 struct inode *inode;
2829 int error = -ENOSPC;
2830
2831 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2832 if (inode) {
2833 error = simple_acl_create(dir, inode);
2834 if (error)
2835 goto out_iput;
2836 error = security_inode_init_security(inode, dir,
2837 &dentry->d_name,
2838 shmem_initxattrs, NULL);
2839 if (error && error != -EOPNOTSUPP)
2840 goto out_iput;
2841
2842 error = 0;
2843 dir->i_size += BOGO_DIRENT_SIZE;
2844 dir->i_ctime = dir->i_mtime = current_time(dir);
2845 d_instantiate(dentry, inode);
2846 dget(dentry); /* Extra count - pin the dentry in core */
2847 }
2848 return error;
2849 out_iput:
2850 iput(inode);
2851 return error;
2852 }
2853
2854 static int
2855 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2856 {
2857 struct inode *inode;
2858 int error = -ENOSPC;
2859
2860 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2861 if (inode) {
2862 error = security_inode_init_security(inode, dir,
2863 NULL,
2864 shmem_initxattrs, NULL);
2865 if (error && error != -EOPNOTSUPP)
2866 goto out_iput;
2867 error = simple_acl_create(dir, inode);
2868 if (error)
2869 goto out_iput;
2870 d_tmpfile(dentry, inode);
2871 }
2872 return error;
2873 out_iput:
2874 iput(inode);
2875 return error;
2876 }
2877
2878 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2879 {
2880 int error;
2881
2882 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2883 return error;
2884 inc_nlink(dir);
2885 return 0;
2886 }
2887
2888 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2889 bool excl)
2890 {
2891 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2892 }
2893
2894 /*
2895 * Link a file..
2896 */
2897 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2898 {
2899 struct inode *inode = d_inode(old_dentry);
2900 int ret;
2901
2902 /*
2903 * No ordinary (disk based) filesystem counts links as inodes;
2904 * but each new link needs a new dentry, pinning lowmem, and
2905 * tmpfs dentries cannot be pruned until they are unlinked.
2906 */
2907 ret = shmem_reserve_inode(inode->i_sb);
2908 if (ret)
2909 goto out;
2910
2911 dir->i_size += BOGO_DIRENT_SIZE;
2912 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2913 inc_nlink(inode);
2914 ihold(inode); /* New dentry reference */
2915 dget(dentry); /* Extra pinning count for the created dentry */
2916 d_instantiate(dentry, inode);
2917 out:
2918 return ret;
2919 }
2920
2921 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2922 {
2923 struct inode *inode = d_inode(dentry);
2924
2925 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2926 shmem_free_inode(inode->i_sb);
2927
2928 dir->i_size -= BOGO_DIRENT_SIZE;
2929 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2930 drop_nlink(inode);
2931 dput(dentry); /* Undo the count from "create" - this does all the work */
2932 return 0;
2933 }
2934
2935 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2936 {
2937 if (!simple_empty(dentry))
2938 return -ENOTEMPTY;
2939
2940 drop_nlink(d_inode(dentry));
2941 drop_nlink(dir);
2942 return shmem_unlink(dir, dentry);
2943 }
2944
2945 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2946 {
2947 bool old_is_dir = d_is_dir(old_dentry);
2948 bool new_is_dir = d_is_dir(new_dentry);
2949
2950 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2951 if (old_is_dir) {
2952 drop_nlink(old_dir);
2953 inc_nlink(new_dir);
2954 } else {
2955 drop_nlink(new_dir);
2956 inc_nlink(old_dir);
2957 }
2958 }
2959 old_dir->i_ctime = old_dir->i_mtime =
2960 new_dir->i_ctime = new_dir->i_mtime =
2961 d_inode(old_dentry)->i_ctime =
2962 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2963
2964 return 0;
2965 }
2966
2967 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2968 {
2969 struct dentry *whiteout;
2970 int error;
2971
2972 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2973 if (!whiteout)
2974 return -ENOMEM;
2975
2976 error = shmem_mknod(old_dir, whiteout,
2977 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2978 dput(whiteout);
2979 if (error)
2980 return error;
2981
2982 /*
2983 * Cheat and hash the whiteout while the old dentry is still in
2984 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2985 *
2986 * d_lookup() will consistently find one of them at this point,
2987 * not sure which one, but that isn't even important.
2988 */
2989 d_rehash(whiteout);
2990 return 0;
2991 }
2992
2993 /*
2994 * The VFS layer already does all the dentry stuff for rename,
2995 * we just have to decrement the usage count for the target if
2996 * it exists so that the VFS layer correctly free's it when it
2997 * gets overwritten.
2998 */
2999 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3000 {
3001 struct inode *inode = d_inode(old_dentry);
3002 int they_are_dirs = S_ISDIR(inode->i_mode);
3003
3004 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3005 return -EINVAL;
3006
3007 if (flags & RENAME_EXCHANGE)
3008 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3009
3010 if (!simple_empty(new_dentry))
3011 return -ENOTEMPTY;
3012
3013 if (flags & RENAME_WHITEOUT) {
3014 int error;
3015
3016 error = shmem_whiteout(old_dir, old_dentry);
3017 if (error)
3018 return error;
3019 }
3020
3021 if (d_really_is_positive(new_dentry)) {
3022 (void) shmem_unlink(new_dir, new_dentry);
3023 if (they_are_dirs) {
3024 drop_nlink(d_inode(new_dentry));
3025 drop_nlink(old_dir);
3026 }
3027 } else if (they_are_dirs) {
3028 drop_nlink(old_dir);
3029 inc_nlink(new_dir);
3030 }
3031
3032 old_dir->i_size -= BOGO_DIRENT_SIZE;
3033 new_dir->i_size += BOGO_DIRENT_SIZE;
3034 old_dir->i_ctime = old_dir->i_mtime =
3035 new_dir->i_ctime = new_dir->i_mtime =
3036 inode->i_ctime = current_time(old_dir);
3037 return 0;
3038 }
3039
3040 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3041 {
3042 int error;
3043 int len;
3044 struct inode *inode;
3045 struct page *page;
3046 struct shmem_inode_info *info;
3047
3048 len = strlen(symname) + 1;
3049 if (len > PAGE_SIZE)
3050 return -ENAMETOOLONG;
3051
3052 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3053 if (!inode)
3054 return -ENOSPC;
3055
3056 error = security_inode_init_security(inode, dir, &dentry->d_name,
3057 shmem_initxattrs, NULL);
3058 if (error) {
3059 if (error != -EOPNOTSUPP) {
3060 iput(inode);
3061 return error;
3062 }
3063 error = 0;
3064 }
3065
3066 info = SHMEM_I(inode);
3067 inode->i_size = len-1;
3068 if (len <= SHORT_SYMLINK_LEN) {
3069 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3070 if (!inode->i_link) {
3071 iput(inode);
3072 return -ENOMEM;
3073 }
3074 inode->i_op = &shmem_short_symlink_operations;
3075 } else {
3076 inode_nohighmem(inode);
3077 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3078 if (error) {
3079 iput(inode);
3080 return error;
3081 }
3082 inode->i_mapping->a_ops = &shmem_aops;
3083 inode->i_op = &shmem_symlink_inode_operations;
3084 memcpy(page_address(page), symname, len);
3085 SetPageUptodate(page);
3086 set_page_dirty(page);
3087 unlock_page(page);
3088 put_page(page);
3089 }
3090 dir->i_size += BOGO_DIRENT_SIZE;
3091 dir->i_ctime = dir->i_mtime = current_time(dir);
3092 d_instantiate(dentry, inode);
3093 dget(dentry);
3094 return 0;
3095 }
3096
3097 static void shmem_put_link(void *arg)
3098 {
3099 mark_page_accessed(arg);
3100 put_page(arg);
3101 }
3102
3103 static const char *shmem_get_link(struct dentry *dentry,
3104 struct inode *inode,
3105 struct delayed_call *done)
3106 {
3107 struct page *page = NULL;
3108 int error;
3109 if (!dentry) {
3110 page = find_get_page(inode->i_mapping, 0);
3111 if (!page)
3112 return ERR_PTR(-ECHILD);
3113 if (!PageUptodate(page)) {
3114 put_page(page);
3115 return ERR_PTR(-ECHILD);
3116 }
3117 } else {
3118 error = shmem_getpage(inode, 0, &page, SGP_READ);
3119 if (error)
3120 return ERR_PTR(error);
3121 unlock_page(page);
3122 }
3123 set_delayed_call(done, shmem_put_link, page);
3124 return page_address(page);
3125 }
3126
3127 #ifdef CONFIG_TMPFS_XATTR
3128 /*
3129 * Superblocks without xattr inode operations may get some security.* xattr
3130 * support from the LSM "for free". As soon as we have any other xattrs
3131 * like ACLs, we also need to implement the security.* handlers at
3132 * filesystem level, though.
3133 */
3134
3135 /*
3136 * Callback for security_inode_init_security() for acquiring xattrs.
3137 */
3138 static int shmem_initxattrs(struct inode *inode,
3139 const struct xattr *xattr_array,
3140 void *fs_info)
3141 {
3142 struct shmem_inode_info *info = SHMEM_I(inode);
3143 const struct xattr *xattr;
3144 struct simple_xattr *new_xattr;
3145 size_t len;
3146
3147 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3148 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3149 if (!new_xattr)
3150 return -ENOMEM;
3151
3152 len = strlen(xattr->name) + 1;
3153 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3154 GFP_KERNEL);
3155 if (!new_xattr->name) {
3156 kfree(new_xattr);
3157 return -ENOMEM;
3158 }
3159
3160 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3161 XATTR_SECURITY_PREFIX_LEN);
3162 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3163 xattr->name, len);
3164
3165 simple_xattr_list_add(&info->xattrs, new_xattr);
3166 }
3167
3168 return 0;
3169 }
3170
3171 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3172 struct dentry *unused, struct inode *inode,
3173 const char *name, void *buffer, size_t size)
3174 {
3175 struct shmem_inode_info *info = SHMEM_I(inode);
3176
3177 name = xattr_full_name(handler, name);
3178 return simple_xattr_get(&info->xattrs, name, buffer, size);
3179 }
3180
3181 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3182 struct dentry *unused, struct inode *inode,
3183 const char *name, const void *value,
3184 size_t size, int flags)
3185 {
3186 struct shmem_inode_info *info = SHMEM_I(inode);
3187
3188 name = xattr_full_name(handler, name);
3189 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3190 }
3191
3192 static const struct xattr_handler shmem_security_xattr_handler = {
3193 .prefix = XATTR_SECURITY_PREFIX,
3194 .get = shmem_xattr_handler_get,
3195 .set = shmem_xattr_handler_set,
3196 };
3197
3198 static const struct xattr_handler shmem_trusted_xattr_handler = {
3199 .prefix = XATTR_TRUSTED_PREFIX,
3200 .get = shmem_xattr_handler_get,
3201 .set = shmem_xattr_handler_set,
3202 };
3203
3204 static const struct xattr_handler *shmem_xattr_handlers[] = {
3205 #ifdef CONFIG_TMPFS_POSIX_ACL
3206 &posix_acl_access_xattr_handler,
3207 &posix_acl_default_xattr_handler,
3208 #endif
3209 &shmem_security_xattr_handler,
3210 &shmem_trusted_xattr_handler,
3211 NULL
3212 };
3213
3214 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3215 {
3216 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3217 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3218 }
3219 #endif /* CONFIG_TMPFS_XATTR */
3220
3221 static const struct inode_operations shmem_short_symlink_operations = {
3222 .get_link = simple_get_link,
3223 #ifdef CONFIG_TMPFS_XATTR
3224 .listxattr = shmem_listxattr,
3225 #endif
3226 };
3227
3228 static const struct inode_operations shmem_symlink_inode_operations = {
3229 .get_link = shmem_get_link,
3230 #ifdef CONFIG_TMPFS_XATTR
3231 .listxattr = shmem_listxattr,
3232 #endif
3233 };
3234
3235 static struct dentry *shmem_get_parent(struct dentry *child)
3236 {
3237 return ERR_PTR(-ESTALE);
3238 }
3239
3240 static int shmem_match(struct inode *ino, void *vfh)
3241 {
3242 __u32 *fh = vfh;
3243 __u64 inum = fh[2];
3244 inum = (inum << 32) | fh[1];
3245 return ino->i_ino == inum && fh[0] == ino->i_generation;
3246 }
3247
3248 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3249 struct fid *fid, int fh_len, int fh_type)
3250 {
3251 struct inode *inode;
3252 struct dentry *dentry = NULL;
3253 u64 inum;
3254
3255 if (fh_len < 3)
3256 return NULL;
3257
3258 inum = fid->raw[2];
3259 inum = (inum << 32) | fid->raw[1];
3260
3261 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3262 shmem_match, fid->raw);
3263 if (inode) {
3264 dentry = d_find_alias(inode);
3265 iput(inode);
3266 }
3267
3268 return dentry;
3269 }
3270
3271 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3272 struct inode *parent)
3273 {
3274 if (*len < 3) {
3275 *len = 3;
3276 return FILEID_INVALID;
3277 }
3278
3279 if (inode_unhashed(inode)) {
3280 /* Unfortunately insert_inode_hash is not idempotent,
3281 * so as we hash inodes here rather than at creation
3282 * time, we need a lock to ensure we only try
3283 * to do it once
3284 */
3285 static DEFINE_SPINLOCK(lock);
3286 spin_lock(&lock);
3287 if (inode_unhashed(inode))
3288 __insert_inode_hash(inode,
3289 inode->i_ino + inode->i_generation);
3290 spin_unlock(&lock);
3291 }
3292
3293 fh[0] = inode->i_generation;
3294 fh[1] = inode->i_ino;
3295 fh[2] = ((__u64)inode->i_ino) >> 32;
3296
3297 *len = 3;
3298 return 1;
3299 }
3300
3301 static const struct export_operations shmem_export_ops = {
3302 .get_parent = shmem_get_parent,
3303 .encode_fh = shmem_encode_fh,
3304 .fh_to_dentry = shmem_fh_to_dentry,
3305 };
3306
3307 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3308 bool remount)
3309 {
3310 char *this_char, *value, *rest;
3311 struct mempolicy *mpol = NULL;
3312 uid_t uid;
3313 gid_t gid;
3314
3315 while (options != NULL) {
3316 this_char = options;
3317 for (;;) {
3318 /*
3319 * NUL-terminate this option: unfortunately,
3320 * mount options form a comma-separated list,
3321 * but mpol's nodelist may also contain commas.
3322 */
3323 options = strchr(options, ',');
3324 if (options == NULL)
3325 break;
3326 options++;
3327 if (!isdigit(*options)) {
3328 options[-1] = '\0';
3329 break;
3330 }
3331 }
3332 if (!*this_char)
3333 continue;
3334 if ((value = strchr(this_char,'=')) != NULL) {
3335 *value++ = 0;
3336 } else {
3337 pr_err("tmpfs: No value for mount option '%s'\n",
3338 this_char);
3339 goto error;
3340 }
3341
3342 if (!strcmp(this_char,"size")) {
3343 unsigned long long size;
3344 size = memparse(value,&rest);
3345 if (*rest == '%') {
3346 size <<= PAGE_SHIFT;
3347 size *= totalram_pages;
3348 do_div(size, 100);
3349 rest++;
3350 }
3351 if (*rest)
3352 goto bad_val;
3353 sbinfo->max_blocks =
3354 DIV_ROUND_UP(size, PAGE_SIZE);
3355 } else if (!strcmp(this_char,"nr_blocks")) {
3356 sbinfo->max_blocks = memparse(value, &rest);
3357 if (*rest)
3358 goto bad_val;
3359 } else if (!strcmp(this_char,"nr_inodes")) {
3360 sbinfo->max_inodes = memparse(value, &rest);
3361 if (*rest)
3362 goto bad_val;
3363 } else if (!strcmp(this_char,"mode")) {
3364 if (remount)
3365 continue;
3366 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3367 if (*rest)
3368 goto bad_val;
3369 } else if (!strcmp(this_char,"uid")) {
3370 if (remount)
3371 continue;
3372 uid = simple_strtoul(value, &rest, 0);
3373 if (*rest)
3374 goto bad_val;
3375 sbinfo->uid = make_kuid(current_user_ns(), uid);
3376 if (!uid_valid(sbinfo->uid))
3377 goto bad_val;
3378 } else if (!strcmp(this_char,"gid")) {
3379 if (remount)
3380 continue;
3381 gid = simple_strtoul(value, &rest, 0);
3382 if (*rest)
3383 goto bad_val;
3384 sbinfo->gid = make_kgid(current_user_ns(), gid);
3385 if (!gid_valid(sbinfo->gid))
3386 goto bad_val;
3387 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3388 } else if (!strcmp(this_char, "huge")) {
3389 int huge;
3390 huge = shmem_parse_huge(value);
3391 if (huge < 0)
3392 goto bad_val;
3393 if (!has_transparent_hugepage() &&
3394 huge != SHMEM_HUGE_NEVER)
3395 goto bad_val;
3396 sbinfo->huge = huge;
3397 #endif
3398 #ifdef CONFIG_NUMA
3399 } else if (!strcmp(this_char,"mpol")) {
3400 mpol_put(mpol);
3401 mpol = NULL;
3402 if (mpol_parse_str(value, &mpol))
3403 goto bad_val;
3404 #endif
3405 } else {
3406 pr_err("tmpfs: Bad mount option %s\n", this_char);
3407 goto error;
3408 }
3409 }
3410 sbinfo->mpol = mpol;
3411 return 0;
3412
3413 bad_val:
3414 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3415 value, this_char);
3416 error:
3417 mpol_put(mpol);
3418 return 1;
3419
3420 }
3421
3422 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3423 {
3424 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3425 struct shmem_sb_info config = *sbinfo;
3426 unsigned long inodes;
3427 int error = -EINVAL;
3428
3429 config.mpol = NULL;
3430 if (shmem_parse_options(data, &config, true))
3431 return error;
3432
3433 spin_lock(&sbinfo->stat_lock);
3434 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3435 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3436 goto out;
3437 if (config.max_inodes < inodes)
3438 goto out;
3439 /*
3440 * Those tests disallow limited->unlimited while any are in use;
3441 * but we must separately disallow unlimited->limited, because
3442 * in that case we have no record of how much is already in use.
3443 */
3444 if (config.max_blocks && !sbinfo->max_blocks)
3445 goto out;
3446 if (config.max_inodes && !sbinfo->max_inodes)
3447 goto out;
3448
3449 error = 0;
3450 sbinfo->huge = config.huge;
3451 sbinfo->max_blocks = config.max_blocks;
3452 sbinfo->max_inodes = config.max_inodes;
3453 sbinfo->free_inodes = config.max_inodes - inodes;
3454
3455 /*
3456 * Preserve previous mempolicy unless mpol remount option was specified.
3457 */
3458 if (config.mpol) {
3459 mpol_put(sbinfo->mpol);
3460 sbinfo->mpol = config.mpol; /* transfers initial ref */
3461 }
3462 out:
3463 spin_unlock(&sbinfo->stat_lock);
3464 return error;
3465 }
3466
3467 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3468 {
3469 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3470
3471 if (sbinfo->max_blocks != shmem_default_max_blocks())
3472 seq_printf(seq, ",size=%luk",
3473 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3474 if (sbinfo->max_inodes != shmem_default_max_inodes())
3475 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3476 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3477 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3478 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3479 seq_printf(seq, ",uid=%u",
3480 from_kuid_munged(&init_user_ns, sbinfo->uid));
3481 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3482 seq_printf(seq, ",gid=%u",
3483 from_kgid_munged(&init_user_ns, sbinfo->gid));
3484 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3485 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3486 if (sbinfo->huge)
3487 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3488 #endif
3489 shmem_show_mpol(seq, sbinfo->mpol);
3490 return 0;
3491 }
3492
3493 #define MFD_NAME_PREFIX "memfd:"
3494 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3495 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3496
3497 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3498
3499 SYSCALL_DEFINE2(memfd_create,
3500 const char __user *, uname,
3501 unsigned int, flags)
3502 {
3503 struct shmem_inode_info *info;
3504 struct file *file;
3505 int fd, error;
3506 char *name;
3507 long len;
3508
3509 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3510 return -EINVAL;
3511
3512 /* length includes terminating zero */
3513 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3514 if (len <= 0)
3515 return -EFAULT;
3516 if (len > MFD_NAME_MAX_LEN + 1)
3517 return -EINVAL;
3518
3519 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3520 if (!name)
3521 return -ENOMEM;
3522
3523 strcpy(name, MFD_NAME_PREFIX);
3524 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3525 error = -EFAULT;
3526 goto err_name;
3527 }
3528
3529 /* terminating-zero may have changed after strnlen_user() returned */
3530 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3531 error = -EFAULT;
3532 goto err_name;
3533 }
3534
3535 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3536 if (fd < 0) {
3537 error = fd;
3538 goto err_name;
3539 }
3540
3541 file = shmem_file_setup(name, 0, VM_NORESERVE);
3542 if (IS_ERR(file)) {
3543 error = PTR_ERR(file);
3544 goto err_fd;
3545 }
3546 info = SHMEM_I(file_inode(file));
3547 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3548 file->f_flags |= O_RDWR | O_LARGEFILE;
3549 if (flags & MFD_ALLOW_SEALING)
3550 info->seals &= ~F_SEAL_SEAL;
3551
3552 fd_install(fd, file);
3553 kfree(name);
3554 return fd;
3555
3556 err_fd:
3557 put_unused_fd(fd);
3558 err_name:
3559 kfree(name);
3560 return error;
3561 }
3562
3563 #endif /* CONFIG_TMPFS */
3564
3565 static void shmem_put_super(struct super_block *sb)
3566 {
3567 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3568
3569 percpu_counter_destroy(&sbinfo->used_blocks);
3570 mpol_put(sbinfo->mpol);
3571 kfree(sbinfo);
3572 sb->s_fs_info = NULL;
3573 }
3574
3575 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3576 {
3577 struct inode *inode;
3578 struct shmem_sb_info *sbinfo;
3579 int err = -ENOMEM;
3580
3581 /* Round up to L1_CACHE_BYTES to resist false sharing */
3582 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3583 L1_CACHE_BYTES), GFP_KERNEL);
3584 if (!sbinfo)
3585 return -ENOMEM;
3586
3587 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3588 sbinfo->uid = current_fsuid();
3589 sbinfo->gid = current_fsgid();
3590 sb->s_fs_info = sbinfo;
3591
3592 #ifdef CONFIG_TMPFS
3593 /*
3594 * Per default we only allow half of the physical ram per
3595 * tmpfs instance, limiting inodes to one per page of lowmem;
3596 * but the internal instance is left unlimited.
3597 */
3598 if (!(sb->s_flags & MS_KERNMOUNT)) {
3599 sbinfo->max_blocks = shmem_default_max_blocks();
3600 sbinfo->max_inodes = shmem_default_max_inodes();
3601 if (shmem_parse_options(data, sbinfo, false)) {
3602 err = -EINVAL;
3603 goto failed;
3604 }
3605 } else {
3606 sb->s_flags |= MS_NOUSER;
3607 }
3608 sb->s_export_op = &shmem_export_ops;
3609 sb->s_flags |= MS_NOSEC;
3610 #else
3611 sb->s_flags |= MS_NOUSER;
3612 #endif
3613
3614 spin_lock_init(&sbinfo->stat_lock);
3615 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3616 goto failed;
3617 sbinfo->free_inodes = sbinfo->max_inodes;
3618 spin_lock_init(&sbinfo->shrinklist_lock);
3619 INIT_LIST_HEAD(&sbinfo->shrinklist);
3620
3621 sb->s_maxbytes = MAX_LFS_FILESIZE;
3622 sb->s_blocksize = PAGE_SIZE;
3623 sb->s_blocksize_bits = PAGE_SHIFT;
3624 sb->s_magic = TMPFS_MAGIC;
3625 sb->s_op = &shmem_ops;
3626 sb->s_time_gran = 1;
3627 #ifdef CONFIG_TMPFS_XATTR
3628 sb->s_xattr = shmem_xattr_handlers;
3629 #endif
3630 #ifdef CONFIG_TMPFS_POSIX_ACL
3631 sb->s_flags |= MS_POSIXACL;
3632 #endif
3633
3634 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3635 if (!inode)
3636 goto failed;
3637 inode->i_uid = sbinfo->uid;
3638 inode->i_gid = sbinfo->gid;
3639 sb->s_root = d_make_root(inode);
3640 if (!sb->s_root)
3641 goto failed;
3642 return 0;
3643
3644 failed:
3645 shmem_put_super(sb);
3646 return err;
3647 }
3648
3649 static struct kmem_cache *shmem_inode_cachep;
3650
3651 static struct inode *shmem_alloc_inode(struct super_block *sb)
3652 {
3653 struct shmem_inode_info *info;
3654 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3655 if (!info)
3656 return NULL;
3657 return &info->vfs_inode;
3658 }
3659
3660 static void shmem_destroy_callback(struct rcu_head *head)
3661 {
3662 struct inode *inode = container_of(head, struct inode, i_rcu);
3663 if (S_ISLNK(inode->i_mode))
3664 kfree(inode->i_link);
3665 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3666 }
3667
3668 static void shmem_destroy_inode(struct inode *inode)
3669 {
3670 if (S_ISREG(inode->i_mode))
3671 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3672 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3673 }
3674
3675 static void shmem_init_inode(void *foo)
3676 {
3677 struct shmem_inode_info *info = foo;
3678 inode_init_once(&info->vfs_inode);
3679 }
3680
3681 static int shmem_init_inodecache(void)
3682 {
3683 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3684 sizeof(struct shmem_inode_info),
3685 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3686 return 0;
3687 }
3688
3689 static void shmem_destroy_inodecache(void)
3690 {
3691 kmem_cache_destroy(shmem_inode_cachep);
3692 }
3693
3694 static const struct address_space_operations shmem_aops = {
3695 .writepage = shmem_writepage,
3696 .set_page_dirty = __set_page_dirty_no_writeback,
3697 #ifdef CONFIG_TMPFS
3698 .write_begin = shmem_write_begin,
3699 .write_end = shmem_write_end,
3700 #endif
3701 #ifdef CONFIG_MIGRATION
3702 .migratepage = migrate_page,
3703 #endif
3704 .error_remove_page = generic_error_remove_page,
3705 };
3706
3707 static const struct file_operations shmem_file_operations = {
3708 .mmap = shmem_mmap,
3709 .get_unmapped_area = shmem_get_unmapped_area,
3710 #ifdef CONFIG_TMPFS
3711 .llseek = shmem_file_llseek,
3712 .read_iter = shmem_file_read_iter,
3713 .write_iter = generic_file_write_iter,
3714 .fsync = noop_fsync,
3715 .splice_read = generic_file_splice_read,
3716 .splice_write = iter_file_splice_write,
3717 .fallocate = shmem_fallocate,
3718 #endif
3719 };
3720
3721 static const struct inode_operations shmem_inode_operations = {
3722 .getattr = shmem_getattr,
3723 .setattr = shmem_setattr,
3724 #ifdef CONFIG_TMPFS_XATTR
3725 .listxattr = shmem_listxattr,
3726 .set_acl = simple_set_acl,
3727 #endif
3728 };
3729
3730 static const struct inode_operations shmem_dir_inode_operations = {
3731 #ifdef CONFIG_TMPFS
3732 .create = shmem_create,
3733 .lookup = simple_lookup,
3734 .link = shmem_link,
3735 .unlink = shmem_unlink,
3736 .symlink = shmem_symlink,
3737 .mkdir = shmem_mkdir,
3738 .rmdir = shmem_rmdir,
3739 .mknod = shmem_mknod,
3740 .rename = shmem_rename2,
3741 .tmpfile = shmem_tmpfile,
3742 #endif
3743 #ifdef CONFIG_TMPFS_XATTR
3744 .listxattr = shmem_listxattr,
3745 #endif
3746 #ifdef CONFIG_TMPFS_POSIX_ACL
3747 .setattr = shmem_setattr,
3748 .set_acl = simple_set_acl,
3749 #endif
3750 };
3751
3752 static const struct inode_operations shmem_special_inode_operations = {
3753 #ifdef CONFIG_TMPFS_XATTR
3754 .listxattr = shmem_listxattr,
3755 #endif
3756 #ifdef CONFIG_TMPFS_POSIX_ACL
3757 .setattr = shmem_setattr,
3758 .set_acl = simple_set_acl,
3759 #endif
3760 };
3761
3762 static const struct super_operations shmem_ops = {
3763 .alloc_inode = shmem_alloc_inode,
3764 .destroy_inode = shmem_destroy_inode,
3765 #ifdef CONFIG_TMPFS
3766 .statfs = shmem_statfs,
3767 .remount_fs = shmem_remount_fs,
3768 .show_options = shmem_show_options,
3769 #endif
3770 .evict_inode = shmem_evict_inode,
3771 .drop_inode = generic_delete_inode,
3772 .put_super = shmem_put_super,
3773 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3774 .nr_cached_objects = shmem_unused_huge_count,
3775 .free_cached_objects = shmem_unused_huge_scan,
3776 #endif
3777 };
3778
3779 static const struct vm_operations_struct shmem_vm_ops = {
3780 .fault = shmem_fault,
3781 .map_pages = filemap_map_pages,
3782 #ifdef CONFIG_NUMA
3783 .set_policy = shmem_set_policy,
3784 .get_policy = shmem_get_policy,
3785 #endif
3786 };
3787
3788 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3789 int flags, const char *dev_name, void *data)
3790 {
3791 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3792 }
3793
3794 static struct file_system_type shmem_fs_type = {
3795 .owner = THIS_MODULE,
3796 .name = "tmpfs",
3797 .mount = shmem_mount,
3798 .kill_sb = kill_litter_super,
3799 .fs_flags = FS_USERNS_MOUNT,
3800 };
3801
3802 int __init shmem_init(void)
3803 {
3804 int error;
3805
3806 /* If rootfs called this, don't re-init */
3807 if (shmem_inode_cachep)
3808 return 0;
3809
3810 error = shmem_init_inodecache();
3811 if (error)
3812 goto out3;
3813
3814 error = register_filesystem(&shmem_fs_type);
3815 if (error) {
3816 pr_err("Could not register tmpfs\n");
3817 goto out2;
3818 }
3819
3820 shm_mnt = kern_mount(&shmem_fs_type);
3821 if (IS_ERR(shm_mnt)) {
3822 error = PTR_ERR(shm_mnt);
3823 pr_err("Could not kern_mount tmpfs\n");
3824 goto out1;
3825 }
3826
3827 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3828 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3829 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3830 else
3831 shmem_huge = 0; /* just in case it was patched */
3832 #endif
3833 return 0;
3834
3835 out1:
3836 unregister_filesystem(&shmem_fs_type);
3837 out2:
3838 shmem_destroy_inodecache();
3839 out3:
3840 shm_mnt = ERR_PTR(error);
3841 return error;
3842 }
3843
3844 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3845 static ssize_t shmem_enabled_show(struct kobject *kobj,
3846 struct kobj_attribute *attr, char *buf)
3847 {
3848 int values[] = {
3849 SHMEM_HUGE_ALWAYS,
3850 SHMEM_HUGE_WITHIN_SIZE,
3851 SHMEM_HUGE_ADVISE,
3852 SHMEM_HUGE_NEVER,
3853 SHMEM_HUGE_DENY,
3854 SHMEM_HUGE_FORCE,
3855 };
3856 int i, count;
3857
3858 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3859 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3860
3861 count += sprintf(buf + count, fmt,
3862 shmem_format_huge(values[i]));
3863 }
3864 buf[count - 1] = '\n';
3865 return count;
3866 }
3867
3868 static ssize_t shmem_enabled_store(struct kobject *kobj,
3869 struct kobj_attribute *attr, const char *buf, size_t count)
3870 {
3871 char tmp[16];
3872 int huge;
3873
3874 if (count + 1 > sizeof(tmp))
3875 return -EINVAL;
3876 memcpy(tmp, buf, count);
3877 tmp[count] = '\0';
3878 if (count && tmp[count - 1] == '\n')
3879 tmp[count - 1] = '\0';
3880
3881 huge = shmem_parse_huge(tmp);
3882 if (huge == -EINVAL)
3883 return -EINVAL;
3884 if (!has_transparent_hugepage() &&
3885 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3886 return -EINVAL;
3887
3888 shmem_huge = huge;
3889 if (shmem_huge < SHMEM_HUGE_DENY)
3890 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3891 return count;
3892 }
3893
3894 struct kobj_attribute shmem_enabled_attr =
3895 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3896 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3897
3898 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3899 bool shmem_huge_enabled(struct vm_area_struct *vma)
3900 {
3901 struct inode *inode = file_inode(vma->vm_file);
3902 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3903 loff_t i_size;
3904 pgoff_t off;
3905
3906 if (shmem_huge == SHMEM_HUGE_FORCE)
3907 return true;
3908 if (shmem_huge == SHMEM_HUGE_DENY)
3909 return false;
3910 switch (sbinfo->huge) {
3911 case SHMEM_HUGE_NEVER:
3912 return false;
3913 case SHMEM_HUGE_ALWAYS:
3914 return true;
3915 case SHMEM_HUGE_WITHIN_SIZE:
3916 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3917 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3918 if (i_size >= HPAGE_PMD_SIZE &&
3919 i_size >> PAGE_SHIFT >= off)
3920 return true;
3921 case SHMEM_HUGE_ADVISE:
3922 /* TODO: implement fadvise() hints */
3923 return (vma->vm_flags & VM_HUGEPAGE);
3924 default:
3925 VM_BUG_ON(1);
3926 return false;
3927 }
3928 }
3929 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3930
3931 #else /* !CONFIG_SHMEM */
3932
3933 /*
3934 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3935 *
3936 * This is intended for small system where the benefits of the full
3937 * shmem code (swap-backed and resource-limited) are outweighed by
3938 * their complexity. On systems without swap this code should be
3939 * effectively equivalent, but much lighter weight.
3940 */
3941
3942 static struct file_system_type shmem_fs_type = {
3943 .name = "tmpfs",
3944 .mount = ramfs_mount,
3945 .kill_sb = kill_litter_super,
3946 .fs_flags = FS_USERNS_MOUNT,
3947 };
3948
3949 int __init shmem_init(void)
3950 {
3951 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3952
3953 shm_mnt = kern_mount(&shmem_fs_type);
3954 BUG_ON(IS_ERR(shm_mnt));
3955
3956 return 0;
3957 }
3958
3959 int shmem_unuse(swp_entry_t swap, struct page *page)
3960 {
3961 return 0;
3962 }
3963
3964 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3965 {
3966 return 0;
3967 }
3968
3969 void shmem_unlock_mapping(struct address_space *mapping)
3970 {
3971 }
3972
3973 #ifdef CONFIG_MMU
3974 unsigned long shmem_get_unmapped_area(struct file *file,
3975 unsigned long addr, unsigned long len,
3976 unsigned long pgoff, unsigned long flags)
3977 {
3978 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3979 }
3980 #endif
3981
3982 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3983 {
3984 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3985 }
3986 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3987
3988 #define shmem_vm_ops generic_file_vm_ops
3989 #define shmem_file_operations ramfs_file_operations
3990 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3991 #define shmem_acct_size(flags, size) 0
3992 #define shmem_unacct_size(flags, size) do {} while (0)
3993
3994 #endif /* CONFIG_SHMEM */
3995
3996 /* common code */
3997
3998 static const struct dentry_operations anon_ops = {
3999 .d_dname = simple_dname
4000 };
4001
4002 static struct file *__shmem_file_setup(const char *name, loff_t size,
4003 unsigned long flags, unsigned int i_flags)
4004 {
4005 struct file *res;
4006 struct inode *inode;
4007 struct path path;
4008 struct super_block *sb;
4009 struct qstr this;
4010
4011 if (IS_ERR(shm_mnt))
4012 return ERR_CAST(shm_mnt);
4013
4014 if (size < 0 || size > MAX_LFS_FILESIZE)
4015 return ERR_PTR(-EINVAL);
4016
4017 if (shmem_acct_size(flags, size))
4018 return ERR_PTR(-ENOMEM);
4019
4020 res = ERR_PTR(-ENOMEM);
4021 this.name = name;
4022 this.len = strlen(name);
4023 this.hash = 0; /* will go */
4024 sb = shm_mnt->mnt_sb;
4025 path.mnt = mntget(shm_mnt);
4026 path.dentry = d_alloc_pseudo(sb, &this);
4027 if (!path.dentry)
4028 goto put_memory;
4029 d_set_d_op(path.dentry, &anon_ops);
4030
4031 res = ERR_PTR(-ENOSPC);
4032 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4033 if (!inode)
4034 goto put_memory;
4035
4036 inode->i_flags |= i_flags;
4037 d_instantiate(path.dentry, inode);
4038 inode->i_size = size;
4039 clear_nlink(inode); /* It is unlinked */
4040 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4041 if (IS_ERR(res))
4042 goto put_path;
4043
4044 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4045 &shmem_file_operations);
4046 if (IS_ERR(res))
4047 goto put_path;
4048
4049 return res;
4050
4051 put_memory:
4052 shmem_unacct_size(flags, size);
4053 put_path:
4054 path_put(&path);
4055 return res;
4056 }
4057
4058 /**
4059 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4060 * kernel internal. There will be NO LSM permission checks against the
4061 * underlying inode. So users of this interface must do LSM checks at a
4062 * higher layer. The users are the big_key and shm implementations. LSM
4063 * checks are provided at the key or shm level rather than the inode.
4064 * @name: name for dentry (to be seen in /proc/<pid>/maps
4065 * @size: size to be set for the file
4066 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4067 */
4068 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4069 {
4070 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4071 }
4072
4073 /**
4074 * shmem_file_setup - get an unlinked file living in tmpfs
4075 * @name: name for dentry (to be seen in /proc/<pid>/maps
4076 * @size: size to be set for the file
4077 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4078 */
4079 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4080 {
4081 return __shmem_file_setup(name, size, flags, 0);
4082 }
4083 EXPORT_SYMBOL_GPL(shmem_file_setup);
4084
4085 /**
4086 * shmem_zero_setup - setup a shared anonymous mapping
4087 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4088 */
4089 int shmem_zero_setup(struct vm_area_struct *vma)
4090 {
4091 struct file *file;
4092 loff_t size = vma->vm_end - vma->vm_start;
4093
4094 /*
4095 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4096 * between XFS directory reading and selinux: since this file is only
4097 * accessible to the user through its mapping, use S_PRIVATE flag to
4098 * bypass file security, in the same way as shmem_kernel_file_setup().
4099 */
4100 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4101 if (IS_ERR(file))
4102 return PTR_ERR(file);
4103
4104 if (vma->vm_file)
4105 fput(vma->vm_file);
4106 vma->vm_file = file;
4107 vma->vm_ops = &shmem_vm_ops;
4108
4109 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4110 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4111 (vma->vm_end & HPAGE_PMD_MASK)) {
4112 khugepaged_enter(vma, vma->vm_flags);
4113 }
4114
4115 return 0;
4116 }
4117
4118 /**
4119 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4120 * @mapping: the page's address_space
4121 * @index: the page index
4122 * @gfp: the page allocator flags to use if allocating
4123 *
4124 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4125 * with any new page allocations done using the specified allocation flags.
4126 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4127 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4128 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4129 *
4130 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4131 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4132 */
4133 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4134 pgoff_t index, gfp_t gfp)
4135 {
4136 #ifdef CONFIG_SHMEM
4137 struct inode *inode = mapping->host;
4138 struct page *page;
4139 int error;
4140
4141 BUG_ON(mapping->a_ops != &shmem_aops);
4142 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4143 gfp, NULL, NULL);
4144 if (error)
4145 page = ERR_PTR(error);
4146 else
4147 unlock_page(page);
4148 return page;
4149 #else
4150 /*
4151 * The tiny !SHMEM case uses ramfs without swap
4152 */
4153 return read_cache_page_gfp(mapping, index, gfp);
4154 #endif
4155 }
4156 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);