]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/slab.h
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / mm / slab.h
1 #ifndef MM_SLAB_H
2 #define MM_SLAB_H
3 /*
4 * Internal slab definitions
5 */
6
7 #ifdef CONFIG_SLOB
8 /*
9 * Common fields provided in kmem_cache by all slab allocators
10 * This struct is either used directly by the allocator (SLOB)
11 * or the allocator must include definitions for all fields
12 * provided in kmem_cache_common in their definition of kmem_cache.
13 *
14 * Once we can do anonymous structs (C11 standard) we could put a
15 * anonymous struct definition in these allocators so that the
16 * separate allocations in the kmem_cache structure of SLAB and
17 * SLUB is no longer needed.
18 */
19 struct kmem_cache {
20 unsigned int object_size;/* The original size of the object */
21 unsigned int size; /* The aligned/padded/added on size */
22 unsigned int align; /* Alignment as calculated */
23 unsigned long flags; /* Active flags on the slab */
24 const char *name; /* Slab name for sysfs */
25 int refcount; /* Use counter */
26 void (*ctor)(void *); /* Called on object slot creation */
27 struct list_head list; /* List of all slab caches on the system */
28 };
29
30 #endif /* CONFIG_SLOB */
31
32 #ifdef CONFIG_SLAB
33 #include <linux/slab_def.h>
34 #endif
35
36 #ifdef CONFIG_SLUB
37 #include <linux/slub_def.h>
38 #endif
39
40 #include <linux/memcontrol.h>
41 #include <linux/fault-inject.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/kasan.h>
44 #include <linux/kmemleak.h>
45 #include <linux/random.h>
46
47 /*
48 * State of the slab allocator.
49 *
50 * This is used to describe the states of the allocator during bootup.
51 * Allocators use this to gradually bootstrap themselves. Most allocators
52 * have the problem that the structures used for managing slab caches are
53 * allocated from slab caches themselves.
54 */
55 enum slab_state {
56 DOWN, /* No slab functionality yet */
57 PARTIAL, /* SLUB: kmem_cache_node available */
58 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
59 UP, /* Slab caches usable but not all extras yet */
60 FULL /* Everything is working */
61 };
62
63 extern enum slab_state slab_state;
64
65 /* The slab cache mutex protects the management structures during changes */
66 extern struct mutex slab_mutex;
67
68 /* The list of all slab caches on the system */
69 extern struct list_head slab_caches;
70
71 /* The slab cache that manages slab cache information */
72 extern struct kmem_cache *kmem_cache;
73
74 unsigned long calculate_alignment(unsigned long flags,
75 unsigned long align, unsigned long size);
76
77 #ifndef CONFIG_SLOB
78 /* Kmalloc array related functions */
79 void setup_kmalloc_cache_index_table(void);
80 void create_kmalloc_caches(unsigned long);
81
82 /* Find the kmalloc slab corresponding for a certain size */
83 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
84 #endif
85
86
87 /* Functions provided by the slab allocators */
88 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
89
90 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
91 unsigned long flags);
92 extern void create_boot_cache(struct kmem_cache *, const char *name,
93 size_t size, unsigned long flags);
94
95 int slab_unmergeable(struct kmem_cache *s);
96 struct kmem_cache *find_mergeable(size_t size, size_t align,
97 unsigned long flags, const char *name, void (*ctor)(void *));
98 #ifndef CONFIG_SLOB
99 struct kmem_cache *
100 __kmem_cache_alias(const char *name, size_t size, size_t align,
101 unsigned long flags, void (*ctor)(void *));
102
103 unsigned long kmem_cache_flags(unsigned long object_size,
104 unsigned long flags, const char *name,
105 void (*ctor)(void *));
106 #else
107 static inline struct kmem_cache *
108 __kmem_cache_alias(const char *name, size_t size, size_t align,
109 unsigned long flags, void (*ctor)(void *))
110 { return NULL; }
111
112 static inline unsigned long kmem_cache_flags(unsigned long object_size,
113 unsigned long flags, const char *name,
114 void (*ctor)(void *))
115 {
116 return flags;
117 }
118 #endif
119
120
121 /* Legal flag mask for kmem_cache_create(), for various configurations */
122 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
123 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
124
125 #if defined(CONFIG_DEBUG_SLAB)
126 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
127 #elif defined(CONFIG_SLUB_DEBUG)
128 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
129 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
130 #else
131 #define SLAB_DEBUG_FLAGS (0)
132 #endif
133
134 #if defined(CONFIG_SLAB)
135 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
136 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
137 SLAB_NOTRACK | SLAB_ACCOUNT)
138 #elif defined(CONFIG_SLUB)
139 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
140 SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
141 #else
142 #define SLAB_CACHE_FLAGS (0)
143 #endif
144
145 /* Common flags available with current configuration */
146 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
147
148 /* Common flags permitted for kmem_cache_create */
149 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
150 SLAB_RED_ZONE | \
151 SLAB_POISON | \
152 SLAB_STORE_USER | \
153 SLAB_TRACE | \
154 SLAB_CONSISTENCY_CHECKS | \
155 SLAB_MEM_SPREAD | \
156 SLAB_NOLEAKTRACE | \
157 SLAB_RECLAIM_ACCOUNT | \
158 SLAB_TEMPORARY | \
159 SLAB_NOTRACK | \
160 SLAB_ACCOUNT)
161
162 int __kmem_cache_shutdown(struct kmem_cache *);
163 void __kmem_cache_release(struct kmem_cache *);
164 int __kmem_cache_shrink(struct kmem_cache *);
165 void slab_kmem_cache_release(struct kmem_cache *);
166
167 struct seq_file;
168 struct file;
169
170 struct slabinfo {
171 unsigned long active_objs;
172 unsigned long num_objs;
173 unsigned long active_slabs;
174 unsigned long num_slabs;
175 unsigned long shared_avail;
176 unsigned int limit;
177 unsigned int batchcount;
178 unsigned int shared;
179 unsigned int objects_per_slab;
180 unsigned int cache_order;
181 };
182
183 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
184 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
185 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
186 size_t count, loff_t *ppos);
187
188 /*
189 * Generic implementation of bulk operations
190 * These are useful for situations in which the allocator cannot
191 * perform optimizations. In that case segments of the object listed
192 * may be allocated or freed using these operations.
193 */
194 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
195 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
196
197 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
198 /*
199 * Iterate over all memcg caches of the given root cache. The caller must hold
200 * slab_mutex.
201 */
202 #define for_each_memcg_cache(iter, root) \
203 list_for_each_entry(iter, &(root)->memcg_params.list, \
204 memcg_params.list)
205
206 static inline bool is_root_cache(struct kmem_cache *s)
207 {
208 return s->memcg_params.is_root_cache;
209 }
210
211 static inline bool slab_equal_or_root(struct kmem_cache *s,
212 struct kmem_cache *p)
213 {
214 return p == s || p == s->memcg_params.root_cache;
215 }
216
217 /*
218 * We use suffixes to the name in memcg because we can't have caches
219 * created in the system with the same name. But when we print them
220 * locally, better refer to them with the base name
221 */
222 static inline const char *cache_name(struct kmem_cache *s)
223 {
224 if (!is_root_cache(s))
225 s = s->memcg_params.root_cache;
226 return s->name;
227 }
228
229 /*
230 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
231 * That said the caller must assure the memcg's cache won't go away by either
232 * taking a css reference to the owner cgroup, or holding the slab_mutex.
233 */
234 static inline struct kmem_cache *
235 cache_from_memcg_idx(struct kmem_cache *s, int idx)
236 {
237 struct kmem_cache *cachep;
238 struct memcg_cache_array *arr;
239
240 rcu_read_lock();
241 arr = rcu_dereference(s->memcg_params.memcg_caches);
242
243 /*
244 * Make sure we will access the up-to-date value. The code updating
245 * memcg_caches issues a write barrier to match this (see
246 * memcg_create_kmem_cache()).
247 */
248 cachep = lockless_dereference(arr->entries[idx]);
249 rcu_read_unlock();
250
251 return cachep;
252 }
253
254 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
255 {
256 if (is_root_cache(s))
257 return s;
258 return s->memcg_params.root_cache;
259 }
260
261 static __always_inline int memcg_charge_slab(struct page *page,
262 gfp_t gfp, int order,
263 struct kmem_cache *s)
264 {
265 int ret;
266
267 if (!memcg_kmem_enabled())
268 return 0;
269 if (is_root_cache(s))
270 return 0;
271
272 ret = memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
273 if (ret)
274 return ret;
275
276 memcg_kmem_update_page_stat(page,
277 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
278 MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
279 1 << order);
280 return 0;
281 }
282
283 static __always_inline void memcg_uncharge_slab(struct page *page, int order,
284 struct kmem_cache *s)
285 {
286 if (!memcg_kmem_enabled())
287 return;
288
289 memcg_kmem_update_page_stat(page,
290 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
291 MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
292 -(1 << order));
293 memcg_kmem_uncharge(page, order);
294 }
295
296 extern void slab_init_memcg_params(struct kmem_cache *);
297
298 #else /* CONFIG_MEMCG && !CONFIG_SLOB */
299
300 #define for_each_memcg_cache(iter, root) \
301 for ((void)(iter), (void)(root); 0; )
302
303 static inline bool is_root_cache(struct kmem_cache *s)
304 {
305 return true;
306 }
307
308 static inline bool slab_equal_or_root(struct kmem_cache *s,
309 struct kmem_cache *p)
310 {
311 return true;
312 }
313
314 static inline const char *cache_name(struct kmem_cache *s)
315 {
316 return s->name;
317 }
318
319 static inline struct kmem_cache *
320 cache_from_memcg_idx(struct kmem_cache *s, int idx)
321 {
322 return NULL;
323 }
324
325 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
326 {
327 return s;
328 }
329
330 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
331 struct kmem_cache *s)
332 {
333 return 0;
334 }
335
336 static inline void memcg_uncharge_slab(struct page *page, int order,
337 struct kmem_cache *s)
338 {
339 }
340
341 static inline void slab_init_memcg_params(struct kmem_cache *s)
342 {
343 }
344 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
345
346 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
347 {
348 struct kmem_cache *cachep;
349 struct page *page;
350
351 /*
352 * When kmemcg is not being used, both assignments should return the
353 * same value. but we don't want to pay the assignment price in that
354 * case. If it is not compiled in, the compiler should be smart enough
355 * to not do even the assignment. In that case, slab_equal_or_root
356 * will also be a constant.
357 */
358 if (!memcg_kmem_enabled() &&
359 !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
360 return s;
361
362 page = virt_to_head_page(x);
363 cachep = page->slab_cache;
364 if (slab_equal_or_root(cachep, s))
365 return cachep;
366
367 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
368 __func__, s->name, cachep->name);
369 WARN_ON_ONCE(1);
370 return s;
371 }
372
373 static inline size_t slab_ksize(const struct kmem_cache *s)
374 {
375 #ifndef CONFIG_SLUB
376 return s->object_size;
377
378 #else /* CONFIG_SLUB */
379 # ifdef CONFIG_SLUB_DEBUG
380 /*
381 * Debugging requires use of the padding between object
382 * and whatever may come after it.
383 */
384 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
385 return s->object_size;
386 # endif
387 if (s->flags & SLAB_KASAN)
388 return s->object_size;
389 /*
390 * If we have the need to store the freelist pointer
391 * back there or track user information then we can
392 * only use the space before that information.
393 */
394 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
395 return s->inuse;
396 /*
397 * Else we can use all the padding etc for the allocation
398 */
399 return s->size;
400 #endif
401 }
402
403 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
404 gfp_t flags)
405 {
406 flags &= gfp_allowed_mask;
407 lockdep_trace_alloc(flags);
408 might_sleep_if(gfpflags_allow_blocking(flags));
409
410 if (should_failslab(s, flags))
411 return NULL;
412
413 if (memcg_kmem_enabled() &&
414 ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
415 return memcg_kmem_get_cache(s);
416
417 return s;
418 }
419
420 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
421 size_t size, void **p)
422 {
423 size_t i;
424
425 flags &= gfp_allowed_mask;
426 for (i = 0; i < size; i++) {
427 void *object = p[i];
428
429 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
430 kmemleak_alloc_recursive(object, s->object_size, 1,
431 s->flags, flags);
432 kasan_slab_alloc(s, object, flags);
433 }
434
435 if (memcg_kmem_enabled())
436 memcg_kmem_put_cache(s);
437 }
438
439 #ifndef CONFIG_SLOB
440 /*
441 * The slab lists for all objects.
442 */
443 struct kmem_cache_node {
444 spinlock_t list_lock;
445
446 #ifdef CONFIG_SLAB
447 struct list_head slabs_partial; /* partial list first, better asm code */
448 struct list_head slabs_full;
449 struct list_head slabs_free;
450 unsigned long total_slabs; /* length of all slab lists */
451 unsigned long free_slabs; /* length of free slab list only */
452 unsigned long free_objects;
453 unsigned int free_limit;
454 unsigned int colour_next; /* Per-node cache coloring */
455 struct array_cache *shared; /* shared per node */
456 struct alien_cache **alien; /* on other nodes */
457 unsigned long next_reap; /* updated without locking */
458 int free_touched; /* updated without locking */
459 #endif
460
461 #ifdef CONFIG_SLUB
462 unsigned long nr_partial;
463 struct list_head partial;
464 #ifdef CONFIG_SLUB_DEBUG
465 atomic_long_t nr_slabs;
466 atomic_long_t total_objects;
467 struct list_head full;
468 #endif
469 #endif
470
471 };
472
473 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
474 {
475 return s->node[node];
476 }
477
478 /*
479 * Iterator over all nodes. The body will be executed for each node that has
480 * a kmem_cache_node structure allocated (which is true for all online nodes)
481 */
482 #define for_each_kmem_cache_node(__s, __node, __n) \
483 for (__node = 0; __node < nr_node_ids; __node++) \
484 if ((__n = get_node(__s, __node)))
485
486 #endif
487
488 void *slab_start(struct seq_file *m, loff_t *pos);
489 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
490 void slab_stop(struct seq_file *m, void *p);
491 int memcg_slab_show(struct seq_file *m, void *p);
492
493 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
494
495 #ifdef CONFIG_SLAB_FREELIST_RANDOM
496 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
497 gfp_t gfp);
498 void cache_random_seq_destroy(struct kmem_cache *cachep);
499 #else
500 static inline int cache_random_seq_create(struct kmem_cache *cachep,
501 unsigned int count, gfp_t gfp)
502 {
503 return 0;
504 }
505 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
506 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
507
508 #endif /* MM_SLAB_H */