]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/slab.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172 * struct array_cache
173 *
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183 struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
188 void *entry[]; /*
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
192 */
193 };
194
195 struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198 };
199
200 /*
201 * Need this for bootstrapping a per node allocator.
202 */
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205 #define CACHE_CACHE 0
206 #define SIZE_NODE (MAX_NUMNODES)
207
208 static int drain_freelist(struct kmem_cache *cache,
209 struct kmem_cache_node *n, int tofree);
210 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 int node, struct list_head *list);
212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214 static void cache_reap(struct work_struct *unused);
215
216 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
217 void **list);
218 static inline void fixup_slab_list(struct kmem_cache *cachep,
219 struct kmem_cache_node *n, struct page *page,
220 void **list);
221 static int slab_early_init = 1;
222
223 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
224
225 static void kmem_cache_node_init(struct kmem_cache_node *parent)
226 {
227 INIT_LIST_HEAD(&parent->slabs_full);
228 INIT_LIST_HEAD(&parent->slabs_partial);
229 INIT_LIST_HEAD(&parent->slabs_free);
230 parent->total_slabs = 0;
231 parent->free_slabs = 0;
232 parent->shared = NULL;
233 parent->alien = NULL;
234 parent->colour_next = 0;
235 spin_lock_init(&parent->list_lock);
236 parent->free_objects = 0;
237 parent->free_touched = 0;
238 }
239
240 #define MAKE_LIST(cachep, listp, slab, nodeid) \
241 do { \
242 INIT_LIST_HEAD(listp); \
243 list_splice(&get_node(cachep, nodeid)->slab, listp); \
244 } while (0)
245
246 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
247 do { \
248 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
249 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
251 } while (0)
252
253 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
254 #define CFLGS_OFF_SLAB (0x80000000UL)
255 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
256 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
257
258 #define BATCHREFILL_LIMIT 16
259 /*
260 * Optimization question: fewer reaps means less probability for unnessary
261 * cpucache drain/refill cycles.
262 *
263 * OTOH the cpuarrays can contain lots of objects,
264 * which could lock up otherwise freeable slabs.
265 */
266 #define REAPTIMEOUT_AC (2*HZ)
267 #define REAPTIMEOUT_NODE (4*HZ)
268
269 #if STATS
270 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
271 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
272 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
273 #define STATS_INC_GROWN(x) ((x)->grown++)
274 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
275 #define STATS_SET_HIGH(x) \
276 do { \
277 if ((x)->num_active > (x)->high_mark) \
278 (x)->high_mark = (x)->num_active; \
279 } while (0)
280 #define STATS_INC_ERR(x) ((x)->errors++)
281 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
282 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
283 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
284 #define STATS_SET_FREEABLE(x, i) \
285 do { \
286 if ((x)->max_freeable < i) \
287 (x)->max_freeable = i; \
288 } while (0)
289 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
290 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
291 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
292 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
293 #else
294 #define STATS_INC_ACTIVE(x) do { } while (0)
295 #define STATS_DEC_ACTIVE(x) do { } while (0)
296 #define STATS_INC_ALLOCED(x) do { } while (0)
297 #define STATS_INC_GROWN(x) do { } while (0)
298 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
299 #define STATS_SET_HIGH(x) do { } while (0)
300 #define STATS_INC_ERR(x) do { } while (0)
301 #define STATS_INC_NODEALLOCS(x) do { } while (0)
302 #define STATS_INC_NODEFREES(x) do { } while (0)
303 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
304 #define STATS_SET_FREEABLE(x, i) do { } while (0)
305 #define STATS_INC_ALLOCHIT(x) do { } while (0)
306 #define STATS_INC_ALLOCMISS(x) do { } while (0)
307 #define STATS_INC_FREEHIT(x) do { } while (0)
308 #define STATS_INC_FREEMISS(x) do { } while (0)
309 #endif
310
311 #if DEBUG
312
313 /*
314 * memory layout of objects:
315 * 0 : objp
316 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
317 * the end of an object is aligned with the end of the real
318 * allocation. Catches writes behind the end of the allocation.
319 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
320 * redzone word.
321 * cachep->obj_offset: The real object.
322 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
323 * cachep->size - 1* BYTES_PER_WORD: last caller address
324 * [BYTES_PER_WORD long]
325 */
326 static int obj_offset(struct kmem_cache *cachep)
327 {
328 return cachep->obj_offset;
329 }
330
331 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
332 {
333 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334 return (unsigned long long*) (objp + obj_offset(cachep) -
335 sizeof(unsigned long long));
336 }
337
338 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
339 {
340 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
341 if (cachep->flags & SLAB_STORE_USER)
342 return (unsigned long long *)(objp + cachep->size -
343 sizeof(unsigned long long) -
344 REDZONE_ALIGN);
345 return (unsigned long long *) (objp + cachep->size -
346 sizeof(unsigned long long));
347 }
348
349 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
350 {
351 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
352 return (void **)(objp + cachep->size - BYTES_PER_WORD);
353 }
354
355 #else
356
357 #define obj_offset(x) 0
358 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
359 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
361
362 #endif
363
364 #ifdef CONFIG_DEBUG_SLAB_LEAK
365
366 static inline bool is_store_user_clean(struct kmem_cache *cachep)
367 {
368 return atomic_read(&cachep->store_user_clean) == 1;
369 }
370
371 static inline void set_store_user_clean(struct kmem_cache *cachep)
372 {
373 atomic_set(&cachep->store_user_clean, 1);
374 }
375
376 static inline void set_store_user_dirty(struct kmem_cache *cachep)
377 {
378 if (is_store_user_clean(cachep))
379 atomic_set(&cachep->store_user_clean, 0);
380 }
381
382 #else
383 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
384
385 #endif
386
387 /*
388 * Do not go above this order unless 0 objects fit into the slab or
389 * overridden on the command line.
390 */
391 #define SLAB_MAX_ORDER_HI 1
392 #define SLAB_MAX_ORDER_LO 0
393 static int slab_max_order = SLAB_MAX_ORDER_LO;
394 static bool slab_max_order_set __initdata;
395
396 static inline struct kmem_cache *virt_to_cache(const void *obj)
397 {
398 struct page *page = virt_to_head_page(obj);
399 return page->slab_cache;
400 }
401
402 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
403 unsigned int idx)
404 {
405 return page->s_mem + cache->size * idx;
406 }
407
408 /*
409 * We want to avoid an expensive divide : (offset / cache->size)
410 * Using the fact that size is a constant for a particular cache,
411 * we can replace (offset / cache->size) by
412 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
413 */
414 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
415 const struct page *page, void *obj)
416 {
417 u32 offset = (obj - page->s_mem);
418 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
419 }
420
421 #define BOOT_CPUCACHE_ENTRIES 1
422 /* internal cache of cache description objs */
423 static struct kmem_cache kmem_cache_boot = {
424 .batchcount = 1,
425 .limit = BOOT_CPUCACHE_ENTRIES,
426 .shared = 1,
427 .size = sizeof(struct kmem_cache),
428 .name = "kmem_cache",
429 };
430
431 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
432
433 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
434 {
435 return this_cpu_ptr(cachep->cpu_cache);
436 }
437
438 /*
439 * Calculate the number of objects and left-over bytes for a given buffer size.
440 */
441 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
442 unsigned long flags, size_t *left_over)
443 {
444 unsigned int num;
445 size_t slab_size = PAGE_SIZE << gfporder;
446
447 /*
448 * The slab management structure can be either off the slab or
449 * on it. For the latter case, the memory allocated for a
450 * slab is used for:
451 *
452 * - @buffer_size bytes for each object
453 * - One freelist_idx_t for each object
454 *
455 * We don't need to consider alignment of freelist because
456 * freelist will be at the end of slab page. The objects will be
457 * at the correct alignment.
458 *
459 * If the slab management structure is off the slab, then the
460 * alignment will already be calculated into the size. Because
461 * the slabs are all pages aligned, the objects will be at the
462 * correct alignment when allocated.
463 */
464 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
465 num = slab_size / buffer_size;
466 *left_over = slab_size % buffer_size;
467 } else {
468 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
469 *left_over = slab_size %
470 (buffer_size + sizeof(freelist_idx_t));
471 }
472
473 return num;
474 }
475
476 #if DEBUG
477 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
478
479 static void __slab_error(const char *function, struct kmem_cache *cachep,
480 char *msg)
481 {
482 pr_err("slab error in %s(): cache `%s': %s\n",
483 function, cachep->name, msg);
484 dump_stack();
485 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
486 }
487 #endif
488
489 /*
490 * By default on NUMA we use alien caches to stage the freeing of
491 * objects allocated from other nodes. This causes massive memory
492 * inefficiencies when using fake NUMA setup to split memory into a
493 * large number of small nodes, so it can be disabled on the command
494 * line
495 */
496
497 static int use_alien_caches __read_mostly = 1;
498 static int __init noaliencache_setup(char *s)
499 {
500 use_alien_caches = 0;
501 return 1;
502 }
503 __setup("noaliencache", noaliencache_setup);
504
505 static int __init slab_max_order_setup(char *str)
506 {
507 get_option(&str, &slab_max_order);
508 slab_max_order = slab_max_order < 0 ? 0 :
509 min(slab_max_order, MAX_ORDER - 1);
510 slab_max_order_set = true;
511
512 return 1;
513 }
514 __setup("slab_max_order=", slab_max_order_setup);
515
516 #ifdef CONFIG_NUMA
517 /*
518 * Special reaping functions for NUMA systems called from cache_reap().
519 * These take care of doing round robin flushing of alien caches (containing
520 * objects freed on different nodes from which they were allocated) and the
521 * flushing of remote pcps by calling drain_node_pages.
522 */
523 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
524
525 static void init_reap_node(int cpu)
526 {
527 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
528 node_online_map);
529 }
530
531 static void next_reap_node(void)
532 {
533 int node = __this_cpu_read(slab_reap_node);
534
535 node = next_node_in(node, node_online_map);
536 __this_cpu_write(slab_reap_node, node);
537 }
538
539 #else
540 #define init_reap_node(cpu) do { } while (0)
541 #define next_reap_node(void) do { } while (0)
542 #endif
543
544 /*
545 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
546 * via the workqueue/eventd.
547 * Add the CPU number into the expiration time to minimize the possibility of
548 * the CPUs getting into lockstep and contending for the global cache chain
549 * lock.
550 */
551 static void start_cpu_timer(int cpu)
552 {
553 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
554
555 if (reap_work->work.func == NULL) {
556 init_reap_node(cpu);
557 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
558 schedule_delayed_work_on(cpu, reap_work,
559 __round_jiffies_relative(HZ, cpu));
560 }
561 }
562
563 static void init_arraycache(struct array_cache *ac, int limit, int batch)
564 {
565 /*
566 * The array_cache structures contain pointers to free object.
567 * However, when such objects are allocated or transferred to another
568 * cache the pointers are not cleared and they could be counted as
569 * valid references during a kmemleak scan. Therefore, kmemleak must
570 * not scan such objects.
571 */
572 kmemleak_no_scan(ac);
573 if (ac) {
574 ac->avail = 0;
575 ac->limit = limit;
576 ac->batchcount = batch;
577 ac->touched = 0;
578 }
579 }
580
581 static struct array_cache *alloc_arraycache(int node, int entries,
582 int batchcount, gfp_t gfp)
583 {
584 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
585 struct array_cache *ac = NULL;
586
587 ac = kmalloc_node(memsize, gfp, node);
588 init_arraycache(ac, entries, batchcount);
589 return ac;
590 }
591
592 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
593 struct page *page, void *objp)
594 {
595 struct kmem_cache_node *n;
596 int page_node;
597 LIST_HEAD(list);
598
599 page_node = page_to_nid(page);
600 n = get_node(cachep, page_node);
601
602 spin_lock(&n->list_lock);
603 free_block(cachep, &objp, 1, page_node, &list);
604 spin_unlock(&n->list_lock);
605
606 slabs_destroy(cachep, &list);
607 }
608
609 /*
610 * Transfer objects in one arraycache to another.
611 * Locking must be handled by the caller.
612 *
613 * Return the number of entries transferred.
614 */
615 static int transfer_objects(struct array_cache *to,
616 struct array_cache *from, unsigned int max)
617 {
618 /* Figure out how many entries to transfer */
619 int nr = min3(from->avail, max, to->limit - to->avail);
620
621 if (!nr)
622 return 0;
623
624 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
625 sizeof(void *) *nr);
626
627 from->avail -= nr;
628 to->avail += nr;
629 return nr;
630 }
631
632 #ifndef CONFIG_NUMA
633
634 #define drain_alien_cache(cachep, alien) do { } while (0)
635 #define reap_alien(cachep, n) do { } while (0)
636
637 static inline struct alien_cache **alloc_alien_cache(int node,
638 int limit, gfp_t gfp)
639 {
640 return NULL;
641 }
642
643 static inline void free_alien_cache(struct alien_cache **ac_ptr)
644 {
645 }
646
647 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
648 {
649 return 0;
650 }
651
652 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
653 gfp_t flags)
654 {
655 return NULL;
656 }
657
658 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
659 gfp_t flags, int nodeid)
660 {
661 return NULL;
662 }
663
664 static inline gfp_t gfp_exact_node(gfp_t flags)
665 {
666 return flags & ~__GFP_NOFAIL;
667 }
668
669 #else /* CONFIG_NUMA */
670
671 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
672 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
673
674 static struct alien_cache *__alloc_alien_cache(int node, int entries,
675 int batch, gfp_t gfp)
676 {
677 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
678 struct alien_cache *alc = NULL;
679
680 alc = kmalloc_node(memsize, gfp, node);
681 init_arraycache(&alc->ac, entries, batch);
682 spin_lock_init(&alc->lock);
683 return alc;
684 }
685
686 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
687 {
688 struct alien_cache **alc_ptr;
689 size_t memsize = sizeof(void *) * nr_node_ids;
690 int i;
691
692 if (limit > 1)
693 limit = 12;
694 alc_ptr = kzalloc_node(memsize, gfp, node);
695 if (!alc_ptr)
696 return NULL;
697
698 for_each_node(i) {
699 if (i == node || !node_online(i))
700 continue;
701 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
702 if (!alc_ptr[i]) {
703 for (i--; i >= 0; i--)
704 kfree(alc_ptr[i]);
705 kfree(alc_ptr);
706 return NULL;
707 }
708 }
709 return alc_ptr;
710 }
711
712 static void free_alien_cache(struct alien_cache **alc_ptr)
713 {
714 int i;
715
716 if (!alc_ptr)
717 return;
718 for_each_node(i)
719 kfree(alc_ptr[i]);
720 kfree(alc_ptr);
721 }
722
723 static void __drain_alien_cache(struct kmem_cache *cachep,
724 struct array_cache *ac, int node,
725 struct list_head *list)
726 {
727 struct kmem_cache_node *n = get_node(cachep, node);
728
729 if (ac->avail) {
730 spin_lock(&n->list_lock);
731 /*
732 * Stuff objects into the remote nodes shared array first.
733 * That way we could avoid the overhead of putting the objects
734 * into the free lists and getting them back later.
735 */
736 if (n->shared)
737 transfer_objects(n->shared, ac, ac->limit);
738
739 free_block(cachep, ac->entry, ac->avail, node, list);
740 ac->avail = 0;
741 spin_unlock(&n->list_lock);
742 }
743 }
744
745 /*
746 * Called from cache_reap() to regularly drain alien caches round robin.
747 */
748 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
749 {
750 int node = __this_cpu_read(slab_reap_node);
751
752 if (n->alien) {
753 struct alien_cache *alc = n->alien[node];
754 struct array_cache *ac;
755
756 if (alc) {
757 ac = &alc->ac;
758 if (ac->avail && spin_trylock_irq(&alc->lock)) {
759 LIST_HEAD(list);
760
761 __drain_alien_cache(cachep, ac, node, &list);
762 spin_unlock_irq(&alc->lock);
763 slabs_destroy(cachep, &list);
764 }
765 }
766 }
767 }
768
769 static void drain_alien_cache(struct kmem_cache *cachep,
770 struct alien_cache **alien)
771 {
772 int i = 0;
773 struct alien_cache *alc;
774 struct array_cache *ac;
775 unsigned long flags;
776
777 for_each_online_node(i) {
778 alc = alien[i];
779 if (alc) {
780 LIST_HEAD(list);
781
782 ac = &alc->ac;
783 spin_lock_irqsave(&alc->lock, flags);
784 __drain_alien_cache(cachep, ac, i, &list);
785 spin_unlock_irqrestore(&alc->lock, flags);
786 slabs_destroy(cachep, &list);
787 }
788 }
789 }
790
791 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
792 int node, int page_node)
793 {
794 struct kmem_cache_node *n;
795 struct alien_cache *alien = NULL;
796 struct array_cache *ac;
797 LIST_HEAD(list);
798
799 n = get_node(cachep, node);
800 STATS_INC_NODEFREES(cachep);
801 if (n->alien && n->alien[page_node]) {
802 alien = n->alien[page_node];
803 ac = &alien->ac;
804 spin_lock(&alien->lock);
805 if (unlikely(ac->avail == ac->limit)) {
806 STATS_INC_ACOVERFLOW(cachep);
807 __drain_alien_cache(cachep, ac, page_node, &list);
808 }
809 ac->entry[ac->avail++] = objp;
810 spin_unlock(&alien->lock);
811 slabs_destroy(cachep, &list);
812 } else {
813 n = get_node(cachep, page_node);
814 spin_lock(&n->list_lock);
815 free_block(cachep, &objp, 1, page_node, &list);
816 spin_unlock(&n->list_lock);
817 slabs_destroy(cachep, &list);
818 }
819 return 1;
820 }
821
822 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
823 {
824 int page_node = page_to_nid(virt_to_page(objp));
825 int node = numa_mem_id();
826 /*
827 * Make sure we are not freeing a object from another node to the array
828 * cache on this cpu.
829 */
830 if (likely(node == page_node))
831 return 0;
832
833 return __cache_free_alien(cachep, objp, node, page_node);
834 }
835
836 /*
837 * Construct gfp mask to allocate from a specific node but do not reclaim or
838 * warn about failures.
839 */
840 static inline gfp_t gfp_exact_node(gfp_t flags)
841 {
842 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
843 }
844 #endif
845
846 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
847 {
848 struct kmem_cache_node *n;
849
850 /*
851 * Set up the kmem_cache_node for cpu before we can
852 * begin anything. Make sure some other cpu on this
853 * node has not already allocated this
854 */
855 n = get_node(cachep, node);
856 if (n) {
857 spin_lock_irq(&n->list_lock);
858 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
859 cachep->num;
860 spin_unlock_irq(&n->list_lock);
861
862 return 0;
863 }
864
865 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
866 if (!n)
867 return -ENOMEM;
868
869 kmem_cache_node_init(n);
870 n->next_reap = jiffies + REAPTIMEOUT_NODE +
871 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
872
873 n->free_limit =
874 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
875
876 /*
877 * The kmem_cache_nodes don't come and go as CPUs
878 * come and go. slab_mutex is sufficient
879 * protection here.
880 */
881 cachep->node[node] = n;
882
883 return 0;
884 }
885
886 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
887 /*
888 * Allocates and initializes node for a node on each slab cache, used for
889 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
890 * will be allocated off-node since memory is not yet online for the new node.
891 * When hotplugging memory or a cpu, existing node are not replaced if
892 * already in use.
893 *
894 * Must hold slab_mutex.
895 */
896 static int init_cache_node_node(int node)
897 {
898 int ret;
899 struct kmem_cache *cachep;
900
901 list_for_each_entry(cachep, &slab_caches, list) {
902 ret = init_cache_node(cachep, node, GFP_KERNEL);
903 if (ret)
904 return ret;
905 }
906
907 return 0;
908 }
909 #endif
910
911 static int setup_kmem_cache_node(struct kmem_cache *cachep,
912 int node, gfp_t gfp, bool force_change)
913 {
914 int ret = -ENOMEM;
915 struct kmem_cache_node *n;
916 struct array_cache *old_shared = NULL;
917 struct array_cache *new_shared = NULL;
918 struct alien_cache **new_alien = NULL;
919 LIST_HEAD(list);
920
921 if (use_alien_caches) {
922 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
923 if (!new_alien)
924 goto fail;
925 }
926
927 if (cachep->shared) {
928 new_shared = alloc_arraycache(node,
929 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
930 if (!new_shared)
931 goto fail;
932 }
933
934 ret = init_cache_node(cachep, node, gfp);
935 if (ret)
936 goto fail;
937
938 n = get_node(cachep, node);
939 spin_lock_irq(&n->list_lock);
940 if (n->shared && force_change) {
941 free_block(cachep, n->shared->entry,
942 n->shared->avail, node, &list);
943 n->shared->avail = 0;
944 }
945
946 if (!n->shared || force_change) {
947 old_shared = n->shared;
948 n->shared = new_shared;
949 new_shared = NULL;
950 }
951
952 if (!n->alien) {
953 n->alien = new_alien;
954 new_alien = NULL;
955 }
956
957 spin_unlock_irq(&n->list_lock);
958 slabs_destroy(cachep, &list);
959
960 /*
961 * To protect lockless access to n->shared during irq disabled context.
962 * If n->shared isn't NULL in irq disabled context, accessing to it is
963 * guaranteed to be valid until irq is re-enabled, because it will be
964 * freed after synchronize_sched().
965 */
966 if (old_shared && force_change)
967 synchronize_sched();
968
969 fail:
970 kfree(old_shared);
971 kfree(new_shared);
972 free_alien_cache(new_alien);
973
974 return ret;
975 }
976
977 #ifdef CONFIG_SMP
978
979 static void cpuup_canceled(long cpu)
980 {
981 struct kmem_cache *cachep;
982 struct kmem_cache_node *n = NULL;
983 int node = cpu_to_mem(cpu);
984 const struct cpumask *mask = cpumask_of_node(node);
985
986 list_for_each_entry(cachep, &slab_caches, list) {
987 struct array_cache *nc;
988 struct array_cache *shared;
989 struct alien_cache **alien;
990 LIST_HEAD(list);
991
992 n = get_node(cachep, node);
993 if (!n)
994 continue;
995
996 spin_lock_irq(&n->list_lock);
997
998 /* Free limit for this kmem_cache_node */
999 n->free_limit -= cachep->batchcount;
1000
1001 /* cpu is dead; no one can alloc from it. */
1002 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1003 if (nc) {
1004 free_block(cachep, nc->entry, nc->avail, node, &list);
1005 nc->avail = 0;
1006 }
1007
1008 if (!cpumask_empty(mask)) {
1009 spin_unlock_irq(&n->list_lock);
1010 goto free_slab;
1011 }
1012
1013 shared = n->shared;
1014 if (shared) {
1015 free_block(cachep, shared->entry,
1016 shared->avail, node, &list);
1017 n->shared = NULL;
1018 }
1019
1020 alien = n->alien;
1021 n->alien = NULL;
1022
1023 spin_unlock_irq(&n->list_lock);
1024
1025 kfree(shared);
1026 if (alien) {
1027 drain_alien_cache(cachep, alien);
1028 free_alien_cache(alien);
1029 }
1030
1031 free_slab:
1032 slabs_destroy(cachep, &list);
1033 }
1034 /*
1035 * In the previous loop, all the objects were freed to
1036 * the respective cache's slabs, now we can go ahead and
1037 * shrink each nodelist to its limit.
1038 */
1039 list_for_each_entry(cachep, &slab_caches, list) {
1040 n = get_node(cachep, node);
1041 if (!n)
1042 continue;
1043 drain_freelist(cachep, n, INT_MAX);
1044 }
1045 }
1046
1047 static int cpuup_prepare(long cpu)
1048 {
1049 struct kmem_cache *cachep;
1050 int node = cpu_to_mem(cpu);
1051 int err;
1052
1053 /*
1054 * We need to do this right in the beginning since
1055 * alloc_arraycache's are going to use this list.
1056 * kmalloc_node allows us to add the slab to the right
1057 * kmem_cache_node and not this cpu's kmem_cache_node
1058 */
1059 err = init_cache_node_node(node);
1060 if (err < 0)
1061 goto bad;
1062
1063 /*
1064 * Now we can go ahead with allocating the shared arrays and
1065 * array caches
1066 */
1067 list_for_each_entry(cachep, &slab_caches, list) {
1068 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1069 if (err)
1070 goto bad;
1071 }
1072
1073 return 0;
1074 bad:
1075 cpuup_canceled(cpu);
1076 return -ENOMEM;
1077 }
1078
1079 int slab_prepare_cpu(unsigned int cpu)
1080 {
1081 int err;
1082
1083 mutex_lock(&slab_mutex);
1084 err = cpuup_prepare(cpu);
1085 mutex_unlock(&slab_mutex);
1086 return err;
1087 }
1088
1089 /*
1090 * This is called for a failed online attempt and for a successful
1091 * offline.
1092 *
1093 * Even if all the cpus of a node are down, we don't free the
1094 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1095 * a kmalloc allocation from another cpu for memory from the node of
1096 * the cpu going down. The list3 structure is usually allocated from
1097 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1098 */
1099 int slab_dead_cpu(unsigned int cpu)
1100 {
1101 mutex_lock(&slab_mutex);
1102 cpuup_canceled(cpu);
1103 mutex_unlock(&slab_mutex);
1104 return 0;
1105 }
1106 #endif
1107
1108 static int slab_online_cpu(unsigned int cpu)
1109 {
1110 start_cpu_timer(cpu);
1111 return 0;
1112 }
1113
1114 static int slab_offline_cpu(unsigned int cpu)
1115 {
1116 /*
1117 * Shutdown cache reaper. Note that the slab_mutex is held so
1118 * that if cache_reap() is invoked it cannot do anything
1119 * expensive but will only modify reap_work and reschedule the
1120 * timer.
1121 */
1122 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1123 /* Now the cache_reaper is guaranteed to be not running. */
1124 per_cpu(slab_reap_work, cpu).work.func = NULL;
1125 return 0;
1126 }
1127
1128 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1129 /*
1130 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1131 * Returns -EBUSY if all objects cannot be drained so that the node is not
1132 * removed.
1133 *
1134 * Must hold slab_mutex.
1135 */
1136 static int __meminit drain_cache_node_node(int node)
1137 {
1138 struct kmem_cache *cachep;
1139 int ret = 0;
1140
1141 list_for_each_entry(cachep, &slab_caches, list) {
1142 struct kmem_cache_node *n;
1143
1144 n = get_node(cachep, node);
1145 if (!n)
1146 continue;
1147
1148 drain_freelist(cachep, n, INT_MAX);
1149
1150 if (!list_empty(&n->slabs_full) ||
1151 !list_empty(&n->slabs_partial)) {
1152 ret = -EBUSY;
1153 break;
1154 }
1155 }
1156 return ret;
1157 }
1158
1159 static int __meminit slab_memory_callback(struct notifier_block *self,
1160 unsigned long action, void *arg)
1161 {
1162 struct memory_notify *mnb = arg;
1163 int ret = 0;
1164 int nid;
1165
1166 nid = mnb->status_change_nid;
1167 if (nid < 0)
1168 goto out;
1169
1170 switch (action) {
1171 case MEM_GOING_ONLINE:
1172 mutex_lock(&slab_mutex);
1173 ret = init_cache_node_node(nid);
1174 mutex_unlock(&slab_mutex);
1175 break;
1176 case MEM_GOING_OFFLINE:
1177 mutex_lock(&slab_mutex);
1178 ret = drain_cache_node_node(nid);
1179 mutex_unlock(&slab_mutex);
1180 break;
1181 case MEM_ONLINE:
1182 case MEM_OFFLINE:
1183 case MEM_CANCEL_ONLINE:
1184 case MEM_CANCEL_OFFLINE:
1185 break;
1186 }
1187 out:
1188 return notifier_from_errno(ret);
1189 }
1190 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1191
1192 /*
1193 * swap the static kmem_cache_node with kmalloced memory
1194 */
1195 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1196 int nodeid)
1197 {
1198 struct kmem_cache_node *ptr;
1199
1200 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1201 BUG_ON(!ptr);
1202
1203 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1204 /*
1205 * Do not assume that spinlocks can be initialized via memcpy:
1206 */
1207 spin_lock_init(&ptr->list_lock);
1208
1209 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1210 cachep->node[nodeid] = ptr;
1211 }
1212
1213 /*
1214 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1215 * size of kmem_cache_node.
1216 */
1217 static void __init set_up_node(struct kmem_cache *cachep, int index)
1218 {
1219 int node;
1220
1221 for_each_online_node(node) {
1222 cachep->node[node] = &init_kmem_cache_node[index + node];
1223 cachep->node[node]->next_reap = jiffies +
1224 REAPTIMEOUT_NODE +
1225 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1226 }
1227 }
1228
1229 /*
1230 * Initialisation. Called after the page allocator have been initialised and
1231 * before smp_init().
1232 */
1233 void __init kmem_cache_init(void)
1234 {
1235 int i;
1236
1237 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1238 sizeof(struct rcu_head));
1239 kmem_cache = &kmem_cache_boot;
1240
1241 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1242 use_alien_caches = 0;
1243
1244 for (i = 0; i < NUM_INIT_LISTS; i++)
1245 kmem_cache_node_init(&init_kmem_cache_node[i]);
1246
1247 /*
1248 * Fragmentation resistance on low memory - only use bigger
1249 * page orders on machines with more than 32MB of memory if
1250 * not overridden on the command line.
1251 */
1252 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1253 slab_max_order = SLAB_MAX_ORDER_HI;
1254
1255 /* Bootstrap is tricky, because several objects are allocated
1256 * from caches that do not exist yet:
1257 * 1) initialize the kmem_cache cache: it contains the struct
1258 * kmem_cache structures of all caches, except kmem_cache itself:
1259 * kmem_cache is statically allocated.
1260 * Initially an __init data area is used for the head array and the
1261 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1262 * array at the end of the bootstrap.
1263 * 2) Create the first kmalloc cache.
1264 * The struct kmem_cache for the new cache is allocated normally.
1265 * An __init data area is used for the head array.
1266 * 3) Create the remaining kmalloc caches, with minimally sized
1267 * head arrays.
1268 * 4) Replace the __init data head arrays for kmem_cache and the first
1269 * kmalloc cache with kmalloc allocated arrays.
1270 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1271 * the other cache's with kmalloc allocated memory.
1272 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1273 */
1274
1275 /* 1) create the kmem_cache */
1276
1277 /*
1278 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1279 */
1280 create_boot_cache(kmem_cache, "kmem_cache",
1281 offsetof(struct kmem_cache, node) +
1282 nr_node_ids * sizeof(struct kmem_cache_node *),
1283 SLAB_HWCACHE_ALIGN);
1284 list_add(&kmem_cache->list, &slab_caches);
1285 slab_state = PARTIAL;
1286
1287 /*
1288 * Initialize the caches that provide memory for the kmem_cache_node
1289 * structures first. Without this, further allocations will bug.
1290 */
1291 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1292 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1293 slab_state = PARTIAL_NODE;
1294 setup_kmalloc_cache_index_table();
1295
1296 slab_early_init = 0;
1297
1298 /* 5) Replace the bootstrap kmem_cache_node */
1299 {
1300 int nid;
1301
1302 for_each_online_node(nid) {
1303 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1304
1305 init_list(kmalloc_caches[INDEX_NODE],
1306 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1307 }
1308 }
1309
1310 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1311 }
1312
1313 void __init kmem_cache_init_late(void)
1314 {
1315 struct kmem_cache *cachep;
1316
1317 slab_state = UP;
1318
1319 /* 6) resize the head arrays to their final sizes */
1320 mutex_lock(&slab_mutex);
1321 list_for_each_entry(cachep, &slab_caches, list)
1322 if (enable_cpucache(cachep, GFP_NOWAIT))
1323 BUG();
1324 mutex_unlock(&slab_mutex);
1325
1326 /* Done! */
1327 slab_state = FULL;
1328
1329 #ifdef CONFIG_NUMA
1330 /*
1331 * Register a memory hotplug callback that initializes and frees
1332 * node.
1333 */
1334 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1335 #endif
1336
1337 /*
1338 * The reap timers are started later, with a module init call: That part
1339 * of the kernel is not yet operational.
1340 */
1341 }
1342
1343 static int __init cpucache_init(void)
1344 {
1345 int ret;
1346
1347 /*
1348 * Register the timers that return unneeded pages to the page allocator
1349 */
1350 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1351 slab_online_cpu, slab_offline_cpu);
1352 WARN_ON(ret < 0);
1353
1354 /* Done! */
1355 slab_state = FULL;
1356 return 0;
1357 }
1358 __initcall(cpucache_init);
1359
1360 static noinline void
1361 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1362 {
1363 #if DEBUG
1364 struct kmem_cache_node *n;
1365 unsigned long flags;
1366 int node;
1367 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1368 DEFAULT_RATELIMIT_BURST);
1369
1370 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1371 return;
1372
1373 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1374 nodeid, gfpflags, &gfpflags);
1375 pr_warn(" cache: %s, object size: %d, order: %d\n",
1376 cachep->name, cachep->size, cachep->gfporder);
1377
1378 for_each_kmem_cache_node(cachep, node, n) {
1379 unsigned long total_slabs, free_slabs, free_objs;
1380
1381 spin_lock_irqsave(&n->list_lock, flags);
1382 total_slabs = n->total_slabs;
1383 free_slabs = n->free_slabs;
1384 free_objs = n->free_objects;
1385 spin_unlock_irqrestore(&n->list_lock, flags);
1386
1387 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1388 node, total_slabs - free_slabs, total_slabs,
1389 (total_slabs * cachep->num) - free_objs,
1390 total_slabs * cachep->num);
1391 }
1392 #endif
1393 }
1394
1395 /*
1396 * Interface to system's page allocator. No need to hold the
1397 * kmem_cache_node ->list_lock.
1398 *
1399 * If we requested dmaable memory, we will get it. Even if we
1400 * did not request dmaable memory, we might get it, but that
1401 * would be relatively rare and ignorable.
1402 */
1403 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1404 int nodeid)
1405 {
1406 struct page *page;
1407 int nr_pages;
1408
1409 flags |= cachep->allocflags;
1410 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1411 flags |= __GFP_RECLAIMABLE;
1412
1413 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1414 if (!page) {
1415 slab_out_of_memory(cachep, flags, nodeid);
1416 return NULL;
1417 }
1418
1419 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1420 __free_pages(page, cachep->gfporder);
1421 return NULL;
1422 }
1423
1424 nr_pages = (1 << cachep->gfporder);
1425 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1426 add_zone_page_state(page_zone(page),
1427 NR_SLAB_RECLAIMABLE, nr_pages);
1428 else
1429 add_zone_page_state(page_zone(page),
1430 NR_SLAB_UNRECLAIMABLE, nr_pages);
1431
1432 __SetPageSlab(page);
1433 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1434 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1435 SetPageSlabPfmemalloc(page);
1436
1437 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1438 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1439
1440 if (cachep->ctor)
1441 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1442 else
1443 kmemcheck_mark_unallocated_pages(page, nr_pages);
1444 }
1445
1446 return page;
1447 }
1448
1449 /*
1450 * Interface to system's page release.
1451 */
1452 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1453 {
1454 int order = cachep->gfporder;
1455 unsigned long nr_freed = (1 << order);
1456
1457 kmemcheck_free_shadow(page, order);
1458
1459 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1460 sub_zone_page_state(page_zone(page),
1461 NR_SLAB_RECLAIMABLE, nr_freed);
1462 else
1463 sub_zone_page_state(page_zone(page),
1464 NR_SLAB_UNRECLAIMABLE, nr_freed);
1465
1466 BUG_ON(!PageSlab(page));
1467 __ClearPageSlabPfmemalloc(page);
1468 __ClearPageSlab(page);
1469 page_mapcount_reset(page);
1470 page->mapping = NULL;
1471
1472 if (current->reclaim_state)
1473 current->reclaim_state->reclaimed_slab += nr_freed;
1474 memcg_uncharge_slab(page, order, cachep);
1475 __free_pages(page, order);
1476 }
1477
1478 static void kmem_rcu_free(struct rcu_head *head)
1479 {
1480 struct kmem_cache *cachep;
1481 struct page *page;
1482
1483 page = container_of(head, struct page, rcu_head);
1484 cachep = page->slab_cache;
1485
1486 kmem_freepages(cachep, page);
1487 }
1488
1489 #if DEBUG
1490 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1491 {
1492 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1493 (cachep->size % PAGE_SIZE) == 0)
1494 return true;
1495
1496 return false;
1497 }
1498
1499 #ifdef CONFIG_DEBUG_PAGEALLOC
1500 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1501 unsigned long caller)
1502 {
1503 int size = cachep->object_size;
1504
1505 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1506
1507 if (size < 5 * sizeof(unsigned long))
1508 return;
1509
1510 *addr++ = 0x12345678;
1511 *addr++ = caller;
1512 *addr++ = smp_processor_id();
1513 size -= 3 * sizeof(unsigned long);
1514 {
1515 unsigned long *sptr = &caller;
1516 unsigned long svalue;
1517
1518 while (!kstack_end(sptr)) {
1519 svalue = *sptr++;
1520 if (kernel_text_address(svalue)) {
1521 *addr++ = svalue;
1522 size -= sizeof(unsigned long);
1523 if (size <= sizeof(unsigned long))
1524 break;
1525 }
1526 }
1527
1528 }
1529 *addr++ = 0x87654321;
1530 }
1531
1532 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1533 int map, unsigned long caller)
1534 {
1535 if (!is_debug_pagealloc_cache(cachep))
1536 return;
1537
1538 if (caller)
1539 store_stackinfo(cachep, objp, caller);
1540
1541 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1542 }
1543
1544 #else
1545 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1546 int map, unsigned long caller) {}
1547
1548 #endif
1549
1550 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1551 {
1552 int size = cachep->object_size;
1553 addr = &((char *)addr)[obj_offset(cachep)];
1554
1555 memset(addr, val, size);
1556 *(unsigned char *)(addr + size - 1) = POISON_END;
1557 }
1558
1559 static void dump_line(char *data, int offset, int limit)
1560 {
1561 int i;
1562 unsigned char error = 0;
1563 int bad_count = 0;
1564
1565 pr_err("%03x: ", offset);
1566 for (i = 0; i < limit; i++) {
1567 if (data[offset + i] != POISON_FREE) {
1568 error = data[offset + i];
1569 bad_count++;
1570 }
1571 }
1572 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1573 &data[offset], limit, 1);
1574
1575 if (bad_count == 1) {
1576 error ^= POISON_FREE;
1577 if (!(error & (error - 1))) {
1578 pr_err("Single bit error detected. Probably bad RAM.\n");
1579 #ifdef CONFIG_X86
1580 pr_err("Run memtest86+ or a similar memory test tool.\n");
1581 #else
1582 pr_err("Run a memory test tool.\n");
1583 #endif
1584 }
1585 }
1586 }
1587 #endif
1588
1589 #if DEBUG
1590
1591 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1592 {
1593 int i, size;
1594 char *realobj;
1595
1596 if (cachep->flags & SLAB_RED_ZONE) {
1597 pr_err("Redzone: 0x%llx/0x%llx\n",
1598 *dbg_redzone1(cachep, objp),
1599 *dbg_redzone2(cachep, objp));
1600 }
1601
1602 if (cachep->flags & SLAB_STORE_USER) {
1603 pr_err("Last user: [<%p>](%pSR)\n",
1604 *dbg_userword(cachep, objp),
1605 *dbg_userword(cachep, objp));
1606 }
1607 realobj = (char *)objp + obj_offset(cachep);
1608 size = cachep->object_size;
1609 for (i = 0; i < size && lines; i += 16, lines--) {
1610 int limit;
1611 limit = 16;
1612 if (i + limit > size)
1613 limit = size - i;
1614 dump_line(realobj, i, limit);
1615 }
1616 }
1617
1618 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1619 {
1620 char *realobj;
1621 int size, i;
1622 int lines = 0;
1623
1624 if (is_debug_pagealloc_cache(cachep))
1625 return;
1626
1627 realobj = (char *)objp + obj_offset(cachep);
1628 size = cachep->object_size;
1629
1630 for (i = 0; i < size; i++) {
1631 char exp = POISON_FREE;
1632 if (i == size - 1)
1633 exp = POISON_END;
1634 if (realobj[i] != exp) {
1635 int limit;
1636 /* Mismatch ! */
1637 /* Print header */
1638 if (lines == 0) {
1639 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1640 print_tainted(), cachep->name,
1641 realobj, size);
1642 print_objinfo(cachep, objp, 0);
1643 }
1644 /* Hexdump the affected line */
1645 i = (i / 16) * 16;
1646 limit = 16;
1647 if (i + limit > size)
1648 limit = size - i;
1649 dump_line(realobj, i, limit);
1650 i += 16;
1651 lines++;
1652 /* Limit to 5 lines */
1653 if (lines > 5)
1654 break;
1655 }
1656 }
1657 if (lines != 0) {
1658 /* Print some data about the neighboring objects, if they
1659 * exist:
1660 */
1661 struct page *page = virt_to_head_page(objp);
1662 unsigned int objnr;
1663
1664 objnr = obj_to_index(cachep, page, objp);
1665 if (objnr) {
1666 objp = index_to_obj(cachep, page, objnr - 1);
1667 realobj = (char *)objp + obj_offset(cachep);
1668 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1669 print_objinfo(cachep, objp, 2);
1670 }
1671 if (objnr + 1 < cachep->num) {
1672 objp = index_to_obj(cachep, page, objnr + 1);
1673 realobj = (char *)objp + obj_offset(cachep);
1674 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1675 print_objinfo(cachep, objp, 2);
1676 }
1677 }
1678 }
1679 #endif
1680
1681 #if DEBUG
1682 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1683 struct page *page)
1684 {
1685 int i;
1686
1687 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1688 poison_obj(cachep, page->freelist - obj_offset(cachep),
1689 POISON_FREE);
1690 }
1691
1692 for (i = 0; i < cachep->num; i++) {
1693 void *objp = index_to_obj(cachep, page, i);
1694
1695 if (cachep->flags & SLAB_POISON) {
1696 check_poison_obj(cachep, objp);
1697 slab_kernel_map(cachep, objp, 1, 0);
1698 }
1699 if (cachep->flags & SLAB_RED_ZONE) {
1700 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1701 slab_error(cachep, "start of a freed object was overwritten");
1702 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1703 slab_error(cachep, "end of a freed object was overwritten");
1704 }
1705 }
1706 }
1707 #else
1708 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1709 struct page *page)
1710 {
1711 }
1712 #endif
1713
1714 /**
1715 * slab_destroy - destroy and release all objects in a slab
1716 * @cachep: cache pointer being destroyed
1717 * @page: page pointer being destroyed
1718 *
1719 * Destroy all the objs in a slab page, and release the mem back to the system.
1720 * Before calling the slab page must have been unlinked from the cache. The
1721 * kmem_cache_node ->list_lock is not held/needed.
1722 */
1723 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1724 {
1725 void *freelist;
1726
1727 freelist = page->freelist;
1728 slab_destroy_debugcheck(cachep, page);
1729 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1730 call_rcu(&page->rcu_head, kmem_rcu_free);
1731 else
1732 kmem_freepages(cachep, page);
1733
1734 /*
1735 * From now on, we don't use freelist
1736 * although actual page can be freed in rcu context
1737 */
1738 if (OFF_SLAB(cachep))
1739 kmem_cache_free(cachep->freelist_cache, freelist);
1740 }
1741
1742 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1743 {
1744 struct page *page, *n;
1745
1746 list_for_each_entry_safe(page, n, list, lru) {
1747 list_del(&page->lru);
1748 slab_destroy(cachep, page);
1749 }
1750 }
1751
1752 /**
1753 * calculate_slab_order - calculate size (page order) of slabs
1754 * @cachep: pointer to the cache that is being created
1755 * @size: size of objects to be created in this cache.
1756 * @flags: slab allocation flags
1757 *
1758 * Also calculates the number of objects per slab.
1759 *
1760 * This could be made much more intelligent. For now, try to avoid using
1761 * high order pages for slabs. When the gfp() functions are more friendly
1762 * towards high-order requests, this should be changed.
1763 */
1764 static size_t calculate_slab_order(struct kmem_cache *cachep,
1765 size_t size, unsigned long flags)
1766 {
1767 size_t left_over = 0;
1768 int gfporder;
1769
1770 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1771 unsigned int num;
1772 size_t remainder;
1773
1774 num = cache_estimate(gfporder, size, flags, &remainder);
1775 if (!num)
1776 continue;
1777
1778 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1779 if (num > SLAB_OBJ_MAX_NUM)
1780 break;
1781
1782 if (flags & CFLGS_OFF_SLAB) {
1783 struct kmem_cache *freelist_cache;
1784 size_t freelist_size;
1785
1786 freelist_size = num * sizeof(freelist_idx_t);
1787 freelist_cache = kmalloc_slab(freelist_size, 0u);
1788 if (!freelist_cache)
1789 continue;
1790
1791 /*
1792 * Needed to avoid possible looping condition
1793 * in cache_grow_begin()
1794 */
1795 if (OFF_SLAB(freelist_cache))
1796 continue;
1797
1798 /* check if off slab has enough benefit */
1799 if (freelist_cache->size > cachep->size / 2)
1800 continue;
1801 }
1802
1803 /* Found something acceptable - save it away */
1804 cachep->num = num;
1805 cachep->gfporder = gfporder;
1806 left_over = remainder;
1807
1808 /*
1809 * A VFS-reclaimable slab tends to have most allocations
1810 * as GFP_NOFS and we really don't want to have to be allocating
1811 * higher-order pages when we are unable to shrink dcache.
1812 */
1813 if (flags & SLAB_RECLAIM_ACCOUNT)
1814 break;
1815
1816 /*
1817 * Large number of objects is good, but very large slabs are
1818 * currently bad for the gfp()s.
1819 */
1820 if (gfporder >= slab_max_order)
1821 break;
1822
1823 /*
1824 * Acceptable internal fragmentation?
1825 */
1826 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1827 break;
1828 }
1829 return left_over;
1830 }
1831
1832 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1833 struct kmem_cache *cachep, int entries, int batchcount)
1834 {
1835 int cpu;
1836 size_t size;
1837 struct array_cache __percpu *cpu_cache;
1838
1839 size = sizeof(void *) * entries + sizeof(struct array_cache);
1840 cpu_cache = __alloc_percpu(size, sizeof(void *));
1841
1842 if (!cpu_cache)
1843 return NULL;
1844
1845 for_each_possible_cpu(cpu) {
1846 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1847 entries, batchcount);
1848 }
1849
1850 return cpu_cache;
1851 }
1852
1853 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1854 {
1855 if (slab_state >= FULL)
1856 return enable_cpucache(cachep, gfp);
1857
1858 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1859 if (!cachep->cpu_cache)
1860 return 1;
1861
1862 if (slab_state == DOWN) {
1863 /* Creation of first cache (kmem_cache). */
1864 set_up_node(kmem_cache, CACHE_CACHE);
1865 } else if (slab_state == PARTIAL) {
1866 /* For kmem_cache_node */
1867 set_up_node(cachep, SIZE_NODE);
1868 } else {
1869 int node;
1870
1871 for_each_online_node(node) {
1872 cachep->node[node] = kmalloc_node(
1873 sizeof(struct kmem_cache_node), gfp, node);
1874 BUG_ON(!cachep->node[node]);
1875 kmem_cache_node_init(cachep->node[node]);
1876 }
1877 }
1878
1879 cachep->node[numa_mem_id()]->next_reap =
1880 jiffies + REAPTIMEOUT_NODE +
1881 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1882
1883 cpu_cache_get(cachep)->avail = 0;
1884 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1885 cpu_cache_get(cachep)->batchcount = 1;
1886 cpu_cache_get(cachep)->touched = 0;
1887 cachep->batchcount = 1;
1888 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1889 return 0;
1890 }
1891
1892 unsigned long kmem_cache_flags(unsigned long object_size,
1893 unsigned long flags, const char *name,
1894 void (*ctor)(void *))
1895 {
1896 return flags;
1897 }
1898
1899 struct kmem_cache *
1900 __kmem_cache_alias(const char *name, size_t size, size_t align,
1901 unsigned long flags, void (*ctor)(void *))
1902 {
1903 struct kmem_cache *cachep;
1904
1905 cachep = find_mergeable(size, align, flags, name, ctor);
1906 if (cachep) {
1907 cachep->refcount++;
1908
1909 /*
1910 * Adjust the object sizes so that we clear
1911 * the complete object on kzalloc.
1912 */
1913 cachep->object_size = max_t(int, cachep->object_size, size);
1914 }
1915 return cachep;
1916 }
1917
1918 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1919 size_t size, unsigned long flags)
1920 {
1921 size_t left;
1922
1923 cachep->num = 0;
1924
1925 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1926 return false;
1927
1928 left = calculate_slab_order(cachep, size,
1929 flags | CFLGS_OBJFREELIST_SLAB);
1930 if (!cachep->num)
1931 return false;
1932
1933 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1934 return false;
1935
1936 cachep->colour = left / cachep->colour_off;
1937
1938 return true;
1939 }
1940
1941 static bool set_off_slab_cache(struct kmem_cache *cachep,
1942 size_t size, unsigned long flags)
1943 {
1944 size_t left;
1945
1946 cachep->num = 0;
1947
1948 /*
1949 * Always use on-slab management when SLAB_NOLEAKTRACE
1950 * to avoid recursive calls into kmemleak.
1951 */
1952 if (flags & SLAB_NOLEAKTRACE)
1953 return false;
1954
1955 /*
1956 * Size is large, assume best to place the slab management obj
1957 * off-slab (should allow better packing of objs).
1958 */
1959 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1960 if (!cachep->num)
1961 return false;
1962
1963 /*
1964 * If the slab has been placed off-slab, and we have enough space then
1965 * move it on-slab. This is at the expense of any extra colouring.
1966 */
1967 if (left >= cachep->num * sizeof(freelist_idx_t))
1968 return false;
1969
1970 cachep->colour = left / cachep->colour_off;
1971
1972 return true;
1973 }
1974
1975 static bool set_on_slab_cache(struct kmem_cache *cachep,
1976 size_t size, unsigned long flags)
1977 {
1978 size_t left;
1979
1980 cachep->num = 0;
1981
1982 left = calculate_slab_order(cachep, size, flags);
1983 if (!cachep->num)
1984 return false;
1985
1986 cachep->colour = left / cachep->colour_off;
1987
1988 return true;
1989 }
1990
1991 /**
1992 * __kmem_cache_create - Create a cache.
1993 * @cachep: cache management descriptor
1994 * @flags: SLAB flags
1995 *
1996 * Returns a ptr to the cache on success, NULL on failure.
1997 * Cannot be called within a int, but can be interrupted.
1998 * The @ctor is run when new pages are allocated by the cache.
1999 *
2000 * The flags are
2001 *
2002 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2003 * to catch references to uninitialised memory.
2004 *
2005 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2006 * for buffer overruns.
2007 *
2008 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2009 * cacheline. This can be beneficial if you're counting cycles as closely
2010 * as davem.
2011 */
2012 int
2013 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2014 {
2015 size_t ralign = BYTES_PER_WORD;
2016 gfp_t gfp;
2017 int err;
2018 size_t size = cachep->size;
2019
2020 #if DEBUG
2021 #if FORCED_DEBUG
2022 /*
2023 * Enable redzoning and last user accounting, except for caches with
2024 * large objects, if the increased size would increase the object size
2025 * above the next power of two: caches with object sizes just above a
2026 * power of two have a significant amount of internal fragmentation.
2027 */
2028 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2029 2 * sizeof(unsigned long long)))
2030 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2031 if (!(flags & SLAB_DESTROY_BY_RCU))
2032 flags |= SLAB_POISON;
2033 #endif
2034 #endif
2035
2036 /*
2037 * Check that size is in terms of words. This is needed to avoid
2038 * unaligned accesses for some archs when redzoning is used, and makes
2039 * sure any on-slab bufctl's are also correctly aligned.
2040 */
2041 if (size & (BYTES_PER_WORD - 1)) {
2042 size += (BYTES_PER_WORD - 1);
2043 size &= ~(BYTES_PER_WORD - 1);
2044 }
2045
2046 if (flags & SLAB_RED_ZONE) {
2047 ralign = REDZONE_ALIGN;
2048 /* If redzoning, ensure that the second redzone is suitably
2049 * aligned, by adjusting the object size accordingly. */
2050 size += REDZONE_ALIGN - 1;
2051 size &= ~(REDZONE_ALIGN - 1);
2052 }
2053
2054 /* 3) caller mandated alignment */
2055 if (ralign < cachep->align) {
2056 ralign = cachep->align;
2057 }
2058 /* disable debug if necessary */
2059 if (ralign > __alignof__(unsigned long long))
2060 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2061 /*
2062 * 4) Store it.
2063 */
2064 cachep->align = ralign;
2065 cachep->colour_off = cache_line_size();
2066 /* Offset must be a multiple of the alignment. */
2067 if (cachep->colour_off < cachep->align)
2068 cachep->colour_off = cachep->align;
2069
2070 if (slab_is_available())
2071 gfp = GFP_KERNEL;
2072 else
2073 gfp = GFP_NOWAIT;
2074
2075 #if DEBUG
2076
2077 /*
2078 * Both debugging options require word-alignment which is calculated
2079 * into align above.
2080 */
2081 if (flags & SLAB_RED_ZONE) {
2082 /* add space for red zone words */
2083 cachep->obj_offset += sizeof(unsigned long long);
2084 size += 2 * sizeof(unsigned long long);
2085 }
2086 if (flags & SLAB_STORE_USER) {
2087 /* user store requires one word storage behind the end of
2088 * the real object. But if the second red zone needs to be
2089 * aligned to 64 bits, we must allow that much space.
2090 */
2091 if (flags & SLAB_RED_ZONE)
2092 size += REDZONE_ALIGN;
2093 else
2094 size += BYTES_PER_WORD;
2095 }
2096 #endif
2097
2098 kasan_cache_create(cachep, &size, &flags);
2099
2100 size = ALIGN(size, cachep->align);
2101 /*
2102 * We should restrict the number of objects in a slab to implement
2103 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2104 */
2105 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2106 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2107
2108 #if DEBUG
2109 /*
2110 * To activate debug pagealloc, off-slab management is necessary
2111 * requirement. In early phase of initialization, small sized slab
2112 * doesn't get initialized so it would not be possible. So, we need
2113 * to check size >= 256. It guarantees that all necessary small
2114 * sized slab is initialized in current slab initialization sequence.
2115 */
2116 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2117 size >= 256 && cachep->object_size > cache_line_size()) {
2118 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2119 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2120
2121 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2122 flags |= CFLGS_OFF_SLAB;
2123 cachep->obj_offset += tmp_size - size;
2124 size = tmp_size;
2125 goto done;
2126 }
2127 }
2128 }
2129 #endif
2130
2131 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2132 flags |= CFLGS_OBJFREELIST_SLAB;
2133 goto done;
2134 }
2135
2136 if (set_off_slab_cache(cachep, size, flags)) {
2137 flags |= CFLGS_OFF_SLAB;
2138 goto done;
2139 }
2140
2141 if (set_on_slab_cache(cachep, size, flags))
2142 goto done;
2143
2144 return -E2BIG;
2145
2146 done:
2147 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2148 cachep->flags = flags;
2149 cachep->allocflags = __GFP_COMP;
2150 if (flags & SLAB_CACHE_DMA)
2151 cachep->allocflags |= GFP_DMA;
2152 cachep->size = size;
2153 cachep->reciprocal_buffer_size = reciprocal_value(size);
2154
2155 #if DEBUG
2156 /*
2157 * If we're going to use the generic kernel_map_pages()
2158 * poisoning, then it's going to smash the contents of
2159 * the redzone and userword anyhow, so switch them off.
2160 */
2161 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2162 (cachep->flags & SLAB_POISON) &&
2163 is_debug_pagealloc_cache(cachep))
2164 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2165 #endif
2166
2167 if (OFF_SLAB(cachep)) {
2168 cachep->freelist_cache =
2169 kmalloc_slab(cachep->freelist_size, 0u);
2170 }
2171
2172 err = setup_cpu_cache(cachep, gfp);
2173 if (err) {
2174 __kmem_cache_release(cachep);
2175 return err;
2176 }
2177
2178 return 0;
2179 }
2180
2181 #if DEBUG
2182 static void check_irq_off(void)
2183 {
2184 BUG_ON(!irqs_disabled());
2185 }
2186
2187 static void check_irq_on(void)
2188 {
2189 BUG_ON(irqs_disabled());
2190 }
2191
2192 static void check_mutex_acquired(void)
2193 {
2194 BUG_ON(!mutex_is_locked(&slab_mutex));
2195 }
2196
2197 static void check_spinlock_acquired(struct kmem_cache *cachep)
2198 {
2199 #ifdef CONFIG_SMP
2200 check_irq_off();
2201 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2202 #endif
2203 }
2204
2205 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2206 {
2207 #ifdef CONFIG_SMP
2208 check_irq_off();
2209 assert_spin_locked(&get_node(cachep, node)->list_lock);
2210 #endif
2211 }
2212
2213 #else
2214 #define check_irq_off() do { } while(0)
2215 #define check_irq_on() do { } while(0)
2216 #define check_mutex_acquired() do { } while(0)
2217 #define check_spinlock_acquired(x) do { } while(0)
2218 #define check_spinlock_acquired_node(x, y) do { } while(0)
2219 #endif
2220
2221 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2222 int node, bool free_all, struct list_head *list)
2223 {
2224 int tofree;
2225
2226 if (!ac || !ac->avail)
2227 return;
2228
2229 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2230 if (tofree > ac->avail)
2231 tofree = (ac->avail + 1) / 2;
2232
2233 free_block(cachep, ac->entry, tofree, node, list);
2234 ac->avail -= tofree;
2235 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2236 }
2237
2238 static void do_drain(void *arg)
2239 {
2240 struct kmem_cache *cachep = arg;
2241 struct array_cache *ac;
2242 int node = numa_mem_id();
2243 struct kmem_cache_node *n;
2244 LIST_HEAD(list);
2245
2246 check_irq_off();
2247 ac = cpu_cache_get(cachep);
2248 n = get_node(cachep, node);
2249 spin_lock(&n->list_lock);
2250 free_block(cachep, ac->entry, ac->avail, node, &list);
2251 spin_unlock(&n->list_lock);
2252 slabs_destroy(cachep, &list);
2253 ac->avail = 0;
2254 }
2255
2256 static void drain_cpu_caches(struct kmem_cache *cachep)
2257 {
2258 struct kmem_cache_node *n;
2259 int node;
2260 LIST_HEAD(list);
2261
2262 on_each_cpu(do_drain, cachep, 1);
2263 check_irq_on();
2264 for_each_kmem_cache_node(cachep, node, n)
2265 if (n->alien)
2266 drain_alien_cache(cachep, n->alien);
2267
2268 for_each_kmem_cache_node(cachep, node, n) {
2269 spin_lock_irq(&n->list_lock);
2270 drain_array_locked(cachep, n->shared, node, true, &list);
2271 spin_unlock_irq(&n->list_lock);
2272
2273 slabs_destroy(cachep, &list);
2274 }
2275 }
2276
2277 /*
2278 * Remove slabs from the list of free slabs.
2279 * Specify the number of slabs to drain in tofree.
2280 *
2281 * Returns the actual number of slabs released.
2282 */
2283 static int drain_freelist(struct kmem_cache *cache,
2284 struct kmem_cache_node *n, int tofree)
2285 {
2286 struct list_head *p;
2287 int nr_freed;
2288 struct page *page;
2289
2290 nr_freed = 0;
2291 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2292
2293 spin_lock_irq(&n->list_lock);
2294 p = n->slabs_free.prev;
2295 if (p == &n->slabs_free) {
2296 spin_unlock_irq(&n->list_lock);
2297 goto out;
2298 }
2299
2300 page = list_entry(p, struct page, lru);
2301 list_del(&page->lru);
2302 n->free_slabs--;
2303 n->total_slabs--;
2304 /*
2305 * Safe to drop the lock. The slab is no longer linked
2306 * to the cache.
2307 */
2308 n->free_objects -= cache->num;
2309 spin_unlock_irq(&n->list_lock);
2310 slab_destroy(cache, page);
2311 nr_freed++;
2312 }
2313 out:
2314 return nr_freed;
2315 }
2316
2317 int __kmem_cache_shrink(struct kmem_cache *cachep)
2318 {
2319 int ret = 0;
2320 int node;
2321 struct kmem_cache_node *n;
2322
2323 drain_cpu_caches(cachep);
2324
2325 check_irq_on();
2326 for_each_kmem_cache_node(cachep, node, n) {
2327 drain_freelist(cachep, n, INT_MAX);
2328
2329 ret += !list_empty(&n->slabs_full) ||
2330 !list_empty(&n->slabs_partial);
2331 }
2332 return (ret ? 1 : 0);
2333 }
2334
2335 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2336 {
2337 return __kmem_cache_shrink(cachep);
2338 }
2339
2340 void __kmem_cache_release(struct kmem_cache *cachep)
2341 {
2342 int i;
2343 struct kmem_cache_node *n;
2344
2345 cache_random_seq_destroy(cachep);
2346
2347 free_percpu(cachep->cpu_cache);
2348
2349 /* NUMA: free the node structures */
2350 for_each_kmem_cache_node(cachep, i, n) {
2351 kfree(n->shared);
2352 free_alien_cache(n->alien);
2353 kfree(n);
2354 cachep->node[i] = NULL;
2355 }
2356 }
2357
2358 /*
2359 * Get the memory for a slab management obj.
2360 *
2361 * For a slab cache when the slab descriptor is off-slab, the
2362 * slab descriptor can't come from the same cache which is being created,
2363 * Because if it is the case, that means we defer the creation of
2364 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2365 * And we eventually call down to __kmem_cache_create(), which
2366 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2367 * This is a "chicken-and-egg" problem.
2368 *
2369 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2370 * which are all initialized during kmem_cache_init().
2371 */
2372 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2373 struct page *page, int colour_off,
2374 gfp_t local_flags, int nodeid)
2375 {
2376 void *freelist;
2377 void *addr = page_address(page);
2378
2379 page->s_mem = addr + colour_off;
2380 page->active = 0;
2381
2382 if (OBJFREELIST_SLAB(cachep))
2383 freelist = NULL;
2384 else if (OFF_SLAB(cachep)) {
2385 /* Slab management obj is off-slab. */
2386 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2387 local_flags, nodeid);
2388 if (!freelist)
2389 return NULL;
2390 } else {
2391 /* We will use last bytes at the slab for freelist */
2392 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2393 cachep->freelist_size;
2394 }
2395
2396 return freelist;
2397 }
2398
2399 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2400 {
2401 return ((freelist_idx_t *)page->freelist)[idx];
2402 }
2403
2404 static inline void set_free_obj(struct page *page,
2405 unsigned int idx, freelist_idx_t val)
2406 {
2407 ((freelist_idx_t *)(page->freelist))[idx] = val;
2408 }
2409
2410 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2411 {
2412 #if DEBUG
2413 int i;
2414
2415 for (i = 0; i < cachep->num; i++) {
2416 void *objp = index_to_obj(cachep, page, i);
2417
2418 if (cachep->flags & SLAB_STORE_USER)
2419 *dbg_userword(cachep, objp) = NULL;
2420
2421 if (cachep->flags & SLAB_RED_ZONE) {
2422 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2423 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2424 }
2425 /*
2426 * Constructors are not allowed to allocate memory from the same
2427 * cache which they are a constructor for. Otherwise, deadlock.
2428 * They must also be threaded.
2429 */
2430 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2431 kasan_unpoison_object_data(cachep,
2432 objp + obj_offset(cachep));
2433 cachep->ctor(objp + obj_offset(cachep));
2434 kasan_poison_object_data(
2435 cachep, objp + obj_offset(cachep));
2436 }
2437
2438 if (cachep->flags & SLAB_RED_ZONE) {
2439 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2440 slab_error(cachep, "constructor overwrote the end of an object");
2441 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2442 slab_error(cachep, "constructor overwrote the start of an object");
2443 }
2444 /* need to poison the objs? */
2445 if (cachep->flags & SLAB_POISON) {
2446 poison_obj(cachep, objp, POISON_FREE);
2447 slab_kernel_map(cachep, objp, 0, 0);
2448 }
2449 }
2450 #endif
2451 }
2452
2453 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2454 /* Hold information during a freelist initialization */
2455 union freelist_init_state {
2456 struct {
2457 unsigned int pos;
2458 unsigned int *list;
2459 unsigned int count;
2460 };
2461 struct rnd_state rnd_state;
2462 };
2463
2464 /*
2465 * Initialize the state based on the randomization methode available.
2466 * return true if the pre-computed list is available, false otherwize.
2467 */
2468 static bool freelist_state_initialize(union freelist_init_state *state,
2469 struct kmem_cache *cachep,
2470 unsigned int count)
2471 {
2472 bool ret;
2473 unsigned int rand;
2474
2475 /* Use best entropy available to define a random shift */
2476 rand = get_random_int();
2477
2478 /* Use a random state if the pre-computed list is not available */
2479 if (!cachep->random_seq) {
2480 prandom_seed_state(&state->rnd_state, rand);
2481 ret = false;
2482 } else {
2483 state->list = cachep->random_seq;
2484 state->count = count;
2485 state->pos = rand % count;
2486 ret = true;
2487 }
2488 return ret;
2489 }
2490
2491 /* Get the next entry on the list and randomize it using a random shift */
2492 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2493 {
2494 if (state->pos >= state->count)
2495 state->pos = 0;
2496 return state->list[state->pos++];
2497 }
2498
2499 /* Swap two freelist entries */
2500 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2501 {
2502 swap(((freelist_idx_t *)page->freelist)[a],
2503 ((freelist_idx_t *)page->freelist)[b]);
2504 }
2505
2506 /*
2507 * Shuffle the freelist initialization state based on pre-computed lists.
2508 * return true if the list was successfully shuffled, false otherwise.
2509 */
2510 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2511 {
2512 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2513 union freelist_init_state state;
2514 bool precomputed;
2515
2516 if (count < 2)
2517 return false;
2518
2519 precomputed = freelist_state_initialize(&state, cachep, count);
2520
2521 /* Take a random entry as the objfreelist */
2522 if (OBJFREELIST_SLAB(cachep)) {
2523 if (!precomputed)
2524 objfreelist = count - 1;
2525 else
2526 objfreelist = next_random_slot(&state);
2527 page->freelist = index_to_obj(cachep, page, objfreelist) +
2528 obj_offset(cachep);
2529 count--;
2530 }
2531
2532 /*
2533 * On early boot, generate the list dynamically.
2534 * Later use a pre-computed list for speed.
2535 */
2536 if (!precomputed) {
2537 for (i = 0; i < count; i++)
2538 set_free_obj(page, i, i);
2539
2540 /* Fisher-Yates shuffle */
2541 for (i = count - 1; i > 0; i--) {
2542 rand = prandom_u32_state(&state.rnd_state);
2543 rand %= (i + 1);
2544 swap_free_obj(page, i, rand);
2545 }
2546 } else {
2547 for (i = 0; i < count; i++)
2548 set_free_obj(page, i, next_random_slot(&state));
2549 }
2550
2551 if (OBJFREELIST_SLAB(cachep))
2552 set_free_obj(page, cachep->num - 1, objfreelist);
2553
2554 return true;
2555 }
2556 #else
2557 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2558 struct page *page)
2559 {
2560 return false;
2561 }
2562 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2563
2564 static void cache_init_objs(struct kmem_cache *cachep,
2565 struct page *page)
2566 {
2567 int i;
2568 void *objp;
2569 bool shuffled;
2570
2571 cache_init_objs_debug(cachep, page);
2572
2573 /* Try to randomize the freelist if enabled */
2574 shuffled = shuffle_freelist(cachep, page);
2575
2576 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2577 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2578 obj_offset(cachep);
2579 }
2580
2581 for (i = 0; i < cachep->num; i++) {
2582 objp = index_to_obj(cachep, page, i);
2583 kasan_init_slab_obj(cachep, objp);
2584
2585 /* constructor could break poison info */
2586 if (DEBUG == 0 && cachep->ctor) {
2587 kasan_unpoison_object_data(cachep, objp);
2588 cachep->ctor(objp);
2589 kasan_poison_object_data(cachep, objp);
2590 }
2591
2592 if (!shuffled)
2593 set_free_obj(page, i, i);
2594 }
2595 }
2596
2597 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2598 {
2599 void *objp;
2600
2601 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2602 page->active++;
2603
2604 #if DEBUG
2605 if (cachep->flags & SLAB_STORE_USER)
2606 set_store_user_dirty(cachep);
2607 #endif
2608
2609 return objp;
2610 }
2611
2612 static void slab_put_obj(struct kmem_cache *cachep,
2613 struct page *page, void *objp)
2614 {
2615 unsigned int objnr = obj_to_index(cachep, page, objp);
2616 #if DEBUG
2617 unsigned int i;
2618
2619 /* Verify double free bug */
2620 for (i = page->active; i < cachep->num; i++) {
2621 if (get_free_obj(page, i) == objnr) {
2622 pr_err("slab: double free detected in cache '%s', objp %p\n",
2623 cachep->name, objp);
2624 BUG();
2625 }
2626 }
2627 #endif
2628 page->active--;
2629 if (!page->freelist)
2630 page->freelist = objp + obj_offset(cachep);
2631
2632 set_free_obj(page, page->active, objnr);
2633 }
2634
2635 /*
2636 * Map pages beginning at addr to the given cache and slab. This is required
2637 * for the slab allocator to be able to lookup the cache and slab of a
2638 * virtual address for kfree, ksize, and slab debugging.
2639 */
2640 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2641 void *freelist)
2642 {
2643 page->slab_cache = cache;
2644 page->freelist = freelist;
2645 }
2646
2647 /*
2648 * Grow (by 1) the number of slabs within a cache. This is called by
2649 * kmem_cache_alloc() when there are no active objs left in a cache.
2650 */
2651 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2652 gfp_t flags, int nodeid)
2653 {
2654 void *freelist;
2655 size_t offset;
2656 gfp_t local_flags;
2657 int page_node;
2658 struct kmem_cache_node *n;
2659 struct page *page;
2660
2661 /*
2662 * Be lazy and only check for valid flags here, keeping it out of the
2663 * critical path in kmem_cache_alloc().
2664 */
2665 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2666 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2667 flags &= ~GFP_SLAB_BUG_MASK;
2668 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2669 invalid_mask, &invalid_mask, flags, &flags);
2670 dump_stack();
2671 }
2672 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2673
2674 check_irq_off();
2675 if (gfpflags_allow_blocking(local_flags))
2676 local_irq_enable();
2677
2678 /*
2679 * Get mem for the objs. Attempt to allocate a physical page from
2680 * 'nodeid'.
2681 */
2682 page = kmem_getpages(cachep, local_flags, nodeid);
2683 if (!page)
2684 goto failed;
2685
2686 page_node = page_to_nid(page);
2687 n = get_node(cachep, page_node);
2688
2689 /* Get colour for the slab, and cal the next value. */
2690 n->colour_next++;
2691 if (n->colour_next >= cachep->colour)
2692 n->colour_next = 0;
2693
2694 offset = n->colour_next;
2695 if (offset >= cachep->colour)
2696 offset = 0;
2697
2698 offset *= cachep->colour_off;
2699
2700 /* Get slab management. */
2701 freelist = alloc_slabmgmt(cachep, page, offset,
2702 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2703 if (OFF_SLAB(cachep) && !freelist)
2704 goto opps1;
2705
2706 slab_map_pages(cachep, page, freelist);
2707
2708 kasan_poison_slab(page);
2709 cache_init_objs(cachep, page);
2710
2711 if (gfpflags_allow_blocking(local_flags))
2712 local_irq_disable();
2713
2714 return page;
2715
2716 opps1:
2717 kmem_freepages(cachep, page);
2718 failed:
2719 if (gfpflags_allow_blocking(local_flags))
2720 local_irq_disable();
2721 return NULL;
2722 }
2723
2724 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2725 {
2726 struct kmem_cache_node *n;
2727 void *list = NULL;
2728
2729 check_irq_off();
2730
2731 if (!page)
2732 return;
2733
2734 INIT_LIST_HEAD(&page->lru);
2735 n = get_node(cachep, page_to_nid(page));
2736
2737 spin_lock(&n->list_lock);
2738 n->total_slabs++;
2739 if (!page->active) {
2740 list_add_tail(&page->lru, &(n->slabs_free));
2741 n->free_slabs++;
2742 } else
2743 fixup_slab_list(cachep, n, page, &list);
2744
2745 STATS_INC_GROWN(cachep);
2746 n->free_objects += cachep->num - page->active;
2747 spin_unlock(&n->list_lock);
2748
2749 fixup_objfreelist_debug(cachep, &list);
2750 }
2751
2752 #if DEBUG
2753
2754 /*
2755 * Perform extra freeing checks:
2756 * - detect bad pointers.
2757 * - POISON/RED_ZONE checking
2758 */
2759 static void kfree_debugcheck(const void *objp)
2760 {
2761 if (!virt_addr_valid(objp)) {
2762 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2763 (unsigned long)objp);
2764 BUG();
2765 }
2766 }
2767
2768 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2769 {
2770 unsigned long long redzone1, redzone2;
2771
2772 redzone1 = *dbg_redzone1(cache, obj);
2773 redzone2 = *dbg_redzone2(cache, obj);
2774
2775 /*
2776 * Redzone is ok.
2777 */
2778 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2779 return;
2780
2781 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2782 slab_error(cache, "double free detected");
2783 else
2784 slab_error(cache, "memory outside object was overwritten");
2785
2786 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2787 obj, redzone1, redzone2);
2788 }
2789
2790 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2791 unsigned long caller)
2792 {
2793 unsigned int objnr;
2794 struct page *page;
2795
2796 BUG_ON(virt_to_cache(objp) != cachep);
2797
2798 objp -= obj_offset(cachep);
2799 kfree_debugcheck(objp);
2800 page = virt_to_head_page(objp);
2801
2802 if (cachep->flags & SLAB_RED_ZONE) {
2803 verify_redzone_free(cachep, objp);
2804 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2805 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2806 }
2807 if (cachep->flags & SLAB_STORE_USER) {
2808 set_store_user_dirty(cachep);
2809 *dbg_userword(cachep, objp) = (void *)caller;
2810 }
2811
2812 objnr = obj_to_index(cachep, page, objp);
2813
2814 BUG_ON(objnr >= cachep->num);
2815 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2816
2817 if (cachep->flags & SLAB_POISON) {
2818 poison_obj(cachep, objp, POISON_FREE);
2819 slab_kernel_map(cachep, objp, 0, caller);
2820 }
2821 return objp;
2822 }
2823
2824 #else
2825 #define kfree_debugcheck(x) do { } while(0)
2826 #define cache_free_debugcheck(x,objp,z) (objp)
2827 #endif
2828
2829 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2830 void **list)
2831 {
2832 #if DEBUG
2833 void *next = *list;
2834 void *objp;
2835
2836 while (next) {
2837 objp = next - obj_offset(cachep);
2838 next = *(void **)next;
2839 poison_obj(cachep, objp, POISON_FREE);
2840 }
2841 #endif
2842 }
2843
2844 static inline void fixup_slab_list(struct kmem_cache *cachep,
2845 struct kmem_cache_node *n, struct page *page,
2846 void **list)
2847 {
2848 /* move slabp to correct slabp list: */
2849 list_del(&page->lru);
2850 if (page->active == cachep->num) {
2851 list_add(&page->lru, &n->slabs_full);
2852 if (OBJFREELIST_SLAB(cachep)) {
2853 #if DEBUG
2854 /* Poisoning will be done without holding the lock */
2855 if (cachep->flags & SLAB_POISON) {
2856 void **objp = page->freelist;
2857
2858 *objp = *list;
2859 *list = objp;
2860 }
2861 #endif
2862 page->freelist = NULL;
2863 }
2864 } else
2865 list_add(&page->lru, &n->slabs_partial);
2866 }
2867
2868 /* Try to find non-pfmemalloc slab if needed */
2869 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2870 struct page *page, bool pfmemalloc)
2871 {
2872 if (!page)
2873 return NULL;
2874
2875 if (pfmemalloc)
2876 return page;
2877
2878 if (!PageSlabPfmemalloc(page))
2879 return page;
2880
2881 /* No need to keep pfmemalloc slab if we have enough free objects */
2882 if (n->free_objects > n->free_limit) {
2883 ClearPageSlabPfmemalloc(page);
2884 return page;
2885 }
2886
2887 /* Move pfmemalloc slab to the end of list to speed up next search */
2888 list_del(&page->lru);
2889 if (!page->active) {
2890 list_add_tail(&page->lru, &n->slabs_free);
2891 n->free_slabs++;
2892 } else
2893 list_add_tail(&page->lru, &n->slabs_partial);
2894
2895 list_for_each_entry(page, &n->slabs_partial, lru) {
2896 if (!PageSlabPfmemalloc(page))
2897 return page;
2898 }
2899
2900 n->free_touched = 1;
2901 list_for_each_entry(page, &n->slabs_free, lru) {
2902 if (!PageSlabPfmemalloc(page)) {
2903 n->free_slabs--;
2904 return page;
2905 }
2906 }
2907
2908 return NULL;
2909 }
2910
2911 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2912 {
2913 struct page *page;
2914
2915 assert_spin_locked(&n->list_lock);
2916 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2917 if (!page) {
2918 n->free_touched = 1;
2919 page = list_first_entry_or_null(&n->slabs_free, struct page,
2920 lru);
2921 if (page)
2922 n->free_slabs--;
2923 }
2924
2925 if (sk_memalloc_socks())
2926 page = get_valid_first_slab(n, page, pfmemalloc);
2927
2928 return page;
2929 }
2930
2931 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2932 struct kmem_cache_node *n, gfp_t flags)
2933 {
2934 struct page *page;
2935 void *obj;
2936 void *list = NULL;
2937
2938 if (!gfp_pfmemalloc_allowed(flags))
2939 return NULL;
2940
2941 spin_lock(&n->list_lock);
2942 page = get_first_slab(n, true);
2943 if (!page) {
2944 spin_unlock(&n->list_lock);
2945 return NULL;
2946 }
2947
2948 obj = slab_get_obj(cachep, page);
2949 n->free_objects--;
2950
2951 fixup_slab_list(cachep, n, page, &list);
2952
2953 spin_unlock(&n->list_lock);
2954 fixup_objfreelist_debug(cachep, &list);
2955
2956 return obj;
2957 }
2958
2959 /*
2960 * Slab list should be fixed up by fixup_slab_list() for existing slab
2961 * or cache_grow_end() for new slab
2962 */
2963 static __always_inline int alloc_block(struct kmem_cache *cachep,
2964 struct array_cache *ac, struct page *page, int batchcount)
2965 {
2966 /*
2967 * There must be at least one object available for
2968 * allocation.
2969 */
2970 BUG_ON(page->active >= cachep->num);
2971
2972 while (page->active < cachep->num && batchcount--) {
2973 STATS_INC_ALLOCED(cachep);
2974 STATS_INC_ACTIVE(cachep);
2975 STATS_SET_HIGH(cachep);
2976
2977 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2978 }
2979
2980 return batchcount;
2981 }
2982
2983 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2984 {
2985 int batchcount;
2986 struct kmem_cache_node *n;
2987 struct array_cache *ac, *shared;
2988 int node;
2989 void *list = NULL;
2990 struct page *page;
2991
2992 check_irq_off();
2993 node = numa_mem_id();
2994
2995 ac = cpu_cache_get(cachep);
2996 batchcount = ac->batchcount;
2997 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2998 /*
2999 * If there was little recent activity on this cache, then
3000 * perform only a partial refill. Otherwise we could generate
3001 * refill bouncing.
3002 */
3003 batchcount = BATCHREFILL_LIMIT;
3004 }
3005 n = get_node(cachep, node);
3006
3007 BUG_ON(ac->avail > 0 || !n);
3008 shared = READ_ONCE(n->shared);
3009 if (!n->free_objects && (!shared || !shared->avail))
3010 goto direct_grow;
3011
3012 spin_lock(&n->list_lock);
3013 shared = READ_ONCE(n->shared);
3014
3015 /* See if we can refill from the shared array */
3016 if (shared && transfer_objects(ac, shared, batchcount)) {
3017 shared->touched = 1;
3018 goto alloc_done;
3019 }
3020
3021 while (batchcount > 0) {
3022 /* Get slab alloc is to come from. */
3023 page = get_first_slab(n, false);
3024 if (!page)
3025 goto must_grow;
3026
3027 check_spinlock_acquired(cachep);
3028
3029 batchcount = alloc_block(cachep, ac, page, batchcount);
3030 fixup_slab_list(cachep, n, page, &list);
3031 }
3032
3033 must_grow:
3034 n->free_objects -= ac->avail;
3035 alloc_done:
3036 spin_unlock(&n->list_lock);
3037 fixup_objfreelist_debug(cachep, &list);
3038
3039 direct_grow:
3040 if (unlikely(!ac->avail)) {
3041 /* Check if we can use obj in pfmemalloc slab */
3042 if (sk_memalloc_socks()) {
3043 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3044
3045 if (obj)
3046 return obj;
3047 }
3048
3049 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3050
3051 /*
3052 * cache_grow_begin() can reenable interrupts,
3053 * then ac could change.
3054 */
3055 ac = cpu_cache_get(cachep);
3056 if (!ac->avail && page)
3057 alloc_block(cachep, ac, page, batchcount);
3058 cache_grow_end(cachep, page);
3059
3060 if (!ac->avail)
3061 return NULL;
3062 }
3063 ac->touched = 1;
3064
3065 return ac->entry[--ac->avail];
3066 }
3067
3068 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3069 gfp_t flags)
3070 {
3071 might_sleep_if(gfpflags_allow_blocking(flags));
3072 }
3073
3074 #if DEBUG
3075 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3076 gfp_t flags, void *objp, unsigned long caller)
3077 {
3078 if (!objp)
3079 return objp;
3080 if (cachep->flags & SLAB_POISON) {
3081 check_poison_obj(cachep, objp);
3082 slab_kernel_map(cachep, objp, 1, 0);
3083 poison_obj(cachep, objp, POISON_INUSE);
3084 }
3085 if (cachep->flags & SLAB_STORE_USER)
3086 *dbg_userword(cachep, objp) = (void *)caller;
3087
3088 if (cachep->flags & SLAB_RED_ZONE) {
3089 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3090 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3091 slab_error(cachep, "double free, or memory outside object was overwritten");
3092 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3093 objp, *dbg_redzone1(cachep, objp),
3094 *dbg_redzone2(cachep, objp));
3095 }
3096 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3097 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3098 }
3099
3100 objp += obj_offset(cachep);
3101 if (cachep->ctor && cachep->flags & SLAB_POISON)
3102 cachep->ctor(objp);
3103 if (ARCH_SLAB_MINALIGN &&
3104 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3105 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3106 objp, (int)ARCH_SLAB_MINALIGN);
3107 }
3108 return objp;
3109 }
3110 #else
3111 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3112 #endif
3113
3114 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3115 {
3116 void *objp;
3117 struct array_cache *ac;
3118
3119 check_irq_off();
3120
3121 ac = cpu_cache_get(cachep);
3122 if (likely(ac->avail)) {
3123 ac->touched = 1;
3124 objp = ac->entry[--ac->avail];
3125
3126 STATS_INC_ALLOCHIT(cachep);
3127 goto out;
3128 }
3129
3130 STATS_INC_ALLOCMISS(cachep);
3131 objp = cache_alloc_refill(cachep, flags);
3132 /*
3133 * the 'ac' may be updated by cache_alloc_refill(),
3134 * and kmemleak_erase() requires its correct value.
3135 */
3136 ac = cpu_cache_get(cachep);
3137
3138 out:
3139 /*
3140 * To avoid a false negative, if an object that is in one of the
3141 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3142 * treat the array pointers as a reference to the object.
3143 */
3144 if (objp)
3145 kmemleak_erase(&ac->entry[ac->avail]);
3146 return objp;
3147 }
3148
3149 #ifdef CONFIG_NUMA
3150 /*
3151 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3152 *
3153 * If we are in_interrupt, then process context, including cpusets and
3154 * mempolicy, may not apply and should not be used for allocation policy.
3155 */
3156 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3157 {
3158 int nid_alloc, nid_here;
3159
3160 if (in_interrupt() || (flags & __GFP_THISNODE))
3161 return NULL;
3162 nid_alloc = nid_here = numa_mem_id();
3163 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3164 nid_alloc = cpuset_slab_spread_node();
3165 else if (current->mempolicy)
3166 nid_alloc = mempolicy_slab_node();
3167 if (nid_alloc != nid_here)
3168 return ____cache_alloc_node(cachep, flags, nid_alloc);
3169 return NULL;
3170 }
3171
3172 /*
3173 * Fallback function if there was no memory available and no objects on a
3174 * certain node and fall back is permitted. First we scan all the
3175 * available node for available objects. If that fails then we
3176 * perform an allocation without specifying a node. This allows the page
3177 * allocator to do its reclaim / fallback magic. We then insert the
3178 * slab into the proper nodelist and then allocate from it.
3179 */
3180 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3181 {
3182 struct zonelist *zonelist;
3183 struct zoneref *z;
3184 struct zone *zone;
3185 enum zone_type high_zoneidx = gfp_zone(flags);
3186 void *obj = NULL;
3187 struct page *page;
3188 int nid;
3189 unsigned int cpuset_mems_cookie;
3190
3191 if (flags & __GFP_THISNODE)
3192 return NULL;
3193
3194 retry_cpuset:
3195 cpuset_mems_cookie = read_mems_allowed_begin();
3196 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3197
3198 retry:
3199 /*
3200 * Look through allowed nodes for objects available
3201 * from existing per node queues.
3202 */
3203 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3204 nid = zone_to_nid(zone);
3205
3206 if (cpuset_zone_allowed(zone, flags) &&
3207 get_node(cache, nid) &&
3208 get_node(cache, nid)->free_objects) {
3209 obj = ____cache_alloc_node(cache,
3210 gfp_exact_node(flags), nid);
3211 if (obj)
3212 break;
3213 }
3214 }
3215
3216 if (!obj) {
3217 /*
3218 * This allocation will be performed within the constraints
3219 * of the current cpuset / memory policy requirements.
3220 * We may trigger various forms of reclaim on the allowed
3221 * set and go into memory reserves if necessary.
3222 */
3223 page = cache_grow_begin(cache, flags, numa_mem_id());
3224 cache_grow_end(cache, page);
3225 if (page) {
3226 nid = page_to_nid(page);
3227 obj = ____cache_alloc_node(cache,
3228 gfp_exact_node(flags), nid);
3229
3230 /*
3231 * Another processor may allocate the objects in
3232 * the slab since we are not holding any locks.
3233 */
3234 if (!obj)
3235 goto retry;
3236 }
3237 }
3238
3239 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3240 goto retry_cpuset;
3241 return obj;
3242 }
3243
3244 /*
3245 * A interface to enable slab creation on nodeid
3246 */
3247 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3248 int nodeid)
3249 {
3250 struct page *page;
3251 struct kmem_cache_node *n;
3252 void *obj = NULL;
3253 void *list = NULL;
3254
3255 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3256 n = get_node(cachep, nodeid);
3257 BUG_ON(!n);
3258
3259 check_irq_off();
3260 spin_lock(&n->list_lock);
3261 page = get_first_slab(n, false);
3262 if (!page)
3263 goto must_grow;
3264
3265 check_spinlock_acquired_node(cachep, nodeid);
3266
3267 STATS_INC_NODEALLOCS(cachep);
3268 STATS_INC_ACTIVE(cachep);
3269 STATS_SET_HIGH(cachep);
3270
3271 BUG_ON(page->active == cachep->num);
3272
3273 obj = slab_get_obj(cachep, page);
3274 n->free_objects--;
3275
3276 fixup_slab_list(cachep, n, page, &list);
3277
3278 spin_unlock(&n->list_lock);
3279 fixup_objfreelist_debug(cachep, &list);
3280 return obj;
3281
3282 must_grow:
3283 spin_unlock(&n->list_lock);
3284 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3285 if (page) {
3286 /* This slab isn't counted yet so don't update free_objects */
3287 obj = slab_get_obj(cachep, page);
3288 }
3289 cache_grow_end(cachep, page);
3290
3291 return obj ? obj : fallback_alloc(cachep, flags);
3292 }
3293
3294 static __always_inline void *
3295 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3296 unsigned long caller)
3297 {
3298 unsigned long save_flags;
3299 void *ptr;
3300 int slab_node = numa_mem_id();
3301
3302 flags &= gfp_allowed_mask;
3303 cachep = slab_pre_alloc_hook(cachep, flags);
3304 if (unlikely(!cachep))
3305 return NULL;
3306
3307 cache_alloc_debugcheck_before(cachep, flags);
3308 local_irq_save(save_flags);
3309
3310 if (nodeid == NUMA_NO_NODE)
3311 nodeid = slab_node;
3312
3313 if (unlikely(!get_node(cachep, nodeid))) {
3314 /* Node not bootstrapped yet */
3315 ptr = fallback_alloc(cachep, flags);
3316 goto out;
3317 }
3318
3319 if (nodeid == slab_node) {
3320 /*
3321 * Use the locally cached objects if possible.
3322 * However ____cache_alloc does not allow fallback
3323 * to other nodes. It may fail while we still have
3324 * objects on other nodes available.
3325 */
3326 ptr = ____cache_alloc(cachep, flags);
3327 if (ptr)
3328 goto out;
3329 }
3330 /* ___cache_alloc_node can fall back to other nodes */
3331 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3332 out:
3333 local_irq_restore(save_flags);
3334 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3335
3336 if (unlikely(flags & __GFP_ZERO) && ptr)
3337 memset(ptr, 0, cachep->object_size);
3338
3339 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3340 return ptr;
3341 }
3342
3343 static __always_inline void *
3344 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3345 {
3346 void *objp;
3347
3348 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3349 objp = alternate_node_alloc(cache, flags);
3350 if (objp)
3351 goto out;
3352 }
3353 objp = ____cache_alloc(cache, flags);
3354
3355 /*
3356 * We may just have run out of memory on the local node.
3357 * ____cache_alloc_node() knows how to locate memory on other nodes
3358 */
3359 if (!objp)
3360 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3361
3362 out:
3363 return objp;
3364 }
3365 #else
3366
3367 static __always_inline void *
3368 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3369 {
3370 return ____cache_alloc(cachep, flags);
3371 }
3372
3373 #endif /* CONFIG_NUMA */
3374
3375 static __always_inline void *
3376 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3377 {
3378 unsigned long save_flags;
3379 void *objp;
3380
3381 flags &= gfp_allowed_mask;
3382 cachep = slab_pre_alloc_hook(cachep, flags);
3383 if (unlikely(!cachep))
3384 return NULL;
3385
3386 cache_alloc_debugcheck_before(cachep, flags);
3387 local_irq_save(save_flags);
3388 objp = __do_cache_alloc(cachep, flags);
3389 local_irq_restore(save_flags);
3390 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3391 prefetchw(objp);
3392
3393 if (unlikely(flags & __GFP_ZERO) && objp)
3394 memset(objp, 0, cachep->object_size);
3395
3396 slab_post_alloc_hook(cachep, flags, 1, &objp);
3397 return objp;
3398 }
3399
3400 /*
3401 * Caller needs to acquire correct kmem_cache_node's list_lock
3402 * @list: List of detached free slabs should be freed by caller
3403 */
3404 static void free_block(struct kmem_cache *cachep, void **objpp,
3405 int nr_objects, int node, struct list_head *list)
3406 {
3407 int i;
3408 struct kmem_cache_node *n = get_node(cachep, node);
3409 struct page *page;
3410
3411 n->free_objects += nr_objects;
3412
3413 for (i = 0; i < nr_objects; i++) {
3414 void *objp;
3415 struct page *page;
3416
3417 objp = objpp[i];
3418
3419 page = virt_to_head_page(objp);
3420 list_del(&page->lru);
3421 check_spinlock_acquired_node(cachep, node);
3422 slab_put_obj(cachep, page, objp);
3423 STATS_DEC_ACTIVE(cachep);
3424
3425 /* fixup slab chains */
3426 if (page->active == 0) {
3427 list_add(&page->lru, &n->slabs_free);
3428 n->free_slabs++;
3429 } else {
3430 /* Unconditionally move a slab to the end of the
3431 * partial list on free - maximum time for the
3432 * other objects to be freed, too.
3433 */
3434 list_add_tail(&page->lru, &n->slabs_partial);
3435 }
3436 }
3437
3438 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3439 n->free_objects -= cachep->num;
3440
3441 page = list_last_entry(&n->slabs_free, struct page, lru);
3442 list_move(&page->lru, list);
3443 n->free_slabs--;
3444 n->total_slabs--;
3445 }
3446 }
3447
3448 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3449 {
3450 int batchcount;
3451 struct kmem_cache_node *n;
3452 int node = numa_mem_id();
3453 LIST_HEAD(list);
3454
3455 batchcount = ac->batchcount;
3456
3457 check_irq_off();
3458 n = get_node(cachep, node);
3459 spin_lock(&n->list_lock);
3460 if (n->shared) {
3461 struct array_cache *shared_array = n->shared;
3462 int max = shared_array->limit - shared_array->avail;
3463 if (max) {
3464 if (batchcount > max)
3465 batchcount = max;
3466 memcpy(&(shared_array->entry[shared_array->avail]),
3467 ac->entry, sizeof(void *) * batchcount);
3468 shared_array->avail += batchcount;
3469 goto free_done;
3470 }
3471 }
3472
3473 free_block(cachep, ac->entry, batchcount, node, &list);
3474 free_done:
3475 #if STATS
3476 {
3477 int i = 0;
3478 struct page *page;
3479
3480 list_for_each_entry(page, &n->slabs_free, lru) {
3481 BUG_ON(page->active);
3482
3483 i++;
3484 }
3485 STATS_SET_FREEABLE(cachep, i);
3486 }
3487 #endif
3488 spin_unlock(&n->list_lock);
3489 slabs_destroy(cachep, &list);
3490 ac->avail -= batchcount;
3491 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3492 }
3493
3494 /*
3495 * Release an obj back to its cache. If the obj has a constructed state, it must
3496 * be in this state _before_ it is released. Called with disabled ints.
3497 */
3498 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3499 unsigned long caller)
3500 {
3501 /* Put the object into the quarantine, don't touch it for now. */
3502 if (kasan_slab_free(cachep, objp))
3503 return;
3504
3505 ___cache_free(cachep, objp, caller);
3506 }
3507
3508 void ___cache_free(struct kmem_cache *cachep, void *objp,
3509 unsigned long caller)
3510 {
3511 struct array_cache *ac = cpu_cache_get(cachep);
3512
3513 check_irq_off();
3514 kmemleak_free_recursive(objp, cachep->flags);
3515 objp = cache_free_debugcheck(cachep, objp, caller);
3516
3517 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3518
3519 /*
3520 * Skip calling cache_free_alien() when the platform is not numa.
3521 * This will avoid cache misses that happen while accessing slabp (which
3522 * is per page memory reference) to get nodeid. Instead use a global
3523 * variable to skip the call, which is mostly likely to be present in
3524 * the cache.
3525 */
3526 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3527 return;
3528
3529 if (ac->avail < ac->limit) {
3530 STATS_INC_FREEHIT(cachep);
3531 } else {
3532 STATS_INC_FREEMISS(cachep);
3533 cache_flusharray(cachep, ac);
3534 }
3535
3536 if (sk_memalloc_socks()) {
3537 struct page *page = virt_to_head_page(objp);
3538
3539 if (unlikely(PageSlabPfmemalloc(page))) {
3540 cache_free_pfmemalloc(cachep, page, objp);
3541 return;
3542 }
3543 }
3544
3545 ac->entry[ac->avail++] = objp;
3546 }
3547
3548 /**
3549 * kmem_cache_alloc - Allocate an object
3550 * @cachep: The cache to allocate from.
3551 * @flags: See kmalloc().
3552 *
3553 * Allocate an object from this cache. The flags are only relevant
3554 * if the cache has no available objects.
3555 */
3556 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3557 {
3558 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3559
3560 kasan_slab_alloc(cachep, ret, flags);
3561 trace_kmem_cache_alloc(_RET_IP_, ret,
3562 cachep->object_size, cachep->size, flags);
3563
3564 return ret;
3565 }
3566 EXPORT_SYMBOL(kmem_cache_alloc);
3567
3568 static __always_inline void
3569 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3570 size_t size, void **p, unsigned long caller)
3571 {
3572 size_t i;
3573
3574 for (i = 0; i < size; i++)
3575 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3576 }
3577
3578 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3579 void **p)
3580 {
3581 size_t i;
3582
3583 s = slab_pre_alloc_hook(s, flags);
3584 if (!s)
3585 return 0;
3586
3587 cache_alloc_debugcheck_before(s, flags);
3588
3589 local_irq_disable();
3590 for (i = 0; i < size; i++) {
3591 void *objp = __do_cache_alloc(s, flags);
3592
3593 if (unlikely(!objp))
3594 goto error;
3595 p[i] = objp;
3596 }
3597 local_irq_enable();
3598
3599 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3600
3601 /* Clear memory outside IRQ disabled section */
3602 if (unlikely(flags & __GFP_ZERO))
3603 for (i = 0; i < size; i++)
3604 memset(p[i], 0, s->object_size);
3605
3606 slab_post_alloc_hook(s, flags, size, p);
3607 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3608 return size;
3609 error:
3610 local_irq_enable();
3611 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3612 slab_post_alloc_hook(s, flags, i, p);
3613 __kmem_cache_free_bulk(s, i, p);
3614 return 0;
3615 }
3616 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3617
3618 #ifdef CONFIG_TRACING
3619 void *
3620 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3621 {
3622 void *ret;
3623
3624 ret = slab_alloc(cachep, flags, _RET_IP_);
3625
3626 kasan_kmalloc(cachep, ret, size, flags);
3627 trace_kmalloc(_RET_IP_, ret,
3628 size, cachep->size, flags);
3629 return ret;
3630 }
3631 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3632 #endif
3633
3634 #ifdef CONFIG_NUMA
3635 /**
3636 * kmem_cache_alloc_node - Allocate an object on the specified node
3637 * @cachep: The cache to allocate from.
3638 * @flags: See kmalloc().
3639 * @nodeid: node number of the target node.
3640 *
3641 * Identical to kmem_cache_alloc but it will allocate memory on the given
3642 * node, which can improve the performance for cpu bound structures.
3643 *
3644 * Fallback to other node is possible if __GFP_THISNODE is not set.
3645 */
3646 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3647 {
3648 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3649
3650 kasan_slab_alloc(cachep, ret, flags);
3651 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3652 cachep->object_size, cachep->size,
3653 flags, nodeid);
3654
3655 return ret;
3656 }
3657 EXPORT_SYMBOL(kmem_cache_alloc_node);
3658
3659 #ifdef CONFIG_TRACING
3660 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3661 gfp_t flags,
3662 int nodeid,
3663 size_t size)
3664 {
3665 void *ret;
3666
3667 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3668
3669 kasan_kmalloc(cachep, ret, size, flags);
3670 trace_kmalloc_node(_RET_IP_, ret,
3671 size, cachep->size,
3672 flags, nodeid);
3673 return ret;
3674 }
3675 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3676 #endif
3677
3678 static __always_inline void *
3679 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3680 {
3681 struct kmem_cache *cachep;
3682 void *ret;
3683
3684 cachep = kmalloc_slab(size, flags);
3685 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3686 return cachep;
3687 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3688 kasan_kmalloc(cachep, ret, size, flags);
3689
3690 return ret;
3691 }
3692
3693 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3694 {
3695 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3696 }
3697 EXPORT_SYMBOL(__kmalloc_node);
3698
3699 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3700 int node, unsigned long caller)
3701 {
3702 return __do_kmalloc_node(size, flags, node, caller);
3703 }
3704 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3705 #endif /* CONFIG_NUMA */
3706
3707 /**
3708 * __do_kmalloc - allocate memory
3709 * @size: how many bytes of memory are required.
3710 * @flags: the type of memory to allocate (see kmalloc).
3711 * @caller: function caller for debug tracking of the caller
3712 */
3713 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3714 unsigned long caller)
3715 {
3716 struct kmem_cache *cachep;
3717 void *ret;
3718
3719 cachep = kmalloc_slab(size, flags);
3720 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3721 return cachep;
3722 ret = slab_alloc(cachep, flags, caller);
3723
3724 kasan_kmalloc(cachep, ret, size, flags);
3725 trace_kmalloc(caller, ret,
3726 size, cachep->size, flags);
3727
3728 return ret;
3729 }
3730
3731 void *__kmalloc(size_t size, gfp_t flags)
3732 {
3733 return __do_kmalloc(size, flags, _RET_IP_);
3734 }
3735 EXPORT_SYMBOL(__kmalloc);
3736
3737 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3738 {
3739 return __do_kmalloc(size, flags, caller);
3740 }
3741 EXPORT_SYMBOL(__kmalloc_track_caller);
3742
3743 /**
3744 * kmem_cache_free - Deallocate an object
3745 * @cachep: The cache the allocation was from.
3746 * @objp: The previously allocated object.
3747 *
3748 * Free an object which was previously allocated from this
3749 * cache.
3750 */
3751 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3752 {
3753 unsigned long flags;
3754 cachep = cache_from_obj(cachep, objp);
3755 if (!cachep)
3756 return;
3757
3758 local_irq_save(flags);
3759 debug_check_no_locks_freed(objp, cachep->object_size);
3760 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3761 debug_check_no_obj_freed(objp, cachep->object_size);
3762 __cache_free(cachep, objp, _RET_IP_);
3763 local_irq_restore(flags);
3764
3765 trace_kmem_cache_free(_RET_IP_, objp);
3766 }
3767 EXPORT_SYMBOL(kmem_cache_free);
3768
3769 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3770 {
3771 struct kmem_cache *s;
3772 size_t i;
3773
3774 local_irq_disable();
3775 for (i = 0; i < size; i++) {
3776 void *objp = p[i];
3777
3778 if (!orig_s) /* called via kfree_bulk */
3779 s = virt_to_cache(objp);
3780 else
3781 s = cache_from_obj(orig_s, objp);
3782
3783 debug_check_no_locks_freed(objp, s->object_size);
3784 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3785 debug_check_no_obj_freed(objp, s->object_size);
3786
3787 __cache_free(s, objp, _RET_IP_);
3788 }
3789 local_irq_enable();
3790
3791 /* FIXME: add tracing */
3792 }
3793 EXPORT_SYMBOL(kmem_cache_free_bulk);
3794
3795 /**
3796 * kfree - free previously allocated memory
3797 * @objp: pointer returned by kmalloc.
3798 *
3799 * If @objp is NULL, no operation is performed.
3800 *
3801 * Don't free memory not originally allocated by kmalloc()
3802 * or you will run into trouble.
3803 */
3804 void kfree(const void *objp)
3805 {
3806 struct kmem_cache *c;
3807 unsigned long flags;
3808
3809 trace_kfree(_RET_IP_, objp);
3810
3811 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3812 return;
3813 local_irq_save(flags);
3814 kfree_debugcheck(objp);
3815 c = virt_to_cache(objp);
3816 debug_check_no_locks_freed(objp, c->object_size);
3817
3818 debug_check_no_obj_freed(objp, c->object_size);
3819 __cache_free(c, (void *)objp, _RET_IP_);
3820 local_irq_restore(flags);
3821 }
3822 EXPORT_SYMBOL(kfree);
3823
3824 /*
3825 * This initializes kmem_cache_node or resizes various caches for all nodes.
3826 */
3827 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3828 {
3829 int ret;
3830 int node;
3831 struct kmem_cache_node *n;
3832
3833 for_each_online_node(node) {
3834 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3835 if (ret)
3836 goto fail;
3837
3838 }
3839
3840 return 0;
3841
3842 fail:
3843 if (!cachep->list.next) {
3844 /* Cache is not active yet. Roll back what we did */
3845 node--;
3846 while (node >= 0) {
3847 n = get_node(cachep, node);
3848 if (n) {
3849 kfree(n->shared);
3850 free_alien_cache(n->alien);
3851 kfree(n);
3852 cachep->node[node] = NULL;
3853 }
3854 node--;
3855 }
3856 }
3857 return -ENOMEM;
3858 }
3859
3860 /* Always called with the slab_mutex held */
3861 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3862 int batchcount, int shared, gfp_t gfp)
3863 {
3864 struct array_cache __percpu *cpu_cache, *prev;
3865 int cpu;
3866
3867 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3868 if (!cpu_cache)
3869 return -ENOMEM;
3870
3871 prev = cachep->cpu_cache;
3872 cachep->cpu_cache = cpu_cache;
3873 kick_all_cpus_sync();
3874
3875 check_irq_on();
3876 cachep->batchcount = batchcount;
3877 cachep->limit = limit;
3878 cachep->shared = shared;
3879
3880 if (!prev)
3881 goto setup_node;
3882
3883 for_each_online_cpu(cpu) {
3884 LIST_HEAD(list);
3885 int node;
3886 struct kmem_cache_node *n;
3887 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3888
3889 node = cpu_to_mem(cpu);
3890 n = get_node(cachep, node);
3891 spin_lock_irq(&n->list_lock);
3892 free_block(cachep, ac->entry, ac->avail, node, &list);
3893 spin_unlock_irq(&n->list_lock);
3894 slabs_destroy(cachep, &list);
3895 }
3896 free_percpu(prev);
3897
3898 setup_node:
3899 return setup_kmem_cache_nodes(cachep, gfp);
3900 }
3901
3902 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3903 int batchcount, int shared, gfp_t gfp)
3904 {
3905 int ret;
3906 struct kmem_cache *c;
3907
3908 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3909
3910 if (slab_state < FULL)
3911 return ret;
3912
3913 if ((ret < 0) || !is_root_cache(cachep))
3914 return ret;
3915
3916 lockdep_assert_held(&slab_mutex);
3917 for_each_memcg_cache(c, cachep) {
3918 /* return value determined by the root cache only */
3919 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3920 }
3921
3922 return ret;
3923 }
3924
3925 /* Called with slab_mutex held always */
3926 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3927 {
3928 int err;
3929 int limit = 0;
3930 int shared = 0;
3931 int batchcount = 0;
3932
3933 err = cache_random_seq_create(cachep, cachep->num, gfp);
3934 if (err)
3935 goto end;
3936
3937 if (!is_root_cache(cachep)) {
3938 struct kmem_cache *root = memcg_root_cache(cachep);
3939 limit = root->limit;
3940 shared = root->shared;
3941 batchcount = root->batchcount;
3942 }
3943
3944 if (limit && shared && batchcount)
3945 goto skip_setup;
3946 /*
3947 * The head array serves three purposes:
3948 * - create a LIFO ordering, i.e. return objects that are cache-warm
3949 * - reduce the number of spinlock operations.
3950 * - reduce the number of linked list operations on the slab and
3951 * bufctl chains: array operations are cheaper.
3952 * The numbers are guessed, we should auto-tune as described by
3953 * Bonwick.
3954 */
3955 if (cachep->size > 131072)
3956 limit = 1;
3957 else if (cachep->size > PAGE_SIZE)
3958 limit = 8;
3959 else if (cachep->size > 1024)
3960 limit = 24;
3961 else if (cachep->size > 256)
3962 limit = 54;
3963 else
3964 limit = 120;
3965
3966 /*
3967 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3968 * allocation behaviour: Most allocs on one cpu, most free operations
3969 * on another cpu. For these cases, an efficient object passing between
3970 * cpus is necessary. This is provided by a shared array. The array
3971 * replaces Bonwick's magazine layer.
3972 * On uniprocessor, it's functionally equivalent (but less efficient)
3973 * to a larger limit. Thus disabled by default.
3974 */
3975 shared = 0;
3976 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3977 shared = 8;
3978
3979 #if DEBUG
3980 /*
3981 * With debugging enabled, large batchcount lead to excessively long
3982 * periods with disabled local interrupts. Limit the batchcount
3983 */
3984 if (limit > 32)
3985 limit = 32;
3986 #endif
3987 batchcount = (limit + 1) / 2;
3988 skip_setup:
3989 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3990 end:
3991 if (err)
3992 pr_err("enable_cpucache failed for %s, error %d\n",
3993 cachep->name, -err);
3994 return err;
3995 }
3996
3997 /*
3998 * Drain an array if it contains any elements taking the node lock only if
3999 * necessary. Note that the node listlock also protects the array_cache
4000 * if drain_array() is used on the shared array.
4001 */
4002 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4003 struct array_cache *ac, int node)
4004 {
4005 LIST_HEAD(list);
4006
4007 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4008 check_mutex_acquired();
4009
4010 if (!ac || !ac->avail)
4011 return;
4012
4013 if (ac->touched) {
4014 ac->touched = 0;
4015 return;
4016 }
4017
4018 spin_lock_irq(&n->list_lock);
4019 drain_array_locked(cachep, ac, node, false, &list);
4020 spin_unlock_irq(&n->list_lock);
4021
4022 slabs_destroy(cachep, &list);
4023 }
4024
4025 /**
4026 * cache_reap - Reclaim memory from caches.
4027 * @w: work descriptor
4028 *
4029 * Called from workqueue/eventd every few seconds.
4030 * Purpose:
4031 * - clear the per-cpu caches for this CPU.
4032 * - return freeable pages to the main free memory pool.
4033 *
4034 * If we cannot acquire the cache chain mutex then just give up - we'll try
4035 * again on the next iteration.
4036 */
4037 static void cache_reap(struct work_struct *w)
4038 {
4039 struct kmem_cache *searchp;
4040 struct kmem_cache_node *n;
4041 int node = numa_mem_id();
4042 struct delayed_work *work = to_delayed_work(w);
4043
4044 if (!mutex_trylock(&slab_mutex))
4045 /* Give up. Setup the next iteration. */
4046 goto out;
4047
4048 list_for_each_entry(searchp, &slab_caches, list) {
4049 check_irq_on();
4050
4051 /*
4052 * We only take the node lock if absolutely necessary and we
4053 * have established with reasonable certainty that
4054 * we can do some work if the lock was obtained.
4055 */
4056 n = get_node(searchp, node);
4057
4058 reap_alien(searchp, n);
4059
4060 drain_array(searchp, n, cpu_cache_get(searchp), node);
4061
4062 /*
4063 * These are racy checks but it does not matter
4064 * if we skip one check or scan twice.
4065 */
4066 if (time_after(n->next_reap, jiffies))
4067 goto next;
4068
4069 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4070
4071 drain_array(searchp, n, n->shared, node);
4072
4073 if (n->free_touched)
4074 n->free_touched = 0;
4075 else {
4076 int freed;
4077
4078 freed = drain_freelist(searchp, n, (n->free_limit +
4079 5 * searchp->num - 1) / (5 * searchp->num));
4080 STATS_ADD_REAPED(searchp, freed);
4081 }
4082 next:
4083 cond_resched();
4084 }
4085 check_irq_on();
4086 mutex_unlock(&slab_mutex);
4087 next_reap_node();
4088 out:
4089 /* Set up the next iteration */
4090 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4091 }
4092
4093 #ifdef CONFIG_SLABINFO
4094 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4095 {
4096 unsigned long active_objs, num_objs, active_slabs;
4097 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4098 unsigned long free_slabs = 0;
4099 int node;
4100 struct kmem_cache_node *n;
4101
4102 for_each_kmem_cache_node(cachep, node, n) {
4103 check_irq_on();
4104 spin_lock_irq(&n->list_lock);
4105
4106 total_slabs += n->total_slabs;
4107 free_slabs += n->free_slabs;
4108 free_objs += n->free_objects;
4109
4110 if (n->shared)
4111 shared_avail += n->shared->avail;
4112
4113 spin_unlock_irq(&n->list_lock);
4114 }
4115 num_objs = total_slabs * cachep->num;
4116 active_slabs = total_slabs - free_slabs;
4117 active_objs = num_objs - free_objs;
4118
4119 sinfo->active_objs = active_objs;
4120 sinfo->num_objs = num_objs;
4121 sinfo->active_slabs = active_slabs;
4122 sinfo->num_slabs = total_slabs;
4123 sinfo->shared_avail = shared_avail;
4124 sinfo->limit = cachep->limit;
4125 sinfo->batchcount = cachep->batchcount;
4126 sinfo->shared = cachep->shared;
4127 sinfo->objects_per_slab = cachep->num;
4128 sinfo->cache_order = cachep->gfporder;
4129 }
4130
4131 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4132 {
4133 #if STATS
4134 { /* node stats */
4135 unsigned long high = cachep->high_mark;
4136 unsigned long allocs = cachep->num_allocations;
4137 unsigned long grown = cachep->grown;
4138 unsigned long reaped = cachep->reaped;
4139 unsigned long errors = cachep->errors;
4140 unsigned long max_freeable = cachep->max_freeable;
4141 unsigned long node_allocs = cachep->node_allocs;
4142 unsigned long node_frees = cachep->node_frees;
4143 unsigned long overflows = cachep->node_overflow;
4144
4145 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4146 allocs, high, grown,
4147 reaped, errors, max_freeable, node_allocs,
4148 node_frees, overflows);
4149 }
4150 /* cpu stats */
4151 {
4152 unsigned long allochit = atomic_read(&cachep->allochit);
4153 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4154 unsigned long freehit = atomic_read(&cachep->freehit);
4155 unsigned long freemiss = atomic_read(&cachep->freemiss);
4156
4157 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4158 allochit, allocmiss, freehit, freemiss);
4159 }
4160 #endif
4161 }
4162
4163 #define MAX_SLABINFO_WRITE 128
4164 /**
4165 * slabinfo_write - Tuning for the slab allocator
4166 * @file: unused
4167 * @buffer: user buffer
4168 * @count: data length
4169 * @ppos: unused
4170 */
4171 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4172 size_t count, loff_t *ppos)
4173 {
4174 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4175 int limit, batchcount, shared, res;
4176 struct kmem_cache *cachep;
4177
4178 if (count > MAX_SLABINFO_WRITE)
4179 return -EINVAL;
4180 if (copy_from_user(&kbuf, buffer, count))
4181 return -EFAULT;
4182 kbuf[MAX_SLABINFO_WRITE] = '\0';
4183
4184 tmp = strchr(kbuf, ' ');
4185 if (!tmp)
4186 return -EINVAL;
4187 *tmp = '\0';
4188 tmp++;
4189 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4190 return -EINVAL;
4191
4192 /* Find the cache in the chain of caches. */
4193 mutex_lock(&slab_mutex);
4194 res = -EINVAL;
4195 list_for_each_entry(cachep, &slab_caches, list) {
4196 if (!strcmp(cachep->name, kbuf)) {
4197 if (limit < 1 || batchcount < 1 ||
4198 batchcount > limit || shared < 0) {
4199 res = 0;
4200 } else {
4201 res = do_tune_cpucache(cachep, limit,
4202 batchcount, shared,
4203 GFP_KERNEL);
4204 }
4205 break;
4206 }
4207 }
4208 mutex_unlock(&slab_mutex);
4209 if (res >= 0)
4210 res = count;
4211 return res;
4212 }
4213
4214 #ifdef CONFIG_DEBUG_SLAB_LEAK
4215
4216 static inline int add_caller(unsigned long *n, unsigned long v)
4217 {
4218 unsigned long *p;
4219 int l;
4220 if (!v)
4221 return 1;
4222 l = n[1];
4223 p = n + 2;
4224 while (l) {
4225 int i = l/2;
4226 unsigned long *q = p + 2 * i;
4227 if (*q == v) {
4228 q[1]++;
4229 return 1;
4230 }
4231 if (*q > v) {
4232 l = i;
4233 } else {
4234 p = q + 2;
4235 l -= i + 1;
4236 }
4237 }
4238 if (++n[1] == n[0])
4239 return 0;
4240 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4241 p[0] = v;
4242 p[1] = 1;
4243 return 1;
4244 }
4245
4246 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4247 struct page *page)
4248 {
4249 void *p;
4250 int i, j;
4251 unsigned long v;
4252
4253 if (n[0] == n[1])
4254 return;
4255 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4256 bool active = true;
4257
4258 for (j = page->active; j < c->num; j++) {
4259 if (get_free_obj(page, j) == i) {
4260 active = false;
4261 break;
4262 }
4263 }
4264
4265 if (!active)
4266 continue;
4267
4268 /*
4269 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4270 * mapping is established when actual object allocation and
4271 * we could mistakenly access the unmapped object in the cpu
4272 * cache.
4273 */
4274 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4275 continue;
4276
4277 if (!add_caller(n, v))
4278 return;
4279 }
4280 }
4281
4282 static void show_symbol(struct seq_file *m, unsigned long address)
4283 {
4284 #ifdef CONFIG_KALLSYMS
4285 unsigned long offset, size;
4286 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4287
4288 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4289 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4290 if (modname[0])
4291 seq_printf(m, " [%s]", modname);
4292 return;
4293 }
4294 #endif
4295 seq_printf(m, "%p", (void *)address);
4296 }
4297
4298 static int leaks_show(struct seq_file *m, void *p)
4299 {
4300 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4301 struct page *page;
4302 struct kmem_cache_node *n;
4303 const char *name;
4304 unsigned long *x = m->private;
4305 int node;
4306 int i;
4307
4308 if (!(cachep->flags & SLAB_STORE_USER))
4309 return 0;
4310 if (!(cachep->flags & SLAB_RED_ZONE))
4311 return 0;
4312
4313 /*
4314 * Set store_user_clean and start to grab stored user information
4315 * for all objects on this cache. If some alloc/free requests comes
4316 * during the processing, information would be wrong so restart
4317 * whole processing.
4318 */
4319 do {
4320 set_store_user_clean(cachep);
4321 drain_cpu_caches(cachep);
4322
4323 x[1] = 0;
4324
4325 for_each_kmem_cache_node(cachep, node, n) {
4326
4327 check_irq_on();
4328 spin_lock_irq(&n->list_lock);
4329
4330 list_for_each_entry(page, &n->slabs_full, lru)
4331 handle_slab(x, cachep, page);
4332 list_for_each_entry(page, &n->slabs_partial, lru)
4333 handle_slab(x, cachep, page);
4334 spin_unlock_irq(&n->list_lock);
4335 }
4336 } while (!is_store_user_clean(cachep));
4337
4338 name = cachep->name;
4339 if (x[0] == x[1]) {
4340 /* Increase the buffer size */
4341 mutex_unlock(&slab_mutex);
4342 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4343 if (!m->private) {
4344 /* Too bad, we are really out */
4345 m->private = x;
4346 mutex_lock(&slab_mutex);
4347 return -ENOMEM;
4348 }
4349 *(unsigned long *)m->private = x[0] * 2;
4350 kfree(x);
4351 mutex_lock(&slab_mutex);
4352 /* Now make sure this entry will be retried */
4353 m->count = m->size;
4354 return 0;
4355 }
4356 for (i = 0; i < x[1]; i++) {
4357 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4358 show_symbol(m, x[2*i+2]);
4359 seq_putc(m, '\n');
4360 }
4361
4362 return 0;
4363 }
4364
4365 static const struct seq_operations slabstats_op = {
4366 .start = slab_start,
4367 .next = slab_next,
4368 .stop = slab_stop,
4369 .show = leaks_show,
4370 };
4371
4372 static int slabstats_open(struct inode *inode, struct file *file)
4373 {
4374 unsigned long *n;
4375
4376 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4377 if (!n)
4378 return -ENOMEM;
4379
4380 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4381
4382 return 0;
4383 }
4384
4385 static const struct file_operations proc_slabstats_operations = {
4386 .open = slabstats_open,
4387 .read = seq_read,
4388 .llseek = seq_lseek,
4389 .release = seq_release_private,
4390 };
4391 #endif
4392
4393 static int __init slab_proc_init(void)
4394 {
4395 #ifdef CONFIG_DEBUG_SLAB_LEAK
4396 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4397 #endif
4398 return 0;
4399 }
4400 module_init(slab_proc_init);
4401 #endif
4402
4403 #ifdef CONFIG_HARDENED_USERCOPY
4404 /*
4405 * Rejects objects that are incorrectly sized.
4406 *
4407 * Returns NULL if check passes, otherwise const char * to name of cache
4408 * to indicate an error.
4409 */
4410 const char *__check_heap_object(const void *ptr, unsigned long n,
4411 struct page *page)
4412 {
4413 struct kmem_cache *cachep;
4414 unsigned int objnr;
4415 unsigned long offset;
4416
4417 /* Find and validate object. */
4418 cachep = page->slab_cache;
4419 objnr = obj_to_index(cachep, page, (void *)ptr);
4420 BUG_ON(objnr >= cachep->num);
4421
4422 /* Find offset within object. */
4423 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4424
4425 /* Allow address range falling entirely within object size. */
4426 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4427 return NULL;
4428
4429 return cachep->name;
4430 }
4431 #endif /* CONFIG_HARDENED_USERCOPY */
4432
4433 /**
4434 * ksize - get the actual amount of memory allocated for a given object
4435 * @objp: Pointer to the object
4436 *
4437 * kmalloc may internally round up allocations and return more memory
4438 * than requested. ksize() can be used to determine the actual amount of
4439 * memory allocated. The caller may use this additional memory, even though
4440 * a smaller amount of memory was initially specified with the kmalloc call.
4441 * The caller must guarantee that objp points to a valid object previously
4442 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4443 * must not be freed during the duration of the call.
4444 */
4445 size_t ksize(const void *objp)
4446 {
4447 size_t size;
4448
4449 BUG_ON(!objp);
4450 if (unlikely(objp == ZERO_SIZE_PTR))
4451 return 0;
4452
4453 size = virt_to_cache(objp)->object_size;
4454 /* We assume that ksize callers could use the whole allocated area,
4455 * so we need to unpoison this area.
4456 */
4457 kasan_unpoison_shadow(objp, size);
4458
4459 return size;
4460 }
4461 EXPORT_SYMBOL(ksize);