]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/truncate.c
UBUNTU: SAUCE: s390/mm: fix local TLB flushing vs. detach of an mm address space
[mirror_ubuntu-zesty-kernel.git] / mm / truncate.c
1 /*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 10Sep2002 Andrew Morton
7 * Initial version.
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/mm.h>
15 #include <linux/swap.h>
16 #include <linux/export.h>
17 #include <linux/pagemap.h>
18 #include <linux/highmem.h>
19 #include <linux/pagevec.h>
20 #include <linux/task_io_accounting_ops.h>
21 #include <linux/buffer_head.h> /* grr. try_to_release_page,
22 do_invalidatepage */
23 #include <linux/cleancache.h>
24 #include <linux/rmap.h>
25 #include "internal.h"
26
27 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
28 void *entry)
29 {
30 struct radix_tree_node *node;
31 void **slot;
32
33 spin_lock_irq(&mapping->tree_lock);
34 /*
35 * Regular page slots are stabilized by the page lock even
36 * without the tree itself locked. These unlocked entries
37 * need verification under the tree lock.
38 */
39 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
40 goto unlock;
41 if (*slot != entry)
42 goto unlock;
43 __radix_tree_replace(&mapping->page_tree, node, slot, NULL,
44 workingset_update_node, mapping);
45 mapping->nrexceptional--;
46 unlock:
47 spin_unlock_irq(&mapping->tree_lock);
48 }
49
50 /*
51 * Unconditionally remove exceptional entry. Usually called from truncate path.
52 */
53 static void truncate_exceptional_entry(struct address_space *mapping,
54 pgoff_t index, void *entry)
55 {
56 /* Handled by shmem itself */
57 if (shmem_mapping(mapping))
58 return;
59
60 if (dax_mapping(mapping)) {
61 dax_delete_mapping_entry(mapping, index);
62 return;
63 }
64 clear_shadow_entry(mapping, index, entry);
65 }
66
67 /*
68 * Invalidate exceptional entry if easily possible. This handles exceptional
69 * entries for invalidate_inode_pages().
70 */
71 static int invalidate_exceptional_entry(struct address_space *mapping,
72 pgoff_t index, void *entry)
73 {
74 /* Handled by shmem itself, or for DAX we do nothing. */
75 if (shmem_mapping(mapping) || dax_mapping(mapping))
76 return 1;
77 clear_shadow_entry(mapping, index, entry);
78 return 1;
79 }
80
81 /*
82 * Invalidate exceptional entry if clean. This handles exceptional entries for
83 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
84 */
85 static int invalidate_exceptional_entry2(struct address_space *mapping,
86 pgoff_t index, void *entry)
87 {
88 /* Handled by shmem itself */
89 if (shmem_mapping(mapping))
90 return 1;
91 if (dax_mapping(mapping))
92 return dax_invalidate_mapping_entry_sync(mapping, index);
93 clear_shadow_entry(mapping, index, entry);
94 return 1;
95 }
96
97 /**
98 * do_invalidatepage - invalidate part or all of a page
99 * @page: the page which is affected
100 * @offset: start of the range to invalidate
101 * @length: length of the range to invalidate
102 *
103 * do_invalidatepage() is called when all or part of the page has become
104 * invalidated by a truncate operation.
105 *
106 * do_invalidatepage() does not have to release all buffers, but it must
107 * ensure that no dirty buffer is left outside @offset and that no I/O
108 * is underway against any of the blocks which are outside the truncation
109 * point. Because the caller is about to free (and possibly reuse) those
110 * blocks on-disk.
111 */
112 void do_invalidatepage(struct page *page, unsigned int offset,
113 unsigned int length)
114 {
115 void (*invalidatepage)(struct page *, unsigned int, unsigned int);
116
117 invalidatepage = page->mapping->a_ops->invalidatepage;
118 #ifdef CONFIG_BLOCK
119 if (!invalidatepage)
120 invalidatepage = block_invalidatepage;
121 #endif
122 if (invalidatepage)
123 (*invalidatepage)(page, offset, length);
124 }
125
126 /*
127 * If truncate cannot remove the fs-private metadata from the page, the page
128 * becomes orphaned. It will be left on the LRU and may even be mapped into
129 * user pagetables if we're racing with filemap_fault().
130 *
131 * We need to bale out if page->mapping is no longer equal to the original
132 * mapping. This happens a) when the VM reclaimed the page while we waited on
133 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
134 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
135 */
136 static int
137 truncate_complete_page(struct address_space *mapping, struct page *page)
138 {
139 if (page->mapping != mapping)
140 return -EIO;
141
142 if (page_has_private(page))
143 do_invalidatepage(page, 0, PAGE_SIZE);
144
145 /*
146 * Some filesystems seem to re-dirty the page even after
147 * the VM has canceled the dirty bit (eg ext3 journaling).
148 * Hence dirty accounting check is placed after invalidation.
149 */
150 cancel_dirty_page(page);
151 ClearPageMappedToDisk(page);
152 delete_from_page_cache(page);
153 return 0;
154 }
155
156 /*
157 * This is for invalidate_mapping_pages(). That function can be called at
158 * any time, and is not supposed to throw away dirty pages. But pages can
159 * be marked dirty at any time too, so use remove_mapping which safely
160 * discards clean, unused pages.
161 *
162 * Returns non-zero if the page was successfully invalidated.
163 */
164 static int
165 invalidate_complete_page(struct address_space *mapping, struct page *page)
166 {
167 int ret;
168
169 if (page->mapping != mapping)
170 return 0;
171
172 if (page_has_private(page) && !try_to_release_page(page, 0))
173 return 0;
174
175 ret = remove_mapping(mapping, page);
176
177 return ret;
178 }
179
180 int truncate_inode_page(struct address_space *mapping, struct page *page)
181 {
182 loff_t holelen;
183 VM_BUG_ON_PAGE(PageTail(page), page);
184
185 holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE;
186 if (page_mapped(page)) {
187 unmap_mapping_range(mapping,
188 (loff_t)page->index << PAGE_SHIFT,
189 holelen, 0);
190 }
191 return truncate_complete_page(mapping, page);
192 }
193
194 /*
195 * Used to get rid of pages on hardware memory corruption.
196 */
197 int generic_error_remove_page(struct address_space *mapping, struct page *page)
198 {
199 if (!mapping)
200 return -EINVAL;
201 /*
202 * Only punch for normal data pages for now.
203 * Handling other types like directories would need more auditing.
204 */
205 if (!S_ISREG(mapping->host->i_mode))
206 return -EIO;
207 return truncate_inode_page(mapping, page);
208 }
209 EXPORT_SYMBOL(generic_error_remove_page);
210
211 /*
212 * Safely invalidate one page from its pagecache mapping.
213 * It only drops clean, unused pages. The page must be locked.
214 *
215 * Returns 1 if the page is successfully invalidated, otherwise 0.
216 */
217 int invalidate_inode_page(struct page *page)
218 {
219 struct address_space *mapping = page_mapping(page);
220 if (!mapping)
221 return 0;
222 if (PageDirty(page) || PageWriteback(page))
223 return 0;
224 if (page_mapped(page))
225 return 0;
226 return invalidate_complete_page(mapping, page);
227 }
228
229 /**
230 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
231 * @mapping: mapping to truncate
232 * @lstart: offset from which to truncate
233 * @lend: offset to which to truncate (inclusive)
234 *
235 * Truncate the page cache, removing the pages that are between
236 * specified offsets (and zeroing out partial pages
237 * if lstart or lend + 1 is not page aligned).
238 *
239 * Truncate takes two passes - the first pass is nonblocking. It will not
240 * block on page locks and it will not block on writeback. The second pass
241 * will wait. This is to prevent as much IO as possible in the affected region.
242 * The first pass will remove most pages, so the search cost of the second pass
243 * is low.
244 *
245 * We pass down the cache-hot hint to the page freeing code. Even if the
246 * mapping is large, it is probably the case that the final pages are the most
247 * recently touched, and freeing happens in ascending file offset order.
248 *
249 * Note that since ->invalidatepage() accepts range to invalidate
250 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
251 * page aligned properly.
252 */
253 void truncate_inode_pages_range(struct address_space *mapping,
254 loff_t lstart, loff_t lend)
255 {
256 pgoff_t start; /* inclusive */
257 pgoff_t end; /* exclusive */
258 unsigned int partial_start; /* inclusive */
259 unsigned int partial_end; /* exclusive */
260 struct pagevec pvec;
261 pgoff_t indices[PAGEVEC_SIZE];
262 pgoff_t index;
263 int i;
264
265 cleancache_invalidate_inode(mapping);
266 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
267 return;
268
269 /* Offsets within partial pages */
270 partial_start = lstart & (PAGE_SIZE - 1);
271 partial_end = (lend + 1) & (PAGE_SIZE - 1);
272
273 /*
274 * 'start' and 'end' always covers the range of pages to be fully
275 * truncated. Partial pages are covered with 'partial_start' at the
276 * start of the range and 'partial_end' at the end of the range.
277 * Note that 'end' is exclusive while 'lend' is inclusive.
278 */
279 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
280 if (lend == -1)
281 /*
282 * lend == -1 indicates end-of-file so we have to set 'end'
283 * to the highest possible pgoff_t and since the type is
284 * unsigned we're using -1.
285 */
286 end = -1;
287 else
288 end = (lend + 1) >> PAGE_SHIFT;
289
290 pagevec_init(&pvec, 0);
291 index = start;
292 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
293 min(end - index, (pgoff_t)PAGEVEC_SIZE),
294 indices)) {
295 for (i = 0; i < pagevec_count(&pvec); i++) {
296 struct page *page = pvec.pages[i];
297
298 /* We rely upon deletion not changing page->index */
299 index = indices[i];
300 if (index >= end)
301 break;
302
303 if (radix_tree_exceptional_entry(page)) {
304 truncate_exceptional_entry(mapping, index,
305 page);
306 continue;
307 }
308
309 if (!trylock_page(page))
310 continue;
311 WARN_ON(page_to_index(page) != index);
312 if (PageWriteback(page)) {
313 unlock_page(page);
314 continue;
315 }
316 truncate_inode_page(mapping, page);
317 unlock_page(page);
318 }
319 pagevec_remove_exceptionals(&pvec);
320 pagevec_release(&pvec);
321 cond_resched();
322 index++;
323 }
324
325 if (partial_start) {
326 struct page *page = find_lock_page(mapping, start - 1);
327 if (page) {
328 unsigned int top = PAGE_SIZE;
329 if (start > end) {
330 /* Truncation within a single page */
331 top = partial_end;
332 partial_end = 0;
333 }
334 wait_on_page_writeback(page);
335 zero_user_segment(page, partial_start, top);
336 cleancache_invalidate_page(mapping, page);
337 if (page_has_private(page))
338 do_invalidatepage(page, partial_start,
339 top - partial_start);
340 unlock_page(page);
341 put_page(page);
342 }
343 }
344 if (partial_end) {
345 struct page *page = find_lock_page(mapping, end);
346 if (page) {
347 wait_on_page_writeback(page);
348 zero_user_segment(page, 0, partial_end);
349 cleancache_invalidate_page(mapping, page);
350 if (page_has_private(page))
351 do_invalidatepage(page, 0,
352 partial_end);
353 unlock_page(page);
354 put_page(page);
355 }
356 }
357 /*
358 * If the truncation happened within a single page no pages
359 * will be released, just zeroed, so we can bail out now.
360 */
361 if (start >= end)
362 return;
363
364 index = start;
365 for ( ; ; ) {
366 cond_resched();
367 if (!pagevec_lookup_entries(&pvec, mapping, index,
368 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
369 /* If all gone from start onwards, we're done */
370 if (index == start)
371 break;
372 /* Otherwise restart to make sure all gone */
373 index = start;
374 continue;
375 }
376 if (index == start && indices[0] >= end) {
377 /* All gone out of hole to be punched, we're done */
378 pagevec_remove_exceptionals(&pvec);
379 pagevec_release(&pvec);
380 break;
381 }
382 for (i = 0; i < pagevec_count(&pvec); i++) {
383 struct page *page = pvec.pages[i];
384
385 /* We rely upon deletion not changing page->index */
386 index = indices[i];
387 if (index >= end) {
388 /* Restart punch to make sure all gone */
389 index = start - 1;
390 break;
391 }
392
393 if (radix_tree_exceptional_entry(page)) {
394 truncate_exceptional_entry(mapping, index,
395 page);
396 continue;
397 }
398
399 lock_page(page);
400 WARN_ON(page_to_index(page) != index);
401 wait_on_page_writeback(page);
402 truncate_inode_page(mapping, page);
403 unlock_page(page);
404 }
405 pagevec_remove_exceptionals(&pvec);
406 pagevec_release(&pvec);
407 index++;
408 }
409 cleancache_invalidate_inode(mapping);
410 }
411 EXPORT_SYMBOL(truncate_inode_pages_range);
412
413 /**
414 * truncate_inode_pages - truncate *all* the pages from an offset
415 * @mapping: mapping to truncate
416 * @lstart: offset from which to truncate
417 *
418 * Called under (and serialised by) inode->i_mutex.
419 *
420 * Note: When this function returns, there can be a page in the process of
421 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
422 * mapping->nrpages can be non-zero when this function returns even after
423 * truncation of the whole mapping.
424 */
425 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
426 {
427 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
428 }
429 EXPORT_SYMBOL(truncate_inode_pages);
430
431 /**
432 * truncate_inode_pages_final - truncate *all* pages before inode dies
433 * @mapping: mapping to truncate
434 *
435 * Called under (and serialized by) inode->i_mutex.
436 *
437 * Filesystems have to use this in the .evict_inode path to inform the
438 * VM that this is the final truncate and the inode is going away.
439 */
440 void truncate_inode_pages_final(struct address_space *mapping)
441 {
442 unsigned long nrexceptional;
443 unsigned long nrpages;
444
445 /*
446 * Page reclaim can not participate in regular inode lifetime
447 * management (can't call iput()) and thus can race with the
448 * inode teardown. Tell it when the address space is exiting,
449 * so that it does not install eviction information after the
450 * final truncate has begun.
451 */
452 mapping_set_exiting(mapping);
453
454 /*
455 * When reclaim installs eviction entries, it increases
456 * nrexceptional first, then decreases nrpages. Make sure we see
457 * this in the right order or we might miss an entry.
458 */
459 nrpages = mapping->nrpages;
460 smp_rmb();
461 nrexceptional = mapping->nrexceptional;
462
463 if (nrpages || nrexceptional) {
464 /*
465 * As truncation uses a lockless tree lookup, cycle
466 * the tree lock to make sure any ongoing tree
467 * modification that does not see AS_EXITING is
468 * completed before starting the final truncate.
469 */
470 spin_lock_irq(&mapping->tree_lock);
471 spin_unlock_irq(&mapping->tree_lock);
472
473 truncate_inode_pages(mapping, 0);
474 }
475 }
476 EXPORT_SYMBOL(truncate_inode_pages_final);
477
478 /**
479 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
480 * @mapping: the address_space which holds the pages to invalidate
481 * @start: the offset 'from' which to invalidate
482 * @end: the offset 'to' which to invalidate (inclusive)
483 *
484 * This function only removes the unlocked pages, if you want to
485 * remove all the pages of one inode, you must call truncate_inode_pages.
486 *
487 * invalidate_mapping_pages() will not block on IO activity. It will not
488 * invalidate pages which are dirty, locked, under writeback or mapped into
489 * pagetables.
490 */
491 unsigned long invalidate_mapping_pages(struct address_space *mapping,
492 pgoff_t start, pgoff_t end)
493 {
494 pgoff_t indices[PAGEVEC_SIZE];
495 struct pagevec pvec;
496 pgoff_t index = start;
497 unsigned long ret;
498 unsigned long count = 0;
499 int i;
500
501 pagevec_init(&pvec, 0);
502 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
503 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
504 indices)) {
505 for (i = 0; i < pagevec_count(&pvec); i++) {
506 struct page *page = pvec.pages[i];
507
508 /* We rely upon deletion not changing page->index */
509 index = indices[i];
510 if (index > end)
511 break;
512
513 if (radix_tree_exceptional_entry(page)) {
514 invalidate_exceptional_entry(mapping, index,
515 page);
516 continue;
517 }
518
519 if (!trylock_page(page))
520 continue;
521
522 WARN_ON(page_to_index(page) != index);
523
524 /* Middle of THP: skip */
525 if (PageTransTail(page)) {
526 unlock_page(page);
527 continue;
528 } else if (PageTransHuge(page)) {
529 index += HPAGE_PMD_NR - 1;
530 i += HPAGE_PMD_NR - 1;
531 /* 'end' is in the middle of THP */
532 if (index == round_down(end, HPAGE_PMD_NR))
533 continue;
534 }
535
536 ret = invalidate_inode_page(page);
537 unlock_page(page);
538 /*
539 * Invalidation is a hint that the page is no longer
540 * of interest and try to speed up its reclaim.
541 */
542 if (!ret)
543 deactivate_file_page(page);
544 count += ret;
545 }
546 pagevec_remove_exceptionals(&pvec);
547 pagevec_release(&pvec);
548 cond_resched();
549 index++;
550 }
551 return count;
552 }
553 EXPORT_SYMBOL(invalidate_mapping_pages);
554
555 /*
556 * This is like invalidate_complete_page(), except it ignores the page's
557 * refcount. We do this because invalidate_inode_pages2() needs stronger
558 * invalidation guarantees, and cannot afford to leave pages behind because
559 * shrink_page_list() has a temp ref on them, or because they're transiently
560 * sitting in the lru_cache_add() pagevecs.
561 */
562 static int
563 invalidate_complete_page2(struct address_space *mapping, struct page *page)
564 {
565 unsigned long flags;
566
567 if (page->mapping != mapping)
568 return 0;
569
570 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
571 return 0;
572
573 spin_lock_irqsave(&mapping->tree_lock, flags);
574 if (PageDirty(page))
575 goto failed;
576
577 BUG_ON(page_has_private(page));
578 __delete_from_page_cache(page, NULL);
579 spin_unlock_irqrestore(&mapping->tree_lock, flags);
580
581 if (mapping->a_ops->freepage)
582 mapping->a_ops->freepage(page);
583
584 put_page(page); /* pagecache ref */
585 return 1;
586 failed:
587 spin_unlock_irqrestore(&mapping->tree_lock, flags);
588 return 0;
589 }
590
591 static int do_launder_page(struct address_space *mapping, struct page *page)
592 {
593 if (!PageDirty(page))
594 return 0;
595 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
596 return 0;
597 return mapping->a_ops->launder_page(page);
598 }
599
600 /**
601 * invalidate_inode_pages2_range - remove range of pages from an address_space
602 * @mapping: the address_space
603 * @start: the page offset 'from' which to invalidate
604 * @end: the page offset 'to' which to invalidate (inclusive)
605 *
606 * Any pages which are found to be mapped into pagetables are unmapped prior to
607 * invalidation.
608 *
609 * Returns -EBUSY if any pages could not be invalidated.
610 */
611 int invalidate_inode_pages2_range(struct address_space *mapping,
612 pgoff_t start, pgoff_t end)
613 {
614 pgoff_t indices[PAGEVEC_SIZE];
615 struct pagevec pvec;
616 pgoff_t index;
617 int i;
618 int ret = 0;
619 int ret2 = 0;
620 int did_range_unmap = 0;
621
622 cleancache_invalidate_inode(mapping);
623 pagevec_init(&pvec, 0);
624 index = start;
625 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
626 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
627 indices)) {
628 for (i = 0; i < pagevec_count(&pvec); i++) {
629 struct page *page = pvec.pages[i];
630
631 /* We rely upon deletion not changing page->index */
632 index = indices[i];
633 if (index > end)
634 break;
635
636 if (radix_tree_exceptional_entry(page)) {
637 if (!invalidate_exceptional_entry2(mapping,
638 index, page))
639 ret = -EBUSY;
640 continue;
641 }
642
643 lock_page(page);
644 WARN_ON(page_to_index(page) != index);
645 if (page->mapping != mapping) {
646 unlock_page(page);
647 continue;
648 }
649 wait_on_page_writeback(page);
650 if (page_mapped(page)) {
651 if (!did_range_unmap) {
652 /*
653 * Zap the rest of the file in one hit.
654 */
655 unmap_mapping_range(mapping,
656 (loff_t)index << PAGE_SHIFT,
657 (loff_t)(1 + end - index)
658 << PAGE_SHIFT,
659 0);
660 did_range_unmap = 1;
661 } else {
662 /*
663 * Just zap this page
664 */
665 unmap_mapping_range(mapping,
666 (loff_t)index << PAGE_SHIFT,
667 PAGE_SIZE, 0);
668 }
669 }
670 BUG_ON(page_mapped(page));
671 ret2 = do_launder_page(mapping, page);
672 if (ret2 == 0) {
673 if (!invalidate_complete_page2(mapping, page))
674 ret2 = -EBUSY;
675 }
676 if (ret2 < 0)
677 ret = ret2;
678 unlock_page(page);
679 }
680 pagevec_remove_exceptionals(&pvec);
681 pagevec_release(&pvec);
682 cond_resched();
683 index++;
684 }
685 /*
686 * For DAX we invalidate page tables after invalidating radix tree. We
687 * could invalidate page tables while invalidating each entry however
688 * that would be expensive. And doing range unmapping before doesn't
689 * work as we have no cheap way to find whether radix tree entry didn't
690 * get remapped later.
691 */
692 if (dax_mapping(mapping)) {
693 unmap_mapping_range(mapping, (loff_t)start << PAGE_SHIFT,
694 (loff_t)(end - start + 1) << PAGE_SHIFT, 0);
695 }
696 cleancache_invalidate_inode(mapping);
697 return ret;
698 }
699 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
700
701 /**
702 * invalidate_inode_pages2 - remove all pages from an address_space
703 * @mapping: the address_space
704 *
705 * Any pages which are found to be mapped into pagetables are unmapped prior to
706 * invalidation.
707 *
708 * Returns -EBUSY if any pages could not be invalidated.
709 */
710 int invalidate_inode_pages2(struct address_space *mapping)
711 {
712 return invalidate_inode_pages2_range(mapping, 0, -1);
713 }
714 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
715
716 /**
717 * truncate_pagecache - unmap and remove pagecache that has been truncated
718 * @inode: inode
719 * @newsize: new file size
720 *
721 * inode's new i_size must already be written before truncate_pagecache
722 * is called.
723 *
724 * This function should typically be called before the filesystem
725 * releases resources associated with the freed range (eg. deallocates
726 * blocks). This way, pagecache will always stay logically coherent
727 * with on-disk format, and the filesystem would not have to deal with
728 * situations such as writepage being called for a page that has already
729 * had its underlying blocks deallocated.
730 */
731 void truncate_pagecache(struct inode *inode, loff_t newsize)
732 {
733 struct address_space *mapping = inode->i_mapping;
734 loff_t holebegin = round_up(newsize, PAGE_SIZE);
735
736 /*
737 * unmap_mapping_range is called twice, first simply for
738 * efficiency so that truncate_inode_pages does fewer
739 * single-page unmaps. However after this first call, and
740 * before truncate_inode_pages finishes, it is possible for
741 * private pages to be COWed, which remain after
742 * truncate_inode_pages finishes, hence the second
743 * unmap_mapping_range call must be made for correctness.
744 */
745 unmap_mapping_range(mapping, holebegin, 0, 1);
746 truncate_inode_pages(mapping, newsize);
747 unmap_mapping_range(mapping, holebegin, 0, 1);
748 }
749 EXPORT_SYMBOL(truncate_pagecache);
750
751 /**
752 * truncate_setsize - update inode and pagecache for a new file size
753 * @inode: inode
754 * @newsize: new file size
755 *
756 * truncate_setsize updates i_size and performs pagecache truncation (if
757 * necessary) to @newsize. It will be typically be called from the filesystem's
758 * setattr function when ATTR_SIZE is passed in.
759 *
760 * Must be called with a lock serializing truncates and writes (generally
761 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
762 * specific block truncation has been performed.
763 */
764 void truncate_setsize(struct inode *inode, loff_t newsize)
765 {
766 loff_t oldsize = inode->i_size;
767
768 i_size_write(inode, newsize);
769 if (newsize > oldsize)
770 pagecache_isize_extended(inode, oldsize, newsize);
771 truncate_pagecache(inode, newsize);
772 }
773 EXPORT_SYMBOL(truncate_setsize);
774
775 /**
776 * pagecache_isize_extended - update pagecache after extension of i_size
777 * @inode: inode for which i_size was extended
778 * @from: original inode size
779 * @to: new inode size
780 *
781 * Handle extension of inode size either caused by extending truncate or by
782 * write starting after current i_size. We mark the page straddling current
783 * i_size RO so that page_mkwrite() is called on the nearest write access to
784 * the page. This way filesystem can be sure that page_mkwrite() is called on
785 * the page before user writes to the page via mmap after the i_size has been
786 * changed.
787 *
788 * The function must be called after i_size is updated so that page fault
789 * coming after we unlock the page will already see the new i_size.
790 * The function must be called while we still hold i_mutex - this not only
791 * makes sure i_size is stable but also that userspace cannot observe new
792 * i_size value before we are prepared to store mmap writes at new inode size.
793 */
794 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
795 {
796 int bsize = 1 << inode->i_blkbits;
797 loff_t rounded_from;
798 struct page *page;
799 pgoff_t index;
800
801 WARN_ON(to > inode->i_size);
802
803 if (from >= to || bsize == PAGE_SIZE)
804 return;
805 /* Page straddling @from will not have any hole block created? */
806 rounded_from = round_up(from, bsize);
807 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
808 return;
809
810 index = from >> PAGE_SHIFT;
811 page = find_lock_page(inode->i_mapping, index);
812 /* Page not cached? Nothing to do */
813 if (!page)
814 return;
815 /*
816 * See clear_page_dirty_for_io() for details why set_page_dirty()
817 * is needed.
818 */
819 if (page_mkclean(page))
820 set_page_dirty(page);
821 unlock_page(page);
822 put_page(page);
823 }
824 EXPORT_SYMBOL(pagecache_isize_extended);
825
826 /**
827 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
828 * @inode: inode
829 * @lstart: offset of beginning of hole
830 * @lend: offset of last byte of hole
831 *
832 * This function should typically be called before the filesystem
833 * releases resources associated with the freed range (eg. deallocates
834 * blocks). This way, pagecache will always stay logically coherent
835 * with on-disk format, and the filesystem would not have to deal with
836 * situations such as writepage being called for a page that has already
837 * had its underlying blocks deallocated.
838 */
839 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
840 {
841 struct address_space *mapping = inode->i_mapping;
842 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
843 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
844 /*
845 * This rounding is currently just for example: unmap_mapping_range
846 * expands its hole outwards, whereas we want it to contract the hole
847 * inwards. However, existing callers of truncate_pagecache_range are
848 * doing their own page rounding first. Note that unmap_mapping_range
849 * allows holelen 0 for all, and we allow lend -1 for end of file.
850 */
851
852 /*
853 * Unlike in truncate_pagecache, unmap_mapping_range is called only
854 * once (before truncating pagecache), and without "even_cows" flag:
855 * hole-punching should not remove private COWed pages from the hole.
856 */
857 if ((u64)unmap_end > (u64)unmap_start)
858 unmap_mapping_range(mapping, unmap_start,
859 1 + unmap_end - unmap_start, 0);
860 truncate_inode_pages_range(mapping, lstart, lend);
861 }
862 EXPORT_SYMBOL(truncate_pagecache_range);