]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/slub.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
125 }
126
127 void *fixup_red_left(struct kmem_cache *s, void *p)
128 {
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
131
132 return p;
133 }
134
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136 {
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139 #else
140 return false;
141 #endif
142 }
143
144 /*
145 * Issues still to be resolved:
146 *
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 *
149 * - Variable sizing of the per node arrays
150 */
151
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
154
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
157
158 /*
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 */
162 #define MIN_PARTIAL 5
163
164 /*
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
167 * sort the partial list by the number of objects in use.
168 */
169 #define MAX_PARTIAL 10
170
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_STORE_USER)
173
174 /*
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
177 */
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
180
181
182 /*
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
186 */
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188
189 #define OO_SHIFT 16
190 #define OO_MASK ((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
192
193 /* Internal SLUB flags */
194 #define __OBJECT_POISON 0x80000000UL /* Poison object */
195 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
196
197 /*
198 * Tracking user of a slab.
199 */
200 #define TRACK_ADDRS_COUNT 16
201 struct track {
202 unsigned long addr; /* Called from address */
203 #ifdef CONFIG_STACKTRACE
204 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
205 #endif
206 int cpu; /* Was running on cpu */
207 int pid; /* Pid context */
208 unsigned long when; /* When did the operation occur */
209 };
210
211 enum track_item { TRACK_ALLOC, TRACK_FREE };
212
213 #ifdef CONFIG_SYSFS
214 static int sysfs_slab_add(struct kmem_cache *);
215 static int sysfs_slab_alias(struct kmem_cache *, const char *);
216 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
217 #else
218 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
220 { return 0; }
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
222 #endif
223
224 static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 {
226 #ifdef CONFIG_SLUB_STATS
227 /*
228 * The rmw is racy on a preemptible kernel but this is acceptable, so
229 * avoid this_cpu_add()'s irq-disable overhead.
230 */
231 raw_cpu_inc(s->cpu_slab->stat[si]);
232 #endif
233 }
234
235 /********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
238
239 static inline void *get_freepointer(struct kmem_cache *s, void *object)
240 {
241 return *(void **)(object + s->offset);
242 }
243
244 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
245 {
246 prefetch(object + s->offset);
247 }
248
249 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
250 {
251 void *p;
252
253 if (!debug_pagealloc_enabled())
254 return get_freepointer(s, object);
255
256 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
257 return p;
258 }
259
260 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
261 {
262 *(void **)(object + s->offset) = fp;
263 }
264
265 /* Loop over all objects in a slab */
266 #define for_each_object(__p, __s, __addr, __objects) \
267 for (__p = fixup_red_left(__s, __addr); \
268 __p < (__addr) + (__objects) * (__s)->size; \
269 __p += (__s)->size)
270
271 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
272 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
273 __idx <= __objects; \
274 __p += (__s)->size, __idx++)
275
276 /* Determine object index from a given position */
277 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
278 {
279 return (p - addr) / s->size;
280 }
281
282 static inline int order_objects(int order, unsigned long size, int reserved)
283 {
284 return ((PAGE_SIZE << order) - reserved) / size;
285 }
286
287 static inline struct kmem_cache_order_objects oo_make(int order,
288 unsigned long size, int reserved)
289 {
290 struct kmem_cache_order_objects x = {
291 (order << OO_SHIFT) + order_objects(order, size, reserved)
292 };
293
294 return x;
295 }
296
297 static inline int oo_order(struct kmem_cache_order_objects x)
298 {
299 return x.x >> OO_SHIFT;
300 }
301
302 static inline int oo_objects(struct kmem_cache_order_objects x)
303 {
304 return x.x & OO_MASK;
305 }
306
307 /*
308 * Per slab locking using the pagelock
309 */
310 static __always_inline void slab_lock(struct page *page)
311 {
312 VM_BUG_ON_PAGE(PageTail(page), page);
313 bit_spin_lock(PG_locked, &page->flags);
314 }
315
316 static __always_inline void slab_unlock(struct page *page)
317 {
318 VM_BUG_ON_PAGE(PageTail(page), page);
319 __bit_spin_unlock(PG_locked, &page->flags);
320 }
321
322 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
323 {
324 struct page tmp;
325 tmp.counters = counters_new;
326 /*
327 * page->counters can cover frozen/inuse/objects as well
328 * as page->_refcount. If we assign to ->counters directly
329 * we run the risk of losing updates to page->_refcount, so
330 * be careful and only assign to the fields we need.
331 */
332 page->frozen = tmp.frozen;
333 page->inuse = tmp.inuse;
334 page->objects = tmp.objects;
335 }
336
337 /* Interrupts must be disabled (for the fallback code to work right) */
338 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
339 void *freelist_old, unsigned long counters_old,
340 void *freelist_new, unsigned long counters_new,
341 const char *n)
342 {
343 VM_BUG_ON(!irqs_disabled());
344 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
345 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
346 if (s->flags & __CMPXCHG_DOUBLE) {
347 if (cmpxchg_double(&page->freelist, &page->counters,
348 freelist_old, counters_old,
349 freelist_new, counters_new))
350 return true;
351 } else
352 #endif
353 {
354 slab_lock(page);
355 if (page->freelist == freelist_old &&
356 page->counters == counters_old) {
357 page->freelist = freelist_new;
358 set_page_slub_counters(page, counters_new);
359 slab_unlock(page);
360 return true;
361 }
362 slab_unlock(page);
363 }
364
365 cpu_relax();
366 stat(s, CMPXCHG_DOUBLE_FAIL);
367
368 #ifdef SLUB_DEBUG_CMPXCHG
369 pr_info("%s %s: cmpxchg double redo ", n, s->name);
370 #endif
371
372 return false;
373 }
374
375 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379 {
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 if (s->flags & __CMPXCHG_DOUBLE) {
383 if (cmpxchg_double(&page->freelist, &page->counters,
384 freelist_old, counters_old,
385 freelist_new, counters_new))
386 return true;
387 } else
388 #endif
389 {
390 unsigned long flags;
391
392 local_irq_save(flags);
393 slab_lock(page);
394 if (page->freelist == freelist_old &&
395 page->counters == counters_old) {
396 page->freelist = freelist_new;
397 set_page_slub_counters(page, counters_new);
398 slab_unlock(page);
399 local_irq_restore(flags);
400 return true;
401 }
402 slab_unlock(page);
403 local_irq_restore(flags);
404 }
405
406 cpu_relax();
407 stat(s, CMPXCHG_DOUBLE_FAIL);
408
409 #ifdef SLUB_DEBUG_CMPXCHG
410 pr_info("%s %s: cmpxchg double redo ", n, s->name);
411 #endif
412
413 return false;
414 }
415
416 #ifdef CONFIG_SLUB_DEBUG
417 /*
418 * Determine a map of object in use on a page.
419 *
420 * Node listlock must be held to guarantee that the page does
421 * not vanish from under us.
422 */
423 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
424 {
425 void *p;
426 void *addr = page_address(page);
427
428 for (p = page->freelist; p; p = get_freepointer(s, p))
429 set_bit(slab_index(p, s, addr), map);
430 }
431
432 static inline int size_from_object(struct kmem_cache *s)
433 {
434 if (s->flags & SLAB_RED_ZONE)
435 return s->size - s->red_left_pad;
436
437 return s->size;
438 }
439
440 static inline void *restore_red_left(struct kmem_cache *s, void *p)
441 {
442 if (s->flags & SLAB_RED_ZONE)
443 p -= s->red_left_pad;
444
445 return p;
446 }
447
448 /*
449 * Debug settings:
450 */
451 #if defined(CONFIG_SLUB_DEBUG_ON)
452 static int slub_debug = DEBUG_DEFAULT_FLAGS;
453 #else
454 static int slub_debug;
455 #endif
456
457 static char *slub_debug_slabs;
458 static int disable_higher_order_debug;
459
460 /*
461 * slub is about to manipulate internal object metadata. This memory lies
462 * outside the range of the allocated object, so accessing it would normally
463 * be reported by kasan as a bounds error. metadata_access_enable() is used
464 * to tell kasan that these accesses are OK.
465 */
466 static inline void metadata_access_enable(void)
467 {
468 kasan_disable_current();
469 }
470
471 static inline void metadata_access_disable(void)
472 {
473 kasan_enable_current();
474 }
475
476 /*
477 * Object debugging
478 */
479
480 /* Verify that a pointer has an address that is valid within a slab page */
481 static inline int check_valid_pointer(struct kmem_cache *s,
482 struct page *page, void *object)
483 {
484 void *base;
485
486 if (!object)
487 return 1;
488
489 base = page_address(page);
490 object = restore_red_left(s, object);
491 if (object < base || object >= base + page->objects * s->size ||
492 (object - base) % s->size) {
493 return 0;
494 }
495
496 return 1;
497 }
498
499 static void print_section(char *level, char *text, u8 *addr,
500 unsigned int length)
501 {
502 metadata_access_enable();
503 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
504 length, 1);
505 metadata_access_disable();
506 }
507
508 static struct track *get_track(struct kmem_cache *s, void *object,
509 enum track_item alloc)
510 {
511 struct track *p;
512
513 if (s->offset)
514 p = object + s->offset + sizeof(void *);
515 else
516 p = object + s->inuse;
517
518 return p + alloc;
519 }
520
521 static void set_track(struct kmem_cache *s, void *object,
522 enum track_item alloc, unsigned long addr)
523 {
524 struct track *p = get_track(s, object, alloc);
525
526 if (addr) {
527 #ifdef CONFIG_STACKTRACE
528 struct stack_trace trace;
529 int i;
530
531 trace.nr_entries = 0;
532 trace.max_entries = TRACK_ADDRS_COUNT;
533 trace.entries = p->addrs;
534 trace.skip = 3;
535 metadata_access_enable();
536 save_stack_trace(&trace);
537 metadata_access_disable();
538
539 /* See rant in lockdep.c */
540 if (trace.nr_entries != 0 &&
541 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
542 trace.nr_entries--;
543
544 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
545 p->addrs[i] = 0;
546 #endif
547 p->addr = addr;
548 p->cpu = smp_processor_id();
549 p->pid = current->pid;
550 p->when = jiffies;
551 } else
552 memset(p, 0, sizeof(struct track));
553 }
554
555 static void init_tracking(struct kmem_cache *s, void *object)
556 {
557 if (!(s->flags & SLAB_STORE_USER))
558 return;
559
560 set_track(s, object, TRACK_FREE, 0UL);
561 set_track(s, object, TRACK_ALLOC, 0UL);
562 }
563
564 static void print_track(const char *s, struct track *t)
565 {
566 if (!t->addr)
567 return;
568
569 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
570 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
571 #ifdef CONFIG_STACKTRACE
572 {
573 int i;
574 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
575 if (t->addrs[i])
576 pr_err("\t%pS\n", (void *)t->addrs[i]);
577 else
578 break;
579 }
580 #endif
581 }
582
583 static void print_tracking(struct kmem_cache *s, void *object)
584 {
585 if (!(s->flags & SLAB_STORE_USER))
586 return;
587
588 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
589 print_track("Freed", get_track(s, object, TRACK_FREE));
590 }
591
592 static void print_page_info(struct page *page)
593 {
594 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
595 page, page->objects, page->inuse, page->freelist, page->flags);
596
597 }
598
599 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
600 {
601 struct va_format vaf;
602 va_list args;
603
604 va_start(args, fmt);
605 vaf.fmt = fmt;
606 vaf.va = &args;
607 pr_err("=============================================================================\n");
608 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
609 pr_err("-----------------------------------------------------------------------------\n\n");
610
611 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
612 va_end(args);
613 }
614
615 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
616 {
617 struct va_format vaf;
618 va_list args;
619
620 va_start(args, fmt);
621 vaf.fmt = fmt;
622 vaf.va = &args;
623 pr_err("FIX %s: %pV\n", s->name, &vaf);
624 va_end(args);
625 }
626
627 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
628 {
629 unsigned int off; /* Offset of last byte */
630 u8 *addr = page_address(page);
631
632 print_tracking(s, p);
633
634 print_page_info(page);
635
636 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
637 p, p - addr, get_freepointer(s, p));
638
639 if (s->flags & SLAB_RED_ZONE)
640 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
641 s->red_left_pad);
642 else if (p > addr + 16)
643 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
644
645 print_section(KERN_ERR, "Object ", p,
646 min_t(unsigned long, s->object_size, PAGE_SIZE));
647 if (s->flags & SLAB_RED_ZONE)
648 print_section(KERN_ERR, "Redzone ", p + s->object_size,
649 s->inuse - s->object_size);
650
651 if (s->offset)
652 off = s->offset + sizeof(void *);
653 else
654 off = s->inuse;
655
656 if (s->flags & SLAB_STORE_USER)
657 off += 2 * sizeof(struct track);
658
659 off += kasan_metadata_size(s);
660
661 if (off != size_from_object(s))
662 /* Beginning of the filler is the free pointer */
663 print_section(KERN_ERR, "Padding ", p + off,
664 size_from_object(s) - off);
665
666 dump_stack();
667 }
668
669 void object_err(struct kmem_cache *s, struct page *page,
670 u8 *object, char *reason)
671 {
672 slab_bug(s, "%s", reason);
673 print_trailer(s, page, object);
674 }
675
676 static void slab_err(struct kmem_cache *s, struct page *page,
677 const char *fmt, ...)
678 {
679 va_list args;
680 char buf[100];
681
682 va_start(args, fmt);
683 vsnprintf(buf, sizeof(buf), fmt, args);
684 va_end(args);
685 slab_bug(s, "%s", buf);
686 print_page_info(page);
687 dump_stack();
688 }
689
690 static void init_object(struct kmem_cache *s, void *object, u8 val)
691 {
692 u8 *p = object;
693
694 if (s->flags & SLAB_RED_ZONE)
695 memset(p - s->red_left_pad, val, s->red_left_pad);
696
697 if (s->flags & __OBJECT_POISON) {
698 memset(p, POISON_FREE, s->object_size - 1);
699 p[s->object_size - 1] = POISON_END;
700 }
701
702 if (s->flags & SLAB_RED_ZONE)
703 memset(p + s->object_size, val, s->inuse - s->object_size);
704 }
705
706 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
707 void *from, void *to)
708 {
709 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
710 memset(from, data, to - from);
711 }
712
713 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
714 u8 *object, char *what,
715 u8 *start, unsigned int value, unsigned int bytes)
716 {
717 u8 *fault;
718 u8 *end;
719
720 metadata_access_enable();
721 fault = memchr_inv(start, value, bytes);
722 metadata_access_disable();
723 if (!fault)
724 return 1;
725
726 end = start + bytes;
727 while (end > fault && end[-1] == value)
728 end--;
729
730 slab_bug(s, "%s overwritten", what);
731 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
732 fault, end - 1, fault[0], value);
733 print_trailer(s, page, object);
734
735 restore_bytes(s, what, value, fault, end);
736 return 0;
737 }
738
739 /*
740 * Object layout:
741 *
742 * object address
743 * Bytes of the object to be managed.
744 * If the freepointer may overlay the object then the free
745 * pointer is the first word of the object.
746 *
747 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
748 * 0xa5 (POISON_END)
749 *
750 * object + s->object_size
751 * Padding to reach word boundary. This is also used for Redzoning.
752 * Padding is extended by another word if Redzoning is enabled and
753 * object_size == inuse.
754 *
755 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
756 * 0xcc (RED_ACTIVE) for objects in use.
757 *
758 * object + s->inuse
759 * Meta data starts here.
760 *
761 * A. Free pointer (if we cannot overwrite object on free)
762 * B. Tracking data for SLAB_STORE_USER
763 * C. Padding to reach required alignment boundary or at mininum
764 * one word if debugging is on to be able to detect writes
765 * before the word boundary.
766 *
767 * Padding is done using 0x5a (POISON_INUSE)
768 *
769 * object + s->size
770 * Nothing is used beyond s->size.
771 *
772 * If slabcaches are merged then the object_size and inuse boundaries are mostly
773 * ignored. And therefore no slab options that rely on these boundaries
774 * may be used with merged slabcaches.
775 */
776
777 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
778 {
779 unsigned long off = s->inuse; /* The end of info */
780
781 if (s->offset)
782 /* Freepointer is placed after the object. */
783 off += sizeof(void *);
784
785 if (s->flags & SLAB_STORE_USER)
786 /* We also have user information there */
787 off += 2 * sizeof(struct track);
788
789 off += kasan_metadata_size(s);
790
791 if (size_from_object(s) == off)
792 return 1;
793
794 return check_bytes_and_report(s, page, p, "Object padding",
795 p + off, POISON_INUSE, size_from_object(s) - off);
796 }
797
798 /* Check the pad bytes at the end of a slab page */
799 static int slab_pad_check(struct kmem_cache *s, struct page *page)
800 {
801 u8 *start;
802 u8 *fault;
803 u8 *end;
804 int length;
805 int remainder;
806
807 if (!(s->flags & SLAB_POISON))
808 return 1;
809
810 start = page_address(page);
811 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
812 end = start + length;
813 remainder = length % s->size;
814 if (!remainder)
815 return 1;
816
817 metadata_access_enable();
818 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
819 metadata_access_disable();
820 if (!fault)
821 return 1;
822 while (end > fault && end[-1] == POISON_INUSE)
823 end--;
824
825 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
826 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
827
828 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
829 return 0;
830 }
831
832 static int check_object(struct kmem_cache *s, struct page *page,
833 void *object, u8 val)
834 {
835 u8 *p = object;
836 u8 *endobject = object + s->object_size;
837
838 if (s->flags & SLAB_RED_ZONE) {
839 if (!check_bytes_and_report(s, page, object, "Redzone",
840 object - s->red_left_pad, val, s->red_left_pad))
841 return 0;
842
843 if (!check_bytes_and_report(s, page, object, "Redzone",
844 endobject, val, s->inuse - s->object_size))
845 return 0;
846 } else {
847 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
848 check_bytes_and_report(s, page, p, "Alignment padding",
849 endobject, POISON_INUSE,
850 s->inuse - s->object_size);
851 }
852 }
853
854 if (s->flags & SLAB_POISON) {
855 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
856 (!check_bytes_and_report(s, page, p, "Poison", p,
857 POISON_FREE, s->object_size - 1) ||
858 !check_bytes_and_report(s, page, p, "Poison",
859 p + s->object_size - 1, POISON_END, 1)))
860 return 0;
861 /*
862 * check_pad_bytes cleans up on its own.
863 */
864 check_pad_bytes(s, page, p);
865 }
866
867 if (!s->offset && val == SLUB_RED_ACTIVE)
868 /*
869 * Object and freepointer overlap. Cannot check
870 * freepointer while object is allocated.
871 */
872 return 1;
873
874 /* Check free pointer validity */
875 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
876 object_err(s, page, p, "Freepointer corrupt");
877 /*
878 * No choice but to zap it and thus lose the remainder
879 * of the free objects in this slab. May cause
880 * another error because the object count is now wrong.
881 */
882 set_freepointer(s, p, NULL);
883 return 0;
884 }
885 return 1;
886 }
887
888 static int check_slab(struct kmem_cache *s, struct page *page)
889 {
890 int maxobj;
891
892 VM_BUG_ON(!irqs_disabled());
893
894 if (!PageSlab(page)) {
895 slab_err(s, page, "Not a valid slab page");
896 return 0;
897 }
898
899 maxobj = order_objects(compound_order(page), s->size, s->reserved);
900 if (page->objects > maxobj) {
901 slab_err(s, page, "objects %u > max %u",
902 page->objects, maxobj);
903 return 0;
904 }
905 if (page->inuse > page->objects) {
906 slab_err(s, page, "inuse %u > max %u",
907 page->inuse, page->objects);
908 return 0;
909 }
910 /* Slab_pad_check fixes things up after itself */
911 slab_pad_check(s, page);
912 return 1;
913 }
914
915 /*
916 * Determine if a certain object on a page is on the freelist. Must hold the
917 * slab lock to guarantee that the chains are in a consistent state.
918 */
919 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
920 {
921 int nr = 0;
922 void *fp;
923 void *object = NULL;
924 int max_objects;
925
926 fp = page->freelist;
927 while (fp && nr <= page->objects) {
928 if (fp == search)
929 return 1;
930 if (!check_valid_pointer(s, page, fp)) {
931 if (object) {
932 object_err(s, page, object,
933 "Freechain corrupt");
934 set_freepointer(s, object, NULL);
935 } else {
936 slab_err(s, page, "Freepointer corrupt");
937 page->freelist = NULL;
938 page->inuse = page->objects;
939 slab_fix(s, "Freelist cleared");
940 return 0;
941 }
942 break;
943 }
944 object = fp;
945 fp = get_freepointer(s, object);
946 nr++;
947 }
948
949 max_objects = order_objects(compound_order(page), s->size, s->reserved);
950 if (max_objects > MAX_OBJS_PER_PAGE)
951 max_objects = MAX_OBJS_PER_PAGE;
952
953 if (page->objects != max_objects) {
954 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
955 page->objects, max_objects);
956 page->objects = max_objects;
957 slab_fix(s, "Number of objects adjusted.");
958 }
959 if (page->inuse != page->objects - nr) {
960 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
961 page->inuse, page->objects - nr);
962 page->inuse = page->objects - nr;
963 slab_fix(s, "Object count adjusted.");
964 }
965 return search == NULL;
966 }
967
968 static void trace(struct kmem_cache *s, struct page *page, void *object,
969 int alloc)
970 {
971 if (s->flags & SLAB_TRACE) {
972 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
973 s->name,
974 alloc ? "alloc" : "free",
975 object, page->inuse,
976 page->freelist);
977
978 if (!alloc)
979 print_section(KERN_INFO, "Object ", (void *)object,
980 s->object_size);
981
982 dump_stack();
983 }
984 }
985
986 /*
987 * Tracking of fully allocated slabs for debugging purposes.
988 */
989 static void add_full(struct kmem_cache *s,
990 struct kmem_cache_node *n, struct page *page)
991 {
992 if (!(s->flags & SLAB_STORE_USER))
993 return;
994
995 lockdep_assert_held(&n->list_lock);
996 list_add(&page->lru, &n->full);
997 }
998
999 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1000 {
1001 if (!(s->flags & SLAB_STORE_USER))
1002 return;
1003
1004 lockdep_assert_held(&n->list_lock);
1005 list_del(&page->lru);
1006 }
1007
1008 /* Tracking of the number of slabs for debugging purposes */
1009 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1010 {
1011 struct kmem_cache_node *n = get_node(s, node);
1012
1013 return atomic_long_read(&n->nr_slabs);
1014 }
1015
1016 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1017 {
1018 return atomic_long_read(&n->nr_slabs);
1019 }
1020
1021 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1022 {
1023 struct kmem_cache_node *n = get_node(s, node);
1024
1025 /*
1026 * May be called early in order to allocate a slab for the
1027 * kmem_cache_node structure. Solve the chicken-egg
1028 * dilemma by deferring the increment of the count during
1029 * bootstrap (see early_kmem_cache_node_alloc).
1030 */
1031 if (likely(n)) {
1032 atomic_long_inc(&n->nr_slabs);
1033 atomic_long_add(objects, &n->total_objects);
1034 }
1035 }
1036 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1037 {
1038 struct kmem_cache_node *n = get_node(s, node);
1039
1040 atomic_long_dec(&n->nr_slabs);
1041 atomic_long_sub(objects, &n->total_objects);
1042 }
1043
1044 /* Object debug checks for alloc/free paths */
1045 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1046 void *object)
1047 {
1048 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1049 return;
1050
1051 init_object(s, object, SLUB_RED_INACTIVE);
1052 init_tracking(s, object);
1053 }
1054
1055 static inline int alloc_consistency_checks(struct kmem_cache *s,
1056 struct page *page,
1057 void *object, unsigned long addr)
1058 {
1059 if (!check_slab(s, page))
1060 return 0;
1061
1062 if (!check_valid_pointer(s, page, object)) {
1063 object_err(s, page, object, "Freelist Pointer check fails");
1064 return 0;
1065 }
1066
1067 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1068 return 0;
1069
1070 return 1;
1071 }
1072
1073 static noinline int alloc_debug_processing(struct kmem_cache *s,
1074 struct page *page,
1075 void *object, unsigned long addr)
1076 {
1077 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1078 if (!alloc_consistency_checks(s, page, object, addr))
1079 goto bad;
1080 }
1081
1082 /* Success perform special debug activities for allocs */
1083 if (s->flags & SLAB_STORE_USER)
1084 set_track(s, object, TRACK_ALLOC, addr);
1085 trace(s, page, object, 1);
1086 init_object(s, object, SLUB_RED_ACTIVE);
1087 return 1;
1088
1089 bad:
1090 if (PageSlab(page)) {
1091 /*
1092 * If this is a slab page then lets do the best we can
1093 * to avoid issues in the future. Marking all objects
1094 * as used avoids touching the remaining objects.
1095 */
1096 slab_fix(s, "Marking all objects used");
1097 page->inuse = page->objects;
1098 page->freelist = NULL;
1099 }
1100 return 0;
1101 }
1102
1103 static inline int free_consistency_checks(struct kmem_cache *s,
1104 struct page *page, void *object, unsigned long addr)
1105 {
1106 if (!check_valid_pointer(s, page, object)) {
1107 slab_err(s, page, "Invalid object pointer 0x%p", object);
1108 return 0;
1109 }
1110
1111 if (on_freelist(s, page, object)) {
1112 object_err(s, page, object, "Object already free");
1113 return 0;
1114 }
1115
1116 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1117 return 0;
1118
1119 if (unlikely(s != page->slab_cache)) {
1120 if (!PageSlab(page)) {
1121 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1122 object);
1123 } else if (!page->slab_cache) {
1124 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1125 object);
1126 dump_stack();
1127 } else
1128 object_err(s, page, object,
1129 "page slab pointer corrupt.");
1130 return 0;
1131 }
1132 return 1;
1133 }
1134
1135 /* Supports checking bulk free of a constructed freelist */
1136 static noinline int free_debug_processing(
1137 struct kmem_cache *s, struct page *page,
1138 void *head, void *tail, int bulk_cnt,
1139 unsigned long addr)
1140 {
1141 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1142 void *object = head;
1143 int cnt = 0;
1144 unsigned long uninitialized_var(flags);
1145 int ret = 0;
1146
1147 spin_lock_irqsave(&n->list_lock, flags);
1148 slab_lock(page);
1149
1150 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1151 if (!check_slab(s, page))
1152 goto out;
1153 }
1154
1155 next_object:
1156 cnt++;
1157
1158 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1159 if (!free_consistency_checks(s, page, object, addr))
1160 goto out;
1161 }
1162
1163 if (s->flags & SLAB_STORE_USER)
1164 set_track(s, object, TRACK_FREE, addr);
1165 trace(s, page, object, 0);
1166 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1167 init_object(s, object, SLUB_RED_INACTIVE);
1168
1169 /* Reached end of constructed freelist yet? */
1170 if (object != tail) {
1171 object = get_freepointer(s, object);
1172 goto next_object;
1173 }
1174 ret = 1;
1175
1176 out:
1177 if (cnt != bulk_cnt)
1178 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1179 bulk_cnt, cnt);
1180
1181 slab_unlock(page);
1182 spin_unlock_irqrestore(&n->list_lock, flags);
1183 if (!ret)
1184 slab_fix(s, "Object at 0x%p not freed", object);
1185 return ret;
1186 }
1187
1188 static int __init setup_slub_debug(char *str)
1189 {
1190 slub_debug = DEBUG_DEFAULT_FLAGS;
1191 if (*str++ != '=' || !*str)
1192 /*
1193 * No options specified. Switch on full debugging.
1194 */
1195 goto out;
1196
1197 if (*str == ',')
1198 /*
1199 * No options but restriction on slabs. This means full
1200 * debugging for slabs matching a pattern.
1201 */
1202 goto check_slabs;
1203
1204 slub_debug = 0;
1205 if (*str == '-')
1206 /*
1207 * Switch off all debugging measures.
1208 */
1209 goto out;
1210
1211 /*
1212 * Determine which debug features should be switched on
1213 */
1214 for (; *str && *str != ','; str++) {
1215 switch (tolower(*str)) {
1216 case 'f':
1217 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1218 break;
1219 case 'z':
1220 slub_debug |= SLAB_RED_ZONE;
1221 break;
1222 case 'p':
1223 slub_debug |= SLAB_POISON;
1224 break;
1225 case 'u':
1226 slub_debug |= SLAB_STORE_USER;
1227 break;
1228 case 't':
1229 slub_debug |= SLAB_TRACE;
1230 break;
1231 case 'a':
1232 slub_debug |= SLAB_FAILSLAB;
1233 break;
1234 case 'o':
1235 /*
1236 * Avoid enabling debugging on caches if its minimum
1237 * order would increase as a result.
1238 */
1239 disable_higher_order_debug = 1;
1240 break;
1241 default:
1242 pr_err("slub_debug option '%c' unknown. skipped\n",
1243 *str);
1244 }
1245 }
1246
1247 check_slabs:
1248 if (*str == ',')
1249 slub_debug_slabs = str + 1;
1250 out:
1251 return 1;
1252 }
1253
1254 __setup("slub_debug", setup_slub_debug);
1255
1256 unsigned long kmem_cache_flags(unsigned long object_size,
1257 unsigned long flags, const char *name,
1258 void (*ctor)(void *))
1259 {
1260 /*
1261 * Enable debugging if selected on the kernel commandline.
1262 */
1263 if (slub_debug && (!slub_debug_slabs || (name &&
1264 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1265 flags |= slub_debug;
1266
1267 return flags;
1268 }
1269 #else /* !CONFIG_SLUB_DEBUG */
1270 static inline void setup_object_debug(struct kmem_cache *s,
1271 struct page *page, void *object) {}
1272
1273 static inline int alloc_debug_processing(struct kmem_cache *s,
1274 struct page *page, void *object, unsigned long addr) { return 0; }
1275
1276 static inline int free_debug_processing(
1277 struct kmem_cache *s, struct page *page,
1278 void *head, void *tail, int bulk_cnt,
1279 unsigned long addr) { return 0; }
1280
1281 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1282 { return 1; }
1283 static inline int check_object(struct kmem_cache *s, struct page *page,
1284 void *object, u8 val) { return 1; }
1285 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1286 struct page *page) {}
1287 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1288 struct page *page) {}
1289 unsigned long kmem_cache_flags(unsigned long object_size,
1290 unsigned long flags, const char *name,
1291 void (*ctor)(void *))
1292 {
1293 return flags;
1294 }
1295 #define slub_debug 0
1296
1297 #define disable_higher_order_debug 0
1298
1299 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1300 { return 0; }
1301 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1302 { return 0; }
1303 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1304 int objects) {}
1305 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1306 int objects) {}
1307
1308 #endif /* CONFIG_SLUB_DEBUG */
1309
1310 /*
1311 * Hooks for other subsystems that check memory allocations. In a typical
1312 * production configuration these hooks all should produce no code at all.
1313 */
1314 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1315 {
1316 kmemleak_alloc(ptr, size, 1, flags);
1317 kasan_kmalloc_large(ptr, size, flags);
1318 }
1319
1320 static inline void kfree_hook(const void *x)
1321 {
1322 kmemleak_free(x);
1323 kasan_kfree_large(x);
1324 }
1325
1326 static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1327 {
1328 void *freeptr;
1329
1330 kmemleak_free_recursive(x, s->flags);
1331
1332 /*
1333 * Trouble is that we may no longer disable interrupts in the fast path
1334 * So in order to make the debug calls that expect irqs to be
1335 * disabled we need to disable interrupts temporarily.
1336 */
1337 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1338 {
1339 unsigned long flags;
1340
1341 local_irq_save(flags);
1342 kmemcheck_slab_free(s, x, s->object_size);
1343 debug_check_no_locks_freed(x, s->object_size);
1344 local_irq_restore(flags);
1345 }
1346 #endif
1347 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1348 debug_check_no_obj_freed(x, s->object_size);
1349
1350 freeptr = get_freepointer(s, x);
1351 /*
1352 * kasan_slab_free() may put x into memory quarantine, delaying its
1353 * reuse. In this case the object's freelist pointer is changed.
1354 */
1355 kasan_slab_free(s, x);
1356 return freeptr;
1357 }
1358
1359 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1360 void *head, void *tail)
1361 {
1362 /*
1363 * Compiler cannot detect this function can be removed if slab_free_hook()
1364 * evaluates to nothing. Thus, catch all relevant config debug options here.
1365 */
1366 #if defined(CONFIG_KMEMCHECK) || \
1367 defined(CONFIG_LOCKDEP) || \
1368 defined(CONFIG_DEBUG_KMEMLEAK) || \
1369 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1370 defined(CONFIG_KASAN)
1371
1372 void *object = head;
1373 void *tail_obj = tail ? : head;
1374 void *freeptr;
1375
1376 do {
1377 freeptr = slab_free_hook(s, object);
1378 } while ((object != tail_obj) && (object = freeptr));
1379 #endif
1380 }
1381
1382 static void setup_object(struct kmem_cache *s, struct page *page,
1383 void *object)
1384 {
1385 setup_object_debug(s, page, object);
1386 kasan_init_slab_obj(s, object);
1387 if (unlikely(s->ctor)) {
1388 kasan_unpoison_object_data(s, object);
1389 s->ctor(object);
1390 kasan_poison_object_data(s, object);
1391 }
1392 }
1393
1394 /*
1395 * Slab allocation and freeing
1396 */
1397 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1398 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1399 {
1400 struct page *page;
1401 int order = oo_order(oo);
1402
1403 flags |= __GFP_NOTRACK;
1404
1405 if (node == NUMA_NO_NODE)
1406 page = alloc_pages(flags, order);
1407 else
1408 page = __alloc_pages_node(node, flags, order);
1409
1410 if (page && memcg_charge_slab(page, flags, order, s)) {
1411 __free_pages(page, order);
1412 page = NULL;
1413 }
1414
1415 return page;
1416 }
1417
1418 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1419 /* Pre-initialize the random sequence cache */
1420 static int init_cache_random_seq(struct kmem_cache *s)
1421 {
1422 int err;
1423 unsigned long i, count = oo_objects(s->oo);
1424
1425 /* Bailout if already initialised */
1426 if (s->random_seq)
1427 return 0;
1428
1429 err = cache_random_seq_create(s, count, GFP_KERNEL);
1430 if (err) {
1431 pr_err("SLUB: Unable to initialize free list for %s\n",
1432 s->name);
1433 return err;
1434 }
1435
1436 /* Transform to an offset on the set of pages */
1437 if (s->random_seq) {
1438 for (i = 0; i < count; i++)
1439 s->random_seq[i] *= s->size;
1440 }
1441 return 0;
1442 }
1443
1444 /* Initialize each random sequence freelist per cache */
1445 static void __init init_freelist_randomization(void)
1446 {
1447 struct kmem_cache *s;
1448
1449 mutex_lock(&slab_mutex);
1450
1451 list_for_each_entry(s, &slab_caches, list)
1452 init_cache_random_seq(s);
1453
1454 mutex_unlock(&slab_mutex);
1455 }
1456
1457 /* Get the next entry on the pre-computed freelist randomized */
1458 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1459 unsigned long *pos, void *start,
1460 unsigned long page_limit,
1461 unsigned long freelist_count)
1462 {
1463 unsigned int idx;
1464
1465 /*
1466 * If the target page allocation failed, the number of objects on the
1467 * page might be smaller than the usual size defined by the cache.
1468 */
1469 do {
1470 idx = s->random_seq[*pos];
1471 *pos += 1;
1472 if (*pos >= freelist_count)
1473 *pos = 0;
1474 } while (unlikely(idx >= page_limit));
1475
1476 return (char *)start + idx;
1477 }
1478
1479 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1480 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1481 {
1482 void *start;
1483 void *cur;
1484 void *next;
1485 unsigned long idx, pos, page_limit, freelist_count;
1486
1487 if (page->objects < 2 || !s->random_seq)
1488 return false;
1489
1490 freelist_count = oo_objects(s->oo);
1491 pos = get_random_int() % freelist_count;
1492
1493 page_limit = page->objects * s->size;
1494 start = fixup_red_left(s, page_address(page));
1495
1496 /* First entry is used as the base of the freelist */
1497 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1498 freelist_count);
1499 page->freelist = cur;
1500
1501 for (idx = 1; idx < page->objects; idx++) {
1502 setup_object(s, page, cur);
1503 next = next_freelist_entry(s, page, &pos, start, page_limit,
1504 freelist_count);
1505 set_freepointer(s, cur, next);
1506 cur = next;
1507 }
1508 setup_object(s, page, cur);
1509 set_freepointer(s, cur, NULL);
1510
1511 return true;
1512 }
1513 #else
1514 static inline int init_cache_random_seq(struct kmem_cache *s)
1515 {
1516 return 0;
1517 }
1518 static inline void init_freelist_randomization(void) { }
1519 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1520 {
1521 return false;
1522 }
1523 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1524
1525 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1526 {
1527 struct page *page;
1528 struct kmem_cache_order_objects oo = s->oo;
1529 gfp_t alloc_gfp;
1530 void *start, *p;
1531 int idx, order;
1532 bool shuffle;
1533
1534 flags &= gfp_allowed_mask;
1535
1536 if (gfpflags_allow_blocking(flags))
1537 local_irq_enable();
1538
1539 flags |= s->allocflags;
1540
1541 /*
1542 * Let the initial higher-order allocation fail under memory pressure
1543 * so we fall-back to the minimum order allocation.
1544 */
1545 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1546 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1547 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1548
1549 page = alloc_slab_page(s, alloc_gfp, node, oo);
1550 if (unlikely(!page)) {
1551 oo = s->min;
1552 alloc_gfp = flags;
1553 /*
1554 * Allocation may have failed due to fragmentation.
1555 * Try a lower order alloc if possible
1556 */
1557 page = alloc_slab_page(s, alloc_gfp, node, oo);
1558 if (unlikely(!page))
1559 goto out;
1560 stat(s, ORDER_FALLBACK);
1561 }
1562
1563 if (kmemcheck_enabled &&
1564 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1565 int pages = 1 << oo_order(oo);
1566
1567 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1568
1569 /*
1570 * Objects from caches that have a constructor don't get
1571 * cleared when they're allocated, so we need to do it here.
1572 */
1573 if (s->ctor)
1574 kmemcheck_mark_uninitialized_pages(page, pages);
1575 else
1576 kmemcheck_mark_unallocated_pages(page, pages);
1577 }
1578
1579 page->objects = oo_objects(oo);
1580
1581 order = compound_order(page);
1582 page->slab_cache = s;
1583 __SetPageSlab(page);
1584 if (page_is_pfmemalloc(page))
1585 SetPageSlabPfmemalloc(page);
1586
1587 start = page_address(page);
1588
1589 if (unlikely(s->flags & SLAB_POISON))
1590 memset(start, POISON_INUSE, PAGE_SIZE << order);
1591
1592 kasan_poison_slab(page);
1593
1594 shuffle = shuffle_freelist(s, page);
1595
1596 if (!shuffle) {
1597 for_each_object_idx(p, idx, s, start, page->objects) {
1598 setup_object(s, page, p);
1599 if (likely(idx < page->objects))
1600 set_freepointer(s, p, p + s->size);
1601 else
1602 set_freepointer(s, p, NULL);
1603 }
1604 page->freelist = fixup_red_left(s, start);
1605 }
1606
1607 page->inuse = page->objects;
1608 page->frozen = 1;
1609
1610 out:
1611 if (gfpflags_allow_blocking(flags))
1612 local_irq_disable();
1613 if (!page)
1614 return NULL;
1615
1616 mod_zone_page_state(page_zone(page),
1617 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1618 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1619 1 << oo_order(oo));
1620
1621 inc_slabs_node(s, page_to_nid(page), page->objects);
1622
1623 return page;
1624 }
1625
1626 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1627 {
1628 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1629 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1630 flags &= ~GFP_SLAB_BUG_MASK;
1631 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1632 invalid_mask, &invalid_mask, flags, &flags);
1633 }
1634
1635 return allocate_slab(s,
1636 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1637 }
1638
1639 static void __free_slab(struct kmem_cache *s, struct page *page)
1640 {
1641 int order = compound_order(page);
1642 int pages = 1 << order;
1643
1644 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1645 void *p;
1646
1647 slab_pad_check(s, page);
1648 for_each_object(p, s, page_address(page),
1649 page->objects)
1650 check_object(s, page, p, SLUB_RED_INACTIVE);
1651 }
1652
1653 kmemcheck_free_shadow(page, compound_order(page));
1654
1655 mod_zone_page_state(page_zone(page),
1656 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1657 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1658 -pages);
1659
1660 __ClearPageSlabPfmemalloc(page);
1661 __ClearPageSlab(page);
1662
1663 page_mapcount_reset(page);
1664 if (current->reclaim_state)
1665 current->reclaim_state->reclaimed_slab += pages;
1666 memcg_uncharge_slab(page, order, s);
1667 __free_pages(page, order);
1668 }
1669
1670 #define need_reserve_slab_rcu \
1671 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1672
1673 static void rcu_free_slab(struct rcu_head *h)
1674 {
1675 struct page *page;
1676
1677 if (need_reserve_slab_rcu)
1678 page = virt_to_head_page(h);
1679 else
1680 page = container_of((struct list_head *)h, struct page, lru);
1681
1682 __free_slab(page->slab_cache, page);
1683 }
1684
1685 static void free_slab(struct kmem_cache *s, struct page *page)
1686 {
1687 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1688 struct rcu_head *head;
1689
1690 if (need_reserve_slab_rcu) {
1691 int order = compound_order(page);
1692 int offset = (PAGE_SIZE << order) - s->reserved;
1693
1694 VM_BUG_ON(s->reserved != sizeof(*head));
1695 head = page_address(page) + offset;
1696 } else {
1697 head = &page->rcu_head;
1698 }
1699
1700 call_rcu(head, rcu_free_slab);
1701 } else
1702 __free_slab(s, page);
1703 }
1704
1705 static void discard_slab(struct kmem_cache *s, struct page *page)
1706 {
1707 dec_slabs_node(s, page_to_nid(page), page->objects);
1708 free_slab(s, page);
1709 }
1710
1711 /*
1712 * Management of partially allocated slabs.
1713 */
1714 static inline void
1715 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1716 {
1717 n->nr_partial++;
1718 if (tail == DEACTIVATE_TO_TAIL)
1719 list_add_tail(&page->lru, &n->partial);
1720 else
1721 list_add(&page->lru, &n->partial);
1722 }
1723
1724 static inline void add_partial(struct kmem_cache_node *n,
1725 struct page *page, int tail)
1726 {
1727 lockdep_assert_held(&n->list_lock);
1728 __add_partial(n, page, tail);
1729 }
1730
1731 static inline void remove_partial(struct kmem_cache_node *n,
1732 struct page *page)
1733 {
1734 lockdep_assert_held(&n->list_lock);
1735 list_del(&page->lru);
1736 n->nr_partial--;
1737 }
1738
1739 /*
1740 * Remove slab from the partial list, freeze it and
1741 * return the pointer to the freelist.
1742 *
1743 * Returns a list of objects or NULL if it fails.
1744 */
1745 static inline void *acquire_slab(struct kmem_cache *s,
1746 struct kmem_cache_node *n, struct page *page,
1747 int mode, int *objects)
1748 {
1749 void *freelist;
1750 unsigned long counters;
1751 struct page new;
1752
1753 lockdep_assert_held(&n->list_lock);
1754
1755 /*
1756 * Zap the freelist and set the frozen bit.
1757 * The old freelist is the list of objects for the
1758 * per cpu allocation list.
1759 */
1760 freelist = page->freelist;
1761 counters = page->counters;
1762 new.counters = counters;
1763 *objects = new.objects - new.inuse;
1764 if (mode) {
1765 new.inuse = page->objects;
1766 new.freelist = NULL;
1767 } else {
1768 new.freelist = freelist;
1769 }
1770
1771 VM_BUG_ON(new.frozen);
1772 new.frozen = 1;
1773
1774 if (!__cmpxchg_double_slab(s, page,
1775 freelist, counters,
1776 new.freelist, new.counters,
1777 "acquire_slab"))
1778 return NULL;
1779
1780 remove_partial(n, page);
1781 WARN_ON(!freelist);
1782 return freelist;
1783 }
1784
1785 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1786 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1787
1788 /*
1789 * Try to allocate a partial slab from a specific node.
1790 */
1791 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1792 struct kmem_cache_cpu *c, gfp_t flags)
1793 {
1794 struct page *page, *page2;
1795 void *object = NULL;
1796 int available = 0;
1797 int objects;
1798
1799 /*
1800 * Racy check. If we mistakenly see no partial slabs then we
1801 * just allocate an empty slab. If we mistakenly try to get a
1802 * partial slab and there is none available then get_partials()
1803 * will return NULL.
1804 */
1805 if (!n || !n->nr_partial)
1806 return NULL;
1807
1808 spin_lock(&n->list_lock);
1809 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1810 void *t;
1811
1812 if (!pfmemalloc_match(page, flags))
1813 continue;
1814
1815 t = acquire_slab(s, n, page, object == NULL, &objects);
1816 if (!t)
1817 break;
1818
1819 available += objects;
1820 if (!object) {
1821 c->page = page;
1822 stat(s, ALLOC_FROM_PARTIAL);
1823 object = t;
1824 } else {
1825 put_cpu_partial(s, page, 0);
1826 stat(s, CPU_PARTIAL_NODE);
1827 }
1828 if (!kmem_cache_has_cpu_partial(s)
1829 || available > s->cpu_partial / 2)
1830 break;
1831
1832 }
1833 spin_unlock(&n->list_lock);
1834 return object;
1835 }
1836
1837 /*
1838 * Get a page from somewhere. Search in increasing NUMA distances.
1839 */
1840 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1841 struct kmem_cache_cpu *c)
1842 {
1843 #ifdef CONFIG_NUMA
1844 struct zonelist *zonelist;
1845 struct zoneref *z;
1846 struct zone *zone;
1847 enum zone_type high_zoneidx = gfp_zone(flags);
1848 void *object;
1849 unsigned int cpuset_mems_cookie;
1850
1851 /*
1852 * The defrag ratio allows a configuration of the tradeoffs between
1853 * inter node defragmentation and node local allocations. A lower
1854 * defrag_ratio increases the tendency to do local allocations
1855 * instead of attempting to obtain partial slabs from other nodes.
1856 *
1857 * If the defrag_ratio is set to 0 then kmalloc() always
1858 * returns node local objects. If the ratio is higher then kmalloc()
1859 * may return off node objects because partial slabs are obtained
1860 * from other nodes and filled up.
1861 *
1862 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1863 * (which makes defrag_ratio = 1000) then every (well almost)
1864 * allocation will first attempt to defrag slab caches on other nodes.
1865 * This means scanning over all nodes to look for partial slabs which
1866 * may be expensive if we do it every time we are trying to find a slab
1867 * with available objects.
1868 */
1869 if (!s->remote_node_defrag_ratio ||
1870 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1871 return NULL;
1872
1873 do {
1874 cpuset_mems_cookie = read_mems_allowed_begin();
1875 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1876 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1877 struct kmem_cache_node *n;
1878
1879 n = get_node(s, zone_to_nid(zone));
1880
1881 if (n && cpuset_zone_allowed(zone, flags) &&
1882 n->nr_partial > s->min_partial) {
1883 object = get_partial_node(s, n, c, flags);
1884 if (object) {
1885 /*
1886 * Don't check read_mems_allowed_retry()
1887 * here - if mems_allowed was updated in
1888 * parallel, that was a harmless race
1889 * between allocation and the cpuset
1890 * update
1891 */
1892 return object;
1893 }
1894 }
1895 }
1896 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1897 #endif
1898 return NULL;
1899 }
1900
1901 /*
1902 * Get a partial page, lock it and return it.
1903 */
1904 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1905 struct kmem_cache_cpu *c)
1906 {
1907 void *object;
1908 int searchnode = node;
1909
1910 if (node == NUMA_NO_NODE)
1911 searchnode = numa_mem_id();
1912 else if (!node_present_pages(node))
1913 searchnode = node_to_mem_node(node);
1914
1915 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1916 if (object || node != NUMA_NO_NODE)
1917 return object;
1918
1919 return get_any_partial(s, flags, c);
1920 }
1921
1922 #ifdef CONFIG_PREEMPT
1923 /*
1924 * Calculate the next globally unique transaction for disambiguiation
1925 * during cmpxchg. The transactions start with the cpu number and are then
1926 * incremented by CONFIG_NR_CPUS.
1927 */
1928 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1929 #else
1930 /*
1931 * No preemption supported therefore also no need to check for
1932 * different cpus.
1933 */
1934 #define TID_STEP 1
1935 #endif
1936
1937 static inline unsigned long next_tid(unsigned long tid)
1938 {
1939 return tid + TID_STEP;
1940 }
1941
1942 static inline unsigned int tid_to_cpu(unsigned long tid)
1943 {
1944 return tid % TID_STEP;
1945 }
1946
1947 static inline unsigned long tid_to_event(unsigned long tid)
1948 {
1949 return tid / TID_STEP;
1950 }
1951
1952 static inline unsigned int init_tid(int cpu)
1953 {
1954 return cpu;
1955 }
1956
1957 static inline void note_cmpxchg_failure(const char *n,
1958 const struct kmem_cache *s, unsigned long tid)
1959 {
1960 #ifdef SLUB_DEBUG_CMPXCHG
1961 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1962
1963 pr_info("%s %s: cmpxchg redo ", n, s->name);
1964
1965 #ifdef CONFIG_PREEMPT
1966 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1967 pr_warn("due to cpu change %d -> %d\n",
1968 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1969 else
1970 #endif
1971 if (tid_to_event(tid) != tid_to_event(actual_tid))
1972 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1973 tid_to_event(tid), tid_to_event(actual_tid));
1974 else
1975 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1976 actual_tid, tid, next_tid(tid));
1977 #endif
1978 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1979 }
1980
1981 static void init_kmem_cache_cpus(struct kmem_cache *s)
1982 {
1983 int cpu;
1984
1985 for_each_possible_cpu(cpu)
1986 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1987 }
1988
1989 /*
1990 * Remove the cpu slab
1991 */
1992 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1993 void *freelist)
1994 {
1995 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1996 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1997 int lock = 0;
1998 enum slab_modes l = M_NONE, m = M_NONE;
1999 void *nextfree;
2000 int tail = DEACTIVATE_TO_HEAD;
2001 struct page new;
2002 struct page old;
2003
2004 if (page->freelist) {
2005 stat(s, DEACTIVATE_REMOTE_FREES);
2006 tail = DEACTIVATE_TO_TAIL;
2007 }
2008
2009 /*
2010 * Stage one: Free all available per cpu objects back
2011 * to the page freelist while it is still frozen. Leave the
2012 * last one.
2013 *
2014 * There is no need to take the list->lock because the page
2015 * is still frozen.
2016 */
2017 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2018 void *prior;
2019 unsigned long counters;
2020
2021 do {
2022 prior = page->freelist;
2023 counters = page->counters;
2024 set_freepointer(s, freelist, prior);
2025 new.counters = counters;
2026 new.inuse--;
2027 VM_BUG_ON(!new.frozen);
2028
2029 } while (!__cmpxchg_double_slab(s, page,
2030 prior, counters,
2031 freelist, new.counters,
2032 "drain percpu freelist"));
2033
2034 freelist = nextfree;
2035 }
2036
2037 /*
2038 * Stage two: Ensure that the page is unfrozen while the
2039 * list presence reflects the actual number of objects
2040 * during unfreeze.
2041 *
2042 * We setup the list membership and then perform a cmpxchg
2043 * with the count. If there is a mismatch then the page
2044 * is not unfrozen but the page is on the wrong list.
2045 *
2046 * Then we restart the process which may have to remove
2047 * the page from the list that we just put it on again
2048 * because the number of objects in the slab may have
2049 * changed.
2050 */
2051 redo:
2052
2053 old.freelist = page->freelist;
2054 old.counters = page->counters;
2055 VM_BUG_ON(!old.frozen);
2056
2057 /* Determine target state of the slab */
2058 new.counters = old.counters;
2059 if (freelist) {
2060 new.inuse--;
2061 set_freepointer(s, freelist, old.freelist);
2062 new.freelist = freelist;
2063 } else
2064 new.freelist = old.freelist;
2065
2066 new.frozen = 0;
2067
2068 if (!new.inuse && n->nr_partial >= s->min_partial)
2069 m = M_FREE;
2070 else if (new.freelist) {
2071 m = M_PARTIAL;
2072 if (!lock) {
2073 lock = 1;
2074 /*
2075 * Taking the spinlock removes the possiblity
2076 * that acquire_slab() will see a slab page that
2077 * is frozen
2078 */
2079 spin_lock(&n->list_lock);
2080 }
2081 } else {
2082 m = M_FULL;
2083 if (kmem_cache_debug(s) && !lock) {
2084 lock = 1;
2085 /*
2086 * This also ensures that the scanning of full
2087 * slabs from diagnostic functions will not see
2088 * any frozen slabs.
2089 */
2090 spin_lock(&n->list_lock);
2091 }
2092 }
2093
2094 if (l != m) {
2095
2096 if (l == M_PARTIAL)
2097
2098 remove_partial(n, page);
2099
2100 else if (l == M_FULL)
2101
2102 remove_full(s, n, page);
2103
2104 if (m == M_PARTIAL) {
2105
2106 add_partial(n, page, tail);
2107 stat(s, tail);
2108
2109 } else if (m == M_FULL) {
2110
2111 stat(s, DEACTIVATE_FULL);
2112 add_full(s, n, page);
2113
2114 }
2115 }
2116
2117 l = m;
2118 if (!__cmpxchg_double_slab(s, page,
2119 old.freelist, old.counters,
2120 new.freelist, new.counters,
2121 "unfreezing slab"))
2122 goto redo;
2123
2124 if (lock)
2125 spin_unlock(&n->list_lock);
2126
2127 if (m == M_FREE) {
2128 stat(s, DEACTIVATE_EMPTY);
2129 discard_slab(s, page);
2130 stat(s, FREE_SLAB);
2131 }
2132 }
2133
2134 /*
2135 * Unfreeze all the cpu partial slabs.
2136 *
2137 * This function must be called with interrupts disabled
2138 * for the cpu using c (or some other guarantee must be there
2139 * to guarantee no concurrent accesses).
2140 */
2141 static void unfreeze_partials(struct kmem_cache *s,
2142 struct kmem_cache_cpu *c)
2143 {
2144 #ifdef CONFIG_SLUB_CPU_PARTIAL
2145 struct kmem_cache_node *n = NULL, *n2 = NULL;
2146 struct page *page, *discard_page = NULL;
2147
2148 while ((page = c->partial)) {
2149 struct page new;
2150 struct page old;
2151
2152 c->partial = page->next;
2153
2154 n2 = get_node(s, page_to_nid(page));
2155 if (n != n2) {
2156 if (n)
2157 spin_unlock(&n->list_lock);
2158
2159 n = n2;
2160 spin_lock(&n->list_lock);
2161 }
2162
2163 do {
2164
2165 old.freelist = page->freelist;
2166 old.counters = page->counters;
2167 VM_BUG_ON(!old.frozen);
2168
2169 new.counters = old.counters;
2170 new.freelist = old.freelist;
2171
2172 new.frozen = 0;
2173
2174 } while (!__cmpxchg_double_slab(s, page,
2175 old.freelist, old.counters,
2176 new.freelist, new.counters,
2177 "unfreezing slab"));
2178
2179 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2180 page->next = discard_page;
2181 discard_page = page;
2182 } else {
2183 add_partial(n, page, DEACTIVATE_TO_TAIL);
2184 stat(s, FREE_ADD_PARTIAL);
2185 }
2186 }
2187
2188 if (n)
2189 spin_unlock(&n->list_lock);
2190
2191 while (discard_page) {
2192 page = discard_page;
2193 discard_page = discard_page->next;
2194
2195 stat(s, DEACTIVATE_EMPTY);
2196 discard_slab(s, page);
2197 stat(s, FREE_SLAB);
2198 }
2199 #endif
2200 }
2201
2202 /*
2203 * Put a page that was just frozen (in __slab_free) into a partial page
2204 * slot if available. This is done without interrupts disabled and without
2205 * preemption disabled. The cmpxchg is racy and may put the partial page
2206 * onto a random cpus partial slot.
2207 *
2208 * If we did not find a slot then simply move all the partials to the
2209 * per node partial list.
2210 */
2211 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2212 {
2213 #ifdef CONFIG_SLUB_CPU_PARTIAL
2214 struct page *oldpage;
2215 int pages;
2216 int pobjects;
2217
2218 preempt_disable();
2219 do {
2220 pages = 0;
2221 pobjects = 0;
2222 oldpage = this_cpu_read(s->cpu_slab->partial);
2223
2224 if (oldpage) {
2225 pobjects = oldpage->pobjects;
2226 pages = oldpage->pages;
2227 if (drain && pobjects > s->cpu_partial) {
2228 unsigned long flags;
2229 /*
2230 * partial array is full. Move the existing
2231 * set to the per node partial list.
2232 */
2233 local_irq_save(flags);
2234 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2235 local_irq_restore(flags);
2236 oldpage = NULL;
2237 pobjects = 0;
2238 pages = 0;
2239 stat(s, CPU_PARTIAL_DRAIN);
2240 }
2241 }
2242
2243 pages++;
2244 pobjects += page->objects - page->inuse;
2245
2246 page->pages = pages;
2247 page->pobjects = pobjects;
2248 page->next = oldpage;
2249
2250 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2251 != oldpage);
2252 if (unlikely(!s->cpu_partial)) {
2253 unsigned long flags;
2254
2255 local_irq_save(flags);
2256 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2257 local_irq_restore(flags);
2258 }
2259 preempt_enable();
2260 #endif
2261 }
2262
2263 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2264 {
2265 stat(s, CPUSLAB_FLUSH);
2266 deactivate_slab(s, c->page, c->freelist);
2267
2268 c->tid = next_tid(c->tid);
2269 c->page = NULL;
2270 c->freelist = NULL;
2271 }
2272
2273 /*
2274 * Flush cpu slab.
2275 *
2276 * Called from IPI handler with interrupts disabled.
2277 */
2278 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2279 {
2280 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2281
2282 if (likely(c)) {
2283 if (c->page)
2284 flush_slab(s, c);
2285
2286 unfreeze_partials(s, c);
2287 }
2288 }
2289
2290 static void flush_cpu_slab(void *d)
2291 {
2292 struct kmem_cache *s = d;
2293
2294 __flush_cpu_slab(s, smp_processor_id());
2295 }
2296
2297 static bool has_cpu_slab(int cpu, void *info)
2298 {
2299 struct kmem_cache *s = info;
2300 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2301
2302 return c->page || c->partial;
2303 }
2304
2305 static void flush_all(struct kmem_cache *s)
2306 {
2307 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2308 }
2309
2310 /*
2311 * Use the cpu notifier to insure that the cpu slabs are flushed when
2312 * necessary.
2313 */
2314 static int slub_cpu_dead(unsigned int cpu)
2315 {
2316 struct kmem_cache *s;
2317 unsigned long flags;
2318
2319 mutex_lock(&slab_mutex);
2320 list_for_each_entry(s, &slab_caches, list) {
2321 local_irq_save(flags);
2322 __flush_cpu_slab(s, cpu);
2323 local_irq_restore(flags);
2324 }
2325 mutex_unlock(&slab_mutex);
2326 return 0;
2327 }
2328
2329 /*
2330 * Check if the objects in a per cpu structure fit numa
2331 * locality expectations.
2332 */
2333 static inline int node_match(struct page *page, int node)
2334 {
2335 #ifdef CONFIG_NUMA
2336 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2337 return 0;
2338 #endif
2339 return 1;
2340 }
2341
2342 #ifdef CONFIG_SLUB_DEBUG
2343 static int count_free(struct page *page)
2344 {
2345 return page->objects - page->inuse;
2346 }
2347
2348 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2349 {
2350 return atomic_long_read(&n->total_objects);
2351 }
2352 #endif /* CONFIG_SLUB_DEBUG */
2353
2354 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2355 static unsigned long count_partial(struct kmem_cache_node *n,
2356 int (*get_count)(struct page *))
2357 {
2358 unsigned long flags;
2359 unsigned long x = 0;
2360 struct page *page;
2361
2362 spin_lock_irqsave(&n->list_lock, flags);
2363 list_for_each_entry(page, &n->partial, lru)
2364 x += get_count(page);
2365 spin_unlock_irqrestore(&n->list_lock, flags);
2366 return x;
2367 }
2368 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2369
2370 static noinline void
2371 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2372 {
2373 #ifdef CONFIG_SLUB_DEBUG
2374 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2375 DEFAULT_RATELIMIT_BURST);
2376 int node;
2377 struct kmem_cache_node *n;
2378
2379 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2380 return;
2381
2382 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2383 nid, gfpflags, &gfpflags);
2384 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2385 s->name, s->object_size, s->size, oo_order(s->oo),
2386 oo_order(s->min));
2387
2388 if (oo_order(s->min) > get_order(s->object_size))
2389 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2390 s->name);
2391
2392 for_each_kmem_cache_node(s, node, n) {
2393 unsigned long nr_slabs;
2394 unsigned long nr_objs;
2395 unsigned long nr_free;
2396
2397 nr_free = count_partial(n, count_free);
2398 nr_slabs = node_nr_slabs(n);
2399 nr_objs = node_nr_objs(n);
2400
2401 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2402 node, nr_slabs, nr_objs, nr_free);
2403 }
2404 #endif
2405 }
2406
2407 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2408 int node, struct kmem_cache_cpu **pc)
2409 {
2410 void *freelist;
2411 struct kmem_cache_cpu *c = *pc;
2412 struct page *page;
2413
2414 freelist = get_partial(s, flags, node, c);
2415
2416 if (freelist)
2417 return freelist;
2418
2419 page = new_slab(s, flags, node);
2420 if (page) {
2421 c = raw_cpu_ptr(s->cpu_slab);
2422 if (c->page)
2423 flush_slab(s, c);
2424
2425 /*
2426 * No other reference to the page yet so we can
2427 * muck around with it freely without cmpxchg
2428 */
2429 freelist = page->freelist;
2430 page->freelist = NULL;
2431
2432 stat(s, ALLOC_SLAB);
2433 c->page = page;
2434 *pc = c;
2435 } else
2436 freelist = NULL;
2437
2438 return freelist;
2439 }
2440
2441 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2442 {
2443 if (unlikely(PageSlabPfmemalloc(page)))
2444 return gfp_pfmemalloc_allowed(gfpflags);
2445
2446 return true;
2447 }
2448
2449 /*
2450 * Check the page->freelist of a page and either transfer the freelist to the
2451 * per cpu freelist or deactivate the page.
2452 *
2453 * The page is still frozen if the return value is not NULL.
2454 *
2455 * If this function returns NULL then the page has been unfrozen.
2456 *
2457 * This function must be called with interrupt disabled.
2458 */
2459 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2460 {
2461 struct page new;
2462 unsigned long counters;
2463 void *freelist;
2464
2465 do {
2466 freelist = page->freelist;
2467 counters = page->counters;
2468
2469 new.counters = counters;
2470 VM_BUG_ON(!new.frozen);
2471
2472 new.inuse = page->objects;
2473 new.frozen = freelist != NULL;
2474
2475 } while (!__cmpxchg_double_slab(s, page,
2476 freelist, counters,
2477 NULL, new.counters,
2478 "get_freelist"));
2479
2480 return freelist;
2481 }
2482
2483 /*
2484 * Slow path. The lockless freelist is empty or we need to perform
2485 * debugging duties.
2486 *
2487 * Processing is still very fast if new objects have been freed to the
2488 * regular freelist. In that case we simply take over the regular freelist
2489 * as the lockless freelist and zap the regular freelist.
2490 *
2491 * If that is not working then we fall back to the partial lists. We take the
2492 * first element of the freelist as the object to allocate now and move the
2493 * rest of the freelist to the lockless freelist.
2494 *
2495 * And if we were unable to get a new slab from the partial slab lists then
2496 * we need to allocate a new slab. This is the slowest path since it involves
2497 * a call to the page allocator and the setup of a new slab.
2498 *
2499 * Version of __slab_alloc to use when we know that interrupts are
2500 * already disabled (which is the case for bulk allocation).
2501 */
2502 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2503 unsigned long addr, struct kmem_cache_cpu *c)
2504 {
2505 void *freelist;
2506 struct page *page;
2507
2508 page = c->page;
2509 if (!page)
2510 goto new_slab;
2511 redo:
2512
2513 if (unlikely(!node_match(page, node))) {
2514 int searchnode = node;
2515
2516 if (node != NUMA_NO_NODE && !node_present_pages(node))
2517 searchnode = node_to_mem_node(node);
2518
2519 if (unlikely(!node_match(page, searchnode))) {
2520 stat(s, ALLOC_NODE_MISMATCH);
2521 deactivate_slab(s, page, c->freelist);
2522 c->page = NULL;
2523 c->freelist = NULL;
2524 goto new_slab;
2525 }
2526 }
2527
2528 /*
2529 * By rights, we should be searching for a slab page that was
2530 * PFMEMALLOC but right now, we are losing the pfmemalloc
2531 * information when the page leaves the per-cpu allocator
2532 */
2533 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2534 deactivate_slab(s, page, c->freelist);
2535 c->page = NULL;
2536 c->freelist = NULL;
2537 goto new_slab;
2538 }
2539
2540 /* must check again c->freelist in case of cpu migration or IRQ */
2541 freelist = c->freelist;
2542 if (freelist)
2543 goto load_freelist;
2544
2545 freelist = get_freelist(s, page);
2546
2547 if (!freelist) {
2548 c->page = NULL;
2549 stat(s, DEACTIVATE_BYPASS);
2550 goto new_slab;
2551 }
2552
2553 stat(s, ALLOC_REFILL);
2554
2555 load_freelist:
2556 /*
2557 * freelist is pointing to the list of objects to be used.
2558 * page is pointing to the page from which the objects are obtained.
2559 * That page must be frozen for per cpu allocations to work.
2560 */
2561 VM_BUG_ON(!c->page->frozen);
2562 c->freelist = get_freepointer(s, freelist);
2563 c->tid = next_tid(c->tid);
2564 return freelist;
2565
2566 new_slab:
2567
2568 if (c->partial) {
2569 page = c->page = c->partial;
2570 c->partial = page->next;
2571 stat(s, CPU_PARTIAL_ALLOC);
2572 c->freelist = NULL;
2573 goto redo;
2574 }
2575
2576 freelist = new_slab_objects(s, gfpflags, node, &c);
2577
2578 if (unlikely(!freelist)) {
2579 slab_out_of_memory(s, gfpflags, node);
2580 return NULL;
2581 }
2582
2583 page = c->page;
2584 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2585 goto load_freelist;
2586
2587 /* Only entered in the debug case */
2588 if (kmem_cache_debug(s) &&
2589 !alloc_debug_processing(s, page, freelist, addr))
2590 goto new_slab; /* Slab failed checks. Next slab needed */
2591
2592 deactivate_slab(s, page, get_freepointer(s, freelist));
2593 c->page = NULL;
2594 c->freelist = NULL;
2595 return freelist;
2596 }
2597
2598 /*
2599 * Another one that disabled interrupt and compensates for possible
2600 * cpu changes by refetching the per cpu area pointer.
2601 */
2602 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2603 unsigned long addr, struct kmem_cache_cpu *c)
2604 {
2605 void *p;
2606 unsigned long flags;
2607
2608 local_irq_save(flags);
2609 #ifdef CONFIG_PREEMPT
2610 /*
2611 * We may have been preempted and rescheduled on a different
2612 * cpu before disabling interrupts. Need to reload cpu area
2613 * pointer.
2614 */
2615 c = this_cpu_ptr(s->cpu_slab);
2616 #endif
2617
2618 p = ___slab_alloc(s, gfpflags, node, addr, c);
2619 local_irq_restore(flags);
2620 return p;
2621 }
2622
2623 /*
2624 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2625 * have the fastpath folded into their functions. So no function call
2626 * overhead for requests that can be satisfied on the fastpath.
2627 *
2628 * The fastpath works by first checking if the lockless freelist can be used.
2629 * If not then __slab_alloc is called for slow processing.
2630 *
2631 * Otherwise we can simply pick the next object from the lockless free list.
2632 */
2633 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2634 gfp_t gfpflags, int node, unsigned long addr)
2635 {
2636 void *object;
2637 struct kmem_cache_cpu *c;
2638 struct page *page;
2639 unsigned long tid;
2640
2641 s = slab_pre_alloc_hook(s, gfpflags);
2642 if (!s)
2643 return NULL;
2644 redo:
2645 /*
2646 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2647 * enabled. We may switch back and forth between cpus while
2648 * reading from one cpu area. That does not matter as long
2649 * as we end up on the original cpu again when doing the cmpxchg.
2650 *
2651 * We should guarantee that tid and kmem_cache are retrieved on
2652 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2653 * to check if it is matched or not.
2654 */
2655 do {
2656 tid = this_cpu_read(s->cpu_slab->tid);
2657 c = raw_cpu_ptr(s->cpu_slab);
2658 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2659 unlikely(tid != READ_ONCE(c->tid)));
2660
2661 /*
2662 * Irqless object alloc/free algorithm used here depends on sequence
2663 * of fetching cpu_slab's data. tid should be fetched before anything
2664 * on c to guarantee that object and page associated with previous tid
2665 * won't be used with current tid. If we fetch tid first, object and
2666 * page could be one associated with next tid and our alloc/free
2667 * request will be failed. In this case, we will retry. So, no problem.
2668 */
2669 barrier();
2670
2671 /*
2672 * The transaction ids are globally unique per cpu and per operation on
2673 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2674 * occurs on the right processor and that there was no operation on the
2675 * linked list in between.
2676 */
2677
2678 object = c->freelist;
2679 page = c->page;
2680 if (unlikely(!object || !node_match(page, node))) {
2681 object = __slab_alloc(s, gfpflags, node, addr, c);
2682 stat(s, ALLOC_SLOWPATH);
2683 } else {
2684 void *next_object = get_freepointer_safe(s, object);
2685
2686 /*
2687 * The cmpxchg will only match if there was no additional
2688 * operation and if we are on the right processor.
2689 *
2690 * The cmpxchg does the following atomically (without lock
2691 * semantics!)
2692 * 1. Relocate first pointer to the current per cpu area.
2693 * 2. Verify that tid and freelist have not been changed
2694 * 3. If they were not changed replace tid and freelist
2695 *
2696 * Since this is without lock semantics the protection is only
2697 * against code executing on this cpu *not* from access by
2698 * other cpus.
2699 */
2700 if (unlikely(!this_cpu_cmpxchg_double(
2701 s->cpu_slab->freelist, s->cpu_slab->tid,
2702 object, tid,
2703 next_object, next_tid(tid)))) {
2704
2705 note_cmpxchg_failure("slab_alloc", s, tid);
2706 goto redo;
2707 }
2708 prefetch_freepointer(s, next_object);
2709 stat(s, ALLOC_FASTPATH);
2710 }
2711
2712 if (unlikely(gfpflags & __GFP_ZERO) && object)
2713 memset(object, 0, s->object_size);
2714
2715 slab_post_alloc_hook(s, gfpflags, 1, &object);
2716
2717 return object;
2718 }
2719
2720 static __always_inline void *slab_alloc(struct kmem_cache *s,
2721 gfp_t gfpflags, unsigned long addr)
2722 {
2723 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2724 }
2725
2726 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2727 {
2728 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2729
2730 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2731 s->size, gfpflags);
2732
2733 return ret;
2734 }
2735 EXPORT_SYMBOL(kmem_cache_alloc);
2736
2737 #ifdef CONFIG_TRACING
2738 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2739 {
2740 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2741 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2742 kasan_kmalloc(s, ret, size, gfpflags);
2743 return ret;
2744 }
2745 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2746 #endif
2747
2748 #ifdef CONFIG_NUMA
2749 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2750 {
2751 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2752
2753 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2754 s->object_size, s->size, gfpflags, node);
2755
2756 return ret;
2757 }
2758 EXPORT_SYMBOL(kmem_cache_alloc_node);
2759
2760 #ifdef CONFIG_TRACING
2761 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2762 gfp_t gfpflags,
2763 int node, size_t size)
2764 {
2765 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2766
2767 trace_kmalloc_node(_RET_IP_, ret,
2768 size, s->size, gfpflags, node);
2769
2770 kasan_kmalloc(s, ret, size, gfpflags);
2771 return ret;
2772 }
2773 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2774 #endif
2775 #endif
2776
2777 /*
2778 * Slow path handling. This may still be called frequently since objects
2779 * have a longer lifetime than the cpu slabs in most processing loads.
2780 *
2781 * So we still attempt to reduce cache line usage. Just take the slab
2782 * lock and free the item. If there is no additional partial page
2783 * handling required then we can return immediately.
2784 */
2785 static void __slab_free(struct kmem_cache *s, struct page *page,
2786 void *head, void *tail, int cnt,
2787 unsigned long addr)
2788
2789 {
2790 void *prior;
2791 int was_frozen;
2792 struct page new;
2793 unsigned long counters;
2794 struct kmem_cache_node *n = NULL;
2795 unsigned long uninitialized_var(flags);
2796
2797 stat(s, FREE_SLOWPATH);
2798
2799 if (kmem_cache_debug(s) &&
2800 !free_debug_processing(s, page, head, tail, cnt, addr))
2801 return;
2802
2803 do {
2804 if (unlikely(n)) {
2805 spin_unlock_irqrestore(&n->list_lock, flags);
2806 n = NULL;
2807 }
2808 prior = page->freelist;
2809 counters = page->counters;
2810 set_freepointer(s, tail, prior);
2811 new.counters = counters;
2812 was_frozen = new.frozen;
2813 new.inuse -= cnt;
2814 if ((!new.inuse || !prior) && !was_frozen) {
2815
2816 if (kmem_cache_has_cpu_partial(s) && !prior) {
2817
2818 /*
2819 * Slab was on no list before and will be
2820 * partially empty
2821 * We can defer the list move and instead
2822 * freeze it.
2823 */
2824 new.frozen = 1;
2825
2826 } else { /* Needs to be taken off a list */
2827
2828 n = get_node(s, page_to_nid(page));
2829 /*
2830 * Speculatively acquire the list_lock.
2831 * If the cmpxchg does not succeed then we may
2832 * drop the list_lock without any processing.
2833 *
2834 * Otherwise the list_lock will synchronize with
2835 * other processors updating the list of slabs.
2836 */
2837 spin_lock_irqsave(&n->list_lock, flags);
2838
2839 }
2840 }
2841
2842 } while (!cmpxchg_double_slab(s, page,
2843 prior, counters,
2844 head, new.counters,
2845 "__slab_free"));
2846
2847 if (likely(!n)) {
2848
2849 /*
2850 * If we just froze the page then put it onto the
2851 * per cpu partial list.
2852 */
2853 if (new.frozen && !was_frozen) {
2854 put_cpu_partial(s, page, 1);
2855 stat(s, CPU_PARTIAL_FREE);
2856 }
2857 /*
2858 * The list lock was not taken therefore no list
2859 * activity can be necessary.
2860 */
2861 if (was_frozen)
2862 stat(s, FREE_FROZEN);
2863 return;
2864 }
2865
2866 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2867 goto slab_empty;
2868
2869 /*
2870 * Objects left in the slab. If it was not on the partial list before
2871 * then add it.
2872 */
2873 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2874 if (kmem_cache_debug(s))
2875 remove_full(s, n, page);
2876 add_partial(n, page, DEACTIVATE_TO_TAIL);
2877 stat(s, FREE_ADD_PARTIAL);
2878 }
2879 spin_unlock_irqrestore(&n->list_lock, flags);
2880 return;
2881
2882 slab_empty:
2883 if (prior) {
2884 /*
2885 * Slab on the partial list.
2886 */
2887 remove_partial(n, page);
2888 stat(s, FREE_REMOVE_PARTIAL);
2889 } else {
2890 /* Slab must be on the full list */
2891 remove_full(s, n, page);
2892 }
2893
2894 spin_unlock_irqrestore(&n->list_lock, flags);
2895 stat(s, FREE_SLAB);
2896 discard_slab(s, page);
2897 }
2898
2899 /*
2900 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2901 * can perform fastpath freeing without additional function calls.
2902 *
2903 * The fastpath is only possible if we are freeing to the current cpu slab
2904 * of this processor. This typically the case if we have just allocated
2905 * the item before.
2906 *
2907 * If fastpath is not possible then fall back to __slab_free where we deal
2908 * with all sorts of special processing.
2909 *
2910 * Bulk free of a freelist with several objects (all pointing to the
2911 * same page) possible by specifying head and tail ptr, plus objects
2912 * count (cnt). Bulk free indicated by tail pointer being set.
2913 */
2914 static __always_inline void do_slab_free(struct kmem_cache *s,
2915 struct page *page, void *head, void *tail,
2916 int cnt, unsigned long addr)
2917 {
2918 void *tail_obj = tail ? : head;
2919 struct kmem_cache_cpu *c;
2920 unsigned long tid;
2921 redo:
2922 /*
2923 * Determine the currently cpus per cpu slab.
2924 * The cpu may change afterward. However that does not matter since
2925 * data is retrieved via this pointer. If we are on the same cpu
2926 * during the cmpxchg then the free will succeed.
2927 */
2928 do {
2929 tid = this_cpu_read(s->cpu_slab->tid);
2930 c = raw_cpu_ptr(s->cpu_slab);
2931 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2932 unlikely(tid != READ_ONCE(c->tid)));
2933
2934 /* Same with comment on barrier() in slab_alloc_node() */
2935 barrier();
2936
2937 if (likely(page == c->page)) {
2938 set_freepointer(s, tail_obj, c->freelist);
2939
2940 if (unlikely(!this_cpu_cmpxchg_double(
2941 s->cpu_slab->freelist, s->cpu_slab->tid,
2942 c->freelist, tid,
2943 head, next_tid(tid)))) {
2944
2945 note_cmpxchg_failure("slab_free", s, tid);
2946 goto redo;
2947 }
2948 stat(s, FREE_FASTPATH);
2949 } else
2950 __slab_free(s, page, head, tail_obj, cnt, addr);
2951
2952 }
2953
2954 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2955 void *head, void *tail, int cnt,
2956 unsigned long addr)
2957 {
2958 slab_free_freelist_hook(s, head, tail);
2959 /*
2960 * slab_free_freelist_hook() could have put the items into quarantine.
2961 * If so, no need to free them.
2962 */
2963 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU))
2964 return;
2965 do_slab_free(s, page, head, tail, cnt, addr);
2966 }
2967
2968 #ifdef CONFIG_KASAN
2969 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2970 {
2971 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2972 }
2973 #endif
2974
2975 void kmem_cache_free(struct kmem_cache *s, void *x)
2976 {
2977 s = cache_from_obj(s, x);
2978 if (!s)
2979 return;
2980 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2981 trace_kmem_cache_free(_RET_IP_, x);
2982 }
2983 EXPORT_SYMBOL(kmem_cache_free);
2984
2985 struct detached_freelist {
2986 struct page *page;
2987 void *tail;
2988 void *freelist;
2989 int cnt;
2990 struct kmem_cache *s;
2991 };
2992
2993 /*
2994 * This function progressively scans the array with free objects (with
2995 * a limited look ahead) and extract objects belonging to the same
2996 * page. It builds a detached freelist directly within the given
2997 * page/objects. This can happen without any need for
2998 * synchronization, because the objects are owned by running process.
2999 * The freelist is build up as a single linked list in the objects.
3000 * The idea is, that this detached freelist can then be bulk
3001 * transferred to the real freelist(s), but only requiring a single
3002 * synchronization primitive. Look ahead in the array is limited due
3003 * to performance reasons.
3004 */
3005 static inline
3006 int build_detached_freelist(struct kmem_cache *s, size_t size,
3007 void **p, struct detached_freelist *df)
3008 {
3009 size_t first_skipped_index = 0;
3010 int lookahead = 3;
3011 void *object;
3012 struct page *page;
3013
3014 /* Always re-init detached_freelist */
3015 df->page = NULL;
3016
3017 do {
3018 object = p[--size];
3019 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3020 } while (!object && size);
3021
3022 if (!object)
3023 return 0;
3024
3025 page = virt_to_head_page(object);
3026 if (!s) {
3027 /* Handle kalloc'ed objects */
3028 if (unlikely(!PageSlab(page))) {
3029 BUG_ON(!PageCompound(page));
3030 kfree_hook(object);
3031 __free_pages(page, compound_order(page));
3032 p[size] = NULL; /* mark object processed */
3033 return size;
3034 }
3035 /* Derive kmem_cache from object */
3036 df->s = page->slab_cache;
3037 } else {
3038 df->s = cache_from_obj(s, object); /* Support for memcg */
3039 }
3040
3041 /* Start new detached freelist */
3042 df->page = page;
3043 set_freepointer(df->s, object, NULL);
3044 df->tail = object;
3045 df->freelist = object;
3046 p[size] = NULL; /* mark object processed */
3047 df->cnt = 1;
3048
3049 while (size) {
3050 object = p[--size];
3051 if (!object)
3052 continue; /* Skip processed objects */
3053
3054 /* df->page is always set at this point */
3055 if (df->page == virt_to_head_page(object)) {
3056 /* Opportunity build freelist */
3057 set_freepointer(df->s, object, df->freelist);
3058 df->freelist = object;
3059 df->cnt++;
3060 p[size] = NULL; /* mark object processed */
3061
3062 continue;
3063 }
3064
3065 /* Limit look ahead search */
3066 if (!--lookahead)
3067 break;
3068
3069 if (!first_skipped_index)
3070 first_skipped_index = size + 1;
3071 }
3072
3073 return first_skipped_index;
3074 }
3075
3076 /* Note that interrupts must be enabled when calling this function. */
3077 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3078 {
3079 if (WARN_ON(!size))
3080 return;
3081
3082 do {
3083 struct detached_freelist df;
3084
3085 size = build_detached_freelist(s, size, p, &df);
3086 if (!df.page)
3087 continue;
3088
3089 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3090 } while (likely(size));
3091 }
3092 EXPORT_SYMBOL(kmem_cache_free_bulk);
3093
3094 /* Note that interrupts must be enabled when calling this function. */
3095 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3096 void **p)
3097 {
3098 struct kmem_cache_cpu *c;
3099 int i;
3100
3101 /* memcg and kmem_cache debug support */
3102 s = slab_pre_alloc_hook(s, flags);
3103 if (unlikely(!s))
3104 return false;
3105 /*
3106 * Drain objects in the per cpu slab, while disabling local
3107 * IRQs, which protects against PREEMPT and interrupts
3108 * handlers invoking normal fastpath.
3109 */
3110 local_irq_disable();
3111 c = this_cpu_ptr(s->cpu_slab);
3112
3113 for (i = 0; i < size; i++) {
3114 void *object = c->freelist;
3115
3116 if (unlikely(!object)) {
3117 /*
3118 * Invoking slow path likely have side-effect
3119 * of re-populating per CPU c->freelist
3120 */
3121 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3122 _RET_IP_, c);
3123 if (unlikely(!p[i]))
3124 goto error;
3125
3126 c = this_cpu_ptr(s->cpu_slab);
3127 continue; /* goto for-loop */
3128 }
3129 c->freelist = get_freepointer(s, object);
3130 p[i] = object;
3131 }
3132 c->tid = next_tid(c->tid);
3133 local_irq_enable();
3134
3135 /* Clear memory outside IRQ disabled fastpath loop */
3136 if (unlikely(flags & __GFP_ZERO)) {
3137 int j;
3138
3139 for (j = 0; j < i; j++)
3140 memset(p[j], 0, s->object_size);
3141 }
3142
3143 /* memcg and kmem_cache debug support */
3144 slab_post_alloc_hook(s, flags, size, p);
3145 return i;
3146 error:
3147 local_irq_enable();
3148 slab_post_alloc_hook(s, flags, i, p);
3149 __kmem_cache_free_bulk(s, i, p);
3150 return 0;
3151 }
3152 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3153
3154
3155 /*
3156 * Object placement in a slab is made very easy because we always start at
3157 * offset 0. If we tune the size of the object to the alignment then we can
3158 * get the required alignment by putting one properly sized object after
3159 * another.
3160 *
3161 * Notice that the allocation order determines the sizes of the per cpu
3162 * caches. Each processor has always one slab available for allocations.
3163 * Increasing the allocation order reduces the number of times that slabs
3164 * must be moved on and off the partial lists and is therefore a factor in
3165 * locking overhead.
3166 */
3167
3168 /*
3169 * Mininum / Maximum order of slab pages. This influences locking overhead
3170 * and slab fragmentation. A higher order reduces the number of partial slabs
3171 * and increases the number of allocations possible without having to
3172 * take the list_lock.
3173 */
3174 static int slub_min_order;
3175 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3176 static int slub_min_objects;
3177
3178 /*
3179 * Calculate the order of allocation given an slab object size.
3180 *
3181 * The order of allocation has significant impact on performance and other
3182 * system components. Generally order 0 allocations should be preferred since
3183 * order 0 does not cause fragmentation in the page allocator. Larger objects
3184 * be problematic to put into order 0 slabs because there may be too much
3185 * unused space left. We go to a higher order if more than 1/16th of the slab
3186 * would be wasted.
3187 *
3188 * In order to reach satisfactory performance we must ensure that a minimum
3189 * number of objects is in one slab. Otherwise we may generate too much
3190 * activity on the partial lists which requires taking the list_lock. This is
3191 * less a concern for large slabs though which are rarely used.
3192 *
3193 * slub_max_order specifies the order where we begin to stop considering the
3194 * number of objects in a slab as critical. If we reach slub_max_order then
3195 * we try to keep the page order as low as possible. So we accept more waste
3196 * of space in favor of a small page order.
3197 *
3198 * Higher order allocations also allow the placement of more objects in a
3199 * slab and thereby reduce object handling overhead. If the user has
3200 * requested a higher mininum order then we start with that one instead of
3201 * the smallest order which will fit the object.
3202 */
3203 static inline int slab_order(int size, int min_objects,
3204 int max_order, int fract_leftover, int reserved)
3205 {
3206 int order;
3207 int rem;
3208 int min_order = slub_min_order;
3209
3210 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3211 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3212
3213 for (order = max(min_order, get_order(min_objects * size + reserved));
3214 order <= max_order; order++) {
3215
3216 unsigned long slab_size = PAGE_SIZE << order;
3217
3218 rem = (slab_size - reserved) % size;
3219
3220 if (rem <= slab_size / fract_leftover)
3221 break;
3222 }
3223
3224 return order;
3225 }
3226
3227 static inline int calculate_order(int size, int reserved)
3228 {
3229 int order;
3230 int min_objects;
3231 int fraction;
3232 int max_objects;
3233
3234 /*
3235 * Attempt to find best configuration for a slab. This
3236 * works by first attempting to generate a layout with
3237 * the best configuration and backing off gradually.
3238 *
3239 * First we increase the acceptable waste in a slab. Then
3240 * we reduce the minimum objects required in a slab.
3241 */
3242 min_objects = slub_min_objects;
3243 if (!min_objects)
3244 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3245 max_objects = order_objects(slub_max_order, size, reserved);
3246 min_objects = min(min_objects, max_objects);
3247
3248 while (min_objects > 1) {
3249 fraction = 16;
3250 while (fraction >= 4) {
3251 order = slab_order(size, min_objects,
3252 slub_max_order, fraction, reserved);
3253 if (order <= slub_max_order)
3254 return order;
3255 fraction /= 2;
3256 }
3257 min_objects--;
3258 }
3259
3260 /*
3261 * We were unable to place multiple objects in a slab. Now
3262 * lets see if we can place a single object there.
3263 */
3264 order = slab_order(size, 1, slub_max_order, 1, reserved);
3265 if (order <= slub_max_order)
3266 return order;
3267
3268 /*
3269 * Doh this slab cannot be placed using slub_max_order.
3270 */
3271 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3272 if (order < MAX_ORDER)
3273 return order;
3274 return -ENOSYS;
3275 }
3276
3277 static void
3278 init_kmem_cache_node(struct kmem_cache_node *n)
3279 {
3280 n->nr_partial = 0;
3281 spin_lock_init(&n->list_lock);
3282 INIT_LIST_HEAD(&n->partial);
3283 #ifdef CONFIG_SLUB_DEBUG
3284 atomic_long_set(&n->nr_slabs, 0);
3285 atomic_long_set(&n->total_objects, 0);
3286 INIT_LIST_HEAD(&n->full);
3287 #endif
3288 }
3289
3290 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3291 {
3292 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3293 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3294
3295 /*
3296 * Must align to double word boundary for the double cmpxchg
3297 * instructions to work; see __pcpu_double_call_return_bool().
3298 */
3299 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3300 2 * sizeof(void *));
3301
3302 if (!s->cpu_slab)
3303 return 0;
3304
3305 init_kmem_cache_cpus(s);
3306
3307 return 1;
3308 }
3309
3310 static struct kmem_cache *kmem_cache_node;
3311
3312 /*
3313 * No kmalloc_node yet so do it by hand. We know that this is the first
3314 * slab on the node for this slabcache. There are no concurrent accesses
3315 * possible.
3316 *
3317 * Note that this function only works on the kmem_cache_node
3318 * when allocating for the kmem_cache_node. This is used for bootstrapping
3319 * memory on a fresh node that has no slab structures yet.
3320 */
3321 static void early_kmem_cache_node_alloc(int node)
3322 {
3323 struct page *page;
3324 struct kmem_cache_node *n;
3325
3326 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3327
3328 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3329
3330 BUG_ON(!page);
3331 if (page_to_nid(page) != node) {
3332 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3333 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3334 }
3335
3336 n = page->freelist;
3337 BUG_ON(!n);
3338 page->freelist = get_freepointer(kmem_cache_node, n);
3339 page->inuse = 1;
3340 page->frozen = 0;
3341 kmem_cache_node->node[node] = n;
3342 #ifdef CONFIG_SLUB_DEBUG
3343 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3344 init_tracking(kmem_cache_node, n);
3345 #endif
3346 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3347 GFP_KERNEL);
3348 init_kmem_cache_node(n);
3349 inc_slabs_node(kmem_cache_node, node, page->objects);
3350
3351 /*
3352 * No locks need to be taken here as it has just been
3353 * initialized and there is no concurrent access.
3354 */
3355 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3356 }
3357
3358 static void free_kmem_cache_nodes(struct kmem_cache *s)
3359 {
3360 int node;
3361 struct kmem_cache_node *n;
3362
3363 for_each_kmem_cache_node(s, node, n) {
3364 kmem_cache_free(kmem_cache_node, n);
3365 s->node[node] = NULL;
3366 }
3367 }
3368
3369 void __kmem_cache_release(struct kmem_cache *s)
3370 {
3371 cache_random_seq_destroy(s);
3372 free_percpu(s->cpu_slab);
3373 free_kmem_cache_nodes(s);
3374 }
3375
3376 static int init_kmem_cache_nodes(struct kmem_cache *s)
3377 {
3378 int node;
3379
3380 for_each_node_state(node, N_NORMAL_MEMORY) {
3381 struct kmem_cache_node *n;
3382
3383 if (slab_state == DOWN) {
3384 early_kmem_cache_node_alloc(node);
3385 continue;
3386 }
3387 n = kmem_cache_alloc_node(kmem_cache_node,
3388 GFP_KERNEL, node);
3389
3390 if (!n) {
3391 free_kmem_cache_nodes(s);
3392 return 0;
3393 }
3394
3395 s->node[node] = n;
3396 init_kmem_cache_node(n);
3397 }
3398 return 1;
3399 }
3400
3401 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3402 {
3403 if (min < MIN_PARTIAL)
3404 min = MIN_PARTIAL;
3405 else if (min > MAX_PARTIAL)
3406 min = MAX_PARTIAL;
3407 s->min_partial = min;
3408 }
3409
3410 /*
3411 * calculate_sizes() determines the order and the distribution of data within
3412 * a slab object.
3413 */
3414 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3415 {
3416 unsigned long flags = s->flags;
3417 size_t size = s->object_size;
3418 int order;
3419
3420 /*
3421 * Round up object size to the next word boundary. We can only
3422 * place the free pointer at word boundaries and this determines
3423 * the possible location of the free pointer.
3424 */
3425 size = ALIGN(size, sizeof(void *));
3426
3427 #ifdef CONFIG_SLUB_DEBUG
3428 /*
3429 * Determine if we can poison the object itself. If the user of
3430 * the slab may touch the object after free or before allocation
3431 * then we should never poison the object itself.
3432 */
3433 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3434 !s->ctor)
3435 s->flags |= __OBJECT_POISON;
3436 else
3437 s->flags &= ~__OBJECT_POISON;
3438
3439
3440 /*
3441 * If we are Redzoning then check if there is some space between the
3442 * end of the object and the free pointer. If not then add an
3443 * additional word to have some bytes to store Redzone information.
3444 */
3445 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3446 size += sizeof(void *);
3447 #endif
3448
3449 /*
3450 * With that we have determined the number of bytes in actual use
3451 * by the object. This is the potential offset to the free pointer.
3452 */
3453 s->inuse = size;
3454
3455 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3456 s->ctor)) {
3457 /*
3458 * Relocate free pointer after the object if it is not
3459 * permitted to overwrite the first word of the object on
3460 * kmem_cache_free.
3461 *
3462 * This is the case if we do RCU, have a constructor or
3463 * destructor or are poisoning the objects.
3464 */
3465 s->offset = size;
3466 size += sizeof(void *);
3467 }
3468
3469 #ifdef CONFIG_SLUB_DEBUG
3470 if (flags & SLAB_STORE_USER)
3471 /*
3472 * Need to store information about allocs and frees after
3473 * the object.
3474 */
3475 size += 2 * sizeof(struct track);
3476 #endif
3477
3478 kasan_cache_create(s, &size, &s->flags);
3479 #ifdef CONFIG_SLUB_DEBUG
3480 if (flags & SLAB_RED_ZONE) {
3481 /*
3482 * Add some empty padding so that we can catch
3483 * overwrites from earlier objects rather than let
3484 * tracking information or the free pointer be
3485 * corrupted if a user writes before the start
3486 * of the object.
3487 */
3488 size += sizeof(void *);
3489
3490 s->red_left_pad = sizeof(void *);
3491 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3492 size += s->red_left_pad;
3493 }
3494 #endif
3495
3496 /*
3497 * SLUB stores one object immediately after another beginning from
3498 * offset 0. In order to align the objects we have to simply size
3499 * each object to conform to the alignment.
3500 */
3501 size = ALIGN(size, s->align);
3502 s->size = size;
3503 if (forced_order >= 0)
3504 order = forced_order;
3505 else
3506 order = calculate_order(size, s->reserved);
3507
3508 if (order < 0)
3509 return 0;
3510
3511 s->allocflags = 0;
3512 if (order)
3513 s->allocflags |= __GFP_COMP;
3514
3515 if (s->flags & SLAB_CACHE_DMA)
3516 s->allocflags |= GFP_DMA;
3517
3518 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3519 s->allocflags |= __GFP_RECLAIMABLE;
3520
3521 /*
3522 * Determine the number of objects per slab
3523 */
3524 s->oo = oo_make(order, size, s->reserved);
3525 s->min = oo_make(get_order(size), size, s->reserved);
3526 if (oo_objects(s->oo) > oo_objects(s->max))
3527 s->max = s->oo;
3528
3529 return !!oo_objects(s->oo);
3530 }
3531
3532 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3533 {
3534 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3535 s->reserved = 0;
3536
3537 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3538 s->reserved = sizeof(struct rcu_head);
3539
3540 if (!calculate_sizes(s, -1))
3541 goto error;
3542 if (disable_higher_order_debug) {
3543 /*
3544 * Disable debugging flags that store metadata if the min slab
3545 * order increased.
3546 */
3547 if (get_order(s->size) > get_order(s->object_size)) {
3548 s->flags &= ~DEBUG_METADATA_FLAGS;
3549 s->offset = 0;
3550 if (!calculate_sizes(s, -1))
3551 goto error;
3552 }
3553 }
3554
3555 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3556 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3557 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3558 /* Enable fast mode */
3559 s->flags |= __CMPXCHG_DOUBLE;
3560 #endif
3561
3562 /*
3563 * The larger the object size is, the more pages we want on the partial
3564 * list to avoid pounding the page allocator excessively.
3565 */
3566 set_min_partial(s, ilog2(s->size) / 2);
3567
3568 /*
3569 * cpu_partial determined the maximum number of objects kept in the
3570 * per cpu partial lists of a processor.
3571 *
3572 * Per cpu partial lists mainly contain slabs that just have one
3573 * object freed. If they are used for allocation then they can be
3574 * filled up again with minimal effort. The slab will never hit the
3575 * per node partial lists and therefore no locking will be required.
3576 *
3577 * This setting also determines
3578 *
3579 * A) The number of objects from per cpu partial slabs dumped to the
3580 * per node list when we reach the limit.
3581 * B) The number of objects in cpu partial slabs to extract from the
3582 * per node list when we run out of per cpu objects. We only fetch
3583 * 50% to keep some capacity around for frees.
3584 */
3585 if (!kmem_cache_has_cpu_partial(s))
3586 s->cpu_partial = 0;
3587 else if (s->size >= PAGE_SIZE)
3588 s->cpu_partial = 2;
3589 else if (s->size >= 1024)
3590 s->cpu_partial = 6;
3591 else if (s->size >= 256)
3592 s->cpu_partial = 13;
3593 else
3594 s->cpu_partial = 30;
3595
3596 #ifdef CONFIG_NUMA
3597 s->remote_node_defrag_ratio = 1000;
3598 #endif
3599
3600 /* Initialize the pre-computed randomized freelist if slab is up */
3601 if (slab_state >= UP) {
3602 if (init_cache_random_seq(s))
3603 goto error;
3604 }
3605
3606 if (!init_kmem_cache_nodes(s))
3607 goto error;
3608
3609 if (alloc_kmem_cache_cpus(s))
3610 return 0;
3611
3612 free_kmem_cache_nodes(s);
3613 error:
3614 if (flags & SLAB_PANIC)
3615 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3616 s->name, (unsigned long)s->size, s->size,
3617 oo_order(s->oo), s->offset, flags);
3618 return -EINVAL;
3619 }
3620
3621 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3622 const char *text)
3623 {
3624 #ifdef CONFIG_SLUB_DEBUG
3625 void *addr = page_address(page);
3626 void *p;
3627 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3628 sizeof(long), GFP_ATOMIC);
3629 if (!map)
3630 return;
3631 slab_err(s, page, text, s->name);
3632 slab_lock(page);
3633
3634 get_map(s, page, map);
3635 for_each_object(p, s, addr, page->objects) {
3636
3637 if (!test_bit(slab_index(p, s, addr), map)) {
3638 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3639 print_tracking(s, p);
3640 }
3641 }
3642 slab_unlock(page);
3643 kfree(map);
3644 #endif
3645 }
3646
3647 /*
3648 * Attempt to free all partial slabs on a node.
3649 * This is called from __kmem_cache_shutdown(). We must take list_lock
3650 * because sysfs file might still access partial list after the shutdowning.
3651 */
3652 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3653 {
3654 LIST_HEAD(discard);
3655 struct page *page, *h;
3656
3657 BUG_ON(irqs_disabled());
3658 spin_lock_irq(&n->list_lock);
3659 list_for_each_entry_safe(page, h, &n->partial, lru) {
3660 if (!page->inuse) {
3661 remove_partial(n, page);
3662 list_add(&page->lru, &discard);
3663 } else {
3664 list_slab_objects(s, page,
3665 "Objects remaining in %s on __kmem_cache_shutdown()");
3666 }
3667 }
3668 spin_unlock_irq(&n->list_lock);
3669
3670 list_for_each_entry_safe(page, h, &discard, lru)
3671 discard_slab(s, page);
3672 }
3673
3674 /*
3675 * Release all resources used by a slab cache.
3676 */
3677 int __kmem_cache_shutdown(struct kmem_cache *s)
3678 {
3679 int node;
3680 struct kmem_cache_node *n;
3681
3682 flush_all(s);
3683 /* Attempt to free all objects */
3684 for_each_kmem_cache_node(s, node, n) {
3685 free_partial(s, n);
3686 if (n->nr_partial || slabs_node(s, node))
3687 return 1;
3688 }
3689 return 0;
3690 }
3691
3692 /********************************************************************
3693 * Kmalloc subsystem
3694 *******************************************************************/
3695
3696 static int __init setup_slub_min_order(char *str)
3697 {
3698 get_option(&str, &slub_min_order);
3699
3700 return 1;
3701 }
3702
3703 __setup("slub_min_order=", setup_slub_min_order);
3704
3705 static int __init setup_slub_max_order(char *str)
3706 {
3707 get_option(&str, &slub_max_order);
3708 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3709
3710 return 1;
3711 }
3712
3713 __setup("slub_max_order=", setup_slub_max_order);
3714
3715 static int __init setup_slub_min_objects(char *str)
3716 {
3717 get_option(&str, &slub_min_objects);
3718
3719 return 1;
3720 }
3721
3722 __setup("slub_min_objects=", setup_slub_min_objects);
3723
3724 void *__kmalloc(size_t size, gfp_t flags)
3725 {
3726 struct kmem_cache *s;
3727 void *ret;
3728
3729 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3730 return kmalloc_large(size, flags);
3731
3732 s = kmalloc_slab(size, flags);
3733
3734 if (unlikely(ZERO_OR_NULL_PTR(s)))
3735 return s;
3736
3737 ret = slab_alloc(s, flags, _RET_IP_);
3738
3739 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3740
3741 kasan_kmalloc(s, ret, size, flags);
3742
3743 return ret;
3744 }
3745 EXPORT_SYMBOL(__kmalloc);
3746
3747 #ifdef CONFIG_NUMA
3748 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3749 {
3750 struct page *page;
3751 void *ptr = NULL;
3752
3753 flags |= __GFP_COMP | __GFP_NOTRACK;
3754 page = alloc_pages_node(node, flags, get_order(size));
3755 if (page)
3756 ptr = page_address(page);
3757
3758 kmalloc_large_node_hook(ptr, size, flags);
3759 return ptr;
3760 }
3761
3762 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3763 {
3764 struct kmem_cache *s;
3765 void *ret;
3766
3767 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3768 ret = kmalloc_large_node(size, flags, node);
3769
3770 trace_kmalloc_node(_RET_IP_, ret,
3771 size, PAGE_SIZE << get_order(size),
3772 flags, node);
3773
3774 return ret;
3775 }
3776
3777 s = kmalloc_slab(size, flags);
3778
3779 if (unlikely(ZERO_OR_NULL_PTR(s)))
3780 return s;
3781
3782 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3783
3784 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3785
3786 kasan_kmalloc(s, ret, size, flags);
3787
3788 return ret;
3789 }
3790 EXPORT_SYMBOL(__kmalloc_node);
3791 #endif
3792
3793 #ifdef CONFIG_HARDENED_USERCOPY
3794 /*
3795 * Rejects objects that are incorrectly sized.
3796 *
3797 * Returns NULL if check passes, otherwise const char * to name of cache
3798 * to indicate an error.
3799 */
3800 const char *__check_heap_object(const void *ptr, unsigned long n,
3801 struct page *page)
3802 {
3803 struct kmem_cache *s;
3804 unsigned long offset;
3805 size_t object_size;
3806
3807 /* Find object and usable object size. */
3808 s = page->slab_cache;
3809 object_size = slab_ksize(s);
3810
3811 /* Reject impossible pointers. */
3812 if (ptr < page_address(page))
3813 return s->name;
3814
3815 /* Find offset within object. */
3816 offset = (ptr - page_address(page)) % s->size;
3817
3818 /* Adjust for redzone and reject if within the redzone. */
3819 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3820 if (offset < s->red_left_pad)
3821 return s->name;
3822 offset -= s->red_left_pad;
3823 }
3824
3825 /* Allow address range falling entirely within object size. */
3826 if (offset <= object_size && n <= object_size - offset)
3827 return NULL;
3828
3829 return s->name;
3830 }
3831 #endif /* CONFIG_HARDENED_USERCOPY */
3832
3833 static size_t __ksize(const void *object)
3834 {
3835 struct page *page;
3836
3837 if (unlikely(object == ZERO_SIZE_PTR))
3838 return 0;
3839
3840 page = virt_to_head_page(object);
3841
3842 if (unlikely(!PageSlab(page))) {
3843 WARN_ON(!PageCompound(page));
3844 return PAGE_SIZE << compound_order(page);
3845 }
3846
3847 return slab_ksize(page->slab_cache);
3848 }
3849
3850 size_t ksize(const void *object)
3851 {
3852 size_t size = __ksize(object);
3853 /* We assume that ksize callers could use whole allocated area,
3854 * so we need to unpoison this area.
3855 */
3856 kasan_unpoison_shadow(object, size);
3857 return size;
3858 }
3859 EXPORT_SYMBOL(ksize);
3860
3861 void kfree(const void *x)
3862 {
3863 struct page *page;
3864 void *object = (void *)x;
3865
3866 trace_kfree(_RET_IP_, x);
3867
3868 if (unlikely(ZERO_OR_NULL_PTR(x)))
3869 return;
3870
3871 page = virt_to_head_page(x);
3872 if (unlikely(!PageSlab(page))) {
3873 BUG_ON(!PageCompound(page));
3874 kfree_hook(x);
3875 __free_pages(page, compound_order(page));
3876 return;
3877 }
3878 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3879 }
3880 EXPORT_SYMBOL(kfree);
3881
3882 #define SHRINK_PROMOTE_MAX 32
3883
3884 /*
3885 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3886 * up most to the head of the partial lists. New allocations will then
3887 * fill those up and thus they can be removed from the partial lists.
3888 *
3889 * The slabs with the least items are placed last. This results in them
3890 * being allocated from last increasing the chance that the last objects
3891 * are freed in them.
3892 */
3893 int __kmem_cache_shrink(struct kmem_cache *s)
3894 {
3895 int node;
3896 int i;
3897 struct kmem_cache_node *n;
3898 struct page *page;
3899 struct page *t;
3900 struct list_head discard;
3901 struct list_head promote[SHRINK_PROMOTE_MAX];
3902 unsigned long flags;
3903 int ret = 0;
3904
3905 flush_all(s);
3906 for_each_kmem_cache_node(s, node, n) {
3907 INIT_LIST_HEAD(&discard);
3908 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3909 INIT_LIST_HEAD(promote + i);
3910
3911 spin_lock_irqsave(&n->list_lock, flags);
3912
3913 /*
3914 * Build lists of slabs to discard or promote.
3915 *
3916 * Note that concurrent frees may occur while we hold the
3917 * list_lock. page->inuse here is the upper limit.
3918 */
3919 list_for_each_entry_safe(page, t, &n->partial, lru) {
3920 int free = page->objects - page->inuse;
3921
3922 /* Do not reread page->inuse */
3923 barrier();
3924
3925 /* We do not keep full slabs on the list */
3926 BUG_ON(free <= 0);
3927
3928 if (free == page->objects) {
3929 list_move(&page->lru, &discard);
3930 n->nr_partial--;
3931 } else if (free <= SHRINK_PROMOTE_MAX)
3932 list_move(&page->lru, promote + free - 1);
3933 }
3934
3935 /*
3936 * Promote the slabs filled up most to the head of the
3937 * partial list.
3938 */
3939 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3940 list_splice(promote + i, &n->partial);
3941
3942 spin_unlock_irqrestore(&n->list_lock, flags);
3943
3944 /* Release empty slabs */
3945 list_for_each_entry_safe(page, t, &discard, lru)
3946 discard_slab(s, page);
3947
3948 if (slabs_node(s, node))
3949 ret = 1;
3950 }
3951
3952 return ret;
3953 }
3954
3955 static int slab_mem_going_offline_callback(void *arg)
3956 {
3957 struct kmem_cache *s;
3958
3959 mutex_lock(&slab_mutex);
3960 list_for_each_entry(s, &slab_caches, list)
3961 __kmem_cache_shrink(s);
3962 mutex_unlock(&slab_mutex);
3963
3964 return 0;
3965 }
3966
3967 static void slab_mem_offline_callback(void *arg)
3968 {
3969 struct kmem_cache_node *n;
3970 struct kmem_cache *s;
3971 struct memory_notify *marg = arg;
3972 int offline_node;
3973
3974 offline_node = marg->status_change_nid_normal;
3975
3976 /*
3977 * If the node still has available memory. we need kmem_cache_node
3978 * for it yet.
3979 */
3980 if (offline_node < 0)
3981 return;
3982
3983 mutex_lock(&slab_mutex);
3984 list_for_each_entry(s, &slab_caches, list) {
3985 n = get_node(s, offline_node);
3986 if (n) {
3987 /*
3988 * if n->nr_slabs > 0, slabs still exist on the node
3989 * that is going down. We were unable to free them,
3990 * and offline_pages() function shouldn't call this
3991 * callback. So, we must fail.
3992 */
3993 BUG_ON(slabs_node(s, offline_node));
3994
3995 s->node[offline_node] = NULL;
3996 kmem_cache_free(kmem_cache_node, n);
3997 }
3998 }
3999 mutex_unlock(&slab_mutex);
4000 }
4001
4002 static int slab_mem_going_online_callback(void *arg)
4003 {
4004 struct kmem_cache_node *n;
4005 struct kmem_cache *s;
4006 struct memory_notify *marg = arg;
4007 int nid = marg->status_change_nid_normal;
4008 int ret = 0;
4009
4010 /*
4011 * If the node's memory is already available, then kmem_cache_node is
4012 * already created. Nothing to do.
4013 */
4014 if (nid < 0)
4015 return 0;
4016
4017 /*
4018 * We are bringing a node online. No memory is available yet. We must
4019 * allocate a kmem_cache_node structure in order to bring the node
4020 * online.
4021 */
4022 mutex_lock(&slab_mutex);
4023 list_for_each_entry(s, &slab_caches, list) {
4024 /*
4025 * XXX: kmem_cache_alloc_node will fallback to other nodes
4026 * since memory is not yet available from the node that
4027 * is brought up.
4028 */
4029 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4030 if (!n) {
4031 ret = -ENOMEM;
4032 goto out;
4033 }
4034 init_kmem_cache_node(n);
4035 s->node[nid] = n;
4036 }
4037 out:
4038 mutex_unlock(&slab_mutex);
4039 return ret;
4040 }
4041
4042 static int slab_memory_callback(struct notifier_block *self,
4043 unsigned long action, void *arg)
4044 {
4045 int ret = 0;
4046
4047 switch (action) {
4048 case MEM_GOING_ONLINE:
4049 ret = slab_mem_going_online_callback(arg);
4050 break;
4051 case MEM_GOING_OFFLINE:
4052 ret = slab_mem_going_offline_callback(arg);
4053 break;
4054 case MEM_OFFLINE:
4055 case MEM_CANCEL_ONLINE:
4056 slab_mem_offline_callback(arg);
4057 break;
4058 case MEM_ONLINE:
4059 case MEM_CANCEL_OFFLINE:
4060 break;
4061 }
4062 if (ret)
4063 ret = notifier_from_errno(ret);
4064 else
4065 ret = NOTIFY_OK;
4066 return ret;
4067 }
4068
4069 static struct notifier_block slab_memory_callback_nb = {
4070 .notifier_call = slab_memory_callback,
4071 .priority = SLAB_CALLBACK_PRI,
4072 };
4073
4074 /********************************************************************
4075 * Basic setup of slabs
4076 *******************************************************************/
4077
4078 /*
4079 * Used for early kmem_cache structures that were allocated using
4080 * the page allocator. Allocate them properly then fix up the pointers
4081 * that may be pointing to the wrong kmem_cache structure.
4082 */
4083
4084 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4085 {
4086 int node;
4087 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4088 struct kmem_cache_node *n;
4089
4090 memcpy(s, static_cache, kmem_cache->object_size);
4091
4092 /*
4093 * This runs very early, and only the boot processor is supposed to be
4094 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4095 * IPIs around.
4096 */
4097 __flush_cpu_slab(s, smp_processor_id());
4098 for_each_kmem_cache_node(s, node, n) {
4099 struct page *p;
4100
4101 list_for_each_entry(p, &n->partial, lru)
4102 p->slab_cache = s;
4103
4104 #ifdef CONFIG_SLUB_DEBUG
4105 list_for_each_entry(p, &n->full, lru)
4106 p->slab_cache = s;
4107 #endif
4108 }
4109 slab_init_memcg_params(s);
4110 list_add(&s->list, &slab_caches);
4111 return s;
4112 }
4113
4114 void __init kmem_cache_init(void)
4115 {
4116 static __initdata struct kmem_cache boot_kmem_cache,
4117 boot_kmem_cache_node;
4118
4119 if (debug_guardpage_minorder())
4120 slub_max_order = 0;
4121
4122 kmem_cache_node = &boot_kmem_cache_node;
4123 kmem_cache = &boot_kmem_cache;
4124
4125 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4126 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4127
4128 register_hotmemory_notifier(&slab_memory_callback_nb);
4129
4130 /* Able to allocate the per node structures */
4131 slab_state = PARTIAL;
4132
4133 create_boot_cache(kmem_cache, "kmem_cache",
4134 offsetof(struct kmem_cache, node) +
4135 nr_node_ids * sizeof(struct kmem_cache_node *),
4136 SLAB_HWCACHE_ALIGN);
4137
4138 kmem_cache = bootstrap(&boot_kmem_cache);
4139
4140 /*
4141 * Allocate kmem_cache_node properly from the kmem_cache slab.
4142 * kmem_cache_node is separately allocated so no need to
4143 * update any list pointers.
4144 */
4145 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4146
4147 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4148 setup_kmalloc_cache_index_table();
4149 create_kmalloc_caches(0);
4150
4151 /* Setup random freelists for each cache */
4152 init_freelist_randomization();
4153
4154 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4155 slub_cpu_dead);
4156
4157 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4158 cache_line_size(),
4159 slub_min_order, slub_max_order, slub_min_objects,
4160 nr_cpu_ids, nr_node_ids);
4161 }
4162
4163 void __init kmem_cache_init_late(void)
4164 {
4165 }
4166
4167 struct kmem_cache *
4168 __kmem_cache_alias(const char *name, size_t size, size_t align,
4169 unsigned long flags, void (*ctor)(void *))
4170 {
4171 struct kmem_cache *s, *c;
4172
4173 s = find_mergeable(size, align, flags, name, ctor);
4174 if (s) {
4175 s->refcount++;
4176
4177 /*
4178 * Adjust the object sizes so that we clear
4179 * the complete object on kzalloc.
4180 */
4181 s->object_size = max(s->object_size, (int)size);
4182 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4183
4184 for_each_memcg_cache(c, s) {
4185 c->object_size = s->object_size;
4186 c->inuse = max_t(int, c->inuse,
4187 ALIGN(size, sizeof(void *)));
4188 }
4189
4190 if (sysfs_slab_alias(s, name)) {
4191 s->refcount--;
4192 s = NULL;
4193 }
4194 }
4195
4196 return s;
4197 }
4198
4199 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4200 {
4201 int err;
4202
4203 err = kmem_cache_open(s, flags);
4204 if (err)
4205 return err;
4206
4207 /* Mutex is not taken during early boot */
4208 if (slab_state <= UP)
4209 return 0;
4210
4211 memcg_propagate_slab_attrs(s);
4212 err = sysfs_slab_add(s);
4213 if (err)
4214 __kmem_cache_release(s);
4215
4216 return err;
4217 }
4218
4219 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4220 {
4221 struct kmem_cache *s;
4222 void *ret;
4223
4224 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4225 return kmalloc_large(size, gfpflags);
4226
4227 s = kmalloc_slab(size, gfpflags);
4228
4229 if (unlikely(ZERO_OR_NULL_PTR(s)))
4230 return s;
4231
4232 ret = slab_alloc(s, gfpflags, caller);
4233
4234 /* Honor the call site pointer we received. */
4235 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4236
4237 return ret;
4238 }
4239
4240 #ifdef CONFIG_NUMA
4241 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4242 int node, unsigned long caller)
4243 {
4244 struct kmem_cache *s;
4245 void *ret;
4246
4247 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4248 ret = kmalloc_large_node(size, gfpflags, node);
4249
4250 trace_kmalloc_node(caller, ret,
4251 size, PAGE_SIZE << get_order(size),
4252 gfpflags, node);
4253
4254 return ret;
4255 }
4256
4257 s = kmalloc_slab(size, gfpflags);
4258
4259 if (unlikely(ZERO_OR_NULL_PTR(s)))
4260 return s;
4261
4262 ret = slab_alloc_node(s, gfpflags, node, caller);
4263
4264 /* Honor the call site pointer we received. */
4265 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4266
4267 return ret;
4268 }
4269 #endif
4270
4271 #ifdef CONFIG_SYSFS
4272 static int count_inuse(struct page *page)
4273 {
4274 return page->inuse;
4275 }
4276
4277 static int count_total(struct page *page)
4278 {
4279 return page->objects;
4280 }
4281 #endif
4282
4283 #ifdef CONFIG_SLUB_DEBUG
4284 static int validate_slab(struct kmem_cache *s, struct page *page,
4285 unsigned long *map)
4286 {
4287 void *p;
4288 void *addr = page_address(page);
4289
4290 if (!check_slab(s, page) ||
4291 !on_freelist(s, page, NULL))
4292 return 0;
4293
4294 /* Now we know that a valid freelist exists */
4295 bitmap_zero(map, page->objects);
4296
4297 get_map(s, page, map);
4298 for_each_object(p, s, addr, page->objects) {
4299 if (test_bit(slab_index(p, s, addr), map))
4300 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4301 return 0;
4302 }
4303
4304 for_each_object(p, s, addr, page->objects)
4305 if (!test_bit(slab_index(p, s, addr), map))
4306 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4307 return 0;
4308 return 1;
4309 }
4310
4311 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4312 unsigned long *map)
4313 {
4314 slab_lock(page);
4315 validate_slab(s, page, map);
4316 slab_unlock(page);
4317 }
4318
4319 static int validate_slab_node(struct kmem_cache *s,
4320 struct kmem_cache_node *n, unsigned long *map)
4321 {
4322 unsigned long count = 0;
4323 struct page *page;
4324 unsigned long flags;
4325
4326 spin_lock_irqsave(&n->list_lock, flags);
4327
4328 list_for_each_entry(page, &n->partial, lru) {
4329 validate_slab_slab(s, page, map);
4330 count++;
4331 }
4332 if (count != n->nr_partial)
4333 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4334 s->name, count, n->nr_partial);
4335
4336 if (!(s->flags & SLAB_STORE_USER))
4337 goto out;
4338
4339 list_for_each_entry(page, &n->full, lru) {
4340 validate_slab_slab(s, page, map);
4341 count++;
4342 }
4343 if (count != atomic_long_read(&n->nr_slabs))
4344 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4345 s->name, count, atomic_long_read(&n->nr_slabs));
4346
4347 out:
4348 spin_unlock_irqrestore(&n->list_lock, flags);
4349 return count;
4350 }
4351
4352 static long validate_slab_cache(struct kmem_cache *s)
4353 {
4354 int node;
4355 unsigned long count = 0;
4356 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4357 sizeof(unsigned long), GFP_KERNEL);
4358 struct kmem_cache_node *n;
4359
4360 if (!map)
4361 return -ENOMEM;
4362
4363 flush_all(s);
4364 for_each_kmem_cache_node(s, node, n)
4365 count += validate_slab_node(s, n, map);
4366 kfree(map);
4367 return count;
4368 }
4369 /*
4370 * Generate lists of code addresses where slabcache objects are allocated
4371 * and freed.
4372 */
4373
4374 struct location {
4375 unsigned long count;
4376 unsigned long addr;
4377 long long sum_time;
4378 long min_time;
4379 long max_time;
4380 long min_pid;
4381 long max_pid;
4382 DECLARE_BITMAP(cpus, NR_CPUS);
4383 nodemask_t nodes;
4384 };
4385
4386 struct loc_track {
4387 unsigned long max;
4388 unsigned long count;
4389 struct location *loc;
4390 };
4391
4392 static void free_loc_track(struct loc_track *t)
4393 {
4394 if (t->max)
4395 free_pages((unsigned long)t->loc,
4396 get_order(sizeof(struct location) * t->max));
4397 }
4398
4399 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4400 {
4401 struct location *l;
4402 int order;
4403
4404 order = get_order(sizeof(struct location) * max);
4405
4406 l = (void *)__get_free_pages(flags, order);
4407 if (!l)
4408 return 0;
4409
4410 if (t->count) {
4411 memcpy(l, t->loc, sizeof(struct location) * t->count);
4412 free_loc_track(t);
4413 }
4414 t->max = max;
4415 t->loc = l;
4416 return 1;
4417 }
4418
4419 static int add_location(struct loc_track *t, struct kmem_cache *s,
4420 const struct track *track)
4421 {
4422 long start, end, pos;
4423 struct location *l;
4424 unsigned long caddr;
4425 unsigned long age = jiffies - track->when;
4426
4427 start = -1;
4428 end = t->count;
4429
4430 for ( ; ; ) {
4431 pos = start + (end - start + 1) / 2;
4432
4433 /*
4434 * There is nothing at "end". If we end up there
4435 * we need to add something to before end.
4436 */
4437 if (pos == end)
4438 break;
4439
4440 caddr = t->loc[pos].addr;
4441 if (track->addr == caddr) {
4442
4443 l = &t->loc[pos];
4444 l->count++;
4445 if (track->when) {
4446 l->sum_time += age;
4447 if (age < l->min_time)
4448 l->min_time = age;
4449 if (age > l->max_time)
4450 l->max_time = age;
4451
4452 if (track->pid < l->min_pid)
4453 l->min_pid = track->pid;
4454 if (track->pid > l->max_pid)
4455 l->max_pid = track->pid;
4456
4457 cpumask_set_cpu(track->cpu,
4458 to_cpumask(l->cpus));
4459 }
4460 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4461 return 1;
4462 }
4463
4464 if (track->addr < caddr)
4465 end = pos;
4466 else
4467 start = pos;
4468 }
4469
4470 /*
4471 * Not found. Insert new tracking element.
4472 */
4473 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4474 return 0;
4475
4476 l = t->loc + pos;
4477 if (pos < t->count)
4478 memmove(l + 1, l,
4479 (t->count - pos) * sizeof(struct location));
4480 t->count++;
4481 l->count = 1;
4482 l->addr = track->addr;
4483 l->sum_time = age;
4484 l->min_time = age;
4485 l->max_time = age;
4486 l->min_pid = track->pid;
4487 l->max_pid = track->pid;
4488 cpumask_clear(to_cpumask(l->cpus));
4489 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4490 nodes_clear(l->nodes);
4491 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4492 return 1;
4493 }
4494
4495 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4496 struct page *page, enum track_item alloc,
4497 unsigned long *map)
4498 {
4499 void *addr = page_address(page);
4500 void *p;
4501
4502 bitmap_zero(map, page->objects);
4503 get_map(s, page, map);
4504
4505 for_each_object(p, s, addr, page->objects)
4506 if (!test_bit(slab_index(p, s, addr), map))
4507 add_location(t, s, get_track(s, p, alloc));
4508 }
4509
4510 static int list_locations(struct kmem_cache *s, char *buf,
4511 enum track_item alloc)
4512 {
4513 int len = 0;
4514 unsigned long i;
4515 struct loc_track t = { 0, 0, NULL };
4516 int node;
4517 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4518 sizeof(unsigned long), GFP_KERNEL);
4519 struct kmem_cache_node *n;
4520
4521 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4522 GFP_TEMPORARY)) {
4523 kfree(map);
4524 return sprintf(buf, "Out of memory\n");
4525 }
4526 /* Push back cpu slabs */
4527 flush_all(s);
4528
4529 for_each_kmem_cache_node(s, node, n) {
4530 unsigned long flags;
4531 struct page *page;
4532
4533 if (!atomic_long_read(&n->nr_slabs))
4534 continue;
4535
4536 spin_lock_irqsave(&n->list_lock, flags);
4537 list_for_each_entry(page, &n->partial, lru)
4538 process_slab(&t, s, page, alloc, map);
4539 list_for_each_entry(page, &n->full, lru)
4540 process_slab(&t, s, page, alloc, map);
4541 spin_unlock_irqrestore(&n->list_lock, flags);
4542 }
4543
4544 for (i = 0; i < t.count; i++) {
4545 struct location *l = &t.loc[i];
4546
4547 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4548 break;
4549 len += sprintf(buf + len, "%7ld ", l->count);
4550
4551 if (l->addr)
4552 len += sprintf(buf + len, "%pS", (void *)l->addr);
4553 else
4554 len += sprintf(buf + len, "<not-available>");
4555
4556 if (l->sum_time != l->min_time) {
4557 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4558 l->min_time,
4559 (long)div_u64(l->sum_time, l->count),
4560 l->max_time);
4561 } else
4562 len += sprintf(buf + len, " age=%ld",
4563 l->min_time);
4564
4565 if (l->min_pid != l->max_pid)
4566 len += sprintf(buf + len, " pid=%ld-%ld",
4567 l->min_pid, l->max_pid);
4568 else
4569 len += sprintf(buf + len, " pid=%ld",
4570 l->min_pid);
4571
4572 if (num_online_cpus() > 1 &&
4573 !cpumask_empty(to_cpumask(l->cpus)) &&
4574 len < PAGE_SIZE - 60)
4575 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4576 " cpus=%*pbl",
4577 cpumask_pr_args(to_cpumask(l->cpus)));
4578
4579 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4580 len < PAGE_SIZE - 60)
4581 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4582 " nodes=%*pbl",
4583 nodemask_pr_args(&l->nodes));
4584
4585 len += sprintf(buf + len, "\n");
4586 }
4587
4588 free_loc_track(&t);
4589 kfree(map);
4590 if (!t.count)
4591 len += sprintf(buf, "No data\n");
4592 return len;
4593 }
4594 #endif
4595
4596 #ifdef SLUB_RESILIENCY_TEST
4597 static void __init resiliency_test(void)
4598 {
4599 u8 *p;
4600
4601 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4602
4603 pr_err("SLUB resiliency testing\n");
4604 pr_err("-----------------------\n");
4605 pr_err("A. Corruption after allocation\n");
4606
4607 p = kzalloc(16, GFP_KERNEL);
4608 p[16] = 0x12;
4609 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4610 p + 16);
4611
4612 validate_slab_cache(kmalloc_caches[4]);
4613
4614 /* Hmmm... The next two are dangerous */
4615 p = kzalloc(32, GFP_KERNEL);
4616 p[32 + sizeof(void *)] = 0x34;
4617 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4618 p);
4619 pr_err("If allocated object is overwritten then not detectable\n\n");
4620
4621 validate_slab_cache(kmalloc_caches[5]);
4622 p = kzalloc(64, GFP_KERNEL);
4623 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4624 *p = 0x56;
4625 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4626 p);
4627 pr_err("If allocated object is overwritten then not detectable\n\n");
4628 validate_slab_cache(kmalloc_caches[6]);
4629
4630 pr_err("\nB. Corruption after free\n");
4631 p = kzalloc(128, GFP_KERNEL);
4632 kfree(p);
4633 *p = 0x78;
4634 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4635 validate_slab_cache(kmalloc_caches[7]);
4636
4637 p = kzalloc(256, GFP_KERNEL);
4638 kfree(p);
4639 p[50] = 0x9a;
4640 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4641 validate_slab_cache(kmalloc_caches[8]);
4642
4643 p = kzalloc(512, GFP_KERNEL);
4644 kfree(p);
4645 p[512] = 0xab;
4646 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4647 validate_slab_cache(kmalloc_caches[9]);
4648 }
4649 #else
4650 #ifdef CONFIG_SYSFS
4651 static void resiliency_test(void) {};
4652 #endif
4653 #endif
4654
4655 #ifdef CONFIG_SYSFS
4656 enum slab_stat_type {
4657 SL_ALL, /* All slabs */
4658 SL_PARTIAL, /* Only partially allocated slabs */
4659 SL_CPU, /* Only slabs used for cpu caches */
4660 SL_OBJECTS, /* Determine allocated objects not slabs */
4661 SL_TOTAL /* Determine object capacity not slabs */
4662 };
4663
4664 #define SO_ALL (1 << SL_ALL)
4665 #define SO_PARTIAL (1 << SL_PARTIAL)
4666 #define SO_CPU (1 << SL_CPU)
4667 #define SO_OBJECTS (1 << SL_OBJECTS)
4668 #define SO_TOTAL (1 << SL_TOTAL)
4669
4670 static ssize_t show_slab_objects(struct kmem_cache *s,
4671 char *buf, unsigned long flags)
4672 {
4673 unsigned long total = 0;
4674 int node;
4675 int x;
4676 unsigned long *nodes;
4677
4678 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4679 if (!nodes)
4680 return -ENOMEM;
4681
4682 if (flags & SO_CPU) {
4683 int cpu;
4684
4685 for_each_possible_cpu(cpu) {
4686 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4687 cpu);
4688 int node;
4689 struct page *page;
4690
4691 page = READ_ONCE(c->page);
4692 if (!page)
4693 continue;
4694
4695 node = page_to_nid(page);
4696 if (flags & SO_TOTAL)
4697 x = page->objects;
4698 else if (flags & SO_OBJECTS)
4699 x = page->inuse;
4700 else
4701 x = 1;
4702
4703 total += x;
4704 nodes[node] += x;
4705
4706 page = READ_ONCE(c->partial);
4707 if (page) {
4708 node = page_to_nid(page);
4709 if (flags & SO_TOTAL)
4710 WARN_ON_ONCE(1);
4711 else if (flags & SO_OBJECTS)
4712 WARN_ON_ONCE(1);
4713 else
4714 x = page->pages;
4715 total += x;
4716 nodes[node] += x;
4717 }
4718 }
4719 }
4720
4721 get_online_mems();
4722 #ifdef CONFIG_SLUB_DEBUG
4723 if (flags & SO_ALL) {
4724 struct kmem_cache_node *n;
4725
4726 for_each_kmem_cache_node(s, node, n) {
4727
4728 if (flags & SO_TOTAL)
4729 x = atomic_long_read(&n->total_objects);
4730 else if (flags & SO_OBJECTS)
4731 x = atomic_long_read(&n->total_objects) -
4732 count_partial(n, count_free);
4733 else
4734 x = atomic_long_read(&n->nr_slabs);
4735 total += x;
4736 nodes[node] += x;
4737 }
4738
4739 } else
4740 #endif
4741 if (flags & SO_PARTIAL) {
4742 struct kmem_cache_node *n;
4743
4744 for_each_kmem_cache_node(s, node, n) {
4745 if (flags & SO_TOTAL)
4746 x = count_partial(n, count_total);
4747 else if (flags & SO_OBJECTS)
4748 x = count_partial(n, count_inuse);
4749 else
4750 x = n->nr_partial;
4751 total += x;
4752 nodes[node] += x;
4753 }
4754 }
4755 x = sprintf(buf, "%lu", total);
4756 #ifdef CONFIG_NUMA
4757 for (node = 0; node < nr_node_ids; node++)
4758 if (nodes[node])
4759 x += sprintf(buf + x, " N%d=%lu",
4760 node, nodes[node]);
4761 #endif
4762 put_online_mems();
4763 kfree(nodes);
4764 return x + sprintf(buf + x, "\n");
4765 }
4766
4767 #ifdef CONFIG_SLUB_DEBUG
4768 static int any_slab_objects(struct kmem_cache *s)
4769 {
4770 int node;
4771 struct kmem_cache_node *n;
4772
4773 for_each_kmem_cache_node(s, node, n)
4774 if (atomic_long_read(&n->total_objects))
4775 return 1;
4776
4777 return 0;
4778 }
4779 #endif
4780
4781 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4782 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4783
4784 struct slab_attribute {
4785 struct attribute attr;
4786 ssize_t (*show)(struct kmem_cache *s, char *buf);
4787 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4788 };
4789
4790 #define SLAB_ATTR_RO(_name) \
4791 static struct slab_attribute _name##_attr = \
4792 __ATTR(_name, 0400, _name##_show, NULL)
4793
4794 #define SLAB_ATTR(_name) \
4795 static struct slab_attribute _name##_attr = \
4796 __ATTR(_name, 0600, _name##_show, _name##_store)
4797
4798 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4799 {
4800 return sprintf(buf, "%d\n", s->size);
4801 }
4802 SLAB_ATTR_RO(slab_size);
4803
4804 static ssize_t align_show(struct kmem_cache *s, char *buf)
4805 {
4806 return sprintf(buf, "%d\n", s->align);
4807 }
4808 SLAB_ATTR_RO(align);
4809
4810 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4811 {
4812 return sprintf(buf, "%d\n", s->object_size);
4813 }
4814 SLAB_ATTR_RO(object_size);
4815
4816 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4817 {
4818 return sprintf(buf, "%d\n", oo_objects(s->oo));
4819 }
4820 SLAB_ATTR_RO(objs_per_slab);
4821
4822 static ssize_t order_store(struct kmem_cache *s,
4823 const char *buf, size_t length)
4824 {
4825 unsigned long order;
4826 int err;
4827
4828 err = kstrtoul(buf, 10, &order);
4829 if (err)
4830 return err;
4831
4832 if (order > slub_max_order || order < slub_min_order)
4833 return -EINVAL;
4834
4835 calculate_sizes(s, order);
4836 return length;
4837 }
4838
4839 static ssize_t order_show(struct kmem_cache *s, char *buf)
4840 {
4841 return sprintf(buf, "%d\n", oo_order(s->oo));
4842 }
4843 SLAB_ATTR(order);
4844
4845 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4846 {
4847 return sprintf(buf, "%lu\n", s->min_partial);
4848 }
4849
4850 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4851 size_t length)
4852 {
4853 unsigned long min;
4854 int err;
4855
4856 err = kstrtoul(buf, 10, &min);
4857 if (err)
4858 return err;
4859
4860 set_min_partial(s, min);
4861 return length;
4862 }
4863 SLAB_ATTR(min_partial);
4864
4865 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4866 {
4867 return sprintf(buf, "%u\n", s->cpu_partial);
4868 }
4869
4870 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4871 size_t length)
4872 {
4873 unsigned long objects;
4874 int err;
4875
4876 err = kstrtoul(buf, 10, &objects);
4877 if (err)
4878 return err;
4879 if (objects && !kmem_cache_has_cpu_partial(s))
4880 return -EINVAL;
4881
4882 s->cpu_partial = objects;
4883 flush_all(s);
4884 return length;
4885 }
4886 SLAB_ATTR(cpu_partial);
4887
4888 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4889 {
4890 if (!s->ctor)
4891 return 0;
4892 return sprintf(buf, "%pS\n", s->ctor);
4893 }
4894 SLAB_ATTR_RO(ctor);
4895
4896 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4897 {
4898 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4899 }
4900 SLAB_ATTR_RO(aliases);
4901
4902 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4903 {
4904 return show_slab_objects(s, buf, SO_PARTIAL);
4905 }
4906 SLAB_ATTR_RO(partial);
4907
4908 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4909 {
4910 return show_slab_objects(s, buf, SO_CPU);
4911 }
4912 SLAB_ATTR_RO(cpu_slabs);
4913
4914 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4915 {
4916 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4917 }
4918 SLAB_ATTR_RO(objects);
4919
4920 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4921 {
4922 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4923 }
4924 SLAB_ATTR_RO(objects_partial);
4925
4926 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4927 {
4928 int objects = 0;
4929 int pages = 0;
4930 int cpu;
4931 int len;
4932
4933 for_each_online_cpu(cpu) {
4934 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4935
4936 if (page) {
4937 pages += page->pages;
4938 objects += page->pobjects;
4939 }
4940 }
4941
4942 len = sprintf(buf, "%d(%d)", objects, pages);
4943
4944 #ifdef CONFIG_SMP
4945 for_each_online_cpu(cpu) {
4946 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4947
4948 if (page && len < PAGE_SIZE - 20)
4949 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4950 page->pobjects, page->pages);
4951 }
4952 #endif
4953 return len + sprintf(buf + len, "\n");
4954 }
4955 SLAB_ATTR_RO(slabs_cpu_partial);
4956
4957 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4958 {
4959 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4960 }
4961
4962 static ssize_t reclaim_account_store(struct kmem_cache *s,
4963 const char *buf, size_t length)
4964 {
4965 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4966 if (buf[0] == '1')
4967 s->flags |= SLAB_RECLAIM_ACCOUNT;
4968 return length;
4969 }
4970 SLAB_ATTR(reclaim_account);
4971
4972 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4973 {
4974 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4975 }
4976 SLAB_ATTR_RO(hwcache_align);
4977
4978 #ifdef CONFIG_ZONE_DMA
4979 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4980 {
4981 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4982 }
4983 SLAB_ATTR_RO(cache_dma);
4984 #endif
4985
4986 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4987 {
4988 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4989 }
4990 SLAB_ATTR_RO(destroy_by_rcu);
4991
4992 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4993 {
4994 return sprintf(buf, "%d\n", s->reserved);
4995 }
4996 SLAB_ATTR_RO(reserved);
4997
4998 #ifdef CONFIG_SLUB_DEBUG
4999 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5000 {
5001 return show_slab_objects(s, buf, SO_ALL);
5002 }
5003 SLAB_ATTR_RO(slabs);
5004
5005 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5006 {
5007 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5008 }
5009 SLAB_ATTR_RO(total_objects);
5010
5011 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5012 {
5013 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5014 }
5015
5016 static ssize_t sanity_checks_store(struct kmem_cache *s,
5017 const char *buf, size_t length)
5018 {
5019 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5020 if (buf[0] == '1') {
5021 s->flags &= ~__CMPXCHG_DOUBLE;
5022 s->flags |= SLAB_CONSISTENCY_CHECKS;
5023 }
5024 return length;
5025 }
5026 SLAB_ATTR(sanity_checks);
5027
5028 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5029 {
5030 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5031 }
5032
5033 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5034 size_t length)
5035 {
5036 /*
5037 * Tracing a merged cache is going to give confusing results
5038 * as well as cause other issues like converting a mergeable
5039 * cache into an umergeable one.
5040 */
5041 if (s->refcount > 1)
5042 return -EINVAL;
5043
5044 s->flags &= ~SLAB_TRACE;
5045 if (buf[0] == '1') {
5046 s->flags &= ~__CMPXCHG_DOUBLE;
5047 s->flags |= SLAB_TRACE;
5048 }
5049 return length;
5050 }
5051 SLAB_ATTR(trace);
5052
5053 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5054 {
5055 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5056 }
5057
5058 static ssize_t red_zone_store(struct kmem_cache *s,
5059 const char *buf, size_t length)
5060 {
5061 if (any_slab_objects(s))
5062 return -EBUSY;
5063
5064 s->flags &= ~SLAB_RED_ZONE;
5065 if (buf[0] == '1') {
5066 s->flags |= SLAB_RED_ZONE;
5067 }
5068 calculate_sizes(s, -1);
5069 return length;
5070 }
5071 SLAB_ATTR(red_zone);
5072
5073 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5074 {
5075 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5076 }
5077
5078 static ssize_t poison_store(struct kmem_cache *s,
5079 const char *buf, size_t length)
5080 {
5081 if (any_slab_objects(s))
5082 return -EBUSY;
5083
5084 s->flags &= ~SLAB_POISON;
5085 if (buf[0] == '1') {
5086 s->flags |= SLAB_POISON;
5087 }
5088 calculate_sizes(s, -1);
5089 return length;
5090 }
5091 SLAB_ATTR(poison);
5092
5093 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5094 {
5095 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5096 }
5097
5098 static ssize_t store_user_store(struct kmem_cache *s,
5099 const char *buf, size_t length)
5100 {
5101 if (any_slab_objects(s))
5102 return -EBUSY;
5103
5104 s->flags &= ~SLAB_STORE_USER;
5105 if (buf[0] == '1') {
5106 s->flags &= ~__CMPXCHG_DOUBLE;
5107 s->flags |= SLAB_STORE_USER;
5108 }
5109 calculate_sizes(s, -1);
5110 return length;
5111 }
5112 SLAB_ATTR(store_user);
5113
5114 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5115 {
5116 return 0;
5117 }
5118
5119 static ssize_t validate_store(struct kmem_cache *s,
5120 const char *buf, size_t length)
5121 {
5122 int ret = -EINVAL;
5123
5124 if (buf[0] == '1') {
5125 ret = validate_slab_cache(s);
5126 if (ret >= 0)
5127 ret = length;
5128 }
5129 return ret;
5130 }
5131 SLAB_ATTR(validate);
5132
5133 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5134 {
5135 if (!(s->flags & SLAB_STORE_USER))
5136 return -ENOSYS;
5137 return list_locations(s, buf, TRACK_ALLOC);
5138 }
5139 SLAB_ATTR_RO(alloc_calls);
5140
5141 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5142 {
5143 if (!(s->flags & SLAB_STORE_USER))
5144 return -ENOSYS;
5145 return list_locations(s, buf, TRACK_FREE);
5146 }
5147 SLAB_ATTR_RO(free_calls);
5148 #endif /* CONFIG_SLUB_DEBUG */
5149
5150 #ifdef CONFIG_FAILSLAB
5151 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5152 {
5153 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5154 }
5155
5156 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5157 size_t length)
5158 {
5159 if (s->refcount > 1)
5160 return -EINVAL;
5161
5162 s->flags &= ~SLAB_FAILSLAB;
5163 if (buf[0] == '1')
5164 s->flags |= SLAB_FAILSLAB;
5165 return length;
5166 }
5167 SLAB_ATTR(failslab);
5168 #endif
5169
5170 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5171 {
5172 return 0;
5173 }
5174
5175 static ssize_t shrink_store(struct kmem_cache *s,
5176 const char *buf, size_t length)
5177 {
5178 if (buf[0] == '1')
5179 kmem_cache_shrink(s);
5180 else
5181 return -EINVAL;
5182 return length;
5183 }
5184 SLAB_ATTR(shrink);
5185
5186 #ifdef CONFIG_NUMA
5187 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5188 {
5189 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5190 }
5191
5192 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5193 const char *buf, size_t length)
5194 {
5195 unsigned long ratio;
5196 int err;
5197
5198 err = kstrtoul(buf, 10, &ratio);
5199 if (err)
5200 return err;
5201
5202 if (ratio <= 100)
5203 s->remote_node_defrag_ratio = ratio * 10;
5204
5205 return length;
5206 }
5207 SLAB_ATTR(remote_node_defrag_ratio);
5208 #endif
5209
5210 #ifdef CONFIG_SLUB_STATS
5211 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5212 {
5213 unsigned long sum = 0;
5214 int cpu;
5215 int len;
5216 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5217
5218 if (!data)
5219 return -ENOMEM;
5220
5221 for_each_online_cpu(cpu) {
5222 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5223
5224 data[cpu] = x;
5225 sum += x;
5226 }
5227
5228 len = sprintf(buf, "%lu", sum);
5229
5230 #ifdef CONFIG_SMP
5231 for_each_online_cpu(cpu) {
5232 if (data[cpu] && len < PAGE_SIZE - 20)
5233 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5234 }
5235 #endif
5236 kfree(data);
5237 return len + sprintf(buf + len, "\n");
5238 }
5239
5240 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5241 {
5242 int cpu;
5243
5244 for_each_online_cpu(cpu)
5245 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5246 }
5247
5248 #define STAT_ATTR(si, text) \
5249 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5250 { \
5251 return show_stat(s, buf, si); \
5252 } \
5253 static ssize_t text##_store(struct kmem_cache *s, \
5254 const char *buf, size_t length) \
5255 { \
5256 if (buf[0] != '0') \
5257 return -EINVAL; \
5258 clear_stat(s, si); \
5259 return length; \
5260 } \
5261 SLAB_ATTR(text); \
5262
5263 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5264 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5265 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5266 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5267 STAT_ATTR(FREE_FROZEN, free_frozen);
5268 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5269 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5270 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5271 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5272 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5273 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5274 STAT_ATTR(FREE_SLAB, free_slab);
5275 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5276 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5277 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5278 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5279 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5280 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5281 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5282 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5283 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5284 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5285 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5286 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5287 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5288 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5289 #endif
5290
5291 static struct attribute *slab_attrs[] = {
5292 &slab_size_attr.attr,
5293 &object_size_attr.attr,
5294 &objs_per_slab_attr.attr,
5295 &order_attr.attr,
5296 &min_partial_attr.attr,
5297 &cpu_partial_attr.attr,
5298 &objects_attr.attr,
5299 &objects_partial_attr.attr,
5300 &partial_attr.attr,
5301 &cpu_slabs_attr.attr,
5302 &ctor_attr.attr,
5303 &aliases_attr.attr,
5304 &align_attr.attr,
5305 &hwcache_align_attr.attr,
5306 &reclaim_account_attr.attr,
5307 &destroy_by_rcu_attr.attr,
5308 &shrink_attr.attr,
5309 &reserved_attr.attr,
5310 &slabs_cpu_partial_attr.attr,
5311 #ifdef CONFIG_SLUB_DEBUG
5312 &total_objects_attr.attr,
5313 &slabs_attr.attr,
5314 &sanity_checks_attr.attr,
5315 &trace_attr.attr,
5316 &red_zone_attr.attr,
5317 &poison_attr.attr,
5318 &store_user_attr.attr,
5319 &validate_attr.attr,
5320 &alloc_calls_attr.attr,
5321 &free_calls_attr.attr,
5322 #endif
5323 #ifdef CONFIG_ZONE_DMA
5324 &cache_dma_attr.attr,
5325 #endif
5326 #ifdef CONFIG_NUMA
5327 &remote_node_defrag_ratio_attr.attr,
5328 #endif
5329 #ifdef CONFIG_SLUB_STATS
5330 &alloc_fastpath_attr.attr,
5331 &alloc_slowpath_attr.attr,
5332 &free_fastpath_attr.attr,
5333 &free_slowpath_attr.attr,
5334 &free_frozen_attr.attr,
5335 &free_add_partial_attr.attr,
5336 &free_remove_partial_attr.attr,
5337 &alloc_from_partial_attr.attr,
5338 &alloc_slab_attr.attr,
5339 &alloc_refill_attr.attr,
5340 &alloc_node_mismatch_attr.attr,
5341 &free_slab_attr.attr,
5342 &cpuslab_flush_attr.attr,
5343 &deactivate_full_attr.attr,
5344 &deactivate_empty_attr.attr,
5345 &deactivate_to_head_attr.attr,
5346 &deactivate_to_tail_attr.attr,
5347 &deactivate_remote_frees_attr.attr,
5348 &deactivate_bypass_attr.attr,
5349 &order_fallback_attr.attr,
5350 &cmpxchg_double_fail_attr.attr,
5351 &cmpxchg_double_cpu_fail_attr.attr,
5352 &cpu_partial_alloc_attr.attr,
5353 &cpu_partial_free_attr.attr,
5354 &cpu_partial_node_attr.attr,
5355 &cpu_partial_drain_attr.attr,
5356 #endif
5357 #ifdef CONFIG_FAILSLAB
5358 &failslab_attr.attr,
5359 #endif
5360
5361 NULL
5362 };
5363
5364 static struct attribute_group slab_attr_group = {
5365 .attrs = slab_attrs,
5366 };
5367
5368 static ssize_t slab_attr_show(struct kobject *kobj,
5369 struct attribute *attr,
5370 char *buf)
5371 {
5372 struct slab_attribute *attribute;
5373 struct kmem_cache *s;
5374 int err;
5375
5376 attribute = to_slab_attr(attr);
5377 s = to_slab(kobj);
5378
5379 if (!attribute->show)
5380 return -EIO;
5381
5382 err = attribute->show(s, buf);
5383
5384 return err;
5385 }
5386
5387 static ssize_t slab_attr_store(struct kobject *kobj,
5388 struct attribute *attr,
5389 const char *buf, size_t len)
5390 {
5391 struct slab_attribute *attribute;
5392 struct kmem_cache *s;
5393 int err;
5394
5395 attribute = to_slab_attr(attr);
5396 s = to_slab(kobj);
5397
5398 if (!attribute->store)
5399 return -EIO;
5400
5401 err = attribute->store(s, buf, len);
5402 #ifdef CONFIG_MEMCG
5403 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5404 struct kmem_cache *c;
5405
5406 mutex_lock(&slab_mutex);
5407 if (s->max_attr_size < len)
5408 s->max_attr_size = len;
5409
5410 /*
5411 * This is a best effort propagation, so this function's return
5412 * value will be determined by the parent cache only. This is
5413 * basically because not all attributes will have a well
5414 * defined semantics for rollbacks - most of the actions will
5415 * have permanent effects.
5416 *
5417 * Returning the error value of any of the children that fail
5418 * is not 100 % defined, in the sense that users seeing the
5419 * error code won't be able to know anything about the state of
5420 * the cache.
5421 *
5422 * Only returning the error code for the parent cache at least
5423 * has well defined semantics. The cache being written to
5424 * directly either failed or succeeded, in which case we loop
5425 * through the descendants with best-effort propagation.
5426 */
5427 for_each_memcg_cache(c, s)
5428 attribute->store(c, buf, len);
5429 mutex_unlock(&slab_mutex);
5430 }
5431 #endif
5432 return err;
5433 }
5434
5435 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5436 {
5437 #ifdef CONFIG_MEMCG
5438 int i;
5439 char *buffer = NULL;
5440 struct kmem_cache *root_cache;
5441
5442 if (is_root_cache(s))
5443 return;
5444
5445 root_cache = s->memcg_params.root_cache;
5446
5447 /*
5448 * This mean this cache had no attribute written. Therefore, no point
5449 * in copying default values around
5450 */
5451 if (!root_cache->max_attr_size)
5452 return;
5453
5454 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5455 char mbuf[64];
5456 char *buf;
5457 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5458
5459 if (!attr || !attr->store || !attr->show)
5460 continue;
5461
5462 /*
5463 * It is really bad that we have to allocate here, so we will
5464 * do it only as a fallback. If we actually allocate, though,
5465 * we can just use the allocated buffer until the end.
5466 *
5467 * Most of the slub attributes will tend to be very small in
5468 * size, but sysfs allows buffers up to a page, so they can
5469 * theoretically happen.
5470 */
5471 if (buffer)
5472 buf = buffer;
5473 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5474 buf = mbuf;
5475 else {
5476 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5477 if (WARN_ON(!buffer))
5478 continue;
5479 buf = buffer;
5480 }
5481
5482 attr->show(root_cache, buf);
5483 attr->store(s, buf, strlen(buf));
5484 }
5485
5486 if (buffer)
5487 free_page((unsigned long)buffer);
5488 #endif
5489 }
5490
5491 static void kmem_cache_release(struct kobject *k)
5492 {
5493 slab_kmem_cache_release(to_slab(k));
5494 }
5495
5496 static const struct sysfs_ops slab_sysfs_ops = {
5497 .show = slab_attr_show,
5498 .store = slab_attr_store,
5499 };
5500
5501 static struct kobj_type slab_ktype = {
5502 .sysfs_ops = &slab_sysfs_ops,
5503 .release = kmem_cache_release,
5504 };
5505
5506 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5507 {
5508 struct kobj_type *ktype = get_ktype(kobj);
5509
5510 if (ktype == &slab_ktype)
5511 return 1;
5512 return 0;
5513 }
5514
5515 static const struct kset_uevent_ops slab_uevent_ops = {
5516 .filter = uevent_filter,
5517 };
5518
5519 static struct kset *slab_kset;
5520
5521 static inline struct kset *cache_kset(struct kmem_cache *s)
5522 {
5523 #ifdef CONFIG_MEMCG
5524 if (!is_root_cache(s))
5525 return s->memcg_params.root_cache->memcg_kset;
5526 #endif
5527 return slab_kset;
5528 }
5529
5530 #define ID_STR_LENGTH 64
5531
5532 /* Create a unique string id for a slab cache:
5533 *
5534 * Format :[flags-]size
5535 */
5536 static char *create_unique_id(struct kmem_cache *s)
5537 {
5538 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5539 char *p = name;
5540
5541 BUG_ON(!name);
5542
5543 *p++ = ':';
5544 /*
5545 * First flags affecting slabcache operations. We will only
5546 * get here for aliasable slabs so we do not need to support
5547 * too many flags. The flags here must cover all flags that
5548 * are matched during merging to guarantee that the id is
5549 * unique.
5550 */
5551 if (s->flags & SLAB_CACHE_DMA)
5552 *p++ = 'd';
5553 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5554 *p++ = 'a';
5555 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5556 *p++ = 'F';
5557 if (!(s->flags & SLAB_NOTRACK))
5558 *p++ = 't';
5559 if (s->flags & SLAB_ACCOUNT)
5560 *p++ = 'A';
5561 if (p != name + 1)
5562 *p++ = '-';
5563 p += sprintf(p, "%07d", s->size);
5564
5565 BUG_ON(p > name + ID_STR_LENGTH - 1);
5566 return name;
5567 }
5568
5569 static int sysfs_slab_add(struct kmem_cache *s)
5570 {
5571 int err;
5572 const char *name;
5573 int unmergeable = slab_unmergeable(s);
5574
5575 if (unmergeable) {
5576 /*
5577 * Slabcache can never be merged so we can use the name proper.
5578 * This is typically the case for debug situations. In that
5579 * case we can catch duplicate names easily.
5580 */
5581 sysfs_remove_link(&slab_kset->kobj, s->name);
5582 name = s->name;
5583 } else {
5584 /*
5585 * Create a unique name for the slab as a target
5586 * for the symlinks.
5587 */
5588 name = create_unique_id(s);
5589 }
5590
5591 s->kobj.kset = cache_kset(s);
5592 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5593 if (err)
5594 goto out;
5595
5596 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5597 if (err)
5598 goto out_del_kobj;
5599
5600 #ifdef CONFIG_MEMCG
5601 if (is_root_cache(s)) {
5602 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5603 if (!s->memcg_kset) {
5604 err = -ENOMEM;
5605 goto out_del_kobj;
5606 }
5607 }
5608 #endif
5609
5610 kobject_uevent(&s->kobj, KOBJ_ADD);
5611 if (!unmergeable) {
5612 /* Setup first alias */
5613 sysfs_slab_alias(s, s->name);
5614 }
5615 out:
5616 if (!unmergeable)
5617 kfree(name);
5618 return err;
5619 out_del_kobj:
5620 kobject_del(&s->kobj);
5621 goto out;
5622 }
5623
5624 void sysfs_slab_remove(struct kmem_cache *s)
5625 {
5626 if (slab_state < FULL)
5627 /*
5628 * Sysfs has not been setup yet so no need to remove the
5629 * cache from sysfs.
5630 */
5631 return;
5632
5633 #ifdef CONFIG_MEMCG
5634 kset_unregister(s->memcg_kset);
5635 #endif
5636 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5637 kobject_del(&s->kobj);
5638 kobject_put(&s->kobj);
5639 }
5640
5641 /*
5642 * Need to buffer aliases during bootup until sysfs becomes
5643 * available lest we lose that information.
5644 */
5645 struct saved_alias {
5646 struct kmem_cache *s;
5647 const char *name;
5648 struct saved_alias *next;
5649 };
5650
5651 static struct saved_alias *alias_list;
5652
5653 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5654 {
5655 struct saved_alias *al;
5656
5657 if (slab_state == FULL) {
5658 /*
5659 * If we have a leftover link then remove it.
5660 */
5661 sysfs_remove_link(&slab_kset->kobj, name);
5662 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5663 }
5664
5665 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5666 if (!al)
5667 return -ENOMEM;
5668
5669 al->s = s;
5670 al->name = name;
5671 al->next = alias_list;
5672 alias_list = al;
5673 return 0;
5674 }
5675
5676 static int __init slab_sysfs_init(void)
5677 {
5678 struct kmem_cache *s;
5679 int err;
5680
5681 mutex_lock(&slab_mutex);
5682
5683 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5684 if (!slab_kset) {
5685 mutex_unlock(&slab_mutex);
5686 pr_err("Cannot register slab subsystem.\n");
5687 return -ENOSYS;
5688 }
5689
5690 slab_state = FULL;
5691
5692 list_for_each_entry(s, &slab_caches, list) {
5693 err = sysfs_slab_add(s);
5694 if (err)
5695 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5696 s->name);
5697 }
5698
5699 while (alias_list) {
5700 struct saved_alias *al = alias_list;
5701
5702 alias_list = alias_list->next;
5703 err = sysfs_slab_alias(al->s, al->name);
5704 if (err)
5705 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5706 al->name);
5707 kfree(al);
5708 }
5709
5710 mutex_unlock(&slab_mutex);
5711 resiliency_test();
5712 return 0;
5713 }
5714
5715 __initcall(slab_sysfs_init);
5716 #endif /* CONFIG_SYSFS */
5717
5718 /*
5719 * The /proc/slabinfo ABI
5720 */
5721 #ifdef CONFIG_SLABINFO
5722 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5723 {
5724 unsigned long nr_slabs = 0;
5725 unsigned long nr_objs = 0;
5726 unsigned long nr_free = 0;
5727 int node;
5728 struct kmem_cache_node *n;
5729
5730 for_each_kmem_cache_node(s, node, n) {
5731 nr_slabs += node_nr_slabs(n);
5732 nr_objs += node_nr_objs(n);
5733 nr_free += count_partial(n, count_free);
5734 }
5735
5736 sinfo->active_objs = nr_objs - nr_free;
5737 sinfo->num_objs = nr_objs;
5738 sinfo->active_slabs = nr_slabs;
5739 sinfo->num_slabs = nr_slabs;
5740 sinfo->objects_per_slab = oo_objects(s->oo);
5741 sinfo->cache_order = oo_order(s->oo);
5742 }
5743
5744 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5745 {
5746 }
5747
5748 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5749 size_t count, loff_t *ppos)
5750 {
5751 return -EIO;
5752 }
5753 #endif /* CONFIG_SLABINFO */