]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/swap.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-zesty-kernel.git] / mm / swap.c
1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/memremap.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 #include <linux/uio.h>
35 #include <linux/hugetlb.h>
36 #include <linux/page_idle.h>
37
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/pagemap.h>
42
43 /* How many pages do we try to swap or page in/out together? */
44 int page_cluster;
45
46 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
47 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
48 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
49 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
50 #ifdef CONFIG_SMP
51 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
52 #endif
53
54 /*
55 * This path almost never happens for VM activity - pages are normally
56 * freed via pagevecs. But it gets used by networking.
57 */
58 static void __page_cache_release(struct page *page)
59 {
60 if (PageLRU(page)) {
61 struct zone *zone = page_zone(page);
62 struct lruvec *lruvec;
63 unsigned long flags;
64
65 spin_lock_irqsave(zone_lru_lock(zone), flags);
66 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
67 VM_BUG_ON_PAGE(!PageLRU(page), page);
68 __ClearPageLRU(page);
69 del_page_from_lru_list(page, lruvec, page_off_lru(page));
70 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
71 }
72 mem_cgroup_uncharge(page);
73 }
74
75 static void __put_single_page(struct page *page)
76 {
77 __page_cache_release(page);
78 free_hot_cold_page(page, false);
79 }
80
81 static void __put_compound_page(struct page *page)
82 {
83 compound_page_dtor *dtor;
84
85 /*
86 * __page_cache_release() is supposed to be called for thp, not for
87 * hugetlb. This is because hugetlb page does never have PageLRU set
88 * (it's never listed to any LRU lists) and no memcg routines should
89 * be called for hugetlb (it has a separate hugetlb_cgroup.)
90 */
91 if (!PageHuge(page))
92 __page_cache_release(page);
93 dtor = get_compound_page_dtor(page);
94 (*dtor)(page);
95 }
96
97 void __put_page(struct page *page)
98 {
99 if (unlikely(PageCompound(page)))
100 __put_compound_page(page);
101 else
102 __put_single_page(page);
103 }
104 EXPORT_SYMBOL(__put_page);
105
106 /**
107 * put_pages_list() - release a list of pages
108 * @pages: list of pages threaded on page->lru
109 *
110 * Release a list of pages which are strung together on page.lru. Currently
111 * used by read_cache_pages() and related error recovery code.
112 */
113 void put_pages_list(struct list_head *pages)
114 {
115 while (!list_empty(pages)) {
116 struct page *victim;
117
118 victim = list_entry(pages->prev, struct page, lru);
119 list_del(&victim->lru);
120 put_page(victim);
121 }
122 }
123 EXPORT_SYMBOL(put_pages_list);
124
125 /*
126 * get_kernel_pages() - pin kernel pages in memory
127 * @kiov: An array of struct kvec structures
128 * @nr_segs: number of segments to pin
129 * @write: pinning for read/write, currently ignored
130 * @pages: array that receives pointers to the pages pinned.
131 * Should be at least nr_segs long.
132 *
133 * Returns number of pages pinned. This may be fewer than the number
134 * requested. If nr_pages is 0 or negative, returns 0. If no pages
135 * were pinned, returns -errno. Each page returned must be released
136 * with a put_page() call when it is finished with.
137 */
138 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
139 struct page **pages)
140 {
141 int seg;
142
143 for (seg = 0; seg < nr_segs; seg++) {
144 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
145 return seg;
146
147 pages[seg] = kmap_to_page(kiov[seg].iov_base);
148 get_page(pages[seg]);
149 }
150
151 return seg;
152 }
153 EXPORT_SYMBOL_GPL(get_kernel_pages);
154
155 /*
156 * get_kernel_page() - pin a kernel page in memory
157 * @start: starting kernel address
158 * @write: pinning for read/write, currently ignored
159 * @pages: array that receives pointer to the page pinned.
160 * Must be at least nr_segs long.
161 *
162 * Returns 1 if page is pinned. If the page was not pinned, returns
163 * -errno. The page returned must be released with a put_page() call
164 * when it is finished with.
165 */
166 int get_kernel_page(unsigned long start, int write, struct page **pages)
167 {
168 const struct kvec kiov = {
169 .iov_base = (void *)start,
170 .iov_len = PAGE_SIZE
171 };
172
173 return get_kernel_pages(&kiov, 1, write, pages);
174 }
175 EXPORT_SYMBOL_GPL(get_kernel_page);
176
177 static void pagevec_lru_move_fn(struct pagevec *pvec,
178 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
179 void *arg)
180 {
181 int i;
182 struct pglist_data *pgdat = NULL;
183 struct lruvec *lruvec;
184 unsigned long flags = 0;
185
186 for (i = 0; i < pagevec_count(pvec); i++) {
187 struct page *page = pvec->pages[i];
188 struct pglist_data *pagepgdat = page_pgdat(page);
189
190 if (pagepgdat != pgdat) {
191 if (pgdat)
192 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
193 pgdat = pagepgdat;
194 spin_lock_irqsave(&pgdat->lru_lock, flags);
195 }
196
197 lruvec = mem_cgroup_page_lruvec(page, pgdat);
198 (*move_fn)(page, lruvec, arg);
199 }
200 if (pgdat)
201 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
202 release_pages(pvec->pages, pvec->nr, pvec->cold);
203 pagevec_reinit(pvec);
204 }
205
206 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
207 void *arg)
208 {
209 int *pgmoved = arg;
210
211 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
212 enum lru_list lru = page_lru_base_type(page);
213 list_move_tail(&page->lru, &lruvec->lists[lru]);
214 (*pgmoved)++;
215 }
216 }
217
218 /*
219 * pagevec_move_tail() must be called with IRQ disabled.
220 * Otherwise this may cause nasty races.
221 */
222 static void pagevec_move_tail(struct pagevec *pvec)
223 {
224 int pgmoved = 0;
225
226 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
227 __count_vm_events(PGROTATED, pgmoved);
228 }
229
230 /*
231 * Writeback is about to end against a page which has been marked for immediate
232 * reclaim. If it still appears to be reclaimable, move it to the tail of the
233 * inactive list.
234 */
235 void rotate_reclaimable_page(struct page *page)
236 {
237 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
238 !PageUnevictable(page) && PageLRU(page)) {
239 struct pagevec *pvec;
240 unsigned long flags;
241
242 get_page(page);
243 local_irq_save(flags);
244 pvec = this_cpu_ptr(&lru_rotate_pvecs);
245 if (!pagevec_add(pvec, page) || PageCompound(page))
246 pagevec_move_tail(pvec);
247 local_irq_restore(flags);
248 }
249 }
250
251 static void update_page_reclaim_stat(struct lruvec *lruvec,
252 int file, int rotated)
253 {
254 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
255
256 reclaim_stat->recent_scanned[file]++;
257 if (rotated)
258 reclaim_stat->recent_rotated[file]++;
259 }
260
261 static void __activate_page(struct page *page, struct lruvec *lruvec,
262 void *arg)
263 {
264 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
265 int file = page_is_file_cache(page);
266 int lru = page_lru_base_type(page);
267
268 del_page_from_lru_list(page, lruvec, lru);
269 SetPageActive(page);
270 lru += LRU_ACTIVE;
271 add_page_to_lru_list(page, lruvec, lru);
272 trace_mm_lru_activate(page);
273
274 __count_vm_event(PGACTIVATE);
275 update_page_reclaim_stat(lruvec, file, 1);
276 }
277 }
278
279 #ifdef CONFIG_SMP
280 static void activate_page_drain(int cpu)
281 {
282 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
283
284 if (pagevec_count(pvec))
285 pagevec_lru_move_fn(pvec, __activate_page, NULL);
286 }
287
288 static bool need_activate_page_drain(int cpu)
289 {
290 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
291 }
292
293 void activate_page(struct page *page)
294 {
295 page = compound_head(page);
296 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
297 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
298
299 get_page(page);
300 if (!pagevec_add(pvec, page) || PageCompound(page))
301 pagevec_lru_move_fn(pvec, __activate_page, NULL);
302 put_cpu_var(activate_page_pvecs);
303 }
304 }
305
306 #else
307 static inline void activate_page_drain(int cpu)
308 {
309 }
310
311 static bool need_activate_page_drain(int cpu)
312 {
313 return false;
314 }
315
316 void activate_page(struct page *page)
317 {
318 struct zone *zone = page_zone(page);
319
320 page = compound_head(page);
321 spin_lock_irq(zone_lru_lock(zone));
322 __activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL);
323 spin_unlock_irq(zone_lru_lock(zone));
324 }
325 #endif
326
327 static void __lru_cache_activate_page(struct page *page)
328 {
329 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
330 int i;
331
332 /*
333 * Search backwards on the optimistic assumption that the page being
334 * activated has just been added to this pagevec. Note that only
335 * the local pagevec is examined as a !PageLRU page could be in the
336 * process of being released, reclaimed, migrated or on a remote
337 * pagevec that is currently being drained. Furthermore, marking
338 * a remote pagevec's page PageActive potentially hits a race where
339 * a page is marked PageActive just after it is added to the inactive
340 * list causing accounting errors and BUG_ON checks to trigger.
341 */
342 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
343 struct page *pagevec_page = pvec->pages[i];
344
345 if (pagevec_page == page) {
346 SetPageActive(page);
347 break;
348 }
349 }
350
351 put_cpu_var(lru_add_pvec);
352 }
353
354 /*
355 * Mark a page as having seen activity.
356 *
357 * inactive,unreferenced -> inactive,referenced
358 * inactive,referenced -> active,unreferenced
359 * active,unreferenced -> active,referenced
360 *
361 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
362 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
363 */
364 void mark_page_accessed(struct page *page)
365 {
366 page = compound_head(page);
367 if (!PageActive(page) && !PageUnevictable(page) &&
368 PageReferenced(page)) {
369
370 /*
371 * If the page is on the LRU, queue it for activation via
372 * activate_page_pvecs. Otherwise, assume the page is on a
373 * pagevec, mark it active and it'll be moved to the active
374 * LRU on the next drain.
375 */
376 if (PageLRU(page))
377 activate_page(page);
378 else
379 __lru_cache_activate_page(page);
380 ClearPageReferenced(page);
381 if (page_is_file_cache(page))
382 workingset_activation(page);
383 } else if (!PageReferenced(page)) {
384 SetPageReferenced(page);
385 }
386 if (page_is_idle(page))
387 clear_page_idle(page);
388 }
389 EXPORT_SYMBOL(mark_page_accessed);
390
391 static void __lru_cache_add(struct page *page)
392 {
393 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
394
395 get_page(page);
396 if (!pagevec_add(pvec, page) || PageCompound(page))
397 __pagevec_lru_add(pvec);
398 put_cpu_var(lru_add_pvec);
399 }
400
401 /**
402 * lru_cache_add: add a page to the page lists
403 * @page: the page to add
404 */
405 void lru_cache_add_anon(struct page *page)
406 {
407 if (PageActive(page))
408 ClearPageActive(page);
409 __lru_cache_add(page);
410 }
411
412 void lru_cache_add_file(struct page *page)
413 {
414 if (PageActive(page))
415 ClearPageActive(page);
416 __lru_cache_add(page);
417 }
418 EXPORT_SYMBOL(lru_cache_add_file);
419
420 /**
421 * lru_cache_add - add a page to a page list
422 * @page: the page to be added to the LRU.
423 *
424 * Queue the page for addition to the LRU via pagevec. The decision on whether
425 * to add the page to the [in]active [file|anon] list is deferred until the
426 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
427 * have the page added to the active list using mark_page_accessed().
428 */
429 void lru_cache_add(struct page *page)
430 {
431 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
432 VM_BUG_ON_PAGE(PageLRU(page), page);
433 __lru_cache_add(page);
434 }
435
436 /**
437 * add_page_to_unevictable_list - add a page to the unevictable list
438 * @page: the page to be added to the unevictable list
439 *
440 * Add page directly to its zone's unevictable list. To avoid races with
441 * tasks that might be making the page evictable, through eg. munlock,
442 * munmap or exit, while it's not on the lru, we want to add the page
443 * while it's locked or otherwise "invisible" to other tasks. This is
444 * difficult to do when using the pagevec cache, so bypass that.
445 */
446 void add_page_to_unevictable_list(struct page *page)
447 {
448 struct pglist_data *pgdat = page_pgdat(page);
449 struct lruvec *lruvec;
450
451 spin_lock_irq(&pgdat->lru_lock);
452 lruvec = mem_cgroup_page_lruvec(page, pgdat);
453 ClearPageActive(page);
454 SetPageUnevictable(page);
455 SetPageLRU(page);
456 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
457 spin_unlock_irq(&pgdat->lru_lock);
458 }
459
460 /**
461 * lru_cache_add_active_or_unevictable
462 * @page: the page to be added to LRU
463 * @vma: vma in which page is mapped for determining reclaimability
464 *
465 * Place @page on the active or unevictable LRU list, depending on its
466 * evictability. Note that if the page is not evictable, it goes
467 * directly back onto it's zone's unevictable list, it does NOT use a
468 * per cpu pagevec.
469 */
470 void lru_cache_add_active_or_unevictable(struct page *page,
471 struct vm_area_struct *vma)
472 {
473 VM_BUG_ON_PAGE(PageLRU(page), page);
474
475 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
476 SetPageActive(page);
477 lru_cache_add(page);
478 return;
479 }
480
481 if (!TestSetPageMlocked(page)) {
482 /*
483 * We use the irq-unsafe __mod_zone_page_stat because this
484 * counter is not modified from interrupt context, and the pte
485 * lock is held(spinlock), which implies preemption disabled.
486 */
487 __mod_zone_page_state(page_zone(page), NR_MLOCK,
488 hpage_nr_pages(page));
489 count_vm_event(UNEVICTABLE_PGMLOCKED);
490 }
491 add_page_to_unevictable_list(page);
492 }
493
494 /*
495 * If the page can not be invalidated, it is moved to the
496 * inactive list to speed up its reclaim. It is moved to the
497 * head of the list, rather than the tail, to give the flusher
498 * threads some time to write it out, as this is much more
499 * effective than the single-page writeout from reclaim.
500 *
501 * If the page isn't page_mapped and dirty/writeback, the page
502 * could reclaim asap using PG_reclaim.
503 *
504 * 1. active, mapped page -> none
505 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
506 * 3. inactive, mapped page -> none
507 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
508 * 5. inactive, clean -> inactive, tail
509 * 6. Others -> none
510 *
511 * In 4, why it moves inactive's head, the VM expects the page would
512 * be write it out by flusher threads as this is much more effective
513 * than the single-page writeout from reclaim.
514 */
515 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
516 void *arg)
517 {
518 int lru, file;
519 bool active;
520
521 if (!PageLRU(page))
522 return;
523
524 if (PageUnevictable(page))
525 return;
526
527 /* Some processes are using the page */
528 if (page_mapped(page))
529 return;
530
531 active = PageActive(page);
532 file = page_is_file_cache(page);
533 lru = page_lru_base_type(page);
534
535 del_page_from_lru_list(page, lruvec, lru + active);
536 ClearPageActive(page);
537 ClearPageReferenced(page);
538 add_page_to_lru_list(page, lruvec, lru);
539
540 if (PageWriteback(page) || PageDirty(page)) {
541 /*
542 * PG_reclaim could be raced with end_page_writeback
543 * It can make readahead confusing. But race window
544 * is _really_ small and it's non-critical problem.
545 */
546 SetPageReclaim(page);
547 } else {
548 /*
549 * The page's writeback ends up during pagevec
550 * We moves tha page into tail of inactive.
551 */
552 list_move_tail(&page->lru, &lruvec->lists[lru]);
553 __count_vm_event(PGROTATED);
554 }
555
556 if (active)
557 __count_vm_event(PGDEACTIVATE);
558 update_page_reclaim_stat(lruvec, file, 0);
559 }
560
561
562 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
563 void *arg)
564 {
565 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
566 int file = page_is_file_cache(page);
567 int lru = page_lru_base_type(page);
568
569 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
570 ClearPageActive(page);
571 ClearPageReferenced(page);
572 add_page_to_lru_list(page, lruvec, lru);
573
574 __count_vm_event(PGDEACTIVATE);
575 update_page_reclaim_stat(lruvec, file, 0);
576 }
577 }
578
579 /*
580 * Drain pages out of the cpu's pagevecs.
581 * Either "cpu" is the current CPU, and preemption has already been
582 * disabled; or "cpu" is being hot-unplugged, and is already dead.
583 */
584 void lru_add_drain_cpu(int cpu)
585 {
586 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
587
588 if (pagevec_count(pvec))
589 __pagevec_lru_add(pvec);
590
591 pvec = &per_cpu(lru_rotate_pvecs, cpu);
592 if (pagevec_count(pvec)) {
593 unsigned long flags;
594
595 /* No harm done if a racing interrupt already did this */
596 local_irq_save(flags);
597 pagevec_move_tail(pvec);
598 local_irq_restore(flags);
599 }
600
601 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
602 if (pagevec_count(pvec))
603 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
604
605 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
606 if (pagevec_count(pvec))
607 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
608
609 activate_page_drain(cpu);
610 }
611
612 /**
613 * deactivate_file_page - forcefully deactivate a file page
614 * @page: page to deactivate
615 *
616 * This function hints the VM that @page is a good reclaim candidate,
617 * for example if its invalidation fails due to the page being dirty
618 * or under writeback.
619 */
620 void deactivate_file_page(struct page *page)
621 {
622 /*
623 * In a workload with many unevictable page such as mprotect,
624 * unevictable page deactivation for accelerating reclaim is pointless.
625 */
626 if (PageUnevictable(page))
627 return;
628
629 if (likely(get_page_unless_zero(page))) {
630 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
631
632 if (!pagevec_add(pvec, page) || PageCompound(page))
633 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
634 put_cpu_var(lru_deactivate_file_pvecs);
635 }
636 }
637
638 /**
639 * deactivate_page - deactivate a page
640 * @page: page to deactivate
641 *
642 * deactivate_page() moves @page to the inactive list if @page was on the active
643 * list and was not an unevictable page. This is done to accelerate the reclaim
644 * of @page.
645 */
646 void deactivate_page(struct page *page)
647 {
648 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
649 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
650
651 get_page(page);
652 if (!pagevec_add(pvec, page) || PageCompound(page))
653 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
654 put_cpu_var(lru_deactivate_pvecs);
655 }
656 }
657
658 void lru_add_drain(void)
659 {
660 lru_add_drain_cpu(get_cpu());
661 put_cpu();
662 }
663
664 static void lru_add_drain_per_cpu(struct work_struct *dummy)
665 {
666 lru_add_drain();
667 }
668
669 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
670
671 /*
672 * lru_add_drain_wq is used to do lru_add_drain_all() from a WQ_MEM_RECLAIM
673 * workqueue, aiding in getting memory freed.
674 */
675 static struct workqueue_struct *lru_add_drain_wq;
676
677 static int __init lru_init(void)
678 {
679 lru_add_drain_wq = alloc_workqueue("lru-add-drain", WQ_MEM_RECLAIM, 0);
680
681 if (WARN(!lru_add_drain_wq,
682 "Failed to create workqueue lru_add_drain_wq"))
683 return -ENOMEM;
684
685 return 0;
686 }
687 early_initcall(lru_init);
688
689 void lru_add_drain_all(void)
690 {
691 static DEFINE_MUTEX(lock);
692 static struct cpumask has_work;
693 int cpu;
694
695 mutex_lock(&lock);
696 get_online_cpus();
697 cpumask_clear(&has_work);
698
699 for_each_online_cpu(cpu) {
700 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
701
702 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
703 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
704 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
705 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
706 need_activate_page_drain(cpu)) {
707 INIT_WORK(work, lru_add_drain_per_cpu);
708 queue_work_on(cpu, lru_add_drain_wq, work);
709 cpumask_set_cpu(cpu, &has_work);
710 }
711 }
712
713 for_each_cpu(cpu, &has_work)
714 flush_work(&per_cpu(lru_add_drain_work, cpu));
715
716 put_online_cpus();
717 mutex_unlock(&lock);
718 }
719
720 /**
721 * release_pages - batched put_page()
722 * @pages: array of pages to release
723 * @nr: number of pages
724 * @cold: whether the pages are cache cold
725 *
726 * Decrement the reference count on all the pages in @pages. If it
727 * fell to zero, remove the page from the LRU and free it.
728 */
729 void release_pages(struct page **pages, int nr, bool cold)
730 {
731 int i;
732 LIST_HEAD(pages_to_free);
733 struct pglist_data *locked_pgdat = NULL;
734 struct lruvec *lruvec;
735 unsigned long uninitialized_var(flags);
736 unsigned int uninitialized_var(lock_batch);
737
738 for (i = 0; i < nr; i++) {
739 struct page *page = pages[i];
740
741 /*
742 * Make sure the IRQ-safe lock-holding time does not get
743 * excessive with a continuous string of pages from the
744 * same pgdat. The lock is held only if pgdat != NULL.
745 */
746 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
747 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
748 locked_pgdat = NULL;
749 }
750
751 if (is_huge_zero_page(page))
752 continue;
753
754 page = compound_head(page);
755 if (!put_page_testzero(page))
756 continue;
757
758 if (PageCompound(page)) {
759 if (locked_pgdat) {
760 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
761 locked_pgdat = NULL;
762 }
763 __put_compound_page(page);
764 continue;
765 }
766
767 if (PageLRU(page)) {
768 struct pglist_data *pgdat = page_pgdat(page);
769
770 if (pgdat != locked_pgdat) {
771 if (locked_pgdat)
772 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
773 flags);
774 lock_batch = 0;
775 locked_pgdat = pgdat;
776 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
777 }
778
779 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
780 VM_BUG_ON_PAGE(!PageLRU(page), page);
781 __ClearPageLRU(page);
782 del_page_from_lru_list(page, lruvec, page_off_lru(page));
783 }
784
785 /* Clear Active bit in case of parallel mark_page_accessed */
786 __ClearPageActive(page);
787
788 list_add(&page->lru, &pages_to_free);
789 }
790 if (locked_pgdat)
791 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
792
793 mem_cgroup_uncharge_list(&pages_to_free);
794 free_hot_cold_page_list(&pages_to_free, cold);
795 }
796 EXPORT_SYMBOL(release_pages);
797
798 /*
799 * The pages which we're about to release may be in the deferred lru-addition
800 * queues. That would prevent them from really being freed right now. That's
801 * OK from a correctness point of view but is inefficient - those pages may be
802 * cache-warm and we want to give them back to the page allocator ASAP.
803 *
804 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
805 * and __pagevec_lru_add_active() call release_pages() directly to avoid
806 * mutual recursion.
807 */
808 void __pagevec_release(struct pagevec *pvec)
809 {
810 lru_add_drain();
811 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
812 pagevec_reinit(pvec);
813 }
814 EXPORT_SYMBOL(__pagevec_release);
815
816 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
817 /* used by __split_huge_page_refcount() */
818 void lru_add_page_tail(struct page *page, struct page *page_tail,
819 struct lruvec *lruvec, struct list_head *list)
820 {
821 const int file = 0;
822
823 VM_BUG_ON_PAGE(!PageHead(page), page);
824 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
825 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
826 VM_BUG_ON(NR_CPUS != 1 &&
827 !spin_is_locked(&lruvec_pgdat(lruvec)->lru_lock));
828
829 if (!list)
830 SetPageLRU(page_tail);
831
832 if (likely(PageLRU(page)))
833 list_add_tail(&page_tail->lru, &page->lru);
834 else if (list) {
835 /* page reclaim is reclaiming a huge page */
836 get_page(page_tail);
837 list_add_tail(&page_tail->lru, list);
838 } else {
839 struct list_head *list_head;
840 /*
841 * Head page has not yet been counted, as an hpage,
842 * so we must account for each subpage individually.
843 *
844 * Use the standard add function to put page_tail on the list,
845 * but then correct its position so they all end up in order.
846 */
847 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
848 list_head = page_tail->lru.prev;
849 list_move_tail(&page_tail->lru, list_head);
850 }
851
852 if (!PageUnevictable(page))
853 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
854 }
855 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
856
857 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
858 void *arg)
859 {
860 int file = page_is_file_cache(page);
861 int active = PageActive(page);
862 enum lru_list lru = page_lru(page);
863
864 VM_BUG_ON_PAGE(PageLRU(page), page);
865
866 SetPageLRU(page);
867 add_page_to_lru_list(page, lruvec, lru);
868 update_page_reclaim_stat(lruvec, file, active);
869 trace_mm_lru_insertion(page, lru);
870 }
871
872 /*
873 * Add the passed pages to the LRU, then drop the caller's refcount
874 * on them. Reinitialises the caller's pagevec.
875 */
876 void __pagevec_lru_add(struct pagevec *pvec)
877 {
878 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
879 }
880 EXPORT_SYMBOL(__pagevec_lru_add);
881
882 /**
883 * pagevec_lookup_entries - gang pagecache lookup
884 * @pvec: Where the resulting entries are placed
885 * @mapping: The address_space to search
886 * @start: The starting entry index
887 * @nr_entries: The maximum number of entries
888 * @indices: The cache indices corresponding to the entries in @pvec
889 *
890 * pagevec_lookup_entries() will search for and return a group of up
891 * to @nr_entries pages and shadow entries in the mapping. All
892 * entries are placed in @pvec. pagevec_lookup_entries() takes a
893 * reference against actual pages in @pvec.
894 *
895 * The search returns a group of mapping-contiguous entries with
896 * ascending indexes. There may be holes in the indices due to
897 * not-present entries.
898 *
899 * pagevec_lookup_entries() returns the number of entries which were
900 * found.
901 */
902 unsigned pagevec_lookup_entries(struct pagevec *pvec,
903 struct address_space *mapping,
904 pgoff_t start, unsigned nr_pages,
905 pgoff_t *indices)
906 {
907 pvec->nr = find_get_entries(mapping, start, nr_pages,
908 pvec->pages, indices);
909 return pagevec_count(pvec);
910 }
911
912 /**
913 * pagevec_remove_exceptionals - pagevec exceptionals pruning
914 * @pvec: The pagevec to prune
915 *
916 * pagevec_lookup_entries() fills both pages and exceptional radix
917 * tree entries into the pagevec. This function prunes all
918 * exceptionals from @pvec without leaving holes, so that it can be
919 * passed on to page-only pagevec operations.
920 */
921 void pagevec_remove_exceptionals(struct pagevec *pvec)
922 {
923 int i, j;
924
925 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
926 struct page *page = pvec->pages[i];
927 if (!radix_tree_exceptional_entry(page))
928 pvec->pages[j++] = page;
929 }
930 pvec->nr = j;
931 }
932
933 /**
934 * pagevec_lookup - gang pagecache lookup
935 * @pvec: Where the resulting pages are placed
936 * @mapping: The address_space to search
937 * @start: The starting page index
938 * @nr_pages: The maximum number of pages
939 *
940 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
941 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
942 * reference against the pages in @pvec.
943 *
944 * The search returns a group of mapping-contiguous pages with ascending
945 * indexes. There may be holes in the indices due to not-present pages.
946 *
947 * pagevec_lookup() returns the number of pages which were found.
948 */
949 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
950 pgoff_t start, unsigned nr_pages)
951 {
952 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
953 return pagevec_count(pvec);
954 }
955 EXPORT_SYMBOL(pagevec_lookup);
956
957 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
958 pgoff_t *index, int tag, unsigned nr_pages)
959 {
960 pvec->nr = find_get_pages_tag(mapping, index, tag,
961 nr_pages, pvec->pages);
962 return pagevec_count(pvec);
963 }
964 EXPORT_SYMBOL(pagevec_lookup_tag);
965
966 /*
967 * Perform any setup for the swap system
968 */
969 void __init swap_setup(void)
970 {
971 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
972 #ifdef CONFIG_SWAP
973 int i;
974
975 for (i = 0; i < MAX_SWAPFILES; i++)
976 spin_lock_init(&swapper_spaces[i].tree_lock);
977 #endif
978
979 /* Use a smaller cluster for small-memory machines */
980 if (megs < 16)
981 page_cluster = 2;
982 else
983 page_cluster = 3;
984 /*
985 * Right now other parts of the system means that we
986 * _really_ don't want to cluster much more
987 */
988 }