]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/shmem.c
Merge tag 'renesas-fixes-for-v4.10' of https://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
36
37 static struct vfsmount *shm_mnt;
38
39 #ifdef CONFIG_SHMEM
40 /*
41 * This virtual memory filesystem is heavily based on the ramfs. It
42 * extends ramfs by the ability to use swap and honor resource limits
43 * which makes it a completely usable filesystem.
44 */
45
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
73
74 #include <linux/uaccess.h>
75 #include <asm/pgtable.h>
76
77 #include "internal.h"
78
79 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
80 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
81
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
84
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
87
88 /*
89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90 * inode->i_private (with i_mutex making sure that it has only one user at
91 * a time): we would prefer not to enlarge the shmem inode just for that.
92 */
93 struct shmem_falloc {
94 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95 pgoff_t start; /* start of range currently being fallocated */
96 pgoff_t next; /* the next page offset to be fallocated */
97 pgoff_t nr_falloced; /* how many new pages have been fallocated */
98 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
99 };
100
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
103 {
104 return totalram_pages / 2;
105 }
106
107 static unsigned long shmem_default_max_inodes(void)
108 {
109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110 }
111 #endif
112
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 struct page **pagep, enum sgp_type sgp,
118 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
119
120 int shmem_getpage(struct inode *inode, pgoff_t index,
121 struct page **pagep, enum sgp_type sgp)
122 {
123 return shmem_getpage_gfp(inode, index, pagep, sgp,
124 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
125 }
126
127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128 {
129 return sb->s_fs_info;
130 }
131
132 /*
133 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134 * for shared memory and for shared anonymous (/dev/zero) mappings
135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136 * consistent with the pre-accounting of private mappings ...
137 */
138 static inline int shmem_acct_size(unsigned long flags, loff_t size)
139 {
140 return (flags & VM_NORESERVE) ?
141 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
142 }
143
144 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145 {
146 if (!(flags & VM_NORESERVE))
147 vm_unacct_memory(VM_ACCT(size));
148 }
149
150 static inline int shmem_reacct_size(unsigned long flags,
151 loff_t oldsize, loff_t newsize)
152 {
153 if (!(flags & VM_NORESERVE)) {
154 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155 return security_vm_enough_memory_mm(current->mm,
156 VM_ACCT(newsize) - VM_ACCT(oldsize));
157 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
159 }
160 return 0;
161 }
162
163 /*
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow large sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168 */
169 static inline int shmem_acct_block(unsigned long flags, long pages)
170 {
171 if (!(flags & VM_NORESERVE))
172 return 0;
173
174 return security_vm_enough_memory_mm(current->mm,
175 pages * VM_ACCT(PAGE_SIZE));
176 }
177
178 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179 {
180 if (flags & VM_NORESERVE)
181 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
182 }
183
184 static const struct super_operations shmem_ops;
185 static const struct address_space_operations shmem_aops;
186 static const struct file_operations shmem_file_operations;
187 static const struct inode_operations shmem_inode_operations;
188 static const struct inode_operations shmem_dir_inode_operations;
189 static const struct inode_operations shmem_special_inode_operations;
190 static const struct vm_operations_struct shmem_vm_ops;
191 static struct file_system_type shmem_fs_type;
192
193 static LIST_HEAD(shmem_swaplist);
194 static DEFINE_MUTEX(shmem_swaplist_mutex);
195
196 static int shmem_reserve_inode(struct super_block *sb)
197 {
198 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
199 if (sbinfo->max_inodes) {
200 spin_lock(&sbinfo->stat_lock);
201 if (!sbinfo->free_inodes) {
202 spin_unlock(&sbinfo->stat_lock);
203 return -ENOSPC;
204 }
205 sbinfo->free_inodes--;
206 spin_unlock(&sbinfo->stat_lock);
207 }
208 return 0;
209 }
210
211 static void shmem_free_inode(struct super_block *sb)
212 {
213 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
214 if (sbinfo->max_inodes) {
215 spin_lock(&sbinfo->stat_lock);
216 sbinfo->free_inodes++;
217 spin_unlock(&sbinfo->stat_lock);
218 }
219 }
220
221 /**
222 * shmem_recalc_inode - recalculate the block usage of an inode
223 * @inode: inode to recalc
224 *
225 * We have to calculate the free blocks since the mm can drop
226 * undirtied hole pages behind our back.
227 *
228 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
229 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
230 *
231 * It has to be called with the spinlock held.
232 */
233 static void shmem_recalc_inode(struct inode *inode)
234 {
235 struct shmem_inode_info *info = SHMEM_I(inode);
236 long freed;
237
238 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
239 if (freed > 0) {
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241 if (sbinfo->max_blocks)
242 percpu_counter_add(&sbinfo->used_blocks, -freed);
243 info->alloced -= freed;
244 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
245 shmem_unacct_blocks(info->flags, freed);
246 }
247 }
248
249 bool shmem_charge(struct inode *inode, long pages)
250 {
251 struct shmem_inode_info *info = SHMEM_I(inode);
252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253 unsigned long flags;
254
255 if (shmem_acct_block(info->flags, pages))
256 return false;
257 spin_lock_irqsave(&info->lock, flags);
258 info->alloced += pages;
259 inode->i_blocks += pages * BLOCKS_PER_PAGE;
260 shmem_recalc_inode(inode);
261 spin_unlock_irqrestore(&info->lock, flags);
262 inode->i_mapping->nrpages += pages;
263
264 if (!sbinfo->max_blocks)
265 return true;
266 if (percpu_counter_compare(&sbinfo->used_blocks,
267 sbinfo->max_blocks - pages) > 0) {
268 inode->i_mapping->nrpages -= pages;
269 spin_lock_irqsave(&info->lock, flags);
270 info->alloced -= pages;
271 shmem_recalc_inode(inode);
272 spin_unlock_irqrestore(&info->lock, flags);
273 shmem_unacct_blocks(info->flags, pages);
274 return false;
275 }
276 percpu_counter_add(&sbinfo->used_blocks, pages);
277 return true;
278 }
279
280 void shmem_uncharge(struct inode *inode, long pages)
281 {
282 struct shmem_inode_info *info = SHMEM_I(inode);
283 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
284 unsigned long flags;
285
286 spin_lock_irqsave(&info->lock, flags);
287 info->alloced -= pages;
288 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
289 shmem_recalc_inode(inode);
290 spin_unlock_irqrestore(&info->lock, flags);
291
292 if (sbinfo->max_blocks)
293 percpu_counter_sub(&sbinfo->used_blocks, pages);
294 shmem_unacct_blocks(info->flags, pages);
295 }
296
297 /*
298 * Replace item expected in radix tree by a new item, while holding tree lock.
299 */
300 static int shmem_radix_tree_replace(struct address_space *mapping,
301 pgoff_t index, void *expected, void *replacement)
302 {
303 struct radix_tree_node *node;
304 void **pslot;
305 void *item;
306
307 VM_BUG_ON(!expected);
308 VM_BUG_ON(!replacement);
309 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
310 if (!item)
311 return -ENOENT;
312 if (item != expected)
313 return -ENOENT;
314 __radix_tree_replace(&mapping->page_tree, node, pslot,
315 replacement, NULL, NULL);
316 return 0;
317 }
318
319 /*
320 * Sometimes, before we decide whether to proceed or to fail, we must check
321 * that an entry was not already brought back from swap by a racing thread.
322 *
323 * Checking page is not enough: by the time a SwapCache page is locked, it
324 * might be reused, and again be SwapCache, using the same swap as before.
325 */
326 static bool shmem_confirm_swap(struct address_space *mapping,
327 pgoff_t index, swp_entry_t swap)
328 {
329 void *item;
330
331 rcu_read_lock();
332 item = radix_tree_lookup(&mapping->page_tree, index);
333 rcu_read_unlock();
334 return item == swp_to_radix_entry(swap);
335 }
336
337 /*
338 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
339 *
340 * SHMEM_HUGE_NEVER:
341 * disables huge pages for the mount;
342 * SHMEM_HUGE_ALWAYS:
343 * enables huge pages for the mount;
344 * SHMEM_HUGE_WITHIN_SIZE:
345 * only allocate huge pages if the page will be fully within i_size,
346 * also respect fadvise()/madvise() hints;
347 * SHMEM_HUGE_ADVISE:
348 * only allocate huge pages if requested with fadvise()/madvise();
349 */
350
351 #define SHMEM_HUGE_NEVER 0
352 #define SHMEM_HUGE_ALWAYS 1
353 #define SHMEM_HUGE_WITHIN_SIZE 2
354 #define SHMEM_HUGE_ADVISE 3
355
356 /*
357 * Special values.
358 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
359 *
360 * SHMEM_HUGE_DENY:
361 * disables huge on shm_mnt and all mounts, for emergency use;
362 * SHMEM_HUGE_FORCE:
363 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
364 *
365 */
366 #define SHMEM_HUGE_DENY (-1)
367 #define SHMEM_HUGE_FORCE (-2)
368
369 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
370 /* ifdef here to avoid bloating shmem.o when not necessary */
371
372 int shmem_huge __read_mostly;
373
374 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
375 static int shmem_parse_huge(const char *str)
376 {
377 if (!strcmp(str, "never"))
378 return SHMEM_HUGE_NEVER;
379 if (!strcmp(str, "always"))
380 return SHMEM_HUGE_ALWAYS;
381 if (!strcmp(str, "within_size"))
382 return SHMEM_HUGE_WITHIN_SIZE;
383 if (!strcmp(str, "advise"))
384 return SHMEM_HUGE_ADVISE;
385 if (!strcmp(str, "deny"))
386 return SHMEM_HUGE_DENY;
387 if (!strcmp(str, "force"))
388 return SHMEM_HUGE_FORCE;
389 return -EINVAL;
390 }
391
392 static const char *shmem_format_huge(int huge)
393 {
394 switch (huge) {
395 case SHMEM_HUGE_NEVER:
396 return "never";
397 case SHMEM_HUGE_ALWAYS:
398 return "always";
399 case SHMEM_HUGE_WITHIN_SIZE:
400 return "within_size";
401 case SHMEM_HUGE_ADVISE:
402 return "advise";
403 case SHMEM_HUGE_DENY:
404 return "deny";
405 case SHMEM_HUGE_FORCE:
406 return "force";
407 default:
408 VM_BUG_ON(1);
409 return "bad_val";
410 }
411 }
412 #endif
413
414 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
415 struct shrink_control *sc, unsigned long nr_to_split)
416 {
417 LIST_HEAD(list), *pos, *next;
418 struct inode *inode;
419 struct shmem_inode_info *info;
420 struct page *page;
421 unsigned long batch = sc ? sc->nr_to_scan : 128;
422 int removed = 0, split = 0;
423
424 if (list_empty(&sbinfo->shrinklist))
425 return SHRINK_STOP;
426
427 spin_lock(&sbinfo->shrinklist_lock);
428 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
429 info = list_entry(pos, struct shmem_inode_info, shrinklist);
430
431 /* pin the inode */
432 inode = igrab(&info->vfs_inode);
433
434 /* inode is about to be evicted */
435 if (!inode) {
436 list_del_init(&info->shrinklist);
437 removed++;
438 goto next;
439 }
440
441 /* Check if there's anything to gain */
442 if (round_up(inode->i_size, PAGE_SIZE) ==
443 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
444 list_del_init(&info->shrinklist);
445 removed++;
446 iput(inode);
447 goto next;
448 }
449
450 list_move(&info->shrinklist, &list);
451 next:
452 if (!--batch)
453 break;
454 }
455 spin_unlock(&sbinfo->shrinklist_lock);
456
457 list_for_each_safe(pos, next, &list) {
458 int ret;
459
460 info = list_entry(pos, struct shmem_inode_info, shrinklist);
461 inode = &info->vfs_inode;
462
463 if (nr_to_split && split >= nr_to_split) {
464 iput(inode);
465 continue;
466 }
467
468 page = find_lock_page(inode->i_mapping,
469 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
470 if (!page)
471 goto drop;
472
473 if (!PageTransHuge(page)) {
474 unlock_page(page);
475 put_page(page);
476 goto drop;
477 }
478
479 ret = split_huge_page(page);
480 unlock_page(page);
481 put_page(page);
482
483 if (ret) {
484 /* split failed: leave it on the list */
485 iput(inode);
486 continue;
487 }
488
489 split++;
490 drop:
491 list_del_init(&info->shrinklist);
492 removed++;
493 iput(inode);
494 }
495
496 spin_lock(&sbinfo->shrinklist_lock);
497 list_splice_tail(&list, &sbinfo->shrinklist);
498 sbinfo->shrinklist_len -= removed;
499 spin_unlock(&sbinfo->shrinklist_lock);
500
501 return split;
502 }
503
504 static long shmem_unused_huge_scan(struct super_block *sb,
505 struct shrink_control *sc)
506 {
507 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
508
509 if (!READ_ONCE(sbinfo->shrinklist_len))
510 return SHRINK_STOP;
511
512 return shmem_unused_huge_shrink(sbinfo, sc, 0);
513 }
514
515 static long shmem_unused_huge_count(struct super_block *sb,
516 struct shrink_control *sc)
517 {
518 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
519 return READ_ONCE(sbinfo->shrinklist_len);
520 }
521 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
522
523 #define shmem_huge SHMEM_HUGE_DENY
524
525 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
526 struct shrink_control *sc, unsigned long nr_to_split)
527 {
528 return 0;
529 }
530 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
531
532 /*
533 * Like add_to_page_cache_locked, but error if expected item has gone.
534 */
535 static int shmem_add_to_page_cache(struct page *page,
536 struct address_space *mapping,
537 pgoff_t index, void *expected)
538 {
539 int error, nr = hpage_nr_pages(page);
540
541 VM_BUG_ON_PAGE(PageTail(page), page);
542 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
543 VM_BUG_ON_PAGE(!PageLocked(page), page);
544 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
545 VM_BUG_ON(expected && PageTransHuge(page));
546
547 page_ref_add(page, nr);
548 page->mapping = mapping;
549 page->index = index;
550
551 spin_lock_irq(&mapping->tree_lock);
552 if (PageTransHuge(page)) {
553 void __rcu **results;
554 pgoff_t idx;
555 int i;
556
557 error = 0;
558 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
559 &results, &idx, index, 1) &&
560 idx < index + HPAGE_PMD_NR) {
561 error = -EEXIST;
562 }
563
564 if (!error) {
565 for (i = 0; i < HPAGE_PMD_NR; i++) {
566 error = radix_tree_insert(&mapping->page_tree,
567 index + i, page + i);
568 VM_BUG_ON(error);
569 }
570 count_vm_event(THP_FILE_ALLOC);
571 }
572 } else if (!expected) {
573 error = radix_tree_insert(&mapping->page_tree, index, page);
574 } else {
575 error = shmem_radix_tree_replace(mapping, index, expected,
576 page);
577 }
578
579 if (!error) {
580 mapping->nrpages += nr;
581 if (PageTransHuge(page))
582 __inc_node_page_state(page, NR_SHMEM_THPS);
583 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
584 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
585 spin_unlock_irq(&mapping->tree_lock);
586 } else {
587 page->mapping = NULL;
588 spin_unlock_irq(&mapping->tree_lock);
589 page_ref_sub(page, nr);
590 }
591 return error;
592 }
593
594 /*
595 * Like delete_from_page_cache, but substitutes swap for page.
596 */
597 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
598 {
599 struct address_space *mapping = page->mapping;
600 int error;
601
602 VM_BUG_ON_PAGE(PageCompound(page), page);
603
604 spin_lock_irq(&mapping->tree_lock);
605 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
606 page->mapping = NULL;
607 mapping->nrpages--;
608 __dec_node_page_state(page, NR_FILE_PAGES);
609 __dec_node_page_state(page, NR_SHMEM);
610 spin_unlock_irq(&mapping->tree_lock);
611 put_page(page);
612 BUG_ON(error);
613 }
614
615 /*
616 * Remove swap entry from radix tree, free the swap and its page cache.
617 */
618 static int shmem_free_swap(struct address_space *mapping,
619 pgoff_t index, void *radswap)
620 {
621 void *old;
622
623 spin_lock_irq(&mapping->tree_lock);
624 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
625 spin_unlock_irq(&mapping->tree_lock);
626 if (old != radswap)
627 return -ENOENT;
628 free_swap_and_cache(radix_to_swp_entry(radswap));
629 return 0;
630 }
631
632 /*
633 * Determine (in bytes) how many of the shmem object's pages mapped by the
634 * given offsets are swapped out.
635 *
636 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
637 * as long as the inode doesn't go away and racy results are not a problem.
638 */
639 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
640 pgoff_t start, pgoff_t end)
641 {
642 struct radix_tree_iter iter;
643 void **slot;
644 struct page *page;
645 unsigned long swapped = 0;
646
647 rcu_read_lock();
648
649 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
650 if (iter.index >= end)
651 break;
652
653 page = radix_tree_deref_slot(slot);
654
655 if (radix_tree_deref_retry(page)) {
656 slot = radix_tree_iter_retry(&iter);
657 continue;
658 }
659
660 if (radix_tree_exceptional_entry(page))
661 swapped++;
662
663 if (need_resched()) {
664 slot = radix_tree_iter_resume(slot, &iter);
665 cond_resched_rcu();
666 }
667 }
668
669 rcu_read_unlock();
670
671 return swapped << PAGE_SHIFT;
672 }
673
674 /*
675 * Determine (in bytes) how many of the shmem object's pages mapped by the
676 * given vma is swapped out.
677 *
678 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
679 * as long as the inode doesn't go away and racy results are not a problem.
680 */
681 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
682 {
683 struct inode *inode = file_inode(vma->vm_file);
684 struct shmem_inode_info *info = SHMEM_I(inode);
685 struct address_space *mapping = inode->i_mapping;
686 unsigned long swapped;
687
688 /* Be careful as we don't hold info->lock */
689 swapped = READ_ONCE(info->swapped);
690
691 /*
692 * The easier cases are when the shmem object has nothing in swap, or
693 * the vma maps it whole. Then we can simply use the stats that we
694 * already track.
695 */
696 if (!swapped)
697 return 0;
698
699 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
700 return swapped << PAGE_SHIFT;
701
702 /* Here comes the more involved part */
703 return shmem_partial_swap_usage(mapping,
704 linear_page_index(vma, vma->vm_start),
705 linear_page_index(vma, vma->vm_end));
706 }
707
708 /*
709 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
710 */
711 void shmem_unlock_mapping(struct address_space *mapping)
712 {
713 struct pagevec pvec;
714 pgoff_t indices[PAGEVEC_SIZE];
715 pgoff_t index = 0;
716
717 pagevec_init(&pvec, 0);
718 /*
719 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
720 */
721 while (!mapping_unevictable(mapping)) {
722 /*
723 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
724 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
725 */
726 pvec.nr = find_get_entries(mapping, index,
727 PAGEVEC_SIZE, pvec.pages, indices);
728 if (!pvec.nr)
729 break;
730 index = indices[pvec.nr - 1] + 1;
731 pagevec_remove_exceptionals(&pvec);
732 check_move_unevictable_pages(pvec.pages, pvec.nr);
733 pagevec_release(&pvec);
734 cond_resched();
735 }
736 }
737
738 /*
739 * Remove range of pages and swap entries from radix tree, and free them.
740 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
741 */
742 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
743 bool unfalloc)
744 {
745 struct address_space *mapping = inode->i_mapping;
746 struct shmem_inode_info *info = SHMEM_I(inode);
747 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
748 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
749 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
750 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
751 struct pagevec pvec;
752 pgoff_t indices[PAGEVEC_SIZE];
753 long nr_swaps_freed = 0;
754 pgoff_t index;
755 int i;
756
757 if (lend == -1)
758 end = -1; /* unsigned, so actually very big */
759
760 pagevec_init(&pvec, 0);
761 index = start;
762 while (index < end) {
763 pvec.nr = find_get_entries(mapping, index,
764 min(end - index, (pgoff_t)PAGEVEC_SIZE),
765 pvec.pages, indices);
766 if (!pvec.nr)
767 break;
768 for (i = 0; i < pagevec_count(&pvec); i++) {
769 struct page *page = pvec.pages[i];
770
771 index = indices[i];
772 if (index >= end)
773 break;
774
775 if (radix_tree_exceptional_entry(page)) {
776 if (unfalloc)
777 continue;
778 nr_swaps_freed += !shmem_free_swap(mapping,
779 index, page);
780 continue;
781 }
782
783 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
784
785 if (!trylock_page(page))
786 continue;
787
788 if (PageTransTail(page)) {
789 /* Middle of THP: zero out the page */
790 clear_highpage(page);
791 unlock_page(page);
792 continue;
793 } else if (PageTransHuge(page)) {
794 if (index == round_down(end, HPAGE_PMD_NR)) {
795 /*
796 * Range ends in the middle of THP:
797 * zero out the page
798 */
799 clear_highpage(page);
800 unlock_page(page);
801 continue;
802 }
803 index += HPAGE_PMD_NR - 1;
804 i += HPAGE_PMD_NR - 1;
805 }
806
807 if (!unfalloc || !PageUptodate(page)) {
808 VM_BUG_ON_PAGE(PageTail(page), page);
809 if (page_mapping(page) == mapping) {
810 VM_BUG_ON_PAGE(PageWriteback(page), page);
811 truncate_inode_page(mapping, page);
812 }
813 }
814 unlock_page(page);
815 }
816 pagevec_remove_exceptionals(&pvec);
817 pagevec_release(&pvec);
818 cond_resched();
819 index++;
820 }
821
822 if (partial_start) {
823 struct page *page = NULL;
824 shmem_getpage(inode, start - 1, &page, SGP_READ);
825 if (page) {
826 unsigned int top = PAGE_SIZE;
827 if (start > end) {
828 top = partial_end;
829 partial_end = 0;
830 }
831 zero_user_segment(page, partial_start, top);
832 set_page_dirty(page);
833 unlock_page(page);
834 put_page(page);
835 }
836 }
837 if (partial_end) {
838 struct page *page = NULL;
839 shmem_getpage(inode, end, &page, SGP_READ);
840 if (page) {
841 zero_user_segment(page, 0, partial_end);
842 set_page_dirty(page);
843 unlock_page(page);
844 put_page(page);
845 }
846 }
847 if (start >= end)
848 return;
849
850 index = start;
851 while (index < end) {
852 cond_resched();
853
854 pvec.nr = find_get_entries(mapping, index,
855 min(end - index, (pgoff_t)PAGEVEC_SIZE),
856 pvec.pages, indices);
857 if (!pvec.nr) {
858 /* If all gone or hole-punch or unfalloc, we're done */
859 if (index == start || end != -1)
860 break;
861 /* But if truncating, restart to make sure all gone */
862 index = start;
863 continue;
864 }
865 for (i = 0; i < pagevec_count(&pvec); i++) {
866 struct page *page = pvec.pages[i];
867
868 index = indices[i];
869 if (index >= end)
870 break;
871
872 if (radix_tree_exceptional_entry(page)) {
873 if (unfalloc)
874 continue;
875 if (shmem_free_swap(mapping, index, page)) {
876 /* Swap was replaced by page: retry */
877 index--;
878 break;
879 }
880 nr_swaps_freed++;
881 continue;
882 }
883
884 lock_page(page);
885
886 if (PageTransTail(page)) {
887 /* Middle of THP: zero out the page */
888 clear_highpage(page);
889 unlock_page(page);
890 /*
891 * Partial thp truncate due 'start' in middle
892 * of THP: don't need to look on these pages
893 * again on !pvec.nr restart.
894 */
895 if (index != round_down(end, HPAGE_PMD_NR))
896 start++;
897 continue;
898 } else if (PageTransHuge(page)) {
899 if (index == round_down(end, HPAGE_PMD_NR)) {
900 /*
901 * Range ends in the middle of THP:
902 * zero out the page
903 */
904 clear_highpage(page);
905 unlock_page(page);
906 continue;
907 }
908 index += HPAGE_PMD_NR - 1;
909 i += HPAGE_PMD_NR - 1;
910 }
911
912 if (!unfalloc || !PageUptodate(page)) {
913 VM_BUG_ON_PAGE(PageTail(page), page);
914 if (page_mapping(page) == mapping) {
915 VM_BUG_ON_PAGE(PageWriteback(page), page);
916 truncate_inode_page(mapping, page);
917 } else {
918 /* Page was replaced by swap: retry */
919 unlock_page(page);
920 index--;
921 break;
922 }
923 }
924 unlock_page(page);
925 }
926 pagevec_remove_exceptionals(&pvec);
927 pagevec_release(&pvec);
928 index++;
929 }
930
931 spin_lock_irq(&info->lock);
932 info->swapped -= nr_swaps_freed;
933 shmem_recalc_inode(inode);
934 spin_unlock_irq(&info->lock);
935 }
936
937 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
938 {
939 shmem_undo_range(inode, lstart, lend, false);
940 inode->i_ctime = inode->i_mtime = current_time(inode);
941 }
942 EXPORT_SYMBOL_GPL(shmem_truncate_range);
943
944 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
945 struct kstat *stat)
946 {
947 struct inode *inode = dentry->d_inode;
948 struct shmem_inode_info *info = SHMEM_I(inode);
949
950 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
951 spin_lock_irq(&info->lock);
952 shmem_recalc_inode(inode);
953 spin_unlock_irq(&info->lock);
954 }
955 generic_fillattr(inode, stat);
956 return 0;
957 }
958
959 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
960 {
961 struct inode *inode = d_inode(dentry);
962 struct shmem_inode_info *info = SHMEM_I(inode);
963 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
964 int error;
965
966 error = setattr_prepare(dentry, attr);
967 if (error)
968 return error;
969
970 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
971 loff_t oldsize = inode->i_size;
972 loff_t newsize = attr->ia_size;
973
974 /* protected by i_mutex */
975 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
976 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
977 return -EPERM;
978
979 if (newsize != oldsize) {
980 error = shmem_reacct_size(SHMEM_I(inode)->flags,
981 oldsize, newsize);
982 if (error)
983 return error;
984 i_size_write(inode, newsize);
985 inode->i_ctime = inode->i_mtime = current_time(inode);
986 }
987 if (newsize <= oldsize) {
988 loff_t holebegin = round_up(newsize, PAGE_SIZE);
989 if (oldsize > holebegin)
990 unmap_mapping_range(inode->i_mapping,
991 holebegin, 0, 1);
992 if (info->alloced)
993 shmem_truncate_range(inode,
994 newsize, (loff_t)-1);
995 /* unmap again to remove racily COWed private pages */
996 if (oldsize > holebegin)
997 unmap_mapping_range(inode->i_mapping,
998 holebegin, 0, 1);
999
1000 /*
1001 * Part of the huge page can be beyond i_size: subject
1002 * to shrink under memory pressure.
1003 */
1004 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1005 spin_lock(&sbinfo->shrinklist_lock);
1006 if (list_empty(&info->shrinklist)) {
1007 list_add_tail(&info->shrinklist,
1008 &sbinfo->shrinklist);
1009 sbinfo->shrinklist_len++;
1010 }
1011 spin_unlock(&sbinfo->shrinklist_lock);
1012 }
1013 }
1014 }
1015
1016 setattr_copy(inode, attr);
1017 if (attr->ia_valid & ATTR_MODE)
1018 error = posix_acl_chmod(inode, inode->i_mode);
1019 return error;
1020 }
1021
1022 static void shmem_evict_inode(struct inode *inode)
1023 {
1024 struct shmem_inode_info *info = SHMEM_I(inode);
1025 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1026
1027 if (inode->i_mapping->a_ops == &shmem_aops) {
1028 shmem_unacct_size(info->flags, inode->i_size);
1029 inode->i_size = 0;
1030 shmem_truncate_range(inode, 0, (loff_t)-1);
1031 if (!list_empty(&info->shrinklist)) {
1032 spin_lock(&sbinfo->shrinklist_lock);
1033 if (!list_empty(&info->shrinklist)) {
1034 list_del_init(&info->shrinklist);
1035 sbinfo->shrinklist_len--;
1036 }
1037 spin_unlock(&sbinfo->shrinklist_lock);
1038 }
1039 if (!list_empty(&info->swaplist)) {
1040 mutex_lock(&shmem_swaplist_mutex);
1041 list_del_init(&info->swaplist);
1042 mutex_unlock(&shmem_swaplist_mutex);
1043 }
1044 }
1045
1046 simple_xattrs_free(&info->xattrs);
1047 WARN_ON(inode->i_blocks);
1048 shmem_free_inode(inode->i_sb);
1049 clear_inode(inode);
1050 }
1051
1052 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1053 {
1054 struct radix_tree_iter iter;
1055 void **slot;
1056 unsigned long found = -1;
1057 unsigned int checked = 0;
1058
1059 rcu_read_lock();
1060 radix_tree_for_each_slot(slot, root, &iter, 0) {
1061 if (*slot == item) {
1062 found = iter.index;
1063 break;
1064 }
1065 checked++;
1066 if ((checked % 4096) != 0)
1067 continue;
1068 slot = radix_tree_iter_resume(slot, &iter);
1069 cond_resched_rcu();
1070 }
1071
1072 rcu_read_unlock();
1073 return found;
1074 }
1075
1076 /*
1077 * If swap found in inode, free it and move page from swapcache to filecache.
1078 */
1079 static int shmem_unuse_inode(struct shmem_inode_info *info,
1080 swp_entry_t swap, struct page **pagep)
1081 {
1082 struct address_space *mapping = info->vfs_inode.i_mapping;
1083 void *radswap;
1084 pgoff_t index;
1085 gfp_t gfp;
1086 int error = 0;
1087
1088 radswap = swp_to_radix_entry(swap);
1089 index = find_swap_entry(&mapping->page_tree, radswap);
1090 if (index == -1)
1091 return -EAGAIN; /* tell shmem_unuse we found nothing */
1092
1093 /*
1094 * Move _head_ to start search for next from here.
1095 * But be careful: shmem_evict_inode checks list_empty without taking
1096 * mutex, and there's an instant in list_move_tail when info->swaplist
1097 * would appear empty, if it were the only one on shmem_swaplist.
1098 */
1099 if (shmem_swaplist.next != &info->swaplist)
1100 list_move_tail(&shmem_swaplist, &info->swaplist);
1101
1102 gfp = mapping_gfp_mask(mapping);
1103 if (shmem_should_replace_page(*pagep, gfp)) {
1104 mutex_unlock(&shmem_swaplist_mutex);
1105 error = shmem_replace_page(pagep, gfp, info, index);
1106 mutex_lock(&shmem_swaplist_mutex);
1107 /*
1108 * We needed to drop mutex to make that restrictive page
1109 * allocation, but the inode might have been freed while we
1110 * dropped it: although a racing shmem_evict_inode() cannot
1111 * complete without emptying the radix_tree, our page lock
1112 * on this swapcache page is not enough to prevent that -
1113 * free_swap_and_cache() of our swap entry will only
1114 * trylock_page(), removing swap from radix_tree whatever.
1115 *
1116 * We must not proceed to shmem_add_to_page_cache() if the
1117 * inode has been freed, but of course we cannot rely on
1118 * inode or mapping or info to check that. However, we can
1119 * safely check if our swap entry is still in use (and here
1120 * it can't have got reused for another page): if it's still
1121 * in use, then the inode cannot have been freed yet, and we
1122 * can safely proceed (if it's no longer in use, that tells
1123 * nothing about the inode, but we don't need to unuse swap).
1124 */
1125 if (!page_swapcount(*pagep))
1126 error = -ENOENT;
1127 }
1128
1129 /*
1130 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1131 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1132 * beneath us (pagelock doesn't help until the page is in pagecache).
1133 */
1134 if (!error)
1135 error = shmem_add_to_page_cache(*pagep, mapping, index,
1136 radswap);
1137 if (error != -ENOMEM) {
1138 /*
1139 * Truncation and eviction use free_swap_and_cache(), which
1140 * only does trylock page: if we raced, best clean up here.
1141 */
1142 delete_from_swap_cache(*pagep);
1143 set_page_dirty(*pagep);
1144 if (!error) {
1145 spin_lock_irq(&info->lock);
1146 info->swapped--;
1147 spin_unlock_irq(&info->lock);
1148 swap_free(swap);
1149 }
1150 }
1151 return error;
1152 }
1153
1154 /*
1155 * Search through swapped inodes to find and replace swap by page.
1156 */
1157 int shmem_unuse(swp_entry_t swap, struct page *page)
1158 {
1159 struct list_head *this, *next;
1160 struct shmem_inode_info *info;
1161 struct mem_cgroup *memcg;
1162 int error = 0;
1163
1164 /*
1165 * There's a faint possibility that swap page was replaced before
1166 * caller locked it: caller will come back later with the right page.
1167 */
1168 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1169 goto out;
1170
1171 /*
1172 * Charge page using GFP_KERNEL while we can wait, before taking
1173 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1174 * Charged back to the user (not to caller) when swap account is used.
1175 */
1176 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1177 false);
1178 if (error)
1179 goto out;
1180 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1181 error = -EAGAIN;
1182
1183 mutex_lock(&shmem_swaplist_mutex);
1184 list_for_each_safe(this, next, &shmem_swaplist) {
1185 info = list_entry(this, struct shmem_inode_info, swaplist);
1186 if (info->swapped)
1187 error = shmem_unuse_inode(info, swap, &page);
1188 else
1189 list_del_init(&info->swaplist);
1190 cond_resched();
1191 if (error != -EAGAIN)
1192 break;
1193 /* found nothing in this: move on to search the next */
1194 }
1195 mutex_unlock(&shmem_swaplist_mutex);
1196
1197 if (error) {
1198 if (error != -ENOMEM)
1199 error = 0;
1200 mem_cgroup_cancel_charge(page, memcg, false);
1201 } else
1202 mem_cgroup_commit_charge(page, memcg, true, false);
1203 out:
1204 unlock_page(page);
1205 put_page(page);
1206 return error;
1207 }
1208
1209 /*
1210 * Move the page from the page cache to the swap cache.
1211 */
1212 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1213 {
1214 struct shmem_inode_info *info;
1215 struct address_space *mapping;
1216 struct inode *inode;
1217 swp_entry_t swap;
1218 pgoff_t index;
1219
1220 VM_BUG_ON_PAGE(PageCompound(page), page);
1221 BUG_ON(!PageLocked(page));
1222 mapping = page->mapping;
1223 index = page->index;
1224 inode = mapping->host;
1225 info = SHMEM_I(inode);
1226 if (info->flags & VM_LOCKED)
1227 goto redirty;
1228 if (!total_swap_pages)
1229 goto redirty;
1230
1231 /*
1232 * Our capabilities prevent regular writeback or sync from ever calling
1233 * shmem_writepage; but a stacking filesystem might use ->writepage of
1234 * its underlying filesystem, in which case tmpfs should write out to
1235 * swap only in response to memory pressure, and not for the writeback
1236 * threads or sync.
1237 */
1238 if (!wbc->for_reclaim) {
1239 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1240 goto redirty;
1241 }
1242
1243 /*
1244 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1245 * value into swapfile.c, the only way we can correctly account for a
1246 * fallocated page arriving here is now to initialize it and write it.
1247 *
1248 * That's okay for a page already fallocated earlier, but if we have
1249 * not yet completed the fallocation, then (a) we want to keep track
1250 * of this page in case we have to undo it, and (b) it may not be a
1251 * good idea to continue anyway, once we're pushing into swap. So
1252 * reactivate the page, and let shmem_fallocate() quit when too many.
1253 */
1254 if (!PageUptodate(page)) {
1255 if (inode->i_private) {
1256 struct shmem_falloc *shmem_falloc;
1257 spin_lock(&inode->i_lock);
1258 shmem_falloc = inode->i_private;
1259 if (shmem_falloc &&
1260 !shmem_falloc->waitq &&
1261 index >= shmem_falloc->start &&
1262 index < shmem_falloc->next)
1263 shmem_falloc->nr_unswapped++;
1264 else
1265 shmem_falloc = NULL;
1266 spin_unlock(&inode->i_lock);
1267 if (shmem_falloc)
1268 goto redirty;
1269 }
1270 clear_highpage(page);
1271 flush_dcache_page(page);
1272 SetPageUptodate(page);
1273 }
1274
1275 swap = get_swap_page();
1276 if (!swap.val)
1277 goto redirty;
1278
1279 if (mem_cgroup_try_charge_swap(page, swap))
1280 goto free_swap;
1281
1282 /*
1283 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1284 * if it's not already there. Do it now before the page is
1285 * moved to swap cache, when its pagelock no longer protects
1286 * the inode from eviction. But don't unlock the mutex until
1287 * we've incremented swapped, because shmem_unuse_inode() will
1288 * prune a !swapped inode from the swaplist under this mutex.
1289 */
1290 mutex_lock(&shmem_swaplist_mutex);
1291 if (list_empty(&info->swaplist))
1292 list_add_tail(&info->swaplist, &shmem_swaplist);
1293
1294 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1295 spin_lock_irq(&info->lock);
1296 shmem_recalc_inode(inode);
1297 info->swapped++;
1298 spin_unlock_irq(&info->lock);
1299
1300 swap_shmem_alloc(swap);
1301 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1302
1303 mutex_unlock(&shmem_swaplist_mutex);
1304 BUG_ON(page_mapped(page));
1305 swap_writepage(page, wbc);
1306 return 0;
1307 }
1308
1309 mutex_unlock(&shmem_swaplist_mutex);
1310 free_swap:
1311 swapcache_free(swap);
1312 redirty:
1313 set_page_dirty(page);
1314 if (wbc->for_reclaim)
1315 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1316 unlock_page(page);
1317 return 0;
1318 }
1319
1320 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1321 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1322 {
1323 char buffer[64];
1324
1325 if (!mpol || mpol->mode == MPOL_DEFAULT)
1326 return; /* show nothing */
1327
1328 mpol_to_str(buffer, sizeof(buffer), mpol);
1329
1330 seq_printf(seq, ",mpol=%s", buffer);
1331 }
1332
1333 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1334 {
1335 struct mempolicy *mpol = NULL;
1336 if (sbinfo->mpol) {
1337 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1338 mpol = sbinfo->mpol;
1339 mpol_get(mpol);
1340 spin_unlock(&sbinfo->stat_lock);
1341 }
1342 return mpol;
1343 }
1344 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1345 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1346 {
1347 }
1348 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1349 {
1350 return NULL;
1351 }
1352 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1353 #ifndef CONFIG_NUMA
1354 #define vm_policy vm_private_data
1355 #endif
1356
1357 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1358 struct shmem_inode_info *info, pgoff_t index)
1359 {
1360 /* Create a pseudo vma that just contains the policy */
1361 vma->vm_start = 0;
1362 /* Bias interleave by inode number to distribute better across nodes */
1363 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1364 vma->vm_ops = NULL;
1365 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1366 }
1367
1368 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1369 {
1370 /* Drop reference taken by mpol_shared_policy_lookup() */
1371 mpol_cond_put(vma->vm_policy);
1372 }
1373
1374 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1375 struct shmem_inode_info *info, pgoff_t index)
1376 {
1377 struct vm_area_struct pvma;
1378 struct page *page;
1379
1380 shmem_pseudo_vma_init(&pvma, info, index);
1381 page = swapin_readahead(swap, gfp, &pvma, 0);
1382 shmem_pseudo_vma_destroy(&pvma);
1383
1384 return page;
1385 }
1386
1387 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1388 struct shmem_inode_info *info, pgoff_t index)
1389 {
1390 struct vm_area_struct pvma;
1391 struct inode *inode = &info->vfs_inode;
1392 struct address_space *mapping = inode->i_mapping;
1393 pgoff_t idx, hindex;
1394 void __rcu **results;
1395 struct page *page;
1396
1397 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1398 return NULL;
1399
1400 hindex = round_down(index, HPAGE_PMD_NR);
1401 rcu_read_lock();
1402 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1403 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1404 rcu_read_unlock();
1405 return NULL;
1406 }
1407 rcu_read_unlock();
1408
1409 shmem_pseudo_vma_init(&pvma, info, hindex);
1410 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1411 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1412 shmem_pseudo_vma_destroy(&pvma);
1413 if (page)
1414 prep_transhuge_page(page);
1415 return page;
1416 }
1417
1418 static struct page *shmem_alloc_page(gfp_t gfp,
1419 struct shmem_inode_info *info, pgoff_t index)
1420 {
1421 struct vm_area_struct pvma;
1422 struct page *page;
1423
1424 shmem_pseudo_vma_init(&pvma, info, index);
1425 page = alloc_page_vma(gfp, &pvma, 0);
1426 shmem_pseudo_vma_destroy(&pvma);
1427
1428 return page;
1429 }
1430
1431 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1432 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1433 pgoff_t index, bool huge)
1434 {
1435 struct page *page;
1436 int nr;
1437 int err = -ENOSPC;
1438
1439 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1440 huge = false;
1441 nr = huge ? HPAGE_PMD_NR : 1;
1442
1443 if (shmem_acct_block(info->flags, nr))
1444 goto failed;
1445 if (sbinfo->max_blocks) {
1446 if (percpu_counter_compare(&sbinfo->used_blocks,
1447 sbinfo->max_blocks - nr) > 0)
1448 goto unacct;
1449 percpu_counter_add(&sbinfo->used_blocks, nr);
1450 }
1451
1452 if (huge)
1453 page = shmem_alloc_hugepage(gfp, info, index);
1454 else
1455 page = shmem_alloc_page(gfp, info, index);
1456 if (page) {
1457 __SetPageLocked(page);
1458 __SetPageSwapBacked(page);
1459 return page;
1460 }
1461
1462 err = -ENOMEM;
1463 if (sbinfo->max_blocks)
1464 percpu_counter_add(&sbinfo->used_blocks, -nr);
1465 unacct:
1466 shmem_unacct_blocks(info->flags, nr);
1467 failed:
1468 return ERR_PTR(err);
1469 }
1470
1471 /*
1472 * When a page is moved from swapcache to shmem filecache (either by the
1473 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1474 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1475 * ignorance of the mapping it belongs to. If that mapping has special
1476 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1477 * we may need to copy to a suitable page before moving to filecache.
1478 *
1479 * In a future release, this may well be extended to respect cpuset and
1480 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1481 * but for now it is a simple matter of zone.
1482 */
1483 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1484 {
1485 return page_zonenum(page) > gfp_zone(gfp);
1486 }
1487
1488 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1489 struct shmem_inode_info *info, pgoff_t index)
1490 {
1491 struct page *oldpage, *newpage;
1492 struct address_space *swap_mapping;
1493 pgoff_t swap_index;
1494 int error;
1495
1496 oldpage = *pagep;
1497 swap_index = page_private(oldpage);
1498 swap_mapping = page_mapping(oldpage);
1499
1500 /*
1501 * We have arrived here because our zones are constrained, so don't
1502 * limit chance of success by further cpuset and node constraints.
1503 */
1504 gfp &= ~GFP_CONSTRAINT_MASK;
1505 newpage = shmem_alloc_page(gfp, info, index);
1506 if (!newpage)
1507 return -ENOMEM;
1508
1509 get_page(newpage);
1510 copy_highpage(newpage, oldpage);
1511 flush_dcache_page(newpage);
1512
1513 __SetPageLocked(newpage);
1514 __SetPageSwapBacked(newpage);
1515 SetPageUptodate(newpage);
1516 set_page_private(newpage, swap_index);
1517 SetPageSwapCache(newpage);
1518
1519 /*
1520 * Our caller will very soon move newpage out of swapcache, but it's
1521 * a nice clean interface for us to replace oldpage by newpage there.
1522 */
1523 spin_lock_irq(&swap_mapping->tree_lock);
1524 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1525 newpage);
1526 if (!error) {
1527 __inc_node_page_state(newpage, NR_FILE_PAGES);
1528 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1529 }
1530 spin_unlock_irq(&swap_mapping->tree_lock);
1531
1532 if (unlikely(error)) {
1533 /*
1534 * Is this possible? I think not, now that our callers check
1535 * both PageSwapCache and page_private after getting page lock;
1536 * but be defensive. Reverse old to newpage for clear and free.
1537 */
1538 oldpage = newpage;
1539 } else {
1540 mem_cgroup_migrate(oldpage, newpage);
1541 lru_cache_add_anon(newpage);
1542 *pagep = newpage;
1543 }
1544
1545 ClearPageSwapCache(oldpage);
1546 set_page_private(oldpage, 0);
1547
1548 unlock_page(oldpage);
1549 put_page(oldpage);
1550 put_page(oldpage);
1551 return error;
1552 }
1553
1554 /*
1555 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1556 *
1557 * If we allocate a new one we do not mark it dirty. That's up to the
1558 * vm. If we swap it in we mark it dirty since we also free the swap
1559 * entry since a page cannot live in both the swap and page cache.
1560 *
1561 * fault_mm and fault_type are only supplied by shmem_fault:
1562 * otherwise they are NULL.
1563 */
1564 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1565 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1566 struct mm_struct *fault_mm, int *fault_type)
1567 {
1568 struct address_space *mapping = inode->i_mapping;
1569 struct shmem_inode_info *info = SHMEM_I(inode);
1570 struct shmem_sb_info *sbinfo;
1571 struct mm_struct *charge_mm;
1572 struct mem_cgroup *memcg;
1573 struct page *page;
1574 swp_entry_t swap;
1575 enum sgp_type sgp_huge = sgp;
1576 pgoff_t hindex = index;
1577 int error;
1578 int once = 0;
1579 int alloced = 0;
1580
1581 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1582 return -EFBIG;
1583 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1584 sgp = SGP_CACHE;
1585 repeat:
1586 swap.val = 0;
1587 page = find_lock_entry(mapping, index);
1588 if (radix_tree_exceptional_entry(page)) {
1589 swap = radix_to_swp_entry(page);
1590 page = NULL;
1591 }
1592
1593 if (sgp <= SGP_CACHE &&
1594 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1595 error = -EINVAL;
1596 goto unlock;
1597 }
1598
1599 if (page && sgp == SGP_WRITE)
1600 mark_page_accessed(page);
1601
1602 /* fallocated page? */
1603 if (page && !PageUptodate(page)) {
1604 if (sgp != SGP_READ)
1605 goto clear;
1606 unlock_page(page);
1607 put_page(page);
1608 page = NULL;
1609 }
1610 if (page || (sgp == SGP_READ && !swap.val)) {
1611 *pagep = page;
1612 return 0;
1613 }
1614
1615 /*
1616 * Fast cache lookup did not find it:
1617 * bring it back from swap or allocate.
1618 */
1619 sbinfo = SHMEM_SB(inode->i_sb);
1620 charge_mm = fault_mm ? : current->mm;
1621
1622 if (swap.val) {
1623 /* Look it up and read it in.. */
1624 page = lookup_swap_cache(swap);
1625 if (!page) {
1626 /* Or update major stats only when swapin succeeds?? */
1627 if (fault_type) {
1628 *fault_type |= VM_FAULT_MAJOR;
1629 count_vm_event(PGMAJFAULT);
1630 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1631 }
1632 /* Here we actually start the io */
1633 page = shmem_swapin(swap, gfp, info, index);
1634 if (!page) {
1635 error = -ENOMEM;
1636 goto failed;
1637 }
1638 }
1639
1640 /* We have to do this with page locked to prevent races */
1641 lock_page(page);
1642 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1643 !shmem_confirm_swap(mapping, index, swap)) {
1644 error = -EEXIST; /* try again */
1645 goto unlock;
1646 }
1647 if (!PageUptodate(page)) {
1648 error = -EIO;
1649 goto failed;
1650 }
1651 wait_on_page_writeback(page);
1652
1653 if (shmem_should_replace_page(page, gfp)) {
1654 error = shmem_replace_page(&page, gfp, info, index);
1655 if (error)
1656 goto failed;
1657 }
1658
1659 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1660 false);
1661 if (!error) {
1662 error = shmem_add_to_page_cache(page, mapping, index,
1663 swp_to_radix_entry(swap));
1664 /*
1665 * We already confirmed swap under page lock, and make
1666 * no memory allocation here, so usually no possibility
1667 * of error; but free_swap_and_cache() only trylocks a
1668 * page, so it is just possible that the entry has been
1669 * truncated or holepunched since swap was confirmed.
1670 * shmem_undo_range() will have done some of the
1671 * unaccounting, now delete_from_swap_cache() will do
1672 * the rest.
1673 * Reset swap.val? No, leave it so "failed" goes back to
1674 * "repeat": reading a hole and writing should succeed.
1675 */
1676 if (error) {
1677 mem_cgroup_cancel_charge(page, memcg, false);
1678 delete_from_swap_cache(page);
1679 }
1680 }
1681 if (error)
1682 goto failed;
1683
1684 mem_cgroup_commit_charge(page, memcg, true, false);
1685
1686 spin_lock_irq(&info->lock);
1687 info->swapped--;
1688 shmem_recalc_inode(inode);
1689 spin_unlock_irq(&info->lock);
1690
1691 if (sgp == SGP_WRITE)
1692 mark_page_accessed(page);
1693
1694 delete_from_swap_cache(page);
1695 set_page_dirty(page);
1696 swap_free(swap);
1697
1698 } else {
1699 /* shmem_symlink() */
1700 if (mapping->a_ops != &shmem_aops)
1701 goto alloc_nohuge;
1702 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1703 goto alloc_nohuge;
1704 if (shmem_huge == SHMEM_HUGE_FORCE)
1705 goto alloc_huge;
1706 switch (sbinfo->huge) {
1707 loff_t i_size;
1708 pgoff_t off;
1709 case SHMEM_HUGE_NEVER:
1710 goto alloc_nohuge;
1711 case SHMEM_HUGE_WITHIN_SIZE:
1712 off = round_up(index, HPAGE_PMD_NR);
1713 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1714 if (i_size >= HPAGE_PMD_SIZE &&
1715 i_size >> PAGE_SHIFT >= off)
1716 goto alloc_huge;
1717 /* fallthrough */
1718 case SHMEM_HUGE_ADVISE:
1719 if (sgp_huge == SGP_HUGE)
1720 goto alloc_huge;
1721 /* TODO: implement fadvise() hints */
1722 goto alloc_nohuge;
1723 }
1724
1725 alloc_huge:
1726 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1727 index, true);
1728 if (IS_ERR(page)) {
1729 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1730 index, false);
1731 }
1732 if (IS_ERR(page)) {
1733 int retry = 5;
1734 error = PTR_ERR(page);
1735 page = NULL;
1736 if (error != -ENOSPC)
1737 goto failed;
1738 /*
1739 * Try to reclaim some spece by splitting a huge page
1740 * beyond i_size on the filesystem.
1741 */
1742 while (retry--) {
1743 int ret;
1744 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1745 if (ret == SHRINK_STOP)
1746 break;
1747 if (ret)
1748 goto alloc_nohuge;
1749 }
1750 goto failed;
1751 }
1752
1753 if (PageTransHuge(page))
1754 hindex = round_down(index, HPAGE_PMD_NR);
1755 else
1756 hindex = index;
1757
1758 if (sgp == SGP_WRITE)
1759 __SetPageReferenced(page);
1760
1761 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1762 PageTransHuge(page));
1763 if (error)
1764 goto unacct;
1765 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1766 compound_order(page));
1767 if (!error) {
1768 error = shmem_add_to_page_cache(page, mapping, hindex,
1769 NULL);
1770 radix_tree_preload_end();
1771 }
1772 if (error) {
1773 mem_cgroup_cancel_charge(page, memcg,
1774 PageTransHuge(page));
1775 goto unacct;
1776 }
1777 mem_cgroup_commit_charge(page, memcg, false,
1778 PageTransHuge(page));
1779 lru_cache_add_anon(page);
1780
1781 spin_lock_irq(&info->lock);
1782 info->alloced += 1 << compound_order(page);
1783 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1784 shmem_recalc_inode(inode);
1785 spin_unlock_irq(&info->lock);
1786 alloced = true;
1787
1788 if (PageTransHuge(page) &&
1789 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1790 hindex + HPAGE_PMD_NR - 1) {
1791 /*
1792 * Part of the huge page is beyond i_size: subject
1793 * to shrink under memory pressure.
1794 */
1795 spin_lock(&sbinfo->shrinklist_lock);
1796 if (list_empty(&info->shrinklist)) {
1797 list_add_tail(&info->shrinklist,
1798 &sbinfo->shrinklist);
1799 sbinfo->shrinklist_len++;
1800 }
1801 spin_unlock(&sbinfo->shrinklist_lock);
1802 }
1803
1804 /*
1805 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1806 */
1807 if (sgp == SGP_FALLOC)
1808 sgp = SGP_WRITE;
1809 clear:
1810 /*
1811 * Let SGP_WRITE caller clear ends if write does not fill page;
1812 * but SGP_FALLOC on a page fallocated earlier must initialize
1813 * it now, lest undo on failure cancel our earlier guarantee.
1814 */
1815 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1816 struct page *head = compound_head(page);
1817 int i;
1818
1819 for (i = 0; i < (1 << compound_order(head)); i++) {
1820 clear_highpage(head + i);
1821 flush_dcache_page(head + i);
1822 }
1823 SetPageUptodate(head);
1824 }
1825 }
1826
1827 /* Perhaps the file has been truncated since we checked */
1828 if (sgp <= SGP_CACHE &&
1829 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1830 if (alloced) {
1831 ClearPageDirty(page);
1832 delete_from_page_cache(page);
1833 spin_lock_irq(&info->lock);
1834 shmem_recalc_inode(inode);
1835 spin_unlock_irq(&info->lock);
1836 }
1837 error = -EINVAL;
1838 goto unlock;
1839 }
1840 *pagep = page + index - hindex;
1841 return 0;
1842
1843 /*
1844 * Error recovery.
1845 */
1846 unacct:
1847 if (sbinfo->max_blocks)
1848 percpu_counter_sub(&sbinfo->used_blocks,
1849 1 << compound_order(page));
1850 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1851
1852 if (PageTransHuge(page)) {
1853 unlock_page(page);
1854 put_page(page);
1855 goto alloc_nohuge;
1856 }
1857 failed:
1858 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1859 error = -EEXIST;
1860 unlock:
1861 if (page) {
1862 unlock_page(page);
1863 put_page(page);
1864 }
1865 if (error == -ENOSPC && !once++) {
1866 spin_lock_irq(&info->lock);
1867 shmem_recalc_inode(inode);
1868 spin_unlock_irq(&info->lock);
1869 goto repeat;
1870 }
1871 if (error == -EEXIST) /* from above or from radix_tree_insert */
1872 goto repeat;
1873 return error;
1874 }
1875
1876 /*
1877 * This is like autoremove_wake_function, but it removes the wait queue
1878 * entry unconditionally - even if something else had already woken the
1879 * target.
1880 */
1881 static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1882 {
1883 int ret = default_wake_function(wait, mode, sync, key);
1884 list_del_init(&wait->task_list);
1885 return ret;
1886 }
1887
1888 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1889 {
1890 struct inode *inode = file_inode(vma->vm_file);
1891 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1892 enum sgp_type sgp;
1893 int error;
1894 int ret = VM_FAULT_LOCKED;
1895
1896 /*
1897 * Trinity finds that probing a hole which tmpfs is punching can
1898 * prevent the hole-punch from ever completing: which in turn
1899 * locks writers out with its hold on i_mutex. So refrain from
1900 * faulting pages into the hole while it's being punched. Although
1901 * shmem_undo_range() does remove the additions, it may be unable to
1902 * keep up, as each new page needs its own unmap_mapping_range() call,
1903 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1904 *
1905 * It does not matter if we sometimes reach this check just before the
1906 * hole-punch begins, so that one fault then races with the punch:
1907 * we just need to make racing faults a rare case.
1908 *
1909 * The implementation below would be much simpler if we just used a
1910 * standard mutex or completion: but we cannot take i_mutex in fault,
1911 * and bloating every shmem inode for this unlikely case would be sad.
1912 */
1913 if (unlikely(inode->i_private)) {
1914 struct shmem_falloc *shmem_falloc;
1915
1916 spin_lock(&inode->i_lock);
1917 shmem_falloc = inode->i_private;
1918 if (shmem_falloc &&
1919 shmem_falloc->waitq &&
1920 vmf->pgoff >= shmem_falloc->start &&
1921 vmf->pgoff < shmem_falloc->next) {
1922 wait_queue_head_t *shmem_falloc_waitq;
1923 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1924
1925 ret = VM_FAULT_NOPAGE;
1926 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1927 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1928 /* It's polite to up mmap_sem if we can */
1929 up_read(&vma->vm_mm->mmap_sem);
1930 ret = VM_FAULT_RETRY;
1931 }
1932
1933 shmem_falloc_waitq = shmem_falloc->waitq;
1934 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1935 TASK_UNINTERRUPTIBLE);
1936 spin_unlock(&inode->i_lock);
1937 schedule();
1938
1939 /*
1940 * shmem_falloc_waitq points into the shmem_fallocate()
1941 * stack of the hole-punching task: shmem_falloc_waitq
1942 * is usually invalid by the time we reach here, but
1943 * finish_wait() does not dereference it in that case;
1944 * though i_lock needed lest racing with wake_up_all().
1945 */
1946 spin_lock(&inode->i_lock);
1947 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1948 spin_unlock(&inode->i_lock);
1949 return ret;
1950 }
1951 spin_unlock(&inode->i_lock);
1952 }
1953
1954 sgp = SGP_CACHE;
1955 if (vma->vm_flags & VM_HUGEPAGE)
1956 sgp = SGP_HUGE;
1957 else if (vma->vm_flags & VM_NOHUGEPAGE)
1958 sgp = SGP_NOHUGE;
1959
1960 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1961 gfp, vma->vm_mm, &ret);
1962 if (error)
1963 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1964 return ret;
1965 }
1966
1967 unsigned long shmem_get_unmapped_area(struct file *file,
1968 unsigned long uaddr, unsigned long len,
1969 unsigned long pgoff, unsigned long flags)
1970 {
1971 unsigned long (*get_area)(struct file *,
1972 unsigned long, unsigned long, unsigned long, unsigned long);
1973 unsigned long addr;
1974 unsigned long offset;
1975 unsigned long inflated_len;
1976 unsigned long inflated_addr;
1977 unsigned long inflated_offset;
1978
1979 if (len > TASK_SIZE)
1980 return -ENOMEM;
1981
1982 get_area = current->mm->get_unmapped_area;
1983 addr = get_area(file, uaddr, len, pgoff, flags);
1984
1985 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1986 return addr;
1987 if (IS_ERR_VALUE(addr))
1988 return addr;
1989 if (addr & ~PAGE_MASK)
1990 return addr;
1991 if (addr > TASK_SIZE - len)
1992 return addr;
1993
1994 if (shmem_huge == SHMEM_HUGE_DENY)
1995 return addr;
1996 if (len < HPAGE_PMD_SIZE)
1997 return addr;
1998 if (flags & MAP_FIXED)
1999 return addr;
2000 /*
2001 * Our priority is to support MAP_SHARED mapped hugely;
2002 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2003 * But if caller specified an address hint, respect that as before.
2004 */
2005 if (uaddr)
2006 return addr;
2007
2008 if (shmem_huge != SHMEM_HUGE_FORCE) {
2009 struct super_block *sb;
2010
2011 if (file) {
2012 VM_BUG_ON(file->f_op != &shmem_file_operations);
2013 sb = file_inode(file)->i_sb;
2014 } else {
2015 /*
2016 * Called directly from mm/mmap.c, or drivers/char/mem.c
2017 * for "/dev/zero", to create a shared anonymous object.
2018 */
2019 if (IS_ERR(shm_mnt))
2020 return addr;
2021 sb = shm_mnt->mnt_sb;
2022 }
2023 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2024 return addr;
2025 }
2026
2027 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2028 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2029 return addr;
2030 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2031 return addr;
2032
2033 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2034 if (inflated_len > TASK_SIZE)
2035 return addr;
2036 if (inflated_len < len)
2037 return addr;
2038
2039 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2040 if (IS_ERR_VALUE(inflated_addr))
2041 return addr;
2042 if (inflated_addr & ~PAGE_MASK)
2043 return addr;
2044
2045 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2046 inflated_addr += offset - inflated_offset;
2047 if (inflated_offset > offset)
2048 inflated_addr += HPAGE_PMD_SIZE;
2049
2050 if (inflated_addr > TASK_SIZE - len)
2051 return addr;
2052 return inflated_addr;
2053 }
2054
2055 #ifdef CONFIG_NUMA
2056 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2057 {
2058 struct inode *inode = file_inode(vma->vm_file);
2059 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2060 }
2061
2062 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2063 unsigned long addr)
2064 {
2065 struct inode *inode = file_inode(vma->vm_file);
2066 pgoff_t index;
2067
2068 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2069 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2070 }
2071 #endif
2072
2073 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2074 {
2075 struct inode *inode = file_inode(file);
2076 struct shmem_inode_info *info = SHMEM_I(inode);
2077 int retval = -ENOMEM;
2078
2079 spin_lock_irq(&info->lock);
2080 if (lock && !(info->flags & VM_LOCKED)) {
2081 if (!user_shm_lock(inode->i_size, user))
2082 goto out_nomem;
2083 info->flags |= VM_LOCKED;
2084 mapping_set_unevictable(file->f_mapping);
2085 }
2086 if (!lock && (info->flags & VM_LOCKED) && user) {
2087 user_shm_unlock(inode->i_size, user);
2088 info->flags &= ~VM_LOCKED;
2089 mapping_clear_unevictable(file->f_mapping);
2090 }
2091 retval = 0;
2092
2093 out_nomem:
2094 spin_unlock_irq(&info->lock);
2095 return retval;
2096 }
2097
2098 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2099 {
2100 file_accessed(file);
2101 vma->vm_ops = &shmem_vm_ops;
2102 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2103 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2104 (vma->vm_end & HPAGE_PMD_MASK)) {
2105 khugepaged_enter(vma, vma->vm_flags);
2106 }
2107 return 0;
2108 }
2109
2110 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2111 umode_t mode, dev_t dev, unsigned long flags)
2112 {
2113 struct inode *inode;
2114 struct shmem_inode_info *info;
2115 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2116
2117 if (shmem_reserve_inode(sb))
2118 return NULL;
2119
2120 inode = new_inode(sb);
2121 if (inode) {
2122 inode->i_ino = get_next_ino();
2123 inode_init_owner(inode, dir, mode);
2124 inode->i_blocks = 0;
2125 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2126 inode->i_generation = get_seconds();
2127 info = SHMEM_I(inode);
2128 memset(info, 0, (char *)inode - (char *)info);
2129 spin_lock_init(&info->lock);
2130 info->seals = F_SEAL_SEAL;
2131 info->flags = flags & VM_NORESERVE;
2132 INIT_LIST_HEAD(&info->shrinklist);
2133 INIT_LIST_HEAD(&info->swaplist);
2134 simple_xattrs_init(&info->xattrs);
2135 cache_no_acl(inode);
2136
2137 switch (mode & S_IFMT) {
2138 default:
2139 inode->i_op = &shmem_special_inode_operations;
2140 init_special_inode(inode, mode, dev);
2141 break;
2142 case S_IFREG:
2143 inode->i_mapping->a_ops = &shmem_aops;
2144 inode->i_op = &shmem_inode_operations;
2145 inode->i_fop = &shmem_file_operations;
2146 mpol_shared_policy_init(&info->policy,
2147 shmem_get_sbmpol(sbinfo));
2148 break;
2149 case S_IFDIR:
2150 inc_nlink(inode);
2151 /* Some things misbehave if size == 0 on a directory */
2152 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2153 inode->i_op = &shmem_dir_inode_operations;
2154 inode->i_fop = &simple_dir_operations;
2155 break;
2156 case S_IFLNK:
2157 /*
2158 * Must not load anything in the rbtree,
2159 * mpol_free_shared_policy will not be called.
2160 */
2161 mpol_shared_policy_init(&info->policy, NULL);
2162 break;
2163 }
2164 } else
2165 shmem_free_inode(sb);
2166 return inode;
2167 }
2168
2169 bool shmem_mapping(struct address_space *mapping)
2170 {
2171 if (!mapping->host)
2172 return false;
2173
2174 return mapping->host->i_sb->s_op == &shmem_ops;
2175 }
2176
2177 #ifdef CONFIG_TMPFS
2178 static const struct inode_operations shmem_symlink_inode_operations;
2179 static const struct inode_operations shmem_short_symlink_operations;
2180
2181 #ifdef CONFIG_TMPFS_XATTR
2182 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2183 #else
2184 #define shmem_initxattrs NULL
2185 #endif
2186
2187 static int
2188 shmem_write_begin(struct file *file, struct address_space *mapping,
2189 loff_t pos, unsigned len, unsigned flags,
2190 struct page **pagep, void **fsdata)
2191 {
2192 struct inode *inode = mapping->host;
2193 struct shmem_inode_info *info = SHMEM_I(inode);
2194 pgoff_t index = pos >> PAGE_SHIFT;
2195
2196 /* i_mutex is held by caller */
2197 if (unlikely(info->seals)) {
2198 if (info->seals & F_SEAL_WRITE)
2199 return -EPERM;
2200 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2201 return -EPERM;
2202 }
2203
2204 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2205 }
2206
2207 static int
2208 shmem_write_end(struct file *file, struct address_space *mapping,
2209 loff_t pos, unsigned len, unsigned copied,
2210 struct page *page, void *fsdata)
2211 {
2212 struct inode *inode = mapping->host;
2213
2214 if (pos + copied > inode->i_size)
2215 i_size_write(inode, pos + copied);
2216
2217 if (!PageUptodate(page)) {
2218 struct page *head = compound_head(page);
2219 if (PageTransCompound(page)) {
2220 int i;
2221
2222 for (i = 0; i < HPAGE_PMD_NR; i++) {
2223 if (head + i == page)
2224 continue;
2225 clear_highpage(head + i);
2226 flush_dcache_page(head + i);
2227 }
2228 }
2229 if (copied < PAGE_SIZE) {
2230 unsigned from = pos & (PAGE_SIZE - 1);
2231 zero_user_segments(page, 0, from,
2232 from + copied, PAGE_SIZE);
2233 }
2234 SetPageUptodate(head);
2235 }
2236 set_page_dirty(page);
2237 unlock_page(page);
2238 put_page(page);
2239
2240 return copied;
2241 }
2242
2243 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2244 {
2245 struct file *file = iocb->ki_filp;
2246 struct inode *inode = file_inode(file);
2247 struct address_space *mapping = inode->i_mapping;
2248 pgoff_t index;
2249 unsigned long offset;
2250 enum sgp_type sgp = SGP_READ;
2251 int error = 0;
2252 ssize_t retval = 0;
2253 loff_t *ppos = &iocb->ki_pos;
2254
2255 /*
2256 * Might this read be for a stacking filesystem? Then when reading
2257 * holes of a sparse file, we actually need to allocate those pages,
2258 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2259 */
2260 if (!iter_is_iovec(to))
2261 sgp = SGP_CACHE;
2262
2263 index = *ppos >> PAGE_SHIFT;
2264 offset = *ppos & ~PAGE_MASK;
2265
2266 for (;;) {
2267 struct page *page = NULL;
2268 pgoff_t end_index;
2269 unsigned long nr, ret;
2270 loff_t i_size = i_size_read(inode);
2271
2272 end_index = i_size >> PAGE_SHIFT;
2273 if (index > end_index)
2274 break;
2275 if (index == end_index) {
2276 nr = i_size & ~PAGE_MASK;
2277 if (nr <= offset)
2278 break;
2279 }
2280
2281 error = shmem_getpage(inode, index, &page, sgp);
2282 if (error) {
2283 if (error == -EINVAL)
2284 error = 0;
2285 break;
2286 }
2287 if (page) {
2288 if (sgp == SGP_CACHE)
2289 set_page_dirty(page);
2290 unlock_page(page);
2291 }
2292
2293 /*
2294 * We must evaluate after, since reads (unlike writes)
2295 * are called without i_mutex protection against truncate
2296 */
2297 nr = PAGE_SIZE;
2298 i_size = i_size_read(inode);
2299 end_index = i_size >> PAGE_SHIFT;
2300 if (index == end_index) {
2301 nr = i_size & ~PAGE_MASK;
2302 if (nr <= offset) {
2303 if (page)
2304 put_page(page);
2305 break;
2306 }
2307 }
2308 nr -= offset;
2309
2310 if (page) {
2311 /*
2312 * If users can be writing to this page using arbitrary
2313 * virtual addresses, take care about potential aliasing
2314 * before reading the page on the kernel side.
2315 */
2316 if (mapping_writably_mapped(mapping))
2317 flush_dcache_page(page);
2318 /*
2319 * Mark the page accessed if we read the beginning.
2320 */
2321 if (!offset)
2322 mark_page_accessed(page);
2323 } else {
2324 page = ZERO_PAGE(0);
2325 get_page(page);
2326 }
2327
2328 /*
2329 * Ok, we have the page, and it's up-to-date, so
2330 * now we can copy it to user space...
2331 */
2332 ret = copy_page_to_iter(page, offset, nr, to);
2333 retval += ret;
2334 offset += ret;
2335 index += offset >> PAGE_SHIFT;
2336 offset &= ~PAGE_MASK;
2337
2338 put_page(page);
2339 if (!iov_iter_count(to))
2340 break;
2341 if (ret < nr) {
2342 error = -EFAULT;
2343 break;
2344 }
2345 cond_resched();
2346 }
2347
2348 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2349 file_accessed(file);
2350 return retval ? retval : error;
2351 }
2352
2353 /*
2354 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2355 */
2356 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2357 pgoff_t index, pgoff_t end, int whence)
2358 {
2359 struct page *page;
2360 struct pagevec pvec;
2361 pgoff_t indices[PAGEVEC_SIZE];
2362 bool done = false;
2363 int i;
2364
2365 pagevec_init(&pvec, 0);
2366 pvec.nr = 1; /* start small: we may be there already */
2367 while (!done) {
2368 pvec.nr = find_get_entries(mapping, index,
2369 pvec.nr, pvec.pages, indices);
2370 if (!pvec.nr) {
2371 if (whence == SEEK_DATA)
2372 index = end;
2373 break;
2374 }
2375 for (i = 0; i < pvec.nr; i++, index++) {
2376 if (index < indices[i]) {
2377 if (whence == SEEK_HOLE) {
2378 done = true;
2379 break;
2380 }
2381 index = indices[i];
2382 }
2383 page = pvec.pages[i];
2384 if (page && !radix_tree_exceptional_entry(page)) {
2385 if (!PageUptodate(page))
2386 page = NULL;
2387 }
2388 if (index >= end ||
2389 (page && whence == SEEK_DATA) ||
2390 (!page && whence == SEEK_HOLE)) {
2391 done = true;
2392 break;
2393 }
2394 }
2395 pagevec_remove_exceptionals(&pvec);
2396 pagevec_release(&pvec);
2397 pvec.nr = PAGEVEC_SIZE;
2398 cond_resched();
2399 }
2400 return index;
2401 }
2402
2403 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2404 {
2405 struct address_space *mapping = file->f_mapping;
2406 struct inode *inode = mapping->host;
2407 pgoff_t start, end;
2408 loff_t new_offset;
2409
2410 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2411 return generic_file_llseek_size(file, offset, whence,
2412 MAX_LFS_FILESIZE, i_size_read(inode));
2413 inode_lock(inode);
2414 /* We're holding i_mutex so we can access i_size directly */
2415
2416 if (offset < 0)
2417 offset = -EINVAL;
2418 else if (offset >= inode->i_size)
2419 offset = -ENXIO;
2420 else {
2421 start = offset >> PAGE_SHIFT;
2422 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2423 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2424 new_offset <<= PAGE_SHIFT;
2425 if (new_offset > offset) {
2426 if (new_offset < inode->i_size)
2427 offset = new_offset;
2428 else if (whence == SEEK_DATA)
2429 offset = -ENXIO;
2430 else
2431 offset = inode->i_size;
2432 }
2433 }
2434
2435 if (offset >= 0)
2436 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2437 inode_unlock(inode);
2438 return offset;
2439 }
2440
2441 /*
2442 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2443 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2444 */
2445 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2446 #define LAST_SCAN 4 /* about 150ms max */
2447
2448 static void shmem_tag_pins(struct address_space *mapping)
2449 {
2450 struct radix_tree_iter iter;
2451 void **slot;
2452 pgoff_t start;
2453 struct page *page;
2454
2455 lru_add_drain();
2456 start = 0;
2457 rcu_read_lock();
2458
2459 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2460 page = radix_tree_deref_slot(slot);
2461 if (!page || radix_tree_exception(page)) {
2462 if (radix_tree_deref_retry(page)) {
2463 slot = radix_tree_iter_retry(&iter);
2464 continue;
2465 }
2466 } else if (page_count(page) - page_mapcount(page) > 1) {
2467 spin_lock_irq(&mapping->tree_lock);
2468 radix_tree_tag_set(&mapping->page_tree, iter.index,
2469 SHMEM_TAG_PINNED);
2470 spin_unlock_irq(&mapping->tree_lock);
2471 }
2472
2473 if (need_resched()) {
2474 slot = radix_tree_iter_resume(slot, &iter);
2475 cond_resched_rcu();
2476 }
2477 }
2478 rcu_read_unlock();
2479 }
2480
2481 /*
2482 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2483 * via get_user_pages(), drivers might have some pending I/O without any active
2484 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2485 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2486 * them to be dropped.
2487 * The caller must guarantee that no new user will acquire writable references
2488 * to those pages to avoid races.
2489 */
2490 static int shmem_wait_for_pins(struct address_space *mapping)
2491 {
2492 struct radix_tree_iter iter;
2493 void **slot;
2494 pgoff_t start;
2495 struct page *page;
2496 int error, scan;
2497
2498 shmem_tag_pins(mapping);
2499
2500 error = 0;
2501 for (scan = 0; scan <= LAST_SCAN; scan++) {
2502 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2503 break;
2504
2505 if (!scan)
2506 lru_add_drain_all();
2507 else if (schedule_timeout_killable((HZ << scan) / 200))
2508 scan = LAST_SCAN;
2509
2510 start = 0;
2511 rcu_read_lock();
2512 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2513 start, SHMEM_TAG_PINNED) {
2514
2515 page = radix_tree_deref_slot(slot);
2516 if (radix_tree_exception(page)) {
2517 if (radix_tree_deref_retry(page)) {
2518 slot = radix_tree_iter_retry(&iter);
2519 continue;
2520 }
2521
2522 page = NULL;
2523 }
2524
2525 if (page &&
2526 page_count(page) - page_mapcount(page) != 1) {
2527 if (scan < LAST_SCAN)
2528 goto continue_resched;
2529
2530 /*
2531 * On the last scan, we clean up all those tags
2532 * we inserted; but make a note that we still
2533 * found pages pinned.
2534 */
2535 error = -EBUSY;
2536 }
2537
2538 spin_lock_irq(&mapping->tree_lock);
2539 radix_tree_tag_clear(&mapping->page_tree,
2540 iter.index, SHMEM_TAG_PINNED);
2541 spin_unlock_irq(&mapping->tree_lock);
2542 continue_resched:
2543 if (need_resched()) {
2544 slot = radix_tree_iter_resume(slot, &iter);
2545 cond_resched_rcu();
2546 }
2547 }
2548 rcu_read_unlock();
2549 }
2550
2551 return error;
2552 }
2553
2554 #define F_ALL_SEALS (F_SEAL_SEAL | \
2555 F_SEAL_SHRINK | \
2556 F_SEAL_GROW | \
2557 F_SEAL_WRITE)
2558
2559 int shmem_add_seals(struct file *file, unsigned int seals)
2560 {
2561 struct inode *inode = file_inode(file);
2562 struct shmem_inode_info *info = SHMEM_I(inode);
2563 int error;
2564
2565 /*
2566 * SEALING
2567 * Sealing allows multiple parties to share a shmem-file but restrict
2568 * access to a specific subset of file operations. Seals can only be
2569 * added, but never removed. This way, mutually untrusted parties can
2570 * share common memory regions with a well-defined policy. A malicious
2571 * peer can thus never perform unwanted operations on a shared object.
2572 *
2573 * Seals are only supported on special shmem-files and always affect
2574 * the whole underlying inode. Once a seal is set, it may prevent some
2575 * kinds of access to the file. Currently, the following seals are
2576 * defined:
2577 * SEAL_SEAL: Prevent further seals from being set on this file
2578 * SEAL_SHRINK: Prevent the file from shrinking
2579 * SEAL_GROW: Prevent the file from growing
2580 * SEAL_WRITE: Prevent write access to the file
2581 *
2582 * As we don't require any trust relationship between two parties, we
2583 * must prevent seals from being removed. Therefore, sealing a file
2584 * only adds a given set of seals to the file, it never touches
2585 * existing seals. Furthermore, the "setting seals"-operation can be
2586 * sealed itself, which basically prevents any further seal from being
2587 * added.
2588 *
2589 * Semantics of sealing are only defined on volatile files. Only
2590 * anonymous shmem files support sealing. More importantly, seals are
2591 * never written to disk. Therefore, there's no plan to support it on
2592 * other file types.
2593 */
2594
2595 if (file->f_op != &shmem_file_operations)
2596 return -EINVAL;
2597 if (!(file->f_mode & FMODE_WRITE))
2598 return -EPERM;
2599 if (seals & ~(unsigned int)F_ALL_SEALS)
2600 return -EINVAL;
2601
2602 inode_lock(inode);
2603
2604 if (info->seals & F_SEAL_SEAL) {
2605 error = -EPERM;
2606 goto unlock;
2607 }
2608
2609 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2610 error = mapping_deny_writable(file->f_mapping);
2611 if (error)
2612 goto unlock;
2613
2614 error = shmem_wait_for_pins(file->f_mapping);
2615 if (error) {
2616 mapping_allow_writable(file->f_mapping);
2617 goto unlock;
2618 }
2619 }
2620
2621 info->seals |= seals;
2622 error = 0;
2623
2624 unlock:
2625 inode_unlock(inode);
2626 return error;
2627 }
2628 EXPORT_SYMBOL_GPL(shmem_add_seals);
2629
2630 int shmem_get_seals(struct file *file)
2631 {
2632 if (file->f_op != &shmem_file_operations)
2633 return -EINVAL;
2634
2635 return SHMEM_I(file_inode(file))->seals;
2636 }
2637 EXPORT_SYMBOL_GPL(shmem_get_seals);
2638
2639 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2640 {
2641 long error;
2642
2643 switch (cmd) {
2644 case F_ADD_SEALS:
2645 /* disallow upper 32bit */
2646 if (arg > UINT_MAX)
2647 return -EINVAL;
2648
2649 error = shmem_add_seals(file, arg);
2650 break;
2651 case F_GET_SEALS:
2652 error = shmem_get_seals(file);
2653 break;
2654 default:
2655 error = -EINVAL;
2656 break;
2657 }
2658
2659 return error;
2660 }
2661
2662 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2663 loff_t len)
2664 {
2665 struct inode *inode = file_inode(file);
2666 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2667 struct shmem_inode_info *info = SHMEM_I(inode);
2668 struct shmem_falloc shmem_falloc;
2669 pgoff_t start, index, end;
2670 int error;
2671
2672 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2673 return -EOPNOTSUPP;
2674
2675 inode_lock(inode);
2676
2677 if (mode & FALLOC_FL_PUNCH_HOLE) {
2678 struct address_space *mapping = file->f_mapping;
2679 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2680 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2681 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2682
2683 /* protected by i_mutex */
2684 if (info->seals & F_SEAL_WRITE) {
2685 error = -EPERM;
2686 goto out;
2687 }
2688
2689 shmem_falloc.waitq = &shmem_falloc_waitq;
2690 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2691 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2692 spin_lock(&inode->i_lock);
2693 inode->i_private = &shmem_falloc;
2694 spin_unlock(&inode->i_lock);
2695
2696 if ((u64)unmap_end > (u64)unmap_start)
2697 unmap_mapping_range(mapping, unmap_start,
2698 1 + unmap_end - unmap_start, 0);
2699 shmem_truncate_range(inode, offset, offset + len - 1);
2700 /* No need to unmap again: hole-punching leaves COWed pages */
2701
2702 spin_lock(&inode->i_lock);
2703 inode->i_private = NULL;
2704 wake_up_all(&shmem_falloc_waitq);
2705 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2706 spin_unlock(&inode->i_lock);
2707 error = 0;
2708 goto out;
2709 }
2710
2711 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2712 error = inode_newsize_ok(inode, offset + len);
2713 if (error)
2714 goto out;
2715
2716 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2717 error = -EPERM;
2718 goto out;
2719 }
2720
2721 start = offset >> PAGE_SHIFT;
2722 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2723 /* Try to avoid a swapstorm if len is impossible to satisfy */
2724 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2725 error = -ENOSPC;
2726 goto out;
2727 }
2728
2729 shmem_falloc.waitq = NULL;
2730 shmem_falloc.start = start;
2731 shmem_falloc.next = start;
2732 shmem_falloc.nr_falloced = 0;
2733 shmem_falloc.nr_unswapped = 0;
2734 spin_lock(&inode->i_lock);
2735 inode->i_private = &shmem_falloc;
2736 spin_unlock(&inode->i_lock);
2737
2738 for (index = start; index < end; index++) {
2739 struct page *page;
2740
2741 /*
2742 * Good, the fallocate(2) manpage permits EINTR: we may have
2743 * been interrupted because we are using up too much memory.
2744 */
2745 if (signal_pending(current))
2746 error = -EINTR;
2747 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2748 error = -ENOMEM;
2749 else
2750 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2751 if (error) {
2752 /* Remove the !PageUptodate pages we added */
2753 if (index > start) {
2754 shmem_undo_range(inode,
2755 (loff_t)start << PAGE_SHIFT,
2756 ((loff_t)index << PAGE_SHIFT) - 1, true);
2757 }
2758 goto undone;
2759 }
2760
2761 /*
2762 * Inform shmem_writepage() how far we have reached.
2763 * No need for lock or barrier: we have the page lock.
2764 */
2765 shmem_falloc.next++;
2766 if (!PageUptodate(page))
2767 shmem_falloc.nr_falloced++;
2768
2769 /*
2770 * If !PageUptodate, leave it that way so that freeable pages
2771 * can be recognized if we need to rollback on error later.
2772 * But set_page_dirty so that memory pressure will swap rather
2773 * than free the pages we are allocating (and SGP_CACHE pages
2774 * might still be clean: we now need to mark those dirty too).
2775 */
2776 set_page_dirty(page);
2777 unlock_page(page);
2778 put_page(page);
2779 cond_resched();
2780 }
2781
2782 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2783 i_size_write(inode, offset + len);
2784 inode->i_ctime = current_time(inode);
2785 undone:
2786 spin_lock(&inode->i_lock);
2787 inode->i_private = NULL;
2788 spin_unlock(&inode->i_lock);
2789 out:
2790 inode_unlock(inode);
2791 return error;
2792 }
2793
2794 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2795 {
2796 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2797
2798 buf->f_type = TMPFS_MAGIC;
2799 buf->f_bsize = PAGE_SIZE;
2800 buf->f_namelen = NAME_MAX;
2801 if (sbinfo->max_blocks) {
2802 buf->f_blocks = sbinfo->max_blocks;
2803 buf->f_bavail =
2804 buf->f_bfree = sbinfo->max_blocks -
2805 percpu_counter_sum(&sbinfo->used_blocks);
2806 }
2807 if (sbinfo->max_inodes) {
2808 buf->f_files = sbinfo->max_inodes;
2809 buf->f_ffree = sbinfo->free_inodes;
2810 }
2811 /* else leave those fields 0 like simple_statfs */
2812 return 0;
2813 }
2814
2815 /*
2816 * File creation. Allocate an inode, and we're done..
2817 */
2818 static int
2819 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2820 {
2821 struct inode *inode;
2822 int error = -ENOSPC;
2823
2824 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2825 if (inode) {
2826 error = simple_acl_create(dir, inode);
2827 if (error)
2828 goto out_iput;
2829 error = security_inode_init_security(inode, dir,
2830 &dentry->d_name,
2831 shmem_initxattrs, NULL);
2832 if (error && error != -EOPNOTSUPP)
2833 goto out_iput;
2834
2835 error = 0;
2836 dir->i_size += BOGO_DIRENT_SIZE;
2837 dir->i_ctime = dir->i_mtime = current_time(dir);
2838 d_instantiate(dentry, inode);
2839 dget(dentry); /* Extra count - pin the dentry in core */
2840 }
2841 return error;
2842 out_iput:
2843 iput(inode);
2844 return error;
2845 }
2846
2847 static int
2848 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2849 {
2850 struct inode *inode;
2851 int error = -ENOSPC;
2852
2853 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2854 if (inode) {
2855 error = security_inode_init_security(inode, dir,
2856 NULL,
2857 shmem_initxattrs, NULL);
2858 if (error && error != -EOPNOTSUPP)
2859 goto out_iput;
2860 error = simple_acl_create(dir, inode);
2861 if (error)
2862 goto out_iput;
2863 d_tmpfile(dentry, inode);
2864 }
2865 return error;
2866 out_iput:
2867 iput(inode);
2868 return error;
2869 }
2870
2871 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2872 {
2873 int error;
2874
2875 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2876 return error;
2877 inc_nlink(dir);
2878 return 0;
2879 }
2880
2881 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2882 bool excl)
2883 {
2884 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2885 }
2886
2887 /*
2888 * Link a file..
2889 */
2890 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2891 {
2892 struct inode *inode = d_inode(old_dentry);
2893 int ret;
2894
2895 /*
2896 * No ordinary (disk based) filesystem counts links as inodes;
2897 * but each new link needs a new dentry, pinning lowmem, and
2898 * tmpfs dentries cannot be pruned until they are unlinked.
2899 */
2900 ret = shmem_reserve_inode(inode->i_sb);
2901 if (ret)
2902 goto out;
2903
2904 dir->i_size += BOGO_DIRENT_SIZE;
2905 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2906 inc_nlink(inode);
2907 ihold(inode); /* New dentry reference */
2908 dget(dentry); /* Extra pinning count for the created dentry */
2909 d_instantiate(dentry, inode);
2910 out:
2911 return ret;
2912 }
2913
2914 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2915 {
2916 struct inode *inode = d_inode(dentry);
2917
2918 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2919 shmem_free_inode(inode->i_sb);
2920
2921 dir->i_size -= BOGO_DIRENT_SIZE;
2922 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2923 drop_nlink(inode);
2924 dput(dentry); /* Undo the count from "create" - this does all the work */
2925 return 0;
2926 }
2927
2928 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2929 {
2930 if (!simple_empty(dentry))
2931 return -ENOTEMPTY;
2932
2933 drop_nlink(d_inode(dentry));
2934 drop_nlink(dir);
2935 return shmem_unlink(dir, dentry);
2936 }
2937
2938 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2939 {
2940 bool old_is_dir = d_is_dir(old_dentry);
2941 bool new_is_dir = d_is_dir(new_dentry);
2942
2943 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2944 if (old_is_dir) {
2945 drop_nlink(old_dir);
2946 inc_nlink(new_dir);
2947 } else {
2948 drop_nlink(new_dir);
2949 inc_nlink(old_dir);
2950 }
2951 }
2952 old_dir->i_ctime = old_dir->i_mtime =
2953 new_dir->i_ctime = new_dir->i_mtime =
2954 d_inode(old_dentry)->i_ctime =
2955 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2956
2957 return 0;
2958 }
2959
2960 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2961 {
2962 struct dentry *whiteout;
2963 int error;
2964
2965 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2966 if (!whiteout)
2967 return -ENOMEM;
2968
2969 error = shmem_mknod(old_dir, whiteout,
2970 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2971 dput(whiteout);
2972 if (error)
2973 return error;
2974
2975 /*
2976 * Cheat and hash the whiteout while the old dentry is still in
2977 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2978 *
2979 * d_lookup() will consistently find one of them at this point,
2980 * not sure which one, but that isn't even important.
2981 */
2982 d_rehash(whiteout);
2983 return 0;
2984 }
2985
2986 /*
2987 * The VFS layer already does all the dentry stuff for rename,
2988 * we just have to decrement the usage count for the target if
2989 * it exists so that the VFS layer correctly free's it when it
2990 * gets overwritten.
2991 */
2992 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2993 {
2994 struct inode *inode = d_inode(old_dentry);
2995 int they_are_dirs = S_ISDIR(inode->i_mode);
2996
2997 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2998 return -EINVAL;
2999
3000 if (flags & RENAME_EXCHANGE)
3001 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3002
3003 if (!simple_empty(new_dentry))
3004 return -ENOTEMPTY;
3005
3006 if (flags & RENAME_WHITEOUT) {
3007 int error;
3008
3009 error = shmem_whiteout(old_dir, old_dentry);
3010 if (error)
3011 return error;
3012 }
3013
3014 if (d_really_is_positive(new_dentry)) {
3015 (void) shmem_unlink(new_dir, new_dentry);
3016 if (they_are_dirs) {
3017 drop_nlink(d_inode(new_dentry));
3018 drop_nlink(old_dir);
3019 }
3020 } else if (they_are_dirs) {
3021 drop_nlink(old_dir);
3022 inc_nlink(new_dir);
3023 }
3024
3025 old_dir->i_size -= BOGO_DIRENT_SIZE;
3026 new_dir->i_size += BOGO_DIRENT_SIZE;
3027 old_dir->i_ctime = old_dir->i_mtime =
3028 new_dir->i_ctime = new_dir->i_mtime =
3029 inode->i_ctime = current_time(old_dir);
3030 return 0;
3031 }
3032
3033 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3034 {
3035 int error;
3036 int len;
3037 struct inode *inode;
3038 struct page *page;
3039 struct shmem_inode_info *info;
3040
3041 len = strlen(symname) + 1;
3042 if (len > PAGE_SIZE)
3043 return -ENAMETOOLONG;
3044
3045 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3046 if (!inode)
3047 return -ENOSPC;
3048
3049 error = security_inode_init_security(inode, dir, &dentry->d_name,
3050 shmem_initxattrs, NULL);
3051 if (error) {
3052 if (error != -EOPNOTSUPP) {
3053 iput(inode);
3054 return error;
3055 }
3056 error = 0;
3057 }
3058
3059 info = SHMEM_I(inode);
3060 inode->i_size = len-1;
3061 if (len <= SHORT_SYMLINK_LEN) {
3062 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3063 if (!inode->i_link) {
3064 iput(inode);
3065 return -ENOMEM;
3066 }
3067 inode->i_op = &shmem_short_symlink_operations;
3068 } else {
3069 inode_nohighmem(inode);
3070 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3071 if (error) {
3072 iput(inode);
3073 return error;
3074 }
3075 inode->i_mapping->a_ops = &shmem_aops;
3076 inode->i_op = &shmem_symlink_inode_operations;
3077 memcpy(page_address(page), symname, len);
3078 SetPageUptodate(page);
3079 set_page_dirty(page);
3080 unlock_page(page);
3081 put_page(page);
3082 }
3083 dir->i_size += BOGO_DIRENT_SIZE;
3084 dir->i_ctime = dir->i_mtime = current_time(dir);
3085 d_instantiate(dentry, inode);
3086 dget(dentry);
3087 return 0;
3088 }
3089
3090 static void shmem_put_link(void *arg)
3091 {
3092 mark_page_accessed(arg);
3093 put_page(arg);
3094 }
3095
3096 static const char *shmem_get_link(struct dentry *dentry,
3097 struct inode *inode,
3098 struct delayed_call *done)
3099 {
3100 struct page *page = NULL;
3101 int error;
3102 if (!dentry) {
3103 page = find_get_page(inode->i_mapping, 0);
3104 if (!page)
3105 return ERR_PTR(-ECHILD);
3106 if (!PageUptodate(page)) {
3107 put_page(page);
3108 return ERR_PTR(-ECHILD);
3109 }
3110 } else {
3111 error = shmem_getpage(inode, 0, &page, SGP_READ);
3112 if (error)
3113 return ERR_PTR(error);
3114 unlock_page(page);
3115 }
3116 set_delayed_call(done, shmem_put_link, page);
3117 return page_address(page);
3118 }
3119
3120 #ifdef CONFIG_TMPFS_XATTR
3121 /*
3122 * Superblocks without xattr inode operations may get some security.* xattr
3123 * support from the LSM "for free". As soon as we have any other xattrs
3124 * like ACLs, we also need to implement the security.* handlers at
3125 * filesystem level, though.
3126 */
3127
3128 /*
3129 * Callback for security_inode_init_security() for acquiring xattrs.
3130 */
3131 static int shmem_initxattrs(struct inode *inode,
3132 const struct xattr *xattr_array,
3133 void *fs_info)
3134 {
3135 struct shmem_inode_info *info = SHMEM_I(inode);
3136 const struct xattr *xattr;
3137 struct simple_xattr *new_xattr;
3138 size_t len;
3139
3140 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3141 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3142 if (!new_xattr)
3143 return -ENOMEM;
3144
3145 len = strlen(xattr->name) + 1;
3146 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3147 GFP_KERNEL);
3148 if (!new_xattr->name) {
3149 kfree(new_xattr);
3150 return -ENOMEM;
3151 }
3152
3153 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3154 XATTR_SECURITY_PREFIX_LEN);
3155 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3156 xattr->name, len);
3157
3158 simple_xattr_list_add(&info->xattrs, new_xattr);
3159 }
3160
3161 return 0;
3162 }
3163
3164 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3165 struct dentry *unused, struct inode *inode,
3166 const char *name, void *buffer, size_t size)
3167 {
3168 struct shmem_inode_info *info = SHMEM_I(inode);
3169
3170 name = xattr_full_name(handler, name);
3171 return simple_xattr_get(&info->xattrs, name, buffer, size);
3172 }
3173
3174 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3175 struct dentry *unused, struct inode *inode,
3176 const char *name, const void *value,
3177 size_t size, int flags)
3178 {
3179 struct shmem_inode_info *info = SHMEM_I(inode);
3180
3181 name = xattr_full_name(handler, name);
3182 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3183 }
3184
3185 static const struct xattr_handler shmem_security_xattr_handler = {
3186 .prefix = XATTR_SECURITY_PREFIX,
3187 .get = shmem_xattr_handler_get,
3188 .set = shmem_xattr_handler_set,
3189 };
3190
3191 static const struct xattr_handler shmem_trusted_xattr_handler = {
3192 .prefix = XATTR_TRUSTED_PREFIX,
3193 .get = shmem_xattr_handler_get,
3194 .set = shmem_xattr_handler_set,
3195 };
3196
3197 static const struct xattr_handler *shmem_xattr_handlers[] = {
3198 #ifdef CONFIG_TMPFS_POSIX_ACL
3199 &posix_acl_access_xattr_handler,
3200 &posix_acl_default_xattr_handler,
3201 #endif
3202 &shmem_security_xattr_handler,
3203 &shmem_trusted_xattr_handler,
3204 NULL
3205 };
3206
3207 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3208 {
3209 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3210 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3211 }
3212 #endif /* CONFIG_TMPFS_XATTR */
3213
3214 static const struct inode_operations shmem_short_symlink_operations = {
3215 .get_link = simple_get_link,
3216 #ifdef CONFIG_TMPFS_XATTR
3217 .listxattr = shmem_listxattr,
3218 #endif
3219 };
3220
3221 static const struct inode_operations shmem_symlink_inode_operations = {
3222 .get_link = shmem_get_link,
3223 #ifdef CONFIG_TMPFS_XATTR
3224 .listxattr = shmem_listxattr,
3225 #endif
3226 };
3227
3228 static struct dentry *shmem_get_parent(struct dentry *child)
3229 {
3230 return ERR_PTR(-ESTALE);
3231 }
3232
3233 static int shmem_match(struct inode *ino, void *vfh)
3234 {
3235 __u32 *fh = vfh;
3236 __u64 inum = fh[2];
3237 inum = (inum << 32) | fh[1];
3238 return ino->i_ino == inum && fh[0] == ino->i_generation;
3239 }
3240
3241 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3242 struct fid *fid, int fh_len, int fh_type)
3243 {
3244 struct inode *inode;
3245 struct dentry *dentry = NULL;
3246 u64 inum;
3247
3248 if (fh_len < 3)
3249 return NULL;
3250
3251 inum = fid->raw[2];
3252 inum = (inum << 32) | fid->raw[1];
3253
3254 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3255 shmem_match, fid->raw);
3256 if (inode) {
3257 dentry = d_find_alias(inode);
3258 iput(inode);
3259 }
3260
3261 return dentry;
3262 }
3263
3264 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3265 struct inode *parent)
3266 {
3267 if (*len < 3) {
3268 *len = 3;
3269 return FILEID_INVALID;
3270 }
3271
3272 if (inode_unhashed(inode)) {
3273 /* Unfortunately insert_inode_hash is not idempotent,
3274 * so as we hash inodes here rather than at creation
3275 * time, we need a lock to ensure we only try
3276 * to do it once
3277 */
3278 static DEFINE_SPINLOCK(lock);
3279 spin_lock(&lock);
3280 if (inode_unhashed(inode))
3281 __insert_inode_hash(inode,
3282 inode->i_ino + inode->i_generation);
3283 spin_unlock(&lock);
3284 }
3285
3286 fh[0] = inode->i_generation;
3287 fh[1] = inode->i_ino;
3288 fh[2] = ((__u64)inode->i_ino) >> 32;
3289
3290 *len = 3;
3291 return 1;
3292 }
3293
3294 static const struct export_operations shmem_export_ops = {
3295 .get_parent = shmem_get_parent,
3296 .encode_fh = shmem_encode_fh,
3297 .fh_to_dentry = shmem_fh_to_dentry,
3298 };
3299
3300 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3301 bool remount)
3302 {
3303 char *this_char, *value, *rest;
3304 struct mempolicy *mpol = NULL;
3305 uid_t uid;
3306 gid_t gid;
3307
3308 while (options != NULL) {
3309 this_char = options;
3310 for (;;) {
3311 /*
3312 * NUL-terminate this option: unfortunately,
3313 * mount options form a comma-separated list,
3314 * but mpol's nodelist may also contain commas.
3315 */
3316 options = strchr(options, ',');
3317 if (options == NULL)
3318 break;
3319 options++;
3320 if (!isdigit(*options)) {
3321 options[-1] = '\0';
3322 break;
3323 }
3324 }
3325 if (!*this_char)
3326 continue;
3327 if ((value = strchr(this_char,'=')) != NULL) {
3328 *value++ = 0;
3329 } else {
3330 pr_err("tmpfs: No value for mount option '%s'\n",
3331 this_char);
3332 goto error;
3333 }
3334
3335 if (!strcmp(this_char,"size")) {
3336 unsigned long long size;
3337 size = memparse(value,&rest);
3338 if (*rest == '%') {
3339 size <<= PAGE_SHIFT;
3340 size *= totalram_pages;
3341 do_div(size, 100);
3342 rest++;
3343 }
3344 if (*rest)
3345 goto bad_val;
3346 sbinfo->max_blocks =
3347 DIV_ROUND_UP(size, PAGE_SIZE);
3348 } else if (!strcmp(this_char,"nr_blocks")) {
3349 sbinfo->max_blocks = memparse(value, &rest);
3350 if (*rest)
3351 goto bad_val;
3352 } else if (!strcmp(this_char,"nr_inodes")) {
3353 sbinfo->max_inodes = memparse(value, &rest);
3354 if (*rest)
3355 goto bad_val;
3356 } else if (!strcmp(this_char,"mode")) {
3357 if (remount)
3358 continue;
3359 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3360 if (*rest)
3361 goto bad_val;
3362 } else if (!strcmp(this_char,"uid")) {
3363 if (remount)
3364 continue;
3365 uid = simple_strtoul(value, &rest, 0);
3366 if (*rest)
3367 goto bad_val;
3368 sbinfo->uid = make_kuid(current_user_ns(), uid);
3369 if (!uid_valid(sbinfo->uid))
3370 goto bad_val;
3371 } else if (!strcmp(this_char,"gid")) {
3372 if (remount)
3373 continue;
3374 gid = simple_strtoul(value, &rest, 0);
3375 if (*rest)
3376 goto bad_val;
3377 sbinfo->gid = make_kgid(current_user_ns(), gid);
3378 if (!gid_valid(sbinfo->gid))
3379 goto bad_val;
3380 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3381 } else if (!strcmp(this_char, "huge")) {
3382 int huge;
3383 huge = shmem_parse_huge(value);
3384 if (huge < 0)
3385 goto bad_val;
3386 if (!has_transparent_hugepage() &&
3387 huge != SHMEM_HUGE_NEVER)
3388 goto bad_val;
3389 sbinfo->huge = huge;
3390 #endif
3391 #ifdef CONFIG_NUMA
3392 } else if (!strcmp(this_char,"mpol")) {
3393 mpol_put(mpol);
3394 mpol = NULL;
3395 if (mpol_parse_str(value, &mpol))
3396 goto bad_val;
3397 #endif
3398 } else {
3399 pr_err("tmpfs: Bad mount option %s\n", this_char);
3400 goto error;
3401 }
3402 }
3403 sbinfo->mpol = mpol;
3404 return 0;
3405
3406 bad_val:
3407 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3408 value, this_char);
3409 error:
3410 mpol_put(mpol);
3411 return 1;
3412
3413 }
3414
3415 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3416 {
3417 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3418 struct shmem_sb_info config = *sbinfo;
3419 unsigned long inodes;
3420 int error = -EINVAL;
3421
3422 config.mpol = NULL;
3423 if (shmem_parse_options(data, &config, true))
3424 return error;
3425
3426 spin_lock(&sbinfo->stat_lock);
3427 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3428 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3429 goto out;
3430 if (config.max_inodes < inodes)
3431 goto out;
3432 /*
3433 * Those tests disallow limited->unlimited while any are in use;
3434 * but we must separately disallow unlimited->limited, because
3435 * in that case we have no record of how much is already in use.
3436 */
3437 if (config.max_blocks && !sbinfo->max_blocks)
3438 goto out;
3439 if (config.max_inodes && !sbinfo->max_inodes)
3440 goto out;
3441
3442 error = 0;
3443 sbinfo->huge = config.huge;
3444 sbinfo->max_blocks = config.max_blocks;
3445 sbinfo->max_inodes = config.max_inodes;
3446 sbinfo->free_inodes = config.max_inodes - inodes;
3447
3448 /*
3449 * Preserve previous mempolicy unless mpol remount option was specified.
3450 */
3451 if (config.mpol) {
3452 mpol_put(sbinfo->mpol);
3453 sbinfo->mpol = config.mpol; /* transfers initial ref */
3454 }
3455 out:
3456 spin_unlock(&sbinfo->stat_lock);
3457 return error;
3458 }
3459
3460 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3461 {
3462 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3463
3464 if (sbinfo->max_blocks != shmem_default_max_blocks())
3465 seq_printf(seq, ",size=%luk",
3466 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3467 if (sbinfo->max_inodes != shmem_default_max_inodes())
3468 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3469 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3470 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3471 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3472 seq_printf(seq, ",uid=%u",
3473 from_kuid_munged(&init_user_ns, sbinfo->uid));
3474 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3475 seq_printf(seq, ",gid=%u",
3476 from_kgid_munged(&init_user_ns, sbinfo->gid));
3477 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3478 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3479 if (sbinfo->huge)
3480 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3481 #endif
3482 shmem_show_mpol(seq, sbinfo->mpol);
3483 return 0;
3484 }
3485
3486 #define MFD_NAME_PREFIX "memfd:"
3487 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3488 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3489
3490 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3491
3492 SYSCALL_DEFINE2(memfd_create,
3493 const char __user *, uname,
3494 unsigned int, flags)
3495 {
3496 struct shmem_inode_info *info;
3497 struct file *file;
3498 int fd, error;
3499 char *name;
3500 long len;
3501
3502 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3503 return -EINVAL;
3504
3505 /* length includes terminating zero */
3506 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3507 if (len <= 0)
3508 return -EFAULT;
3509 if (len > MFD_NAME_MAX_LEN + 1)
3510 return -EINVAL;
3511
3512 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3513 if (!name)
3514 return -ENOMEM;
3515
3516 strcpy(name, MFD_NAME_PREFIX);
3517 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3518 error = -EFAULT;
3519 goto err_name;
3520 }
3521
3522 /* terminating-zero may have changed after strnlen_user() returned */
3523 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3524 error = -EFAULT;
3525 goto err_name;
3526 }
3527
3528 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3529 if (fd < 0) {
3530 error = fd;
3531 goto err_name;
3532 }
3533
3534 file = shmem_file_setup(name, 0, VM_NORESERVE);
3535 if (IS_ERR(file)) {
3536 error = PTR_ERR(file);
3537 goto err_fd;
3538 }
3539 info = SHMEM_I(file_inode(file));
3540 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3541 file->f_flags |= O_RDWR | O_LARGEFILE;
3542 if (flags & MFD_ALLOW_SEALING)
3543 info->seals &= ~F_SEAL_SEAL;
3544
3545 fd_install(fd, file);
3546 kfree(name);
3547 return fd;
3548
3549 err_fd:
3550 put_unused_fd(fd);
3551 err_name:
3552 kfree(name);
3553 return error;
3554 }
3555
3556 #endif /* CONFIG_TMPFS */
3557
3558 static void shmem_put_super(struct super_block *sb)
3559 {
3560 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3561
3562 percpu_counter_destroy(&sbinfo->used_blocks);
3563 mpol_put(sbinfo->mpol);
3564 kfree(sbinfo);
3565 sb->s_fs_info = NULL;
3566 }
3567
3568 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3569 {
3570 struct inode *inode;
3571 struct shmem_sb_info *sbinfo;
3572 int err = -ENOMEM;
3573
3574 /* Round up to L1_CACHE_BYTES to resist false sharing */
3575 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3576 L1_CACHE_BYTES), GFP_KERNEL);
3577 if (!sbinfo)
3578 return -ENOMEM;
3579
3580 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3581 sbinfo->uid = current_fsuid();
3582 sbinfo->gid = current_fsgid();
3583 sb->s_fs_info = sbinfo;
3584
3585 #ifdef CONFIG_TMPFS
3586 /*
3587 * Per default we only allow half of the physical ram per
3588 * tmpfs instance, limiting inodes to one per page of lowmem;
3589 * but the internal instance is left unlimited.
3590 */
3591 if (!(sb->s_flags & MS_KERNMOUNT)) {
3592 sbinfo->max_blocks = shmem_default_max_blocks();
3593 sbinfo->max_inodes = shmem_default_max_inodes();
3594 if (shmem_parse_options(data, sbinfo, false)) {
3595 err = -EINVAL;
3596 goto failed;
3597 }
3598 } else {
3599 sb->s_flags |= MS_NOUSER;
3600 }
3601 sb->s_export_op = &shmem_export_ops;
3602 sb->s_flags |= MS_NOSEC;
3603 #else
3604 sb->s_flags |= MS_NOUSER;
3605 #endif
3606
3607 spin_lock_init(&sbinfo->stat_lock);
3608 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3609 goto failed;
3610 sbinfo->free_inodes = sbinfo->max_inodes;
3611 spin_lock_init(&sbinfo->shrinklist_lock);
3612 INIT_LIST_HEAD(&sbinfo->shrinklist);
3613
3614 sb->s_maxbytes = MAX_LFS_FILESIZE;
3615 sb->s_blocksize = PAGE_SIZE;
3616 sb->s_blocksize_bits = PAGE_SHIFT;
3617 sb->s_magic = TMPFS_MAGIC;
3618 sb->s_op = &shmem_ops;
3619 sb->s_time_gran = 1;
3620 #ifdef CONFIG_TMPFS_XATTR
3621 sb->s_xattr = shmem_xattr_handlers;
3622 #endif
3623 #ifdef CONFIG_TMPFS_POSIX_ACL
3624 sb->s_flags |= MS_POSIXACL;
3625 #endif
3626
3627 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3628 if (!inode)
3629 goto failed;
3630 inode->i_uid = sbinfo->uid;
3631 inode->i_gid = sbinfo->gid;
3632 sb->s_root = d_make_root(inode);
3633 if (!sb->s_root)
3634 goto failed;
3635 return 0;
3636
3637 failed:
3638 shmem_put_super(sb);
3639 return err;
3640 }
3641
3642 static struct kmem_cache *shmem_inode_cachep;
3643
3644 static struct inode *shmem_alloc_inode(struct super_block *sb)
3645 {
3646 struct shmem_inode_info *info;
3647 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3648 if (!info)
3649 return NULL;
3650 return &info->vfs_inode;
3651 }
3652
3653 static void shmem_destroy_callback(struct rcu_head *head)
3654 {
3655 struct inode *inode = container_of(head, struct inode, i_rcu);
3656 if (S_ISLNK(inode->i_mode))
3657 kfree(inode->i_link);
3658 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3659 }
3660
3661 static void shmem_destroy_inode(struct inode *inode)
3662 {
3663 if (S_ISREG(inode->i_mode))
3664 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3665 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3666 }
3667
3668 static void shmem_init_inode(void *foo)
3669 {
3670 struct shmem_inode_info *info = foo;
3671 inode_init_once(&info->vfs_inode);
3672 }
3673
3674 static int shmem_init_inodecache(void)
3675 {
3676 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3677 sizeof(struct shmem_inode_info),
3678 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3679 return 0;
3680 }
3681
3682 static void shmem_destroy_inodecache(void)
3683 {
3684 kmem_cache_destroy(shmem_inode_cachep);
3685 }
3686
3687 static const struct address_space_operations shmem_aops = {
3688 .writepage = shmem_writepage,
3689 .set_page_dirty = __set_page_dirty_no_writeback,
3690 #ifdef CONFIG_TMPFS
3691 .write_begin = shmem_write_begin,
3692 .write_end = shmem_write_end,
3693 #endif
3694 #ifdef CONFIG_MIGRATION
3695 .migratepage = migrate_page,
3696 #endif
3697 .error_remove_page = generic_error_remove_page,
3698 };
3699
3700 static const struct file_operations shmem_file_operations = {
3701 .mmap = shmem_mmap,
3702 .get_unmapped_area = shmem_get_unmapped_area,
3703 #ifdef CONFIG_TMPFS
3704 .llseek = shmem_file_llseek,
3705 .read_iter = shmem_file_read_iter,
3706 .write_iter = generic_file_write_iter,
3707 .fsync = noop_fsync,
3708 .splice_read = generic_file_splice_read,
3709 .splice_write = iter_file_splice_write,
3710 .fallocate = shmem_fallocate,
3711 #endif
3712 };
3713
3714 static const struct inode_operations shmem_inode_operations = {
3715 .getattr = shmem_getattr,
3716 .setattr = shmem_setattr,
3717 #ifdef CONFIG_TMPFS_XATTR
3718 .listxattr = shmem_listxattr,
3719 .set_acl = simple_set_acl,
3720 #endif
3721 };
3722
3723 static const struct inode_operations shmem_dir_inode_operations = {
3724 #ifdef CONFIG_TMPFS
3725 .create = shmem_create,
3726 .lookup = simple_lookup,
3727 .link = shmem_link,
3728 .unlink = shmem_unlink,
3729 .symlink = shmem_symlink,
3730 .mkdir = shmem_mkdir,
3731 .rmdir = shmem_rmdir,
3732 .mknod = shmem_mknod,
3733 .rename = shmem_rename2,
3734 .tmpfile = shmem_tmpfile,
3735 #endif
3736 #ifdef CONFIG_TMPFS_XATTR
3737 .listxattr = shmem_listxattr,
3738 #endif
3739 #ifdef CONFIG_TMPFS_POSIX_ACL
3740 .setattr = shmem_setattr,
3741 .set_acl = simple_set_acl,
3742 #endif
3743 };
3744
3745 static const struct inode_operations shmem_special_inode_operations = {
3746 #ifdef CONFIG_TMPFS_XATTR
3747 .listxattr = shmem_listxattr,
3748 #endif
3749 #ifdef CONFIG_TMPFS_POSIX_ACL
3750 .setattr = shmem_setattr,
3751 .set_acl = simple_set_acl,
3752 #endif
3753 };
3754
3755 static const struct super_operations shmem_ops = {
3756 .alloc_inode = shmem_alloc_inode,
3757 .destroy_inode = shmem_destroy_inode,
3758 #ifdef CONFIG_TMPFS
3759 .statfs = shmem_statfs,
3760 .remount_fs = shmem_remount_fs,
3761 .show_options = shmem_show_options,
3762 #endif
3763 .evict_inode = shmem_evict_inode,
3764 .drop_inode = generic_delete_inode,
3765 .put_super = shmem_put_super,
3766 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3767 .nr_cached_objects = shmem_unused_huge_count,
3768 .free_cached_objects = shmem_unused_huge_scan,
3769 #endif
3770 };
3771
3772 static const struct vm_operations_struct shmem_vm_ops = {
3773 .fault = shmem_fault,
3774 .map_pages = filemap_map_pages,
3775 #ifdef CONFIG_NUMA
3776 .set_policy = shmem_set_policy,
3777 .get_policy = shmem_get_policy,
3778 #endif
3779 };
3780
3781 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3782 int flags, const char *dev_name, void *data)
3783 {
3784 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3785 }
3786
3787 static struct file_system_type shmem_fs_type = {
3788 .owner = THIS_MODULE,
3789 .name = "tmpfs",
3790 .mount = shmem_mount,
3791 .kill_sb = kill_litter_super,
3792 .fs_flags = FS_USERNS_MOUNT,
3793 };
3794
3795 int __init shmem_init(void)
3796 {
3797 int error;
3798
3799 /* If rootfs called this, don't re-init */
3800 if (shmem_inode_cachep)
3801 return 0;
3802
3803 error = shmem_init_inodecache();
3804 if (error)
3805 goto out3;
3806
3807 error = register_filesystem(&shmem_fs_type);
3808 if (error) {
3809 pr_err("Could not register tmpfs\n");
3810 goto out2;
3811 }
3812
3813 shm_mnt = kern_mount(&shmem_fs_type);
3814 if (IS_ERR(shm_mnt)) {
3815 error = PTR_ERR(shm_mnt);
3816 pr_err("Could not kern_mount tmpfs\n");
3817 goto out1;
3818 }
3819
3820 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3821 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3822 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3823 else
3824 shmem_huge = 0; /* just in case it was patched */
3825 #endif
3826 return 0;
3827
3828 out1:
3829 unregister_filesystem(&shmem_fs_type);
3830 out2:
3831 shmem_destroy_inodecache();
3832 out3:
3833 shm_mnt = ERR_PTR(error);
3834 return error;
3835 }
3836
3837 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3838 static ssize_t shmem_enabled_show(struct kobject *kobj,
3839 struct kobj_attribute *attr, char *buf)
3840 {
3841 int values[] = {
3842 SHMEM_HUGE_ALWAYS,
3843 SHMEM_HUGE_WITHIN_SIZE,
3844 SHMEM_HUGE_ADVISE,
3845 SHMEM_HUGE_NEVER,
3846 SHMEM_HUGE_DENY,
3847 SHMEM_HUGE_FORCE,
3848 };
3849 int i, count;
3850
3851 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3852 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3853
3854 count += sprintf(buf + count, fmt,
3855 shmem_format_huge(values[i]));
3856 }
3857 buf[count - 1] = '\n';
3858 return count;
3859 }
3860
3861 static ssize_t shmem_enabled_store(struct kobject *kobj,
3862 struct kobj_attribute *attr, const char *buf, size_t count)
3863 {
3864 char tmp[16];
3865 int huge;
3866
3867 if (count + 1 > sizeof(tmp))
3868 return -EINVAL;
3869 memcpy(tmp, buf, count);
3870 tmp[count] = '\0';
3871 if (count && tmp[count - 1] == '\n')
3872 tmp[count - 1] = '\0';
3873
3874 huge = shmem_parse_huge(tmp);
3875 if (huge == -EINVAL)
3876 return -EINVAL;
3877 if (!has_transparent_hugepage() &&
3878 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3879 return -EINVAL;
3880
3881 shmem_huge = huge;
3882 if (shmem_huge < SHMEM_HUGE_DENY)
3883 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3884 return count;
3885 }
3886
3887 struct kobj_attribute shmem_enabled_attr =
3888 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3889 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3890
3891 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3892 bool shmem_huge_enabled(struct vm_area_struct *vma)
3893 {
3894 struct inode *inode = file_inode(vma->vm_file);
3895 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3896 loff_t i_size;
3897 pgoff_t off;
3898
3899 if (shmem_huge == SHMEM_HUGE_FORCE)
3900 return true;
3901 if (shmem_huge == SHMEM_HUGE_DENY)
3902 return false;
3903 switch (sbinfo->huge) {
3904 case SHMEM_HUGE_NEVER:
3905 return false;
3906 case SHMEM_HUGE_ALWAYS:
3907 return true;
3908 case SHMEM_HUGE_WITHIN_SIZE:
3909 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3910 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3911 if (i_size >= HPAGE_PMD_SIZE &&
3912 i_size >> PAGE_SHIFT >= off)
3913 return true;
3914 case SHMEM_HUGE_ADVISE:
3915 /* TODO: implement fadvise() hints */
3916 return (vma->vm_flags & VM_HUGEPAGE);
3917 default:
3918 VM_BUG_ON(1);
3919 return false;
3920 }
3921 }
3922 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3923
3924 #else /* !CONFIG_SHMEM */
3925
3926 /*
3927 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3928 *
3929 * This is intended for small system where the benefits of the full
3930 * shmem code (swap-backed and resource-limited) are outweighed by
3931 * their complexity. On systems without swap this code should be
3932 * effectively equivalent, but much lighter weight.
3933 */
3934
3935 static struct file_system_type shmem_fs_type = {
3936 .name = "tmpfs",
3937 .mount = ramfs_mount,
3938 .kill_sb = kill_litter_super,
3939 .fs_flags = FS_USERNS_MOUNT,
3940 };
3941
3942 int __init shmem_init(void)
3943 {
3944 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3945
3946 shm_mnt = kern_mount(&shmem_fs_type);
3947 BUG_ON(IS_ERR(shm_mnt));
3948
3949 return 0;
3950 }
3951
3952 int shmem_unuse(swp_entry_t swap, struct page *page)
3953 {
3954 return 0;
3955 }
3956
3957 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3958 {
3959 return 0;
3960 }
3961
3962 void shmem_unlock_mapping(struct address_space *mapping)
3963 {
3964 }
3965
3966 #ifdef CONFIG_MMU
3967 unsigned long shmem_get_unmapped_area(struct file *file,
3968 unsigned long addr, unsigned long len,
3969 unsigned long pgoff, unsigned long flags)
3970 {
3971 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3972 }
3973 #endif
3974
3975 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3976 {
3977 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3978 }
3979 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3980
3981 #define shmem_vm_ops generic_file_vm_ops
3982 #define shmem_file_operations ramfs_file_operations
3983 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3984 #define shmem_acct_size(flags, size) 0
3985 #define shmem_unacct_size(flags, size) do {} while (0)
3986
3987 #endif /* CONFIG_SHMEM */
3988
3989 /* common code */
3990
3991 static const struct dentry_operations anon_ops = {
3992 .d_dname = simple_dname
3993 };
3994
3995 static struct file *__shmem_file_setup(const char *name, loff_t size,
3996 unsigned long flags, unsigned int i_flags)
3997 {
3998 struct file *res;
3999 struct inode *inode;
4000 struct path path;
4001 struct super_block *sb;
4002 struct qstr this;
4003
4004 if (IS_ERR(shm_mnt))
4005 return ERR_CAST(shm_mnt);
4006
4007 if (size < 0 || size > MAX_LFS_FILESIZE)
4008 return ERR_PTR(-EINVAL);
4009
4010 if (shmem_acct_size(flags, size))
4011 return ERR_PTR(-ENOMEM);
4012
4013 res = ERR_PTR(-ENOMEM);
4014 this.name = name;
4015 this.len = strlen(name);
4016 this.hash = 0; /* will go */
4017 sb = shm_mnt->mnt_sb;
4018 path.mnt = mntget(shm_mnt);
4019 path.dentry = d_alloc_pseudo(sb, &this);
4020 if (!path.dentry)
4021 goto put_memory;
4022 d_set_d_op(path.dentry, &anon_ops);
4023
4024 res = ERR_PTR(-ENOSPC);
4025 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4026 if (!inode)
4027 goto put_memory;
4028
4029 inode->i_flags |= i_flags;
4030 d_instantiate(path.dentry, inode);
4031 inode->i_size = size;
4032 clear_nlink(inode); /* It is unlinked */
4033 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4034 if (IS_ERR(res))
4035 goto put_path;
4036
4037 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4038 &shmem_file_operations);
4039 if (IS_ERR(res))
4040 goto put_path;
4041
4042 return res;
4043
4044 put_memory:
4045 shmem_unacct_size(flags, size);
4046 put_path:
4047 path_put(&path);
4048 return res;
4049 }
4050
4051 /**
4052 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4053 * kernel internal. There will be NO LSM permission checks against the
4054 * underlying inode. So users of this interface must do LSM checks at a
4055 * higher layer. The users are the big_key and shm implementations. LSM
4056 * checks are provided at the key or shm level rather than the inode.
4057 * @name: name for dentry (to be seen in /proc/<pid>/maps
4058 * @size: size to be set for the file
4059 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4060 */
4061 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4062 {
4063 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4064 }
4065
4066 /**
4067 * shmem_file_setup - get an unlinked file living in tmpfs
4068 * @name: name for dentry (to be seen in /proc/<pid>/maps
4069 * @size: size to be set for the file
4070 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4071 */
4072 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4073 {
4074 return __shmem_file_setup(name, size, flags, 0);
4075 }
4076 EXPORT_SYMBOL_GPL(shmem_file_setup);
4077
4078 /**
4079 * shmem_zero_setup - setup a shared anonymous mapping
4080 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4081 */
4082 int shmem_zero_setup(struct vm_area_struct *vma)
4083 {
4084 struct file *file;
4085 loff_t size = vma->vm_end - vma->vm_start;
4086
4087 /*
4088 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4089 * between XFS directory reading and selinux: since this file is only
4090 * accessible to the user through its mapping, use S_PRIVATE flag to
4091 * bypass file security, in the same way as shmem_kernel_file_setup().
4092 */
4093 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4094 if (IS_ERR(file))
4095 return PTR_ERR(file);
4096
4097 if (vma->vm_file)
4098 fput(vma->vm_file);
4099 vma->vm_file = file;
4100 vma->vm_ops = &shmem_vm_ops;
4101
4102 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4103 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4104 (vma->vm_end & HPAGE_PMD_MASK)) {
4105 khugepaged_enter(vma, vma->vm_flags);
4106 }
4107
4108 return 0;
4109 }
4110
4111 /**
4112 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4113 * @mapping: the page's address_space
4114 * @index: the page index
4115 * @gfp: the page allocator flags to use if allocating
4116 *
4117 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4118 * with any new page allocations done using the specified allocation flags.
4119 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4120 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4121 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4122 *
4123 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4124 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4125 */
4126 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4127 pgoff_t index, gfp_t gfp)
4128 {
4129 #ifdef CONFIG_SHMEM
4130 struct inode *inode = mapping->host;
4131 struct page *page;
4132 int error;
4133
4134 BUG_ON(mapping->a_ops != &shmem_aops);
4135 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4136 gfp, NULL, NULL);
4137 if (error)
4138 page = ERR_PTR(error);
4139 else
4140 unlock_page(page);
4141 return page;
4142 #else
4143 /*
4144 * The tiny !SHMEM case uses ramfs without swap
4145 */
4146 return read_cache_page_gfp(mapping, index, gfp);
4147 #endif
4148 }
4149 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);