]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/zswap.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / mm / zswap.c
1 /*
2 * zswap.c - zswap driver file
3 *
4 * zswap is a backend for frontswap that takes pages that are in the process
5 * of being swapped out and attempts to compress and store them in a
6 * RAM-based memory pool. This can result in a significant I/O reduction on
7 * the swap device and, in the case where decompressing from RAM is faster
8 * than reading from the swap device, can also improve workload performance.
9 *
10 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version 2
15 * of the License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 */
22
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/module.h>
26 #include <linux/cpu.h>
27 #include <linux/highmem.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/types.h>
31 #include <linux/atomic.h>
32 #include <linux/frontswap.h>
33 #include <linux/rbtree.h>
34 #include <linux/swap.h>
35 #include <linux/crypto.h>
36 #include <linux/mempool.h>
37 #include <linux/zpool.h>
38
39 #include <linux/mm_types.h>
40 #include <linux/page-flags.h>
41 #include <linux/swapops.h>
42 #include <linux/writeback.h>
43 #include <linux/pagemap.h>
44
45 /*********************************
46 * statistics
47 **********************************/
48 /* Total bytes used by the compressed storage */
49 static u64 zswap_pool_total_size;
50 /* The number of compressed pages currently stored in zswap */
51 static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
52
53 /*
54 * The statistics below are not protected from concurrent access for
55 * performance reasons so they may not be a 100% accurate. However,
56 * they do provide useful information on roughly how many times a
57 * certain event is occurring.
58 */
59
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Compressed page was too big for the allocator to (optimally) store */
67 static u64 zswap_reject_compress_poor;
68 /* Store failed because underlying allocator could not get memory */
69 static u64 zswap_reject_alloc_fail;
70 /* Store failed because the entry metadata could not be allocated (rare) */
71 static u64 zswap_reject_kmemcache_fail;
72 /* Duplicate store was encountered (rare) */
73 static u64 zswap_duplicate_entry;
74
75 /*********************************
76 * tunables
77 **********************************/
78
79 /* Enable/disable zswap (disabled by default) */
80 static bool zswap_enabled;
81 static int zswap_enabled_param_set(const char *,
82 const struct kernel_param *);
83 static struct kernel_param_ops zswap_enabled_param_ops = {
84 .set = zswap_enabled_param_set,
85 .get = param_get_bool,
86 };
87 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
88
89 /* Crypto compressor to use */
90 #define ZSWAP_COMPRESSOR_DEFAULT "lzo"
91 static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
92 static int zswap_compressor_param_set(const char *,
93 const struct kernel_param *);
94 static struct kernel_param_ops zswap_compressor_param_ops = {
95 .set = zswap_compressor_param_set,
96 .get = param_get_charp,
97 .free = param_free_charp,
98 };
99 module_param_cb(compressor, &zswap_compressor_param_ops,
100 &zswap_compressor, 0644);
101
102 /* Compressed storage zpool to use */
103 #define ZSWAP_ZPOOL_DEFAULT "zbud"
104 static char *zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
105 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
106 static struct kernel_param_ops zswap_zpool_param_ops = {
107 .set = zswap_zpool_param_set,
108 .get = param_get_charp,
109 .free = param_free_charp,
110 };
111 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
112
113 /* The maximum percentage of memory that the compressed pool can occupy */
114 static unsigned int zswap_max_pool_percent = 20;
115 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
116
117 /*********************************
118 * data structures
119 **********************************/
120
121 struct zswap_pool {
122 struct zpool *zpool;
123 struct crypto_comp * __percpu *tfm;
124 struct kref kref;
125 struct list_head list;
126 struct work_struct work;
127 struct hlist_node node;
128 char tfm_name[CRYPTO_MAX_ALG_NAME];
129 };
130
131 /*
132 * struct zswap_entry
133 *
134 * This structure contains the metadata for tracking a single compressed
135 * page within zswap.
136 *
137 * rbnode - links the entry into red-black tree for the appropriate swap type
138 * offset - the swap offset for the entry. Index into the red-black tree.
139 * refcount - the number of outstanding reference to the entry. This is needed
140 * to protect against premature freeing of the entry by code
141 * concurrent calls to load, invalidate, and writeback. The lock
142 * for the zswap_tree structure that contains the entry must
143 * be held while changing the refcount. Since the lock must
144 * be held, there is no reason to also make refcount atomic.
145 * length - the length in bytes of the compressed page data. Needed during
146 * decompression
147 * pool - the zswap_pool the entry's data is in
148 * handle - zpool allocation handle that stores the compressed page data
149 */
150 struct zswap_entry {
151 struct rb_node rbnode;
152 pgoff_t offset;
153 int refcount;
154 unsigned int length;
155 struct zswap_pool *pool;
156 unsigned long handle;
157 };
158
159 struct zswap_header {
160 swp_entry_t swpentry;
161 };
162
163 /*
164 * The tree lock in the zswap_tree struct protects a few things:
165 * - the rbtree
166 * - the refcount field of each entry in the tree
167 */
168 struct zswap_tree {
169 struct rb_root rbroot;
170 spinlock_t lock;
171 };
172
173 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
174
175 /* RCU-protected iteration */
176 static LIST_HEAD(zswap_pools);
177 /* protects zswap_pools list modification */
178 static DEFINE_SPINLOCK(zswap_pools_lock);
179 /* pool counter to provide unique names to zpool */
180 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
181
182 /* used by param callback function */
183 static bool zswap_init_started;
184
185 /* fatal error during init */
186 static bool zswap_init_failed;
187
188 /*********************************
189 * helpers and fwd declarations
190 **********************************/
191
192 #define zswap_pool_debug(msg, p) \
193 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \
194 zpool_get_type((p)->zpool))
195
196 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle);
197 static int zswap_pool_get(struct zswap_pool *pool);
198 static void zswap_pool_put(struct zswap_pool *pool);
199
200 static const struct zpool_ops zswap_zpool_ops = {
201 .evict = zswap_writeback_entry
202 };
203
204 static bool zswap_is_full(void)
205 {
206 return totalram_pages * zswap_max_pool_percent / 100 <
207 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
208 }
209
210 static void zswap_update_total_size(void)
211 {
212 struct zswap_pool *pool;
213 u64 total = 0;
214
215 rcu_read_lock();
216
217 list_for_each_entry_rcu(pool, &zswap_pools, list)
218 total += zpool_get_total_size(pool->zpool);
219
220 rcu_read_unlock();
221
222 zswap_pool_total_size = total;
223 }
224
225 /*********************************
226 * zswap entry functions
227 **********************************/
228 static struct kmem_cache *zswap_entry_cache;
229
230 static int __init zswap_entry_cache_create(void)
231 {
232 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
233 return zswap_entry_cache == NULL;
234 }
235
236 static void __init zswap_entry_cache_destroy(void)
237 {
238 kmem_cache_destroy(zswap_entry_cache);
239 }
240
241 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
242 {
243 struct zswap_entry *entry;
244 entry = kmem_cache_alloc(zswap_entry_cache, gfp);
245 if (!entry)
246 return NULL;
247 entry->refcount = 1;
248 RB_CLEAR_NODE(&entry->rbnode);
249 return entry;
250 }
251
252 static void zswap_entry_cache_free(struct zswap_entry *entry)
253 {
254 kmem_cache_free(zswap_entry_cache, entry);
255 }
256
257 /*********************************
258 * rbtree functions
259 **********************************/
260 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
261 {
262 struct rb_node *node = root->rb_node;
263 struct zswap_entry *entry;
264
265 while (node) {
266 entry = rb_entry(node, struct zswap_entry, rbnode);
267 if (entry->offset > offset)
268 node = node->rb_left;
269 else if (entry->offset < offset)
270 node = node->rb_right;
271 else
272 return entry;
273 }
274 return NULL;
275 }
276
277 /*
278 * In the case that a entry with the same offset is found, a pointer to
279 * the existing entry is stored in dupentry and the function returns -EEXIST
280 */
281 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
282 struct zswap_entry **dupentry)
283 {
284 struct rb_node **link = &root->rb_node, *parent = NULL;
285 struct zswap_entry *myentry;
286
287 while (*link) {
288 parent = *link;
289 myentry = rb_entry(parent, struct zswap_entry, rbnode);
290 if (myentry->offset > entry->offset)
291 link = &(*link)->rb_left;
292 else if (myentry->offset < entry->offset)
293 link = &(*link)->rb_right;
294 else {
295 *dupentry = myentry;
296 return -EEXIST;
297 }
298 }
299 rb_link_node(&entry->rbnode, parent, link);
300 rb_insert_color(&entry->rbnode, root);
301 return 0;
302 }
303
304 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
305 {
306 if (!RB_EMPTY_NODE(&entry->rbnode)) {
307 rb_erase(&entry->rbnode, root);
308 RB_CLEAR_NODE(&entry->rbnode);
309 }
310 }
311
312 /*
313 * Carries out the common pattern of freeing and entry's zpool allocation,
314 * freeing the entry itself, and decrementing the number of stored pages.
315 */
316 static void zswap_free_entry(struct zswap_entry *entry)
317 {
318 zpool_free(entry->pool->zpool, entry->handle);
319 zswap_pool_put(entry->pool);
320 zswap_entry_cache_free(entry);
321 atomic_dec(&zswap_stored_pages);
322 zswap_update_total_size();
323 }
324
325 /* caller must hold the tree lock */
326 static void zswap_entry_get(struct zswap_entry *entry)
327 {
328 entry->refcount++;
329 }
330
331 /* caller must hold the tree lock
332 * remove from the tree and free it, if nobody reference the entry
333 */
334 static void zswap_entry_put(struct zswap_tree *tree,
335 struct zswap_entry *entry)
336 {
337 int refcount = --entry->refcount;
338
339 BUG_ON(refcount < 0);
340 if (refcount == 0) {
341 zswap_rb_erase(&tree->rbroot, entry);
342 zswap_free_entry(entry);
343 }
344 }
345
346 /* caller must hold the tree lock */
347 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
348 pgoff_t offset)
349 {
350 struct zswap_entry *entry;
351
352 entry = zswap_rb_search(root, offset);
353 if (entry)
354 zswap_entry_get(entry);
355
356 return entry;
357 }
358
359 /*********************************
360 * per-cpu code
361 **********************************/
362 static DEFINE_PER_CPU(u8 *, zswap_dstmem);
363
364 static int zswap_dstmem_prepare(unsigned int cpu)
365 {
366 u8 *dst;
367
368 dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
369 if (!dst) {
370 pr_err("can't allocate compressor buffer\n");
371 return -ENOMEM;
372 }
373 per_cpu(zswap_dstmem, cpu) = dst;
374 return 0;
375 }
376
377 static int zswap_dstmem_dead(unsigned int cpu)
378 {
379 u8 *dst;
380
381 dst = per_cpu(zswap_dstmem, cpu);
382 kfree(dst);
383 per_cpu(zswap_dstmem, cpu) = NULL;
384
385 return 0;
386 }
387
388 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
389 {
390 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
391 struct crypto_comp *tfm;
392
393 if (WARN_ON(*per_cpu_ptr(pool->tfm, cpu)))
394 return 0;
395
396 tfm = crypto_alloc_comp(pool->tfm_name, 0, 0);
397 if (IS_ERR_OR_NULL(tfm)) {
398 pr_err("could not alloc crypto comp %s : %ld\n",
399 pool->tfm_name, PTR_ERR(tfm));
400 return -ENOMEM;
401 }
402 *per_cpu_ptr(pool->tfm, cpu) = tfm;
403 return 0;
404 }
405
406 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
407 {
408 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
409 struct crypto_comp *tfm;
410
411 tfm = *per_cpu_ptr(pool->tfm, cpu);
412 if (!IS_ERR_OR_NULL(tfm))
413 crypto_free_comp(tfm);
414 *per_cpu_ptr(pool->tfm, cpu) = NULL;
415 return 0;
416 }
417
418 /*********************************
419 * pool functions
420 **********************************/
421
422 static struct zswap_pool *__zswap_pool_current(void)
423 {
424 struct zswap_pool *pool;
425
426 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
427 WARN_ON(!pool);
428
429 return pool;
430 }
431
432 static struct zswap_pool *zswap_pool_current(void)
433 {
434 assert_spin_locked(&zswap_pools_lock);
435
436 return __zswap_pool_current();
437 }
438
439 static struct zswap_pool *zswap_pool_current_get(void)
440 {
441 struct zswap_pool *pool;
442
443 rcu_read_lock();
444
445 pool = __zswap_pool_current();
446 if (!pool || !zswap_pool_get(pool))
447 pool = NULL;
448
449 rcu_read_unlock();
450
451 return pool;
452 }
453
454 static struct zswap_pool *zswap_pool_last_get(void)
455 {
456 struct zswap_pool *pool, *last = NULL;
457
458 rcu_read_lock();
459
460 list_for_each_entry_rcu(pool, &zswap_pools, list)
461 last = pool;
462 if (!WARN_ON(!last) && !zswap_pool_get(last))
463 last = NULL;
464
465 rcu_read_unlock();
466
467 return last;
468 }
469
470 /* type and compressor must be null-terminated */
471 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
472 {
473 struct zswap_pool *pool;
474
475 assert_spin_locked(&zswap_pools_lock);
476
477 list_for_each_entry_rcu(pool, &zswap_pools, list) {
478 if (strcmp(pool->tfm_name, compressor))
479 continue;
480 if (strcmp(zpool_get_type(pool->zpool), type))
481 continue;
482 /* if we can't get it, it's about to be destroyed */
483 if (!zswap_pool_get(pool))
484 continue;
485 return pool;
486 }
487
488 return NULL;
489 }
490
491 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
492 {
493 struct zswap_pool *pool;
494 char name[38]; /* 'zswap' + 32 char (max) num + \0 */
495 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
496 int ret;
497
498 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
499 if (!pool) {
500 pr_err("pool alloc failed\n");
501 return NULL;
502 }
503
504 /* unique name for each pool specifically required by zsmalloc */
505 snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
506
507 pool->zpool = zpool_create_pool(type, name, gfp, &zswap_zpool_ops);
508 if (!pool->zpool) {
509 pr_err("%s zpool not available\n", type);
510 goto error;
511 }
512 pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
513
514 strlcpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
515 pool->tfm = alloc_percpu(struct crypto_comp *);
516 if (!pool->tfm) {
517 pr_err("percpu alloc failed\n");
518 goto error;
519 }
520
521 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
522 &pool->node);
523 if (ret)
524 goto error;
525 pr_debug("using %s compressor\n", pool->tfm_name);
526
527 /* being the current pool takes 1 ref; this func expects the
528 * caller to always add the new pool as the current pool
529 */
530 kref_init(&pool->kref);
531 INIT_LIST_HEAD(&pool->list);
532
533 zswap_pool_debug("created", pool);
534
535 return pool;
536
537 error:
538 free_percpu(pool->tfm);
539 if (pool->zpool)
540 zpool_destroy_pool(pool->zpool);
541 kfree(pool);
542 return NULL;
543 }
544
545 static __init struct zswap_pool *__zswap_pool_create_fallback(void)
546 {
547 if (!crypto_has_comp(zswap_compressor, 0, 0)) {
548 if (!strcmp(zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT)) {
549 pr_err("default compressor %s not available\n",
550 zswap_compressor);
551 return NULL;
552 }
553 pr_err("compressor %s not available, using default %s\n",
554 zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT);
555 param_free_charp(&zswap_compressor);
556 zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
557 }
558 if (!zpool_has_pool(zswap_zpool_type)) {
559 if (!strcmp(zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT)) {
560 pr_err("default zpool %s not available\n",
561 zswap_zpool_type);
562 return NULL;
563 }
564 pr_err("zpool %s not available, using default %s\n",
565 zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT);
566 param_free_charp(&zswap_zpool_type);
567 zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
568 }
569
570 return zswap_pool_create(zswap_zpool_type, zswap_compressor);
571 }
572
573 static void zswap_pool_destroy(struct zswap_pool *pool)
574 {
575 zswap_pool_debug("destroying", pool);
576
577 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
578 free_percpu(pool->tfm);
579 zpool_destroy_pool(pool->zpool);
580 kfree(pool);
581 }
582
583 static int __must_check zswap_pool_get(struct zswap_pool *pool)
584 {
585 return kref_get_unless_zero(&pool->kref);
586 }
587
588 static void __zswap_pool_release(struct work_struct *work)
589 {
590 struct zswap_pool *pool = container_of(work, typeof(*pool), work);
591
592 synchronize_rcu();
593
594 /* nobody should have been able to get a kref... */
595 WARN_ON(kref_get_unless_zero(&pool->kref));
596
597 /* pool is now off zswap_pools list and has no references. */
598 zswap_pool_destroy(pool);
599 }
600
601 static void __zswap_pool_empty(struct kref *kref)
602 {
603 struct zswap_pool *pool;
604
605 pool = container_of(kref, typeof(*pool), kref);
606
607 spin_lock(&zswap_pools_lock);
608
609 WARN_ON(pool == zswap_pool_current());
610
611 list_del_rcu(&pool->list);
612
613 INIT_WORK(&pool->work, __zswap_pool_release);
614 schedule_work(&pool->work);
615
616 spin_unlock(&zswap_pools_lock);
617 }
618
619 static void zswap_pool_put(struct zswap_pool *pool)
620 {
621 kref_put(&pool->kref, __zswap_pool_empty);
622 }
623
624 /*********************************
625 * param callbacks
626 **********************************/
627
628 /* val must be a null-terminated string */
629 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
630 char *type, char *compressor)
631 {
632 struct zswap_pool *pool, *put_pool = NULL;
633 char *s = strstrip((char *)val);
634 int ret;
635
636 if (zswap_init_failed) {
637 pr_err("can't set param, initialization failed\n");
638 return -ENODEV;
639 }
640
641 /* no change required */
642 if (!strcmp(s, *(char **)kp->arg))
643 return 0;
644
645 /* if this is load-time (pre-init) param setting,
646 * don't create a pool; that's done during init.
647 */
648 if (!zswap_init_started)
649 return param_set_charp(s, kp);
650
651 if (!type) {
652 if (!zpool_has_pool(s)) {
653 pr_err("zpool %s not available\n", s);
654 return -ENOENT;
655 }
656 type = s;
657 } else if (!compressor) {
658 if (!crypto_has_comp(s, 0, 0)) {
659 pr_err("compressor %s not available\n", s);
660 return -ENOENT;
661 }
662 compressor = s;
663 } else {
664 WARN_ON(1);
665 return -EINVAL;
666 }
667
668 spin_lock(&zswap_pools_lock);
669
670 pool = zswap_pool_find_get(type, compressor);
671 if (pool) {
672 zswap_pool_debug("using existing", pool);
673 list_del_rcu(&pool->list);
674 } else {
675 spin_unlock(&zswap_pools_lock);
676 pool = zswap_pool_create(type, compressor);
677 spin_lock(&zswap_pools_lock);
678 }
679
680 if (pool)
681 ret = param_set_charp(s, kp);
682 else
683 ret = -EINVAL;
684
685 if (!ret) {
686 put_pool = zswap_pool_current();
687 list_add_rcu(&pool->list, &zswap_pools);
688 } else if (pool) {
689 /* add the possibly pre-existing pool to the end of the pools
690 * list; if it's new (and empty) then it'll be removed and
691 * destroyed by the put after we drop the lock
692 */
693 list_add_tail_rcu(&pool->list, &zswap_pools);
694 put_pool = pool;
695 }
696
697 spin_unlock(&zswap_pools_lock);
698
699 /* drop the ref from either the old current pool,
700 * or the new pool we failed to add
701 */
702 if (put_pool)
703 zswap_pool_put(put_pool);
704
705 return ret;
706 }
707
708 static int zswap_compressor_param_set(const char *val,
709 const struct kernel_param *kp)
710 {
711 return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
712 }
713
714 static int zswap_zpool_param_set(const char *val,
715 const struct kernel_param *kp)
716 {
717 return __zswap_param_set(val, kp, NULL, zswap_compressor);
718 }
719
720 static int zswap_enabled_param_set(const char *val,
721 const struct kernel_param *kp)
722 {
723 if (zswap_init_failed) {
724 pr_err("can't enable, initialization failed\n");
725 return -ENODEV;
726 }
727
728 return param_set_bool(val, kp);
729 }
730
731 /*********************************
732 * writeback code
733 **********************************/
734 /* return enum for zswap_get_swap_cache_page */
735 enum zswap_get_swap_ret {
736 ZSWAP_SWAPCACHE_NEW,
737 ZSWAP_SWAPCACHE_EXIST,
738 ZSWAP_SWAPCACHE_FAIL,
739 };
740
741 /*
742 * zswap_get_swap_cache_page
743 *
744 * This is an adaption of read_swap_cache_async()
745 *
746 * This function tries to find a page with the given swap entry
747 * in the swapper_space address space (the swap cache). If the page
748 * is found, it is returned in retpage. Otherwise, a page is allocated,
749 * added to the swap cache, and returned in retpage.
750 *
751 * If success, the swap cache page is returned in retpage
752 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
753 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
754 * the new page is added to swapcache and locked
755 * Returns ZSWAP_SWAPCACHE_FAIL on error
756 */
757 static int zswap_get_swap_cache_page(swp_entry_t entry,
758 struct page **retpage)
759 {
760 bool page_was_allocated;
761
762 *retpage = __read_swap_cache_async(entry, GFP_KERNEL,
763 NULL, 0, &page_was_allocated);
764 if (page_was_allocated)
765 return ZSWAP_SWAPCACHE_NEW;
766 if (!*retpage)
767 return ZSWAP_SWAPCACHE_FAIL;
768 return ZSWAP_SWAPCACHE_EXIST;
769 }
770
771 /*
772 * Attempts to free an entry by adding a page to the swap cache,
773 * decompressing the entry data into the page, and issuing a
774 * bio write to write the page back to the swap device.
775 *
776 * This can be thought of as a "resumed writeback" of the page
777 * to the swap device. We are basically resuming the same swap
778 * writeback path that was intercepted with the frontswap_store()
779 * in the first place. After the page has been decompressed into
780 * the swap cache, the compressed version stored by zswap can be
781 * freed.
782 */
783 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
784 {
785 struct zswap_header *zhdr;
786 swp_entry_t swpentry;
787 struct zswap_tree *tree;
788 pgoff_t offset;
789 struct zswap_entry *entry;
790 struct page *page;
791 struct crypto_comp *tfm;
792 u8 *src, *dst;
793 unsigned int dlen;
794 int ret;
795 struct writeback_control wbc = {
796 .sync_mode = WB_SYNC_NONE,
797 };
798
799 /* extract swpentry from data */
800 zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
801 swpentry = zhdr->swpentry; /* here */
802 zpool_unmap_handle(pool, handle);
803 tree = zswap_trees[swp_type(swpentry)];
804 offset = swp_offset(swpentry);
805
806 /* find and ref zswap entry */
807 spin_lock(&tree->lock);
808 entry = zswap_entry_find_get(&tree->rbroot, offset);
809 if (!entry) {
810 /* entry was invalidated */
811 spin_unlock(&tree->lock);
812 return 0;
813 }
814 spin_unlock(&tree->lock);
815 BUG_ON(offset != entry->offset);
816
817 /* try to allocate swap cache page */
818 switch (zswap_get_swap_cache_page(swpentry, &page)) {
819 case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
820 ret = -ENOMEM;
821 goto fail;
822
823 case ZSWAP_SWAPCACHE_EXIST:
824 /* page is already in the swap cache, ignore for now */
825 put_page(page);
826 ret = -EEXIST;
827 goto fail;
828
829 case ZSWAP_SWAPCACHE_NEW: /* page is locked */
830 /* decompress */
831 dlen = PAGE_SIZE;
832 src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle,
833 ZPOOL_MM_RO) + sizeof(struct zswap_header);
834 dst = kmap_atomic(page);
835 tfm = *get_cpu_ptr(entry->pool->tfm);
836 ret = crypto_comp_decompress(tfm, src, entry->length,
837 dst, &dlen);
838 put_cpu_ptr(entry->pool->tfm);
839 kunmap_atomic(dst);
840 zpool_unmap_handle(entry->pool->zpool, entry->handle);
841 BUG_ON(ret);
842 BUG_ON(dlen != PAGE_SIZE);
843
844 /* page is up to date */
845 SetPageUptodate(page);
846 }
847
848 /* move it to the tail of the inactive list after end_writeback */
849 SetPageReclaim(page);
850
851 /* start writeback */
852 __swap_writepage(page, &wbc, end_swap_bio_write);
853 put_page(page);
854 zswap_written_back_pages++;
855
856 spin_lock(&tree->lock);
857 /* drop local reference */
858 zswap_entry_put(tree, entry);
859
860 /*
861 * There are two possible situations for entry here:
862 * (1) refcount is 1(normal case), entry is valid and on the tree
863 * (2) refcount is 0, entry is freed and not on the tree
864 * because invalidate happened during writeback
865 * search the tree and free the entry if find entry
866 */
867 if (entry == zswap_rb_search(&tree->rbroot, offset))
868 zswap_entry_put(tree, entry);
869 spin_unlock(&tree->lock);
870
871 goto end;
872
873 /*
874 * if we get here due to ZSWAP_SWAPCACHE_EXIST
875 * a load may happening concurrently
876 * it is safe and okay to not free the entry
877 * if we free the entry in the following put
878 * it it either okay to return !0
879 */
880 fail:
881 spin_lock(&tree->lock);
882 zswap_entry_put(tree, entry);
883 spin_unlock(&tree->lock);
884
885 end:
886 return ret;
887 }
888
889 static int zswap_shrink(void)
890 {
891 struct zswap_pool *pool;
892 int ret;
893
894 pool = zswap_pool_last_get();
895 if (!pool)
896 return -ENOENT;
897
898 ret = zpool_shrink(pool->zpool, 1, NULL);
899
900 zswap_pool_put(pool);
901
902 return ret;
903 }
904
905 /*********************************
906 * frontswap hooks
907 **********************************/
908 /* attempts to compress and store an single page */
909 static int zswap_frontswap_store(unsigned type, pgoff_t offset,
910 struct page *page)
911 {
912 struct zswap_tree *tree = zswap_trees[type];
913 struct zswap_entry *entry, *dupentry;
914 struct crypto_comp *tfm;
915 int ret;
916 unsigned int dlen = PAGE_SIZE, len;
917 unsigned long handle;
918 char *buf;
919 u8 *src, *dst;
920 struct zswap_header *zhdr;
921
922 if (!zswap_enabled || !tree) {
923 ret = -ENODEV;
924 goto reject;
925 }
926
927 /* reclaim space if needed */
928 if (zswap_is_full()) {
929 zswap_pool_limit_hit++;
930 if (zswap_shrink()) {
931 zswap_reject_reclaim_fail++;
932 ret = -ENOMEM;
933 goto reject;
934 }
935 }
936
937 /* allocate entry */
938 entry = zswap_entry_cache_alloc(GFP_KERNEL);
939 if (!entry) {
940 zswap_reject_kmemcache_fail++;
941 ret = -ENOMEM;
942 goto reject;
943 }
944
945 /* if entry is successfully added, it keeps the reference */
946 entry->pool = zswap_pool_current_get();
947 if (!entry->pool) {
948 ret = -EINVAL;
949 goto freepage;
950 }
951
952 /* compress */
953 dst = get_cpu_var(zswap_dstmem);
954 tfm = *get_cpu_ptr(entry->pool->tfm);
955 src = kmap_atomic(page);
956 ret = crypto_comp_compress(tfm, src, PAGE_SIZE, dst, &dlen);
957 kunmap_atomic(src);
958 put_cpu_ptr(entry->pool->tfm);
959 if (ret) {
960 ret = -EINVAL;
961 goto put_dstmem;
962 }
963
964 /* store */
965 len = dlen + sizeof(struct zswap_header);
966 ret = zpool_malloc(entry->pool->zpool, len,
967 __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM,
968 &handle);
969 if (ret == -ENOSPC) {
970 zswap_reject_compress_poor++;
971 goto put_dstmem;
972 }
973 if (ret) {
974 zswap_reject_alloc_fail++;
975 goto put_dstmem;
976 }
977 zhdr = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_RW);
978 zhdr->swpentry = swp_entry(type, offset);
979 buf = (u8 *)(zhdr + 1);
980 memcpy(buf, dst, dlen);
981 zpool_unmap_handle(entry->pool->zpool, handle);
982 put_cpu_var(zswap_dstmem);
983
984 /* populate entry */
985 entry->offset = offset;
986 entry->handle = handle;
987 entry->length = dlen;
988
989 /* map */
990 spin_lock(&tree->lock);
991 do {
992 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
993 if (ret == -EEXIST) {
994 zswap_duplicate_entry++;
995 /* remove from rbtree */
996 zswap_rb_erase(&tree->rbroot, dupentry);
997 zswap_entry_put(tree, dupentry);
998 }
999 } while (ret == -EEXIST);
1000 spin_unlock(&tree->lock);
1001
1002 /* update stats */
1003 atomic_inc(&zswap_stored_pages);
1004 zswap_update_total_size();
1005
1006 return 0;
1007
1008 put_dstmem:
1009 put_cpu_var(zswap_dstmem);
1010 zswap_pool_put(entry->pool);
1011 freepage:
1012 zswap_entry_cache_free(entry);
1013 reject:
1014 return ret;
1015 }
1016
1017 /*
1018 * returns 0 if the page was successfully decompressed
1019 * return -1 on entry not found or error
1020 */
1021 static int zswap_frontswap_load(unsigned type, pgoff_t offset,
1022 struct page *page)
1023 {
1024 struct zswap_tree *tree = zswap_trees[type];
1025 struct zswap_entry *entry;
1026 struct crypto_comp *tfm;
1027 u8 *src, *dst;
1028 unsigned int dlen;
1029 int ret;
1030
1031 /* find */
1032 spin_lock(&tree->lock);
1033 entry = zswap_entry_find_get(&tree->rbroot, offset);
1034 if (!entry) {
1035 /* entry was written back */
1036 spin_unlock(&tree->lock);
1037 return -1;
1038 }
1039 spin_unlock(&tree->lock);
1040
1041 /* decompress */
1042 dlen = PAGE_SIZE;
1043 src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle,
1044 ZPOOL_MM_RO) + sizeof(struct zswap_header);
1045 dst = kmap_atomic(page);
1046 tfm = *get_cpu_ptr(entry->pool->tfm);
1047 ret = crypto_comp_decompress(tfm, src, entry->length, dst, &dlen);
1048 put_cpu_ptr(entry->pool->tfm);
1049 kunmap_atomic(dst);
1050 zpool_unmap_handle(entry->pool->zpool, entry->handle);
1051 BUG_ON(ret);
1052
1053 spin_lock(&tree->lock);
1054 zswap_entry_put(tree, entry);
1055 spin_unlock(&tree->lock);
1056
1057 return 0;
1058 }
1059
1060 /* frees an entry in zswap */
1061 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
1062 {
1063 struct zswap_tree *tree = zswap_trees[type];
1064 struct zswap_entry *entry;
1065
1066 /* find */
1067 spin_lock(&tree->lock);
1068 entry = zswap_rb_search(&tree->rbroot, offset);
1069 if (!entry) {
1070 /* entry was written back */
1071 spin_unlock(&tree->lock);
1072 return;
1073 }
1074
1075 /* remove from rbtree */
1076 zswap_rb_erase(&tree->rbroot, entry);
1077
1078 /* drop the initial reference from entry creation */
1079 zswap_entry_put(tree, entry);
1080
1081 spin_unlock(&tree->lock);
1082 }
1083
1084 /* frees all zswap entries for the given swap type */
1085 static void zswap_frontswap_invalidate_area(unsigned type)
1086 {
1087 struct zswap_tree *tree = zswap_trees[type];
1088 struct zswap_entry *entry, *n;
1089
1090 if (!tree)
1091 return;
1092
1093 /* walk the tree and free everything */
1094 spin_lock(&tree->lock);
1095 rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1096 zswap_free_entry(entry);
1097 tree->rbroot = RB_ROOT;
1098 spin_unlock(&tree->lock);
1099 kfree(tree);
1100 zswap_trees[type] = NULL;
1101 }
1102
1103 static void zswap_frontswap_init(unsigned type)
1104 {
1105 struct zswap_tree *tree;
1106
1107 tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL);
1108 if (!tree) {
1109 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1110 return;
1111 }
1112
1113 tree->rbroot = RB_ROOT;
1114 spin_lock_init(&tree->lock);
1115 zswap_trees[type] = tree;
1116 }
1117
1118 static struct frontswap_ops zswap_frontswap_ops = {
1119 .store = zswap_frontswap_store,
1120 .load = zswap_frontswap_load,
1121 .invalidate_page = zswap_frontswap_invalidate_page,
1122 .invalidate_area = zswap_frontswap_invalidate_area,
1123 .init = zswap_frontswap_init
1124 };
1125
1126 /*********************************
1127 * debugfs functions
1128 **********************************/
1129 #ifdef CONFIG_DEBUG_FS
1130 #include <linux/debugfs.h>
1131
1132 static struct dentry *zswap_debugfs_root;
1133
1134 static int __init zswap_debugfs_init(void)
1135 {
1136 if (!debugfs_initialized())
1137 return -ENODEV;
1138
1139 zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1140 if (!zswap_debugfs_root)
1141 return -ENOMEM;
1142
1143 debugfs_create_u64("pool_limit_hit", S_IRUGO,
1144 zswap_debugfs_root, &zswap_pool_limit_hit);
1145 debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
1146 zswap_debugfs_root, &zswap_reject_reclaim_fail);
1147 debugfs_create_u64("reject_alloc_fail", S_IRUGO,
1148 zswap_debugfs_root, &zswap_reject_alloc_fail);
1149 debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
1150 zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1151 debugfs_create_u64("reject_compress_poor", S_IRUGO,
1152 zswap_debugfs_root, &zswap_reject_compress_poor);
1153 debugfs_create_u64("written_back_pages", S_IRUGO,
1154 zswap_debugfs_root, &zswap_written_back_pages);
1155 debugfs_create_u64("duplicate_entry", S_IRUGO,
1156 zswap_debugfs_root, &zswap_duplicate_entry);
1157 debugfs_create_u64("pool_total_size", S_IRUGO,
1158 zswap_debugfs_root, &zswap_pool_total_size);
1159 debugfs_create_atomic_t("stored_pages", S_IRUGO,
1160 zswap_debugfs_root, &zswap_stored_pages);
1161
1162 return 0;
1163 }
1164
1165 static void __exit zswap_debugfs_exit(void)
1166 {
1167 debugfs_remove_recursive(zswap_debugfs_root);
1168 }
1169 #else
1170 static int __init zswap_debugfs_init(void)
1171 {
1172 return 0;
1173 }
1174
1175 static void __exit zswap_debugfs_exit(void) { }
1176 #endif
1177
1178 /*********************************
1179 * module init and exit
1180 **********************************/
1181 static int __init init_zswap(void)
1182 {
1183 struct zswap_pool *pool;
1184 int ret;
1185
1186 zswap_init_started = true;
1187
1188 if (zswap_entry_cache_create()) {
1189 pr_err("entry cache creation failed\n");
1190 goto cache_fail;
1191 }
1192
1193 ret = cpuhp_setup_state(CPUHP_MM_ZSWP_MEM_PREPARE, "mm/zswap:prepare",
1194 zswap_dstmem_prepare, zswap_dstmem_dead);
1195 if (ret) {
1196 pr_err("dstmem alloc failed\n");
1197 goto dstmem_fail;
1198 }
1199
1200 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1201 "mm/zswap_pool:prepare",
1202 zswap_cpu_comp_prepare,
1203 zswap_cpu_comp_dead);
1204 if (ret)
1205 goto hp_fail;
1206
1207 pool = __zswap_pool_create_fallback();
1208 if (!pool) {
1209 pr_err("pool creation failed\n");
1210 goto pool_fail;
1211 }
1212 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1213 zpool_get_type(pool->zpool));
1214
1215 list_add(&pool->list, &zswap_pools);
1216
1217 frontswap_register_ops(&zswap_frontswap_ops);
1218 if (zswap_debugfs_init())
1219 pr_warn("debugfs initialization failed\n");
1220 return 0;
1221
1222 pool_fail:
1223 cpuhp_remove_state_nocalls(CPUHP_MM_ZSWP_POOL_PREPARE);
1224 hp_fail:
1225 cpuhp_remove_state(CPUHP_MM_ZSWP_MEM_PREPARE);
1226 dstmem_fail:
1227 zswap_entry_cache_destroy();
1228 cache_fail:
1229 /* if built-in, we aren't unloaded on failure; don't allow use */
1230 zswap_init_failed = true;
1231 zswap_enabled = false;
1232 return -ENOMEM;
1233 }
1234 /* must be late so crypto has time to come up */
1235 late_initcall(init_zswap);
1236
1237 MODULE_LICENSE("GPL");
1238 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1239 MODULE_DESCRIPTION("Compressed cache for swap pages");