]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/core/skbuff.c
net-timestamp: extend SCM_TIMESTAMPING ancillary data struct
[mirror_ubuntu-zesty-kernel.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65
66 #include <net/protocol.h>
67 #include <net/dst.h>
68 #include <net/sock.h>
69 #include <net/checksum.h>
70 #include <net/ip6_checksum.h>
71 #include <net/xfrm.h>
72
73 #include <asm/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76
77 struct kmem_cache *skbuff_head_cache __read_mostly;
78 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
79
80 /**
81 * skb_panic - private function for out-of-line support
82 * @skb: buffer
83 * @sz: size
84 * @addr: address
85 * @msg: skb_over_panic or skb_under_panic
86 *
87 * Out-of-line support for skb_put() and skb_push().
88 * Called via the wrapper skb_over_panic() or skb_under_panic().
89 * Keep out of line to prevent kernel bloat.
90 * __builtin_return_address is not used because it is not always reliable.
91 */
92 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
93 const char msg[])
94 {
95 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
96 msg, addr, skb->len, sz, skb->head, skb->data,
97 (unsigned long)skb->tail, (unsigned long)skb->end,
98 skb->dev ? skb->dev->name : "<NULL>");
99 BUG();
100 }
101
102 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
103 {
104 skb_panic(skb, sz, addr, __func__);
105 }
106
107 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 skb_panic(skb, sz, addr, __func__);
110 }
111
112 /*
113 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
114 * the caller if emergency pfmemalloc reserves are being used. If it is and
115 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
116 * may be used. Otherwise, the packet data may be discarded until enough
117 * memory is free
118 */
119 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
120 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
121
122 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
123 unsigned long ip, bool *pfmemalloc)
124 {
125 void *obj;
126 bool ret_pfmemalloc = false;
127
128 /*
129 * Try a regular allocation, when that fails and we're not entitled
130 * to the reserves, fail.
131 */
132 obj = kmalloc_node_track_caller(size,
133 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
134 node);
135 if (obj || !(gfp_pfmemalloc_allowed(flags)))
136 goto out;
137
138 /* Try again but now we are using pfmemalloc reserves */
139 ret_pfmemalloc = true;
140 obj = kmalloc_node_track_caller(size, flags, node);
141
142 out:
143 if (pfmemalloc)
144 *pfmemalloc = ret_pfmemalloc;
145
146 return obj;
147 }
148
149 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
150 * 'private' fields and also do memory statistics to find all the
151 * [BEEP] leaks.
152 *
153 */
154
155 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
156 {
157 struct sk_buff *skb;
158
159 /* Get the HEAD */
160 skb = kmem_cache_alloc_node(skbuff_head_cache,
161 gfp_mask & ~__GFP_DMA, node);
162 if (!skb)
163 goto out;
164
165 /*
166 * Only clear those fields we need to clear, not those that we will
167 * actually initialise below. Hence, don't put any more fields after
168 * the tail pointer in struct sk_buff!
169 */
170 memset(skb, 0, offsetof(struct sk_buff, tail));
171 skb->head = NULL;
172 skb->truesize = sizeof(struct sk_buff);
173 atomic_set(&skb->users, 1);
174
175 skb->mac_header = (typeof(skb->mac_header))~0U;
176 out:
177 return skb;
178 }
179
180 /**
181 * __alloc_skb - allocate a network buffer
182 * @size: size to allocate
183 * @gfp_mask: allocation mask
184 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
185 * instead of head cache and allocate a cloned (child) skb.
186 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
187 * allocations in case the data is required for writeback
188 * @node: numa node to allocate memory on
189 *
190 * Allocate a new &sk_buff. The returned buffer has no headroom and a
191 * tail room of at least size bytes. The object has a reference count
192 * of one. The return is the buffer. On a failure the return is %NULL.
193 *
194 * Buffers may only be allocated from interrupts using a @gfp_mask of
195 * %GFP_ATOMIC.
196 */
197 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
198 int flags, int node)
199 {
200 struct kmem_cache *cache;
201 struct skb_shared_info *shinfo;
202 struct sk_buff *skb;
203 u8 *data;
204 bool pfmemalloc;
205
206 cache = (flags & SKB_ALLOC_FCLONE)
207 ? skbuff_fclone_cache : skbuff_head_cache;
208
209 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
210 gfp_mask |= __GFP_MEMALLOC;
211
212 /* Get the HEAD */
213 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
214 if (!skb)
215 goto out;
216 prefetchw(skb);
217
218 /* We do our best to align skb_shared_info on a separate cache
219 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
220 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
221 * Both skb->head and skb_shared_info are cache line aligned.
222 */
223 size = SKB_DATA_ALIGN(size);
224 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
225 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
226 if (!data)
227 goto nodata;
228 /* kmalloc(size) might give us more room than requested.
229 * Put skb_shared_info exactly at the end of allocated zone,
230 * to allow max possible filling before reallocation.
231 */
232 size = SKB_WITH_OVERHEAD(ksize(data));
233 prefetchw(data + size);
234
235 /*
236 * Only clear those fields we need to clear, not those that we will
237 * actually initialise below. Hence, don't put any more fields after
238 * the tail pointer in struct sk_buff!
239 */
240 memset(skb, 0, offsetof(struct sk_buff, tail));
241 /* Account for allocated memory : skb + skb->head */
242 skb->truesize = SKB_TRUESIZE(size);
243 skb->pfmemalloc = pfmemalloc;
244 atomic_set(&skb->users, 1);
245 skb->head = data;
246 skb->data = data;
247 skb_reset_tail_pointer(skb);
248 skb->end = skb->tail + size;
249 skb->mac_header = (typeof(skb->mac_header))~0U;
250 skb->transport_header = (typeof(skb->transport_header))~0U;
251
252 /* make sure we initialize shinfo sequentially */
253 shinfo = skb_shinfo(skb);
254 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
255 atomic_set(&shinfo->dataref, 1);
256 kmemcheck_annotate_variable(shinfo->destructor_arg);
257
258 if (flags & SKB_ALLOC_FCLONE) {
259 struct sk_buff *child = skb + 1;
260 atomic_t *fclone_ref = (atomic_t *) (child + 1);
261
262 kmemcheck_annotate_bitfield(child, flags1);
263 kmemcheck_annotate_bitfield(child, flags2);
264 skb->fclone = SKB_FCLONE_ORIG;
265 atomic_set(fclone_ref, 1);
266
267 child->fclone = SKB_FCLONE_UNAVAILABLE;
268 child->pfmemalloc = pfmemalloc;
269 }
270 out:
271 return skb;
272 nodata:
273 kmem_cache_free(cache, skb);
274 skb = NULL;
275 goto out;
276 }
277 EXPORT_SYMBOL(__alloc_skb);
278
279 /**
280 * build_skb - build a network buffer
281 * @data: data buffer provided by caller
282 * @frag_size: size of fragment, or 0 if head was kmalloced
283 *
284 * Allocate a new &sk_buff. Caller provides space holding head and
285 * skb_shared_info. @data must have been allocated by kmalloc() only if
286 * @frag_size is 0, otherwise data should come from the page allocator.
287 * The return is the new skb buffer.
288 * On a failure the return is %NULL, and @data is not freed.
289 * Notes :
290 * Before IO, driver allocates only data buffer where NIC put incoming frame
291 * Driver should add room at head (NET_SKB_PAD) and
292 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
293 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
294 * before giving packet to stack.
295 * RX rings only contains data buffers, not full skbs.
296 */
297 struct sk_buff *build_skb(void *data, unsigned int frag_size)
298 {
299 struct skb_shared_info *shinfo;
300 struct sk_buff *skb;
301 unsigned int size = frag_size ? : ksize(data);
302
303 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
304 if (!skb)
305 return NULL;
306
307 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
308
309 memset(skb, 0, offsetof(struct sk_buff, tail));
310 skb->truesize = SKB_TRUESIZE(size);
311 skb->head_frag = frag_size != 0;
312 atomic_set(&skb->users, 1);
313 skb->head = data;
314 skb->data = data;
315 skb_reset_tail_pointer(skb);
316 skb->end = skb->tail + size;
317 skb->mac_header = (typeof(skb->mac_header))~0U;
318 skb->transport_header = (typeof(skb->transport_header))~0U;
319
320 /* make sure we initialize shinfo sequentially */
321 shinfo = skb_shinfo(skb);
322 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
323 atomic_set(&shinfo->dataref, 1);
324 kmemcheck_annotate_variable(shinfo->destructor_arg);
325
326 return skb;
327 }
328 EXPORT_SYMBOL(build_skb);
329
330 struct netdev_alloc_cache {
331 struct page_frag frag;
332 /* we maintain a pagecount bias, so that we dont dirty cache line
333 * containing page->_count every time we allocate a fragment.
334 */
335 unsigned int pagecnt_bias;
336 };
337 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
338
339 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
340 {
341 struct netdev_alloc_cache *nc;
342 void *data = NULL;
343 int order;
344 unsigned long flags;
345
346 local_irq_save(flags);
347 nc = &__get_cpu_var(netdev_alloc_cache);
348 if (unlikely(!nc->frag.page)) {
349 refill:
350 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
351 gfp_t gfp = gfp_mask;
352
353 if (order)
354 gfp |= __GFP_COMP | __GFP_NOWARN;
355 nc->frag.page = alloc_pages(gfp, order);
356 if (likely(nc->frag.page))
357 break;
358 if (--order < 0)
359 goto end;
360 }
361 nc->frag.size = PAGE_SIZE << order;
362 recycle:
363 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
364 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
365 nc->frag.offset = 0;
366 }
367
368 if (nc->frag.offset + fragsz > nc->frag.size) {
369 /* avoid unnecessary locked operations if possible */
370 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
371 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
372 goto recycle;
373 goto refill;
374 }
375
376 data = page_address(nc->frag.page) + nc->frag.offset;
377 nc->frag.offset += fragsz;
378 nc->pagecnt_bias--;
379 end:
380 local_irq_restore(flags);
381 return data;
382 }
383
384 /**
385 * netdev_alloc_frag - allocate a page fragment
386 * @fragsz: fragment size
387 *
388 * Allocates a frag from a page for receive buffer.
389 * Uses GFP_ATOMIC allocations.
390 */
391 void *netdev_alloc_frag(unsigned int fragsz)
392 {
393 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
394 }
395 EXPORT_SYMBOL(netdev_alloc_frag);
396
397 /**
398 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
399 * @dev: network device to receive on
400 * @length: length to allocate
401 * @gfp_mask: get_free_pages mask, passed to alloc_skb
402 *
403 * Allocate a new &sk_buff and assign it a usage count of one. The
404 * buffer has unspecified headroom built in. Users should allocate
405 * the headroom they think they need without accounting for the
406 * built in space. The built in space is used for optimisations.
407 *
408 * %NULL is returned if there is no free memory.
409 */
410 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
411 unsigned int length, gfp_t gfp_mask)
412 {
413 struct sk_buff *skb = NULL;
414 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
415 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
416
417 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
418 void *data;
419
420 if (sk_memalloc_socks())
421 gfp_mask |= __GFP_MEMALLOC;
422
423 data = __netdev_alloc_frag(fragsz, gfp_mask);
424
425 if (likely(data)) {
426 skb = build_skb(data, fragsz);
427 if (unlikely(!skb))
428 put_page(virt_to_head_page(data));
429 }
430 } else {
431 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
432 SKB_ALLOC_RX, NUMA_NO_NODE);
433 }
434 if (likely(skb)) {
435 skb_reserve(skb, NET_SKB_PAD);
436 skb->dev = dev;
437 }
438 return skb;
439 }
440 EXPORT_SYMBOL(__netdev_alloc_skb);
441
442 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
443 int size, unsigned int truesize)
444 {
445 skb_fill_page_desc(skb, i, page, off, size);
446 skb->len += size;
447 skb->data_len += size;
448 skb->truesize += truesize;
449 }
450 EXPORT_SYMBOL(skb_add_rx_frag);
451
452 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
453 unsigned int truesize)
454 {
455 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
456
457 skb_frag_size_add(frag, size);
458 skb->len += size;
459 skb->data_len += size;
460 skb->truesize += truesize;
461 }
462 EXPORT_SYMBOL(skb_coalesce_rx_frag);
463
464 static void skb_drop_list(struct sk_buff **listp)
465 {
466 kfree_skb_list(*listp);
467 *listp = NULL;
468 }
469
470 static inline void skb_drop_fraglist(struct sk_buff *skb)
471 {
472 skb_drop_list(&skb_shinfo(skb)->frag_list);
473 }
474
475 static void skb_clone_fraglist(struct sk_buff *skb)
476 {
477 struct sk_buff *list;
478
479 skb_walk_frags(skb, list)
480 skb_get(list);
481 }
482
483 static void skb_free_head(struct sk_buff *skb)
484 {
485 if (skb->head_frag)
486 put_page(virt_to_head_page(skb->head));
487 else
488 kfree(skb->head);
489 }
490
491 static void skb_release_data(struct sk_buff *skb)
492 {
493 if (!skb->cloned ||
494 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
495 &skb_shinfo(skb)->dataref)) {
496 if (skb_shinfo(skb)->nr_frags) {
497 int i;
498 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
499 skb_frag_unref(skb, i);
500 }
501
502 /*
503 * If skb buf is from userspace, we need to notify the caller
504 * the lower device DMA has done;
505 */
506 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
507 struct ubuf_info *uarg;
508
509 uarg = skb_shinfo(skb)->destructor_arg;
510 if (uarg->callback)
511 uarg->callback(uarg, true);
512 }
513
514 if (skb_has_frag_list(skb))
515 skb_drop_fraglist(skb);
516
517 skb_free_head(skb);
518 }
519 }
520
521 /*
522 * Free an skbuff by memory without cleaning the state.
523 */
524 static void kfree_skbmem(struct sk_buff *skb)
525 {
526 struct sk_buff *other;
527 atomic_t *fclone_ref;
528
529 switch (skb->fclone) {
530 case SKB_FCLONE_UNAVAILABLE:
531 kmem_cache_free(skbuff_head_cache, skb);
532 break;
533
534 case SKB_FCLONE_ORIG:
535 fclone_ref = (atomic_t *) (skb + 2);
536 if (atomic_dec_and_test(fclone_ref))
537 kmem_cache_free(skbuff_fclone_cache, skb);
538 break;
539
540 case SKB_FCLONE_CLONE:
541 fclone_ref = (atomic_t *) (skb + 1);
542 other = skb - 1;
543
544 /* The clone portion is available for
545 * fast-cloning again.
546 */
547 skb->fclone = SKB_FCLONE_UNAVAILABLE;
548
549 if (atomic_dec_and_test(fclone_ref))
550 kmem_cache_free(skbuff_fclone_cache, other);
551 break;
552 }
553 }
554
555 static void skb_release_head_state(struct sk_buff *skb)
556 {
557 skb_dst_drop(skb);
558 #ifdef CONFIG_XFRM
559 secpath_put(skb->sp);
560 #endif
561 if (skb->destructor) {
562 WARN_ON(in_irq());
563 skb->destructor(skb);
564 }
565 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
566 nf_conntrack_put(skb->nfct);
567 #endif
568 #ifdef CONFIG_BRIDGE_NETFILTER
569 nf_bridge_put(skb->nf_bridge);
570 #endif
571 /* XXX: IS this still necessary? - JHS */
572 #ifdef CONFIG_NET_SCHED
573 skb->tc_index = 0;
574 #ifdef CONFIG_NET_CLS_ACT
575 skb->tc_verd = 0;
576 #endif
577 #endif
578 }
579
580 /* Free everything but the sk_buff shell. */
581 static void skb_release_all(struct sk_buff *skb)
582 {
583 skb_release_head_state(skb);
584 if (likely(skb->head))
585 skb_release_data(skb);
586 }
587
588 /**
589 * __kfree_skb - private function
590 * @skb: buffer
591 *
592 * Free an sk_buff. Release anything attached to the buffer.
593 * Clean the state. This is an internal helper function. Users should
594 * always call kfree_skb
595 */
596
597 void __kfree_skb(struct sk_buff *skb)
598 {
599 skb_release_all(skb);
600 kfree_skbmem(skb);
601 }
602 EXPORT_SYMBOL(__kfree_skb);
603
604 /**
605 * kfree_skb - free an sk_buff
606 * @skb: buffer to free
607 *
608 * Drop a reference to the buffer and free it if the usage count has
609 * hit zero.
610 */
611 void kfree_skb(struct sk_buff *skb)
612 {
613 if (unlikely(!skb))
614 return;
615 if (likely(atomic_read(&skb->users) == 1))
616 smp_rmb();
617 else if (likely(!atomic_dec_and_test(&skb->users)))
618 return;
619 trace_kfree_skb(skb, __builtin_return_address(0));
620 __kfree_skb(skb);
621 }
622 EXPORT_SYMBOL(kfree_skb);
623
624 void kfree_skb_list(struct sk_buff *segs)
625 {
626 while (segs) {
627 struct sk_buff *next = segs->next;
628
629 kfree_skb(segs);
630 segs = next;
631 }
632 }
633 EXPORT_SYMBOL(kfree_skb_list);
634
635 /**
636 * skb_tx_error - report an sk_buff xmit error
637 * @skb: buffer that triggered an error
638 *
639 * Report xmit error if a device callback is tracking this skb.
640 * skb must be freed afterwards.
641 */
642 void skb_tx_error(struct sk_buff *skb)
643 {
644 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
645 struct ubuf_info *uarg;
646
647 uarg = skb_shinfo(skb)->destructor_arg;
648 if (uarg->callback)
649 uarg->callback(uarg, false);
650 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
651 }
652 }
653 EXPORT_SYMBOL(skb_tx_error);
654
655 /**
656 * consume_skb - free an skbuff
657 * @skb: buffer to free
658 *
659 * Drop a ref to the buffer and free it if the usage count has hit zero
660 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
661 * is being dropped after a failure and notes that
662 */
663 void consume_skb(struct sk_buff *skb)
664 {
665 if (unlikely(!skb))
666 return;
667 if (likely(atomic_read(&skb->users) == 1))
668 smp_rmb();
669 else if (likely(!atomic_dec_and_test(&skb->users)))
670 return;
671 trace_consume_skb(skb);
672 __kfree_skb(skb);
673 }
674 EXPORT_SYMBOL(consume_skb);
675
676 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
677 {
678 new->tstamp = old->tstamp;
679 new->dev = old->dev;
680 new->transport_header = old->transport_header;
681 new->network_header = old->network_header;
682 new->mac_header = old->mac_header;
683 new->inner_protocol = old->inner_protocol;
684 new->inner_transport_header = old->inner_transport_header;
685 new->inner_network_header = old->inner_network_header;
686 new->inner_mac_header = old->inner_mac_header;
687 skb_dst_copy(new, old);
688 skb_copy_hash(new, old);
689 new->ooo_okay = old->ooo_okay;
690 new->no_fcs = old->no_fcs;
691 new->encapsulation = old->encapsulation;
692 new->encap_hdr_csum = old->encap_hdr_csum;
693 new->csum_valid = old->csum_valid;
694 new->csum_complete_sw = old->csum_complete_sw;
695 #ifdef CONFIG_XFRM
696 new->sp = secpath_get(old->sp);
697 #endif
698 memcpy(new->cb, old->cb, sizeof(old->cb));
699 new->csum = old->csum;
700 new->ignore_df = old->ignore_df;
701 new->pkt_type = old->pkt_type;
702 new->ip_summed = old->ip_summed;
703 skb_copy_queue_mapping(new, old);
704 new->priority = old->priority;
705 #if IS_ENABLED(CONFIG_IP_VS)
706 new->ipvs_property = old->ipvs_property;
707 #endif
708 new->pfmemalloc = old->pfmemalloc;
709 new->protocol = old->protocol;
710 new->mark = old->mark;
711 new->skb_iif = old->skb_iif;
712 __nf_copy(new, old);
713 #ifdef CONFIG_NET_SCHED
714 new->tc_index = old->tc_index;
715 #ifdef CONFIG_NET_CLS_ACT
716 new->tc_verd = old->tc_verd;
717 #endif
718 #endif
719 new->vlan_proto = old->vlan_proto;
720 new->vlan_tci = old->vlan_tci;
721
722 skb_copy_secmark(new, old);
723
724 #ifdef CONFIG_NET_RX_BUSY_POLL
725 new->napi_id = old->napi_id;
726 #endif
727 }
728
729 /*
730 * You should not add any new code to this function. Add it to
731 * __copy_skb_header above instead.
732 */
733 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
734 {
735 #define C(x) n->x = skb->x
736
737 n->next = n->prev = NULL;
738 n->sk = NULL;
739 __copy_skb_header(n, skb);
740
741 C(len);
742 C(data_len);
743 C(mac_len);
744 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
745 n->cloned = 1;
746 n->nohdr = 0;
747 n->destructor = NULL;
748 C(tail);
749 C(end);
750 C(head);
751 C(head_frag);
752 C(data);
753 C(truesize);
754 atomic_set(&n->users, 1);
755
756 atomic_inc(&(skb_shinfo(skb)->dataref));
757 skb->cloned = 1;
758
759 return n;
760 #undef C
761 }
762
763 /**
764 * skb_morph - morph one skb into another
765 * @dst: the skb to receive the contents
766 * @src: the skb to supply the contents
767 *
768 * This is identical to skb_clone except that the target skb is
769 * supplied by the user.
770 *
771 * The target skb is returned upon exit.
772 */
773 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
774 {
775 skb_release_all(dst);
776 return __skb_clone(dst, src);
777 }
778 EXPORT_SYMBOL_GPL(skb_morph);
779
780 /**
781 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
782 * @skb: the skb to modify
783 * @gfp_mask: allocation priority
784 *
785 * This must be called on SKBTX_DEV_ZEROCOPY skb.
786 * It will copy all frags into kernel and drop the reference
787 * to userspace pages.
788 *
789 * If this function is called from an interrupt gfp_mask() must be
790 * %GFP_ATOMIC.
791 *
792 * Returns 0 on success or a negative error code on failure
793 * to allocate kernel memory to copy to.
794 */
795 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
796 {
797 int i;
798 int num_frags = skb_shinfo(skb)->nr_frags;
799 struct page *page, *head = NULL;
800 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
801
802 for (i = 0; i < num_frags; i++) {
803 u8 *vaddr;
804 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
805
806 page = alloc_page(gfp_mask);
807 if (!page) {
808 while (head) {
809 struct page *next = (struct page *)page_private(head);
810 put_page(head);
811 head = next;
812 }
813 return -ENOMEM;
814 }
815 vaddr = kmap_atomic(skb_frag_page(f));
816 memcpy(page_address(page),
817 vaddr + f->page_offset, skb_frag_size(f));
818 kunmap_atomic(vaddr);
819 set_page_private(page, (unsigned long)head);
820 head = page;
821 }
822
823 /* skb frags release userspace buffers */
824 for (i = 0; i < num_frags; i++)
825 skb_frag_unref(skb, i);
826
827 uarg->callback(uarg, false);
828
829 /* skb frags point to kernel buffers */
830 for (i = num_frags - 1; i >= 0; i--) {
831 __skb_fill_page_desc(skb, i, head, 0,
832 skb_shinfo(skb)->frags[i].size);
833 head = (struct page *)page_private(head);
834 }
835
836 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
837 return 0;
838 }
839 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
840
841 /**
842 * skb_clone - duplicate an sk_buff
843 * @skb: buffer to clone
844 * @gfp_mask: allocation priority
845 *
846 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
847 * copies share the same packet data but not structure. The new
848 * buffer has a reference count of 1. If the allocation fails the
849 * function returns %NULL otherwise the new buffer is returned.
850 *
851 * If this function is called from an interrupt gfp_mask() must be
852 * %GFP_ATOMIC.
853 */
854
855 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
856 {
857 struct sk_buff *n;
858
859 if (skb_orphan_frags(skb, gfp_mask))
860 return NULL;
861
862 n = skb + 1;
863 if (skb->fclone == SKB_FCLONE_ORIG &&
864 n->fclone == SKB_FCLONE_UNAVAILABLE) {
865 atomic_t *fclone_ref = (atomic_t *) (n + 1);
866 n->fclone = SKB_FCLONE_CLONE;
867 atomic_inc(fclone_ref);
868 } else {
869 if (skb_pfmemalloc(skb))
870 gfp_mask |= __GFP_MEMALLOC;
871
872 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
873 if (!n)
874 return NULL;
875
876 kmemcheck_annotate_bitfield(n, flags1);
877 kmemcheck_annotate_bitfield(n, flags2);
878 n->fclone = SKB_FCLONE_UNAVAILABLE;
879 }
880
881 return __skb_clone(n, skb);
882 }
883 EXPORT_SYMBOL(skb_clone);
884
885 static void skb_headers_offset_update(struct sk_buff *skb, int off)
886 {
887 /* Only adjust this if it actually is csum_start rather than csum */
888 if (skb->ip_summed == CHECKSUM_PARTIAL)
889 skb->csum_start += off;
890 /* {transport,network,mac}_header and tail are relative to skb->head */
891 skb->transport_header += off;
892 skb->network_header += off;
893 if (skb_mac_header_was_set(skb))
894 skb->mac_header += off;
895 skb->inner_transport_header += off;
896 skb->inner_network_header += off;
897 skb->inner_mac_header += off;
898 }
899
900 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
901 {
902 __copy_skb_header(new, old);
903
904 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
905 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
906 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
907 }
908
909 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
910 {
911 if (skb_pfmemalloc(skb))
912 return SKB_ALLOC_RX;
913 return 0;
914 }
915
916 /**
917 * skb_copy - create private copy of an sk_buff
918 * @skb: buffer to copy
919 * @gfp_mask: allocation priority
920 *
921 * Make a copy of both an &sk_buff and its data. This is used when the
922 * caller wishes to modify the data and needs a private copy of the
923 * data to alter. Returns %NULL on failure or the pointer to the buffer
924 * on success. The returned buffer has a reference count of 1.
925 *
926 * As by-product this function converts non-linear &sk_buff to linear
927 * one, so that &sk_buff becomes completely private and caller is allowed
928 * to modify all the data of returned buffer. This means that this
929 * function is not recommended for use in circumstances when only
930 * header is going to be modified. Use pskb_copy() instead.
931 */
932
933 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
934 {
935 int headerlen = skb_headroom(skb);
936 unsigned int size = skb_end_offset(skb) + skb->data_len;
937 struct sk_buff *n = __alloc_skb(size, gfp_mask,
938 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
939
940 if (!n)
941 return NULL;
942
943 /* Set the data pointer */
944 skb_reserve(n, headerlen);
945 /* Set the tail pointer and length */
946 skb_put(n, skb->len);
947
948 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
949 BUG();
950
951 copy_skb_header(n, skb);
952 return n;
953 }
954 EXPORT_SYMBOL(skb_copy);
955
956 /**
957 * __pskb_copy_fclone - create copy of an sk_buff with private head.
958 * @skb: buffer to copy
959 * @headroom: headroom of new skb
960 * @gfp_mask: allocation priority
961 * @fclone: if true allocate the copy of the skb from the fclone
962 * cache instead of the head cache; it is recommended to set this
963 * to true for the cases where the copy will likely be cloned
964 *
965 * Make a copy of both an &sk_buff and part of its data, located
966 * in header. Fragmented data remain shared. This is used when
967 * the caller wishes to modify only header of &sk_buff and needs
968 * private copy of the header to alter. Returns %NULL on failure
969 * or the pointer to the buffer on success.
970 * The returned buffer has a reference count of 1.
971 */
972
973 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
974 gfp_t gfp_mask, bool fclone)
975 {
976 unsigned int size = skb_headlen(skb) + headroom;
977 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
978 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
979
980 if (!n)
981 goto out;
982
983 /* Set the data pointer */
984 skb_reserve(n, headroom);
985 /* Set the tail pointer and length */
986 skb_put(n, skb_headlen(skb));
987 /* Copy the bytes */
988 skb_copy_from_linear_data(skb, n->data, n->len);
989
990 n->truesize += skb->data_len;
991 n->data_len = skb->data_len;
992 n->len = skb->len;
993
994 if (skb_shinfo(skb)->nr_frags) {
995 int i;
996
997 if (skb_orphan_frags(skb, gfp_mask)) {
998 kfree_skb(n);
999 n = NULL;
1000 goto out;
1001 }
1002 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1003 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1004 skb_frag_ref(skb, i);
1005 }
1006 skb_shinfo(n)->nr_frags = i;
1007 }
1008
1009 if (skb_has_frag_list(skb)) {
1010 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1011 skb_clone_fraglist(n);
1012 }
1013
1014 copy_skb_header(n, skb);
1015 out:
1016 return n;
1017 }
1018 EXPORT_SYMBOL(__pskb_copy_fclone);
1019
1020 /**
1021 * pskb_expand_head - reallocate header of &sk_buff
1022 * @skb: buffer to reallocate
1023 * @nhead: room to add at head
1024 * @ntail: room to add at tail
1025 * @gfp_mask: allocation priority
1026 *
1027 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1028 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1029 * reference count of 1. Returns zero in the case of success or error,
1030 * if expansion failed. In the last case, &sk_buff is not changed.
1031 *
1032 * All the pointers pointing into skb header may change and must be
1033 * reloaded after call to this function.
1034 */
1035
1036 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1037 gfp_t gfp_mask)
1038 {
1039 int i;
1040 u8 *data;
1041 int size = nhead + skb_end_offset(skb) + ntail;
1042 long off;
1043
1044 BUG_ON(nhead < 0);
1045
1046 if (skb_shared(skb))
1047 BUG();
1048
1049 size = SKB_DATA_ALIGN(size);
1050
1051 if (skb_pfmemalloc(skb))
1052 gfp_mask |= __GFP_MEMALLOC;
1053 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1054 gfp_mask, NUMA_NO_NODE, NULL);
1055 if (!data)
1056 goto nodata;
1057 size = SKB_WITH_OVERHEAD(ksize(data));
1058
1059 /* Copy only real data... and, alas, header. This should be
1060 * optimized for the cases when header is void.
1061 */
1062 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1063
1064 memcpy((struct skb_shared_info *)(data + size),
1065 skb_shinfo(skb),
1066 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1067
1068 /*
1069 * if shinfo is shared we must drop the old head gracefully, but if it
1070 * is not we can just drop the old head and let the existing refcount
1071 * be since all we did is relocate the values
1072 */
1073 if (skb_cloned(skb)) {
1074 /* copy this zero copy skb frags */
1075 if (skb_orphan_frags(skb, gfp_mask))
1076 goto nofrags;
1077 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1078 skb_frag_ref(skb, i);
1079
1080 if (skb_has_frag_list(skb))
1081 skb_clone_fraglist(skb);
1082
1083 skb_release_data(skb);
1084 } else {
1085 skb_free_head(skb);
1086 }
1087 off = (data + nhead) - skb->head;
1088
1089 skb->head = data;
1090 skb->head_frag = 0;
1091 skb->data += off;
1092 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1093 skb->end = size;
1094 off = nhead;
1095 #else
1096 skb->end = skb->head + size;
1097 #endif
1098 skb->tail += off;
1099 skb_headers_offset_update(skb, nhead);
1100 skb->cloned = 0;
1101 skb->hdr_len = 0;
1102 skb->nohdr = 0;
1103 atomic_set(&skb_shinfo(skb)->dataref, 1);
1104 return 0;
1105
1106 nofrags:
1107 kfree(data);
1108 nodata:
1109 return -ENOMEM;
1110 }
1111 EXPORT_SYMBOL(pskb_expand_head);
1112
1113 /* Make private copy of skb with writable head and some headroom */
1114
1115 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1116 {
1117 struct sk_buff *skb2;
1118 int delta = headroom - skb_headroom(skb);
1119
1120 if (delta <= 0)
1121 skb2 = pskb_copy(skb, GFP_ATOMIC);
1122 else {
1123 skb2 = skb_clone(skb, GFP_ATOMIC);
1124 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1125 GFP_ATOMIC)) {
1126 kfree_skb(skb2);
1127 skb2 = NULL;
1128 }
1129 }
1130 return skb2;
1131 }
1132 EXPORT_SYMBOL(skb_realloc_headroom);
1133
1134 /**
1135 * skb_copy_expand - copy and expand sk_buff
1136 * @skb: buffer to copy
1137 * @newheadroom: new free bytes at head
1138 * @newtailroom: new free bytes at tail
1139 * @gfp_mask: allocation priority
1140 *
1141 * Make a copy of both an &sk_buff and its data and while doing so
1142 * allocate additional space.
1143 *
1144 * This is used when the caller wishes to modify the data and needs a
1145 * private copy of the data to alter as well as more space for new fields.
1146 * Returns %NULL on failure or the pointer to the buffer
1147 * on success. The returned buffer has a reference count of 1.
1148 *
1149 * You must pass %GFP_ATOMIC as the allocation priority if this function
1150 * is called from an interrupt.
1151 */
1152 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1153 int newheadroom, int newtailroom,
1154 gfp_t gfp_mask)
1155 {
1156 /*
1157 * Allocate the copy buffer
1158 */
1159 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1160 gfp_mask, skb_alloc_rx_flag(skb),
1161 NUMA_NO_NODE);
1162 int oldheadroom = skb_headroom(skb);
1163 int head_copy_len, head_copy_off;
1164
1165 if (!n)
1166 return NULL;
1167
1168 skb_reserve(n, newheadroom);
1169
1170 /* Set the tail pointer and length */
1171 skb_put(n, skb->len);
1172
1173 head_copy_len = oldheadroom;
1174 head_copy_off = 0;
1175 if (newheadroom <= head_copy_len)
1176 head_copy_len = newheadroom;
1177 else
1178 head_copy_off = newheadroom - head_copy_len;
1179
1180 /* Copy the linear header and data. */
1181 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1182 skb->len + head_copy_len))
1183 BUG();
1184
1185 copy_skb_header(n, skb);
1186
1187 skb_headers_offset_update(n, newheadroom - oldheadroom);
1188
1189 return n;
1190 }
1191 EXPORT_SYMBOL(skb_copy_expand);
1192
1193 /**
1194 * skb_pad - zero pad the tail of an skb
1195 * @skb: buffer to pad
1196 * @pad: space to pad
1197 *
1198 * Ensure that a buffer is followed by a padding area that is zero
1199 * filled. Used by network drivers which may DMA or transfer data
1200 * beyond the buffer end onto the wire.
1201 *
1202 * May return error in out of memory cases. The skb is freed on error.
1203 */
1204
1205 int skb_pad(struct sk_buff *skb, int pad)
1206 {
1207 int err;
1208 int ntail;
1209
1210 /* If the skbuff is non linear tailroom is always zero.. */
1211 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1212 memset(skb->data+skb->len, 0, pad);
1213 return 0;
1214 }
1215
1216 ntail = skb->data_len + pad - (skb->end - skb->tail);
1217 if (likely(skb_cloned(skb) || ntail > 0)) {
1218 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1219 if (unlikely(err))
1220 goto free_skb;
1221 }
1222
1223 /* FIXME: The use of this function with non-linear skb's really needs
1224 * to be audited.
1225 */
1226 err = skb_linearize(skb);
1227 if (unlikely(err))
1228 goto free_skb;
1229
1230 memset(skb->data + skb->len, 0, pad);
1231 return 0;
1232
1233 free_skb:
1234 kfree_skb(skb);
1235 return err;
1236 }
1237 EXPORT_SYMBOL(skb_pad);
1238
1239 /**
1240 * pskb_put - add data to the tail of a potentially fragmented buffer
1241 * @skb: start of the buffer to use
1242 * @tail: tail fragment of the buffer to use
1243 * @len: amount of data to add
1244 *
1245 * This function extends the used data area of the potentially
1246 * fragmented buffer. @tail must be the last fragment of @skb -- or
1247 * @skb itself. If this would exceed the total buffer size the kernel
1248 * will panic. A pointer to the first byte of the extra data is
1249 * returned.
1250 */
1251
1252 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1253 {
1254 if (tail != skb) {
1255 skb->data_len += len;
1256 skb->len += len;
1257 }
1258 return skb_put(tail, len);
1259 }
1260 EXPORT_SYMBOL_GPL(pskb_put);
1261
1262 /**
1263 * skb_put - add data to a buffer
1264 * @skb: buffer to use
1265 * @len: amount of data to add
1266 *
1267 * This function extends the used data area of the buffer. If this would
1268 * exceed the total buffer size the kernel will panic. A pointer to the
1269 * first byte of the extra data is returned.
1270 */
1271 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1272 {
1273 unsigned char *tmp = skb_tail_pointer(skb);
1274 SKB_LINEAR_ASSERT(skb);
1275 skb->tail += len;
1276 skb->len += len;
1277 if (unlikely(skb->tail > skb->end))
1278 skb_over_panic(skb, len, __builtin_return_address(0));
1279 return tmp;
1280 }
1281 EXPORT_SYMBOL(skb_put);
1282
1283 /**
1284 * skb_push - add data to the start of a buffer
1285 * @skb: buffer to use
1286 * @len: amount of data to add
1287 *
1288 * This function extends the used data area of the buffer at the buffer
1289 * start. If this would exceed the total buffer headroom the kernel will
1290 * panic. A pointer to the first byte of the extra data is returned.
1291 */
1292 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1293 {
1294 skb->data -= len;
1295 skb->len += len;
1296 if (unlikely(skb->data<skb->head))
1297 skb_under_panic(skb, len, __builtin_return_address(0));
1298 return skb->data;
1299 }
1300 EXPORT_SYMBOL(skb_push);
1301
1302 /**
1303 * skb_pull - remove data from the start of a buffer
1304 * @skb: buffer to use
1305 * @len: amount of data to remove
1306 *
1307 * This function removes data from the start of a buffer, returning
1308 * the memory to the headroom. A pointer to the next data in the buffer
1309 * is returned. Once the data has been pulled future pushes will overwrite
1310 * the old data.
1311 */
1312 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1313 {
1314 return skb_pull_inline(skb, len);
1315 }
1316 EXPORT_SYMBOL(skb_pull);
1317
1318 /**
1319 * skb_trim - remove end from a buffer
1320 * @skb: buffer to alter
1321 * @len: new length
1322 *
1323 * Cut the length of a buffer down by removing data from the tail. If
1324 * the buffer is already under the length specified it is not modified.
1325 * The skb must be linear.
1326 */
1327 void skb_trim(struct sk_buff *skb, unsigned int len)
1328 {
1329 if (skb->len > len)
1330 __skb_trim(skb, len);
1331 }
1332 EXPORT_SYMBOL(skb_trim);
1333
1334 /* Trims skb to length len. It can change skb pointers.
1335 */
1336
1337 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1338 {
1339 struct sk_buff **fragp;
1340 struct sk_buff *frag;
1341 int offset = skb_headlen(skb);
1342 int nfrags = skb_shinfo(skb)->nr_frags;
1343 int i;
1344 int err;
1345
1346 if (skb_cloned(skb) &&
1347 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1348 return err;
1349
1350 i = 0;
1351 if (offset >= len)
1352 goto drop_pages;
1353
1354 for (; i < nfrags; i++) {
1355 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1356
1357 if (end < len) {
1358 offset = end;
1359 continue;
1360 }
1361
1362 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1363
1364 drop_pages:
1365 skb_shinfo(skb)->nr_frags = i;
1366
1367 for (; i < nfrags; i++)
1368 skb_frag_unref(skb, i);
1369
1370 if (skb_has_frag_list(skb))
1371 skb_drop_fraglist(skb);
1372 goto done;
1373 }
1374
1375 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1376 fragp = &frag->next) {
1377 int end = offset + frag->len;
1378
1379 if (skb_shared(frag)) {
1380 struct sk_buff *nfrag;
1381
1382 nfrag = skb_clone(frag, GFP_ATOMIC);
1383 if (unlikely(!nfrag))
1384 return -ENOMEM;
1385
1386 nfrag->next = frag->next;
1387 consume_skb(frag);
1388 frag = nfrag;
1389 *fragp = frag;
1390 }
1391
1392 if (end < len) {
1393 offset = end;
1394 continue;
1395 }
1396
1397 if (end > len &&
1398 unlikely((err = pskb_trim(frag, len - offset))))
1399 return err;
1400
1401 if (frag->next)
1402 skb_drop_list(&frag->next);
1403 break;
1404 }
1405
1406 done:
1407 if (len > skb_headlen(skb)) {
1408 skb->data_len -= skb->len - len;
1409 skb->len = len;
1410 } else {
1411 skb->len = len;
1412 skb->data_len = 0;
1413 skb_set_tail_pointer(skb, len);
1414 }
1415
1416 return 0;
1417 }
1418 EXPORT_SYMBOL(___pskb_trim);
1419
1420 /**
1421 * __pskb_pull_tail - advance tail of skb header
1422 * @skb: buffer to reallocate
1423 * @delta: number of bytes to advance tail
1424 *
1425 * The function makes a sense only on a fragmented &sk_buff,
1426 * it expands header moving its tail forward and copying necessary
1427 * data from fragmented part.
1428 *
1429 * &sk_buff MUST have reference count of 1.
1430 *
1431 * Returns %NULL (and &sk_buff does not change) if pull failed
1432 * or value of new tail of skb in the case of success.
1433 *
1434 * All the pointers pointing into skb header may change and must be
1435 * reloaded after call to this function.
1436 */
1437
1438 /* Moves tail of skb head forward, copying data from fragmented part,
1439 * when it is necessary.
1440 * 1. It may fail due to malloc failure.
1441 * 2. It may change skb pointers.
1442 *
1443 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1444 */
1445 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1446 {
1447 /* If skb has not enough free space at tail, get new one
1448 * plus 128 bytes for future expansions. If we have enough
1449 * room at tail, reallocate without expansion only if skb is cloned.
1450 */
1451 int i, k, eat = (skb->tail + delta) - skb->end;
1452
1453 if (eat > 0 || skb_cloned(skb)) {
1454 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1455 GFP_ATOMIC))
1456 return NULL;
1457 }
1458
1459 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1460 BUG();
1461
1462 /* Optimization: no fragments, no reasons to preestimate
1463 * size of pulled pages. Superb.
1464 */
1465 if (!skb_has_frag_list(skb))
1466 goto pull_pages;
1467
1468 /* Estimate size of pulled pages. */
1469 eat = delta;
1470 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1471 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1472
1473 if (size >= eat)
1474 goto pull_pages;
1475 eat -= size;
1476 }
1477
1478 /* If we need update frag list, we are in troubles.
1479 * Certainly, it possible to add an offset to skb data,
1480 * but taking into account that pulling is expected to
1481 * be very rare operation, it is worth to fight against
1482 * further bloating skb head and crucify ourselves here instead.
1483 * Pure masohism, indeed. 8)8)
1484 */
1485 if (eat) {
1486 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1487 struct sk_buff *clone = NULL;
1488 struct sk_buff *insp = NULL;
1489
1490 do {
1491 BUG_ON(!list);
1492
1493 if (list->len <= eat) {
1494 /* Eaten as whole. */
1495 eat -= list->len;
1496 list = list->next;
1497 insp = list;
1498 } else {
1499 /* Eaten partially. */
1500
1501 if (skb_shared(list)) {
1502 /* Sucks! We need to fork list. :-( */
1503 clone = skb_clone(list, GFP_ATOMIC);
1504 if (!clone)
1505 return NULL;
1506 insp = list->next;
1507 list = clone;
1508 } else {
1509 /* This may be pulled without
1510 * problems. */
1511 insp = list;
1512 }
1513 if (!pskb_pull(list, eat)) {
1514 kfree_skb(clone);
1515 return NULL;
1516 }
1517 break;
1518 }
1519 } while (eat);
1520
1521 /* Free pulled out fragments. */
1522 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1523 skb_shinfo(skb)->frag_list = list->next;
1524 kfree_skb(list);
1525 }
1526 /* And insert new clone at head. */
1527 if (clone) {
1528 clone->next = list;
1529 skb_shinfo(skb)->frag_list = clone;
1530 }
1531 }
1532 /* Success! Now we may commit changes to skb data. */
1533
1534 pull_pages:
1535 eat = delta;
1536 k = 0;
1537 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1538 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1539
1540 if (size <= eat) {
1541 skb_frag_unref(skb, i);
1542 eat -= size;
1543 } else {
1544 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1545 if (eat) {
1546 skb_shinfo(skb)->frags[k].page_offset += eat;
1547 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1548 eat = 0;
1549 }
1550 k++;
1551 }
1552 }
1553 skb_shinfo(skb)->nr_frags = k;
1554
1555 skb->tail += delta;
1556 skb->data_len -= delta;
1557
1558 return skb_tail_pointer(skb);
1559 }
1560 EXPORT_SYMBOL(__pskb_pull_tail);
1561
1562 /**
1563 * skb_copy_bits - copy bits from skb to kernel buffer
1564 * @skb: source skb
1565 * @offset: offset in source
1566 * @to: destination buffer
1567 * @len: number of bytes to copy
1568 *
1569 * Copy the specified number of bytes from the source skb to the
1570 * destination buffer.
1571 *
1572 * CAUTION ! :
1573 * If its prototype is ever changed,
1574 * check arch/{*}/net/{*}.S files,
1575 * since it is called from BPF assembly code.
1576 */
1577 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1578 {
1579 int start = skb_headlen(skb);
1580 struct sk_buff *frag_iter;
1581 int i, copy;
1582
1583 if (offset > (int)skb->len - len)
1584 goto fault;
1585
1586 /* Copy header. */
1587 if ((copy = start - offset) > 0) {
1588 if (copy > len)
1589 copy = len;
1590 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1591 if ((len -= copy) == 0)
1592 return 0;
1593 offset += copy;
1594 to += copy;
1595 }
1596
1597 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1598 int end;
1599 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1600
1601 WARN_ON(start > offset + len);
1602
1603 end = start + skb_frag_size(f);
1604 if ((copy = end - offset) > 0) {
1605 u8 *vaddr;
1606
1607 if (copy > len)
1608 copy = len;
1609
1610 vaddr = kmap_atomic(skb_frag_page(f));
1611 memcpy(to,
1612 vaddr + f->page_offset + offset - start,
1613 copy);
1614 kunmap_atomic(vaddr);
1615
1616 if ((len -= copy) == 0)
1617 return 0;
1618 offset += copy;
1619 to += copy;
1620 }
1621 start = end;
1622 }
1623
1624 skb_walk_frags(skb, frag_iter) {
1625 int end;
1626
1627 WARN_ON(start > offset + len);
1628
1629 end = start + frag_iter->len;
1630 if ((copy = end - offset) > 0) {
1631 if (copy > len)
1632 copy = len;
1633 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1634 goto fault;
1635 if ((len -= copy) == 0)
1636 return 0;
1637 offset += copy;
1638 to += copy;
1639 }
1640 start = end;
1641 }
1642
1643 if (!len)
1644 return 0;
1645
1646 fault:
1647 return -EFAULT;
1648 }
1649 EXPORT_SYMBOL(skb_copy_bits);
1650
1651 /*
1652 * Callback from splice_to_pipe(), if we need to release some pages
1653 * at the end of the spd in case we error'ed out in filling the pipe.
1654 */
1655 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1656 {
1657 put_page(spd->pages[i]);
1658 }
1659
1660 static struct page *linear_to_page(struct page *page, unsigned int *len,
1661 unsigned int *offset,
1662 struct sock *sk)
1663 {
1664 struct page_frag *pfrag = sk_page_frag(sk);
1665
1666 if (!sk_page_frag_refill(sk, pfrag))
1667 return NULL;
1668
1669 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1670
1671 memcpy(page_address(pfrag->page) + pfrag->offset,
1672 page_address(page) + *offset, *len);
1673 *offset = pfrag->offset;
1674 pfrag->offset += *len;
1675
1676 return pfrag->page;
1677 }
1678
1679 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1680 struct page *page,
1681 unsigned int offset)
1682 {
1683 return spd->nr_pages &&
1684 spd->pages[spd->nr_pages - 1] == page &&
1685 (spd->partial[spd->nr_pages - 1].offset +
1686 spd->partial[spd->nr_pages - 1].len == offset);
1687 }
1688
1689 /*
1690 * Fill page/offset/length into spd, if it can hold more pages.
1691 */
1692 static bool spd_fill_page(struct splice_pipe_desc *spd,
1693 struct pipe_inode_info *pipe, struct page *page,
1694 unsigned int *len, unsigned int offset,
1695 bool linear,
1696 struct sock *sk)
1697 {
1698 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1699 return true;
1700
1701 if (linear) {
1702 page = linear_to_page(page, len, &offset, sk);
1703 if (!page)
1704 return true;
1705 }
1706 if (spd_can_coalesce(spd, page, offset)) {
1707 spd->partial[spd->nr_pages - 1].len += *len;
1708 return false;
1709 }
1710 get_page(page);
1711 spd->pages[spd->nr_pages] = page;
1712 spd->partial[spd->nr_pages].len = *len;
1713 spd->partial[spd->nr_pages].offset = offset;
1714 spd->nr_pages++;
1715
1716 return false;
1717 }
1718
1719 static bool __splice_segment(struct page *page, unsigned int poff,
1720 unsigned int plen, unsigned int *off,
1721 unsigned int *len,
1722 struct splice_pipe_desc *spd, bool linear,
1723 struct sock *sk,
1724 struct pipe_inode_info *pipe)
1725 {
1726 if (!*len)
1727 return true;
1728
1729 /* skip this segment if already processed */
1730 if (*off >= plen) {
1731 *off -= plen;
1732 return false;
1733 }
1734
1735 /* ignore any bits we already processed */
1736 poff += *off;
1737 plen -= *off;
1738 *off = 0;
1739
1740 do {
1741 unsigned int flen = min(*len, plen);
1742
1743 if (spd_fill_page(spd, pipe, page, &flen, poff,
1744 linear, sk))
1745 return true;
1746 poff += flen;
1747 plen -= flen;
1748 *len -= flen;
1749 } while (*len && plen);
1750
1751 return false;
1752 }
1753
1754 /*
1755 * Map linear and fragment data from the skb to spd. It reports true if the
1756 * pipe is full or if we already spliced the requested length.
1757 */
1758 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1759 unsigned int *offset, unsigned int *len,
1760 struct splice_pipe_desc *spd, struct sock *sk)
1761 {
1762 int seg;
1763
1764 /* map the linear part :
1765 * If skb->head_frag is set, this 'linear' part is backed by a
1766 * fragment, and if the head is not shared with any clones then
1767 * we can avoid a copy since we own the head portion of this page.
1768 */
1769 if (__splice_segment(virt_to_page(skb->data),
1770 (unsigned long) skb->data & (PAGE_SIZE - 1),
1771 skb_headlen(skb),
1772 offset, len, spd,
1773 skb_head_is_locked(skb),
1774 sk, pipe))
1775 return true;
1776
1777 /*
1778 * then map the fragments
1779 */
1780 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1781 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1782
1783 if (__splice_segment(skb_frag_page(f),
1784 f->page_offset, skb_frag_size(f),
1785 offset, len, spd, false, sk, pipe))
1786 return true;
1787 }
1788
1789 return false;
1790 }
1791
1792 /*
1793 * Map data from the skb to a pipe. Should handle both the linear part,
1794 * the fragments, and the frag list. It does NOT handle frag lists within
1795 * the frag list, if such a thing exists. We'd probably need to recurse to
1796 * handle that cleanly.
1797 */
1798 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1799 struct pipe_inode_info *pipe, unsigned int tlen,
1800 unsigned int flags)
1801 {
1802 struct partial_page partial[MAX_SKB_FRAGS];
1803 struct page *pages[MAX_SKB_FRAGS];
1804 struct splice_pipe_desc spd = {
1805 .pages = pages,
1806 .partial = partial,
1807 .nr_pages_max = MAX_SKB_FRAGS,
1808 .flags = flags,
1809 .ops = &nosteal_pipe_buf_ops,
1810 .spd_release = sock_spd_release,
1811 };
1812 struct sk_buff *frag_iter;
1813 struct sock *sk = skb->sk;
1814 int ret = 0;
1815
1816 /*
1817 * __skb_splice_bits() only fails if the output has no room left,
1818 * so no point in going over the frag_list for the error case.
1819 */
1820 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1821 goto done;
1822 else if (!tlen)
1823 goto done;
1824
1825 /*
1826 * now see if we have a frag_list to map
1827 */
1828 skb_walk_frags(skb, frag_iter) {
1829 if (!tlen)
1830 break;
1831 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1832 break;
1833 }
1834
1835 done:
1836 if (spd.nr_pages) {
1837 /*
1838 * Drop the socket lock, otherwise we have reverse
1839 * locking dependencies between sk_lock and i_mutex
1840 * here as compared to sendfile(). We enter here
1841 * with the socket lock held, and splice_to_pipe() will
1842 * grab the pipe inode lock. For sendfile() emulation,
1843 * we call into ->sendpage() with the i_mutex lock held
1844 * and networking will grab the socket lock.
1845 */
1846 release_sock(sk);
1847 ret = splice_to_pipe(pipe, &spd);
1848 lock_sock(sk);
1849 }
1850
1851 return ret;
1852 }
1853
1854 /**
1855 * skb_store_bits - store bits from kernel buffer to skb
1856 * @skb: destination buffer
1857 * @offset: offset in destination
1858 * @from: source buffer
1859 * @len: number of bytes to copy
1860 *
1861 * Copy the specified number of bytes from the source buffer to the
1862 * destination skb. This function handles all the messy bits of
1863 * traversing fragment lists and such.
1864 */
1865
1866 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1867 {
1868 int start = skb_headlen(skb);
1869 struct sk_buff *frag_iter;
1870 int i, copy;
1871
1872 if (offset > (int)skb->len - len)
1873 goto fault;
1874
1875 if ((copy = start - offset) > 0) {
1876 if (copy > len)
1877 copy = len;
1878 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1879 if ((len -= copy) == 0)
1880 return 0;
1881 offset += copy;
1882 from += copy;
1883 }
1884
1885 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1886 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1887 int end;
1888
1889 WARN_ON(start > offset + len);
1890
1891 end = start + skb_frag_size(frag);
1892 if ((copy = end - offset) > 0) {
1893 u8 *vaddr;
1894
1895 if (copy > len)
1896 copy = len;
1897
1898 vaddr = kmap_atomic(skb_frag_page(frag));
1899 memcpy(vaddr + frag->page_offset + offset - start,
1900 from, copy);
1901 kunmap_atomic(vaddr);
1902
1903 if ((len -= copy) == 0)
1904 return 0;
1905 offset += copy;
1906 from += copy;
1907 }
1908 start = end;
1909 }
1910
1911 skb_walk_frags(skb, frag_iter) {
1912 int end;
1913
1914 WARN_ON(start > offset + len);
1915
1916 end = start + frag_iter->len;
1917 if ((copy = end - offset) > 0) {
1918 if (copy > len)
1919 copy = len;
1920 if (skb_store_bits(frag_iter, offset - start,
1921 from, copy))
1922 goto fault;
1923 if ((len -= copy) == 0)
1924 return 0;
1925 offset += copy;
1926 from += copy;
1927 }
1928 start = end;
1929 }
1930 if (!len)
1931 return 0;
1932
1933 fault:
1934 return -EFAULT;
1935 }
1936 EXPORT_SYMBOL(skb_store_bits);
1937
1938 /* Checksum skb data. */
1939 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
1940 __wsum csum, const struct skb_checksum_ops *ops)
1941 {
1942 int start = skb_headlen(skb);
1943 int i, copy = start - offset;
1944 struct sk_buff *frag_iter;
1945 int pos = 0;
1946
1947 /* Checksum header. */
1948 if (copy > 0) {
1949 if (copy > len)
1950 copy = len;
1951 csum = ops->update(skb->data + offset, copy, csum);
1952 if ((len -= copy) == 0)
1953 return csum;
1954 offset += copy;
1955 pos = copy;
1956 }
1957
1958 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1959 int end;
1960 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1961
1962 WARN_ON(start > offset + len);
1963
1964 end = start + skb_frag_size(frag);
1965 if ((copy = end - offset) > 0) {
1966 __wsum csum2;
1967 u8 *vaddr;
1968
1969 if (copy > len)
1970 copy = len;
1971 vaddr = kmap_atomic(skb_frag_page(frag));
1972 csum2 = ops->update(vaddr + frag->page_offset +
1973 offset - start, copy, 0);
1974 kunmap_atomic(vaddr);
1975 csum = ops->combine(csum, csum2, pos, copy);
1976 if (!(len -= copy))
1977 return csum;
1978 offset += copy;
1979 pos += copy;
1980 }
1981 start = end;
1982 }
1983
1984 skb_walk_frags(skb, frag_iter) {
1985 int end;
1986
1987 WARN_ON(start > offset + len);
1988
1989 end = start + frag_iter->len;
1990 if ((copy = end - offset) > 0) {
1991 __wsum csum2;
1992 if (copy > len)
1993 copy = len;
1994 csum2 = __skb_checksum(frag_iter, offset - start,
1995 copy, 0, ops);
1996 csum = ops->combine(csum, csum2, pos, copy);
1997 if ((len -= copy) == 0)
1998 return csum;
1999 offset += copy;
2000 pos += copy;
2001 }
2002 start = end;
2003 }
2004 BUG_ON(len);
2005
2006 return csum;
2007 }
2008 EXPORT_SYMBOL(__skb_checksum);
2009
2010 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2011 int len, __wsum csum)
2012 {
2013 const struct skb_checksum_ops ops = {
2014 .update = csum_partial_ext,
2015 .combine = csum_block_add_ext,
2016 };
2017
2018 return __skb_checksum(skb, offset, len, csum, &ops);
2019 }
2020 EXPORT_SYMBOL(skb_checksum);
2021
2022 /* Both of above in one bottle. */
2023
2024 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2025 u8 *to, int len, __wsum csum)
2026 {
2027 int start = skb_headlen(skb);
2028 int i, copy = start - offset;
2029 struct sk_buff *frag_iter;
2030 int pos = 0;
2031
2032 /* Copy header. */
2033 if (copy > 0) {
2034 if (copy > len)
2035 copy = len;
2036 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2037 copy, csum);
2038 if ((len -= copy) == 0)
2039 return csum;
2040 offset += copy;
2041 to += copy;
2042 pos = copy;
2043 }
2044
2045 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2046 int end;
2047
2048 WARN_ON(start > offset + len);
2049
2050 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2051 if ((copy = end - offset) > 0) {
2052 __wsum csum2;
2053 u8 *vaddr;
2054 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2055
2056 if (copy > len)
2057 copy = len;
2058 vaddr = kmap_atomic(skb_frag_page(frag));
2059 csum2 = csum_partial_copy_nocheck(vaddr +
2060 frag->page_offset +
2061 offset - start, to,
2062 copy, 0);
2063 kunmap_atomic(vaddr);
2064 csum = csum_block_add(csum, csum2, pos);
2065 if (!(len -= copy))
2066 return csum;
2067 offset += copy;
2068 to += copy;
2069 pos += copy;
2070 }
2071 start = end;
2072 }
2073
2074 skb_walk_frags(skb, frag_iter) {
2075 __wsum csum2;
2076 int end;
2077
2078 WARN_ON(start > offset + len);
2079
2080 end = start + frag_iter->len;
2081 if ((copy = end - offset) > 0) {
2082 if (copy > len)
2083 copy = len;
2084 csum2 = skb_copy_and_csum_bits(frag_iter,
2085 offset - start,
2086 to, copy, 0);
2087 csum = csum_block_add(csum, csum2, pos);
2088 if ((len -= copy) == 0)
2089 return csum;
2090 offset += copy;
2091 to += copy;
2092 pos += copy;
2093 }
2094 start = end;
2095 }
2096 BUG_ON(len);
2097 return csum;
2098 }
2099 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2100
2101 /**
2102 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2103 * @from: source buffer
2104 *
2105 * Calculates the amount of linear headroom needed in the 'to' skb passed
2106 * into skb_zerocopy().
2107 */
2108 unsigned int
2109 skb_zerocopy_headlen(const struct sk_buff *from)
2110 {
2111 unsigned int hlen = 0;
2112
2113 if (!from->head_frag ||
2114 skb_headlen(from) < L1_CACHE_BYTES ||
2115 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2116 hlen = skb_headlen(from);
2117
2118 if (skb_has_frag_list(from))
2119 hlen = from->len;
2120
2121 return hlen;
2122 }
2123 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2124
2125 /**
2126 * skb_zerocopy - Zero copy skb to skb
2127 * @to: destination buffer
2128 * @from: source buffer
2129 * @len: number of bytes to copy from source buffer
2130 * @hlen: size of linear headroom in destination buffer
2131 *
2132 * Copies up to `len` bytes from `from` to `to` by creating references
2133 * to the frags in the source buffer.
2134 *
2135 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2136 * headroom in the `to` buffer.
2137 *
2138 * Return value:
2139 * 0: everything is OK
2140 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2141 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2142 */
2143 int
2144 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2145 {
2146 int i, j = 0;
2147 int plen = 0; /* length of skb->head fragment */
2148 int ret;
2149 struct page *page;
2150 unsigned int offset;
2151
2152 BUG_ON(!from->head_frag && !hlen);
2153
2154 /* dont bother with small payloads */
2155 if (len <= skb_tailroom(to))
2156 return skb_copy_bits(from, 0, skb_put(to, len), len);
2157
2158 if (hlen) {
2159 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2160 if (unlikely(ret))
2161 return ret;
2162 len -= hlen;
2163 } else {
2164 plen = min_t(int, skb_headlen(from), len);
2165 if (plen) {
2166 page = virt_to_head_page(from->head);
2167 offset = from->data - (unsigned char *)page_address(page);
2168 __skb_fill_page_desc(to, 0, page, offset, plen);
2169 get_page(page);
2170 j = 1;
2171 len -= plen;
2172 }
2173 }
2174
2175 to->truesize += len + plen;
2176 to->len += len + plen;
2177 to->data_len += len + plen;
2178
2179 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2180 skb_tx_error(from);
2181 return -ENOMEM;
2182 }
2183
2184 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2185 if (!len)
2186 break;
2187 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2188 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2189 len -= skb_shinfo(to)->frags[j].size;
2190 skb_frag_ref(to, j);
2191 j++;
2192 }
2193 skb_shinfo(to)->nr_frags = j;
2194
2195 return 0;
2196 }
2197 EXPORT_SYMBOL_GPL(skb_zerocopy);
2198
2199 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2200 {
2201 __wsum csum;
2202 long csstart;
2203
2204 if (skb->ip_summed == CHECKSUM_PARTIAL)
2205 csstart = skb_checksum_start_offset(skb);
2206 else
2207 csstart = skb_headlen(skb);
2208
2209 BUG_ON(csstart > skb_headlen(skb));
2210
2211 skb_copy_from_linear_data(skb, to, csstart);
2212
2213 csum = 0;
2214 if (csstart != skb->len)
2215 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2216 skb->len - csstart, 0);
2217
2218 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2219 long csstuff = csstart + skb->csum_offset;
2220
2221 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2222 }
2223 }
2224 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2225
2226 /**
2227 * skb_dequeue - remove from the head of the queue
2228 * @list: list to dequeue from
2229 *
2230 * Remove the head of the list. The list lock is taken so the function
2231 * may be used safely with other locking list functions. The head item is
2232 * returned or %NULL if the list is empty.
2233 */
2234
2235 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2236 {
2237 unsigned long flags;
2238 struct sk_buff *result;
2239
2240 spin_lock_irqsave(&list->lock, flags);
2241 result = __skb_dequeue(list);
2242 spin_unlock_irqrestore(&list->lock, flags);
2243 return result;
2244 }
2245 EXPORT_SYMBOL(skb_dequeue);
2246
2247 /**
2248 * skb_dequeue_tail - remove from the tail of the queue
2249 * @list: list to dequeue from
2250 *
2251 * Remove the tail of the list. The list lock is taken so the function
2252 * may be used safely with other locking list functions. The tail item is
2253 * returned or %NULL if the list is empty.
2254 */
2255 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2256 {
2257 unsigned long flags;
2258 struct sk_buff *result;
2259
2260 spin_lock_irqsave(&list->lock, flags);
2261 result = __skb_dequeue_tail(list);
2262 spin_unlock_irqrestore(&list->lock, flags);
2263 return result;
2264 }
2265 EXPORT_SYMBOL(skb_dequeue_tail);
2266
2267 /**
2268 * skb_queue_purge - empty a list
2269 * @list: list to empty
2270 *
2271 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2272 * the list and one reference dropped. This function takes the list
2273 * lock and is atomic with respect to other list locking functions.
2274 */
2275 void skb_queue_purge(struct sk_buff_head *list)
2276 {
2277 struct sk_buff *skb;
2278 while ((skb = skb_dequeue(list)) != NULL)
2279 kfree_skb(skb);
2280 }
2281 EXPORT_SYMBOL(skb_queue_purge);
2282
2283 /**
2284 * skb_queue_head - queue a buffer at the list head
2285 * @list: list to use
2286 * @newsk: buffer to queue
2287 *
2288 * Queue a buffer at the start of the list. This function takes the
2289 * list lock and can be used safely with other locking &sk_buff functions
2290 * safely.
2291 *
2292 * A buffer cannot be placed on two lists at the same time.
2293 */
2294 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2295 {
2296 unsigned long flags;
2297
2298 spin_lock_irqsave(&list->lock, flags);
2299 __skb_queue_head(list, newsk);
2300 spin_unlock_irqrestore(&list->lock, flags);
2301 }
2302 EXPORT_SYMBOL(skb_queue_head);
2303
2304 /**
2305 * skb_queue_tail - queue a buffer at the list tail
2306 * @list: list to use
2307 * @newsk: buffer to queue
2308 *
2309 * Queue a buffer at the tail of the list. This function takes the
2310 * list lock and can be used safely with other locking &sk_buff functions
2311 * safely.
2312 *
2313 * A buffer cannot be placed on two lists at the same time.
2314 */
2315 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2316 {
2317 unsigned long flags;
2318
2319 spin_lock_irqsave(&list->lock, flags);
2320 __skb_queue_tail(list, newsk);
2321 spin_unlock_irqrestore(&list->lock, flags);
2322 }
2323 EXPORT_SYMBOL(skb_queue_tail);
2324
2325 /**
2326 * skb_unlink - remove a buffer from a list
2327 * @skb: buffer to remove
2328 * @list: list to use
2329 *
2330 * Remove a packet from a list. The list locks are taken and this
2331 * function is atomic with respect to other list locked calls
2332 *
2333 * You must know what list the SKB is on.
2334 */
2335 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2336 {
2337 unsigned long flags;
2338
2339 spin_lock_irqsave(&list->lock, flags);
2340 __skb_unlink(skb, list);
2341 spin_unlock_irqrestore(&list->lock, flags);
2342 }
2343 EXPORT_SYMBOL(skb_unlink);
2344
2345 /**
2346 * skb_append - append a buffer
2347 * @old: buffer to insert after
2348 * @newsk: buffer to insert
2349 * @list: list to use
2350 *
2351 * Place a packet after a given packet in a list. The list locks are taken
2352 * and this function is atomic with respect to other list locked calls.
2353 * A buffer cannot be placed on two lists at the same time.
2354 */
2355 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2356 {
2357 unsigned long flags;
2358
2359 spin_lock_irqsave(&list->lock, flags);
2360 __skb_queue_after(list, old, newsk);
2361 spin_unlock_irqrestore(&list->lock, flags);
2362 }
2363 EXPORT_SYMBOL(skb_append);
2364
2365 /**
2366 * skb_insert - insert a buffer
2367 * @old: buffer to insert before
2368 * @newsk: buffer to insert
2369 * @list: list to use
2370 *
2371 * Place a packet before a given packet in a list. The list locks are
2372 * taken and this function is atomic with respect to other list locked
2373 * calls.
2374 *
2375 * A buffer cannot be placed on two lists at the same time.
2376 */
2377 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2378 {
2379 unsigned long flags;
2380
2381 spin_lock_irqsave(&list->lock, flags);
2382 __skb_insert(newsk, old->prev, old, list);
2383 spin_unlock_irqrestore(&list->lock, flags);
2384 }
2385 EXPORT_SYMBOL(skb_insert);
2386
2387 static inline void skb_split_inside_header(struct sk_buff *skb,
2388 struct sk_buff* skb1,
2389 const u32 len, const int pos)
2390 {
2391 int i;
2392
2393 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2394 pos - len);
2395 /* And move data appendix as is. */
2396 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2397 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2398
2399 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2400 skb_shinfo(skb)->nr_frags = 0;
2401 skb1->data_len = skb->data_len;
2402 skb1->len += skb1->data_len;
2403 skb->data_len = 0;
2404 skb->len = len;
2405 skb_set_tail_pointer(skb, len);
2406 }
2407
2408 static inline void skb_split_no_header(struct sk_buff *skb,
2409 struct sk_buff* skb1,
2410 const u32 len, int pos)
2411 {
2412 int i, k = 0;
2413 const int nfrags = skb_shinfo(skb)->nr_frags;
2414
2415 skb_shinfo(skb)->nr_frags = 0;
2416 skb1->len = skb1->data_len = skb->len - len;
2417 skb->len = len;
2418 skb->data_len = len - pos;
2419
2420 for (i = 0; i < nfrags; i++) {
2421 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2422
2423 if (pos + size > len) {
2424 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2425
2426 if (pos < len) {
2427 /* Split frag.
2428 * We have two variants in this case:
2429 * 1. Move all the frag to the second
2430 * part, if it is possible. F.e.
2431 * this approach is mandatory for TUX,
2432 * where splitting is expensive.
2433 * 2. Split is accurately. We make this.
2434 */
2435 skb_frag_ref(skb, i);
2436 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2437 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2438 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2439 skb_shinfo(skb)->nr_frags++;
2440 }
2441 k++;
2442 } else
2443 skb_shinfo(skb)->nr_frags++;
2444 pos += size;
2445 }
2446 skb_shinfo(skb1)->nr_frags = k;
2447 }
2448
2449 /**
2450 * skb_split - Split fragmented skb to two parts at length len.
2451 * @skb: the buffer to split
2452 * @skb1: the buffer to receive the second part
2453 * @len: new length for skb
2454 */
2455 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2456 {
2457 int pos = skb_headlen(skb);
2458
2459 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2460 if (len < pos) /* Split line is inside header. */
2461 skb_split_inside_header(skb, skb1, len, pos);
2462 else /* Second chunk has no header, nothing to copy. */
2463 skb_split_no_header(skb, skb1, len, pos);
2464 }
2465 EXPORT_SYMBOL(skb_split);
2466
2467 /* Shifting from/to a cloned skb is a no-go.
2468 *
2469 * Caller cannot keep skb_shinfo related pointers past calling here!
2470 */
2471 static int skb_prepare_for_shift(struct sk_buff *skb)
2472 {
2473 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2474 }
2475
2476 /**
2477 * skb_shift - Shifts paged data partially from skb to another
2478 * @tgt: buffer into which tail data gets added
2479 * @skb: buffer from which the paged data comes from
2480 * @shiftlen: shift up to this many bytes
2481 *
2482 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2483 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2484 * It's up to caller to free skb if everything was shifted.
2485 *
2486 * If @tgt runs out of frags, the whole operation is aborted.
2487 *
2488 * Skb cannot include anything else but paged data while tgt is allowed
2489 * to have non-paged data as well.
2490 *
2491 * TODO: full sized shift could be optimized but that would need
2492 * specialized skb free'er to handle frags without up-to-date nr_frags.
2493 */
2494 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2495 {
2496 int from, to, merge, todo;
2497 struct skb_frag_struct *fragfrom, *fragto;
2498
2499 BUG_ON(shiftlen > skb->len);
2500 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2501
2502 todo = shiftlen;
2503 from = 0;
2504 to = skb_shinfo(tgt)->nr_frags;
2505 fragfrom = &skb_shinfo(skb)->frags[from];
2506
2507 /* Actual merge is delayed until the point when we know we can
2508 * commit all, so that we don't have to undo partial changes
2509 */
2510 if (!to ||
2511 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2512 fragfrom->page_offset)) {
2513 merge = -1;
2514 } else {
2515 merge = to - 1;
2516
2517 todo -= skb_frag_size(fragfrom);
2518 if (todo < 0) {
2519 if (skb_prepare_for_shift(skb) ||
2520 skb_prepare_for_shift(tgt))
2521 return 0;
2522
2523 /* All previous frag pointers might be stale! */
2524 fragfrom = &skb_shinfo(skb)->frags[from];
2525 fragto = &skb_shinfo(tgt)->frags[merge];
2526
2527 skb_frag_size_add(fragto, shiftlen);
2528 skb_frag_size_sub(fragfrom, shiftlen);
2529 fragfrom->page_offset += shiftlen;
2530
2531 goto onlymerged;
2532 }
2533
2534 from++;
2535 }
2536
2537 /* Skip full, not-fitting skb to avoid expensive operations */
2538 if ((shiftlen == skb->len) &&
2539 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2540 return 0;
2541
2542 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2543 return 0;
2544
2545 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2546 if (to == MAX_SKB_FRAGS)
2547 return 0;
2548
2549 fragfrom = &skb_shinfo(skb)->frags[from];
2550 fragto = &skb_shinfo(tgt)->frags[to];
2551
2552 if (todo >= skb_frag_size(fragfrom)) {
2553 *fragto = *fragfrom;
2554 todo -= skb_frag_size(fragfrom);
2555 from++;
2556 to++;
2557
2558 } else {
2559 __skb_frag_ref(fragfrom);
2560 fragto->page = fragfrom->page;
2561 fragto->page_offset = fragfrom->page_offset;
2562 skb_frag_size_set(fragto, todo);
2563
2564 fragfrom->page_offset += todo;
2565 skb_frag_size_sub(fragfrom, todo);
2566 todo = 0;
2567
2568 to++;
2569 break;
2570 }
2571 }
2572
2573 /* Ready to "commit" this state change to tgt */
2574 skb_shinfo(tgt)->nr_frags = to;
2575
2576 if (merge >= 0) {
2577 fragfrom = &skb_shinfo(skb)->frags[0];
2578 fragto = &skb_shinfo(tgt)->frags[merge];
2579
2580 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2581 __skb_frag_unref(fragfrom);
2582 }
2583
2584 /* Reposition in the original skb */
2585 to = 0;
2586 while (from < skb_shinfo(skb)->nr_frags)
2587 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2588 skb_shinfo(skb)->nr_frags = to;
2589
2590 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2591
2592 onlymerged:
2593 /* Most likely the tgt won't ever need its checksum anymore, skb on
2594 * the other hand might need it if it needs to be resent
2595 */
2596 tgt->ip_summed = CHECKSUM_PARTIAL;
2597 skb->ip_summed = CHECKSUM_PARTIAL;
2598
2599 /* Yak, is it really working this way? Some helper please? */
2600 skb->len -= shiftlen;
2601 skb->data_len -= shiftlen;
2602 skb->truesize -= shiftlen;
2603 tgt->len += shiftlen;
2604 tgt->data_len += shiftlen;
2605 tgt->truesize += shiftlen;
2606
2607 return shiftlen;
2608 }
2609
2610 /**
2611 * skb_prepare_seq_read - Prepare a sequential read of skb data
2612 * @skb: the buffer to read
2613 * @from: lower offset of data to be read
2614 * @to: upper offset of data to be read
2615 * @st: state variable
2616 *
2617 * Initializes the specified state variable. Must be called before
2618 * invoking skb_seq_read() for the first time.
2619 */
2620 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2621 unsigned int to, struct skb_seq_state *st)
2622 {
2623 st->lower_offset = from;
2624 st->upper_offset = to;
2625 st->root_skb = st->cur_skb = skb;
2626 st->frag_idx = st->stepped_offset = 0;
2627 st->frag_data = NULL;
2628 }
2629 EXPORT_SYMBOL(skb_prepare_seq_read);
2630
2631 /**
2632 * skb_seq_read - Sequentially read skb data
2633 * @consumed: number of bytes consumed by the caller so far
2634 * @data: destination pointer for data to be returned
2635 * @st: state variable
2636 *
2637 * Reads a block of skb data at @consumed relative to the
2638 * lower offset specified to skb_prepare_seq_read(). Assigns
2639 * the head of the data block to @data and returns the length
2640 * of the block or 0 if the end of the skb data or the upper
2641 * offset has been reached.
2642 *
2643 * The caller is not required to consume all of the data
2644 * returned, i.e. @consumed is typically set to the number
2645 * of bytes already consumed and the next call to
2646 * skb_seq_read() will return the remaining part of the block.
2647 *
2648 * Note 1: The size of each block of data returned can be arbitrary,
2649 * this limitation is the cost for zerocopy seqeuental
2650 * reads of potentially non linear data.
2651 *
2652 * Note 2: Fragment lists within fragments are not implemented
2653 * at the moment, state->root_skb could be replaced with
2654 * a stack for this purpose.
2655 */
2656 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2657 struct skb_seq_state *st)
2658 {
2659 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2660 skb_frag_t *frag;
2661
2662 if (unlikely(abs_offset >= st->upper_offset)) {
2663 if (st->frag_data) {
2664 kunmap_atomic(st->frag_data);
2665 st->frag_data = NULL;
2666 }
2667 return 0;
2668 }
2669
2670 next_skb:
2671 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2672
2673 if (abs_offset < block_limit && !st->frag_data) {
2674 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2675 return block_limit - abs_offset;
2676 }
2677
2678 if (st->frag_idx == 0 && !st->frag_data)
2679 st->stepped_offset += skb_headlen(st->cur_skb);
2680
2681 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2682 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2683 block_limit = skb_frag_size(frag) + st->stepped_offset;
2684
2685 if (abs_offset < block_limit) {
2686 if (!st->frag_data)
2687 st->frag_data = kmap_atomic(skb_frag_page(frag));
2688
2689 *data = (u8 *) st->frag_data + frag->page_offset +
2690 (abs_offset - st->stepped_offset);
2691
2692 return block_limit - abs_offset;
2693 }
2694
2695 if (st->frag_data) {
2696 kunmap_atomic(st->frag_data);
2697 st->frag_data = NULL;
2698 }
2699
2700 st->frag_idx++;
2701 st->stepped_offset += skb_frag_size(frag);
2702 }
2703
2704 if (st->frag_data) {
2705 kunmap_atomic(st->frag_data);
2706 st->frag_data = NULL;
2707 }
2708
2709 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2710 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2711 st->frag_idx = 0;
2712 goto next_skb;
2713 } else if (st->cur_skb->next) {
2714 st->cur_skb = st->cur_skb->next;
2715 st->frag_idx = 0;
2716 goto next_skb;
2717 }
2718
2719 return 0;
2720 }
2721 EXPORT_SYMBOL(skb_seq_read);
2722
2723 /**
2724 * skb_abort_seq_read - Abort a sequential read of skb data
2725 * @st: state variable
2726 *
2727 * Must be called if skb_seq_read() was not called until it
2728 * returned 0.
2729 */
2730 void skb_abort_seq_read(struct skb_seq_state *st)
2731 {
2732 if (st->frag_data)
2733 kunmap_atomic(st->frag_data);
2734 }
2735 EXPORT_SYMBOL(skb_abort_seq_read);
2736
2737 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2738
2739 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2740 struct ts_config *conf,
2741 struct ts_state *state)
2742 {
2743 return skb_seq_read(offset, text, TS_SKB_CB(state));
2744 }
2745
2746 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2747 {
2748 skb_abort_seq_read(TS_SKB_CB(state));
2749 }
2750
2751 /**
2752 * skb_find_text - Find a text pattern in skb data
2753 * @skb: the buffer to look in
2754 * @from: search offset
2755 * @to: search limit
2756 * @config: textsearch configuration
2757 * @state: uninitialized textsearch state variable
2758 *
2759 * Finds a pattern in the skb data according to the specified
2760 * textsearch configuration. Use textsearch_next() to retrieve
2761 * subsequent occurrences of the pattern. Returns the offset
2762 * to the first occurrence or UINT_MAX if no match was found.
2763 */
2764 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2765 unsigned int to, struct ts_config *config,
2766 struct ts_state *state)
2767 {
2768 unsigned int ret;
2769
2770 config->get_next_block = skb_ts_get_next_block;
2771 config->finish = skb_ts_finish;
2772
2773 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2774
2775 ret = textsearch_find(config, state);
2776 return (ret <= to - from ? ret : UINT_MAX);
2777 }
2778 EXPORT_SYMBOL(skb_find_text);
2779
2780 /**
2781 * skb_append_datato_frags - append the user data to a skb
2782 * @sk: sock structure
2783 * @skb: skb structure to be appened with user data.
2784 * @getfrag: call back function to be used for getting the user data
2785 * @from: pointer to user message iov
2786 * @length: length of the iov message
2787 *
2788 * Description: This procedure append the user data in the fragment part
2789 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2790 */
2791 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2792 int (*getfrag)(void *from, char *to, int offset,
2793 int len, int odd, struct sk_buff *skb),
2794 void *from, int length)
2795 {
2796 int frg_cnt = skb_shinfo(skb)->nr_frags;
2797 int copy;
2798 int offset = 0;
2799 int ret;
2800 struct page_frag *pfrag = &current->task_frag;
2801
2802 do {
2803 /* Return error if we don't have space for new frag */
2804 if (frg_cnt >= MAX_SKB_FRAGS)
2805 return -EMSGSIZE;
2806
2807 if (!sk_page_frag_refill(sk, pfrag))
2808 return -ENOMEM;
2809
2810 /* copy the user data to page */
2811 copy = min_t(int, length, pfrag->size - pfrag->offset);
2812
2813 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2814 offset, copy, 0, skb);
2815 if (ret < 0)
2816 return -EFAULT;
2817
2818 /* copy was successful so update the size parameters */
2819 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2820 copy);
2821 frg_cnt++;
2822 pfrag->offset += copy;
2823 get_page(pfrag->page);
2824
2825 skb->truesize += copy;
2826 atomic_add(copy, &sk->sk_wmem_alloc);
2827 skb->len += copy;
2828 skb->data_len += copy;
2829 offset += copy;
2830 length -= copy;
2831
2832 } while (length > 0);
2833
2834 return 0;
2835 }
2836 EXPORT_SYMBOL(skb_append_datato_frags);
2837
2838 /**
2839 * skb_pull_rcsum - pull skb and update receive checksum
2840 * @skb: buffer to update
2841 * @len: length of data pulled
2842 *
2843 * This function performs an skb_pull on the packet and updates
2844 * the CHECKSUM_COMPLETE checksum. It should be used on
2845 * receive path processing instead of skb_pull unless you know
2846 * that the checksum difference is zero (e.g., a valid IP header)
2847 * or you are setting ip_summed to CHECKSUM_NONE.
2848 */
2849 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2850 {
2851 BUG_ON(len > skb->len);
2852 skb->len -= len;
2853 BUG_ON(skb->len < skb->data_len);
2854 skb_postpull_rcsum(skb, skb->data, len);
2855 return skb->data += len;
2856 }
2857 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2858
2859 /**
2860 * skb_segment - Perform protocol segmentation on skb.
2861 * @head_skb: buffer to segment
2862 * @features: features for the output path (see dev->features)
2863 *
2864 * This function performs segmentation on the given skb. It returns
2865 * a pointer to the first in a list of new skbs for the segments.
2866 * In case of error it returns ERR_PTR(err).
2867 */
2868 struct sk_buff *skb_segment(struct sk_buff *head_skb,
2869 netdev_features_t features)
2870 {
2871 struct sk_buff *segs = NULL;
2872 struct sk_buff *tail = NULL;
2873 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
2874 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
2875 unsigned int mss = skb_shinfo(head_skb)->gso_size;
2876 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
2877 struct sk_buff *frag_skb = head_skb;
2878 unsigned int offset = doffset;
2879 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
2880 unsigned int headroom;
2881 unsigned int len;
2882 __be16 proto;
2883 bool csum;
2884 int sg = !!(features & NETIF_F_SG);
2885 int nfrags = skb_shinfo(head_skb)->nr_frags;
2886 int err = -ENOMEM;
2887 int i = 0;
2888 int pos;
2889 int dummy;
2890
2891 __skb_push(head_skb, doffset);
2892 proto = skb_network_protocol(head_skb, &dummy);
2893 if (unlikely(!proto))
2894 return ERR_PTR(-EINVAL);
2895
2896 csum = !head_skb->encap_hdr_csum &&
2897 !!can_checksum_protocol(features, proto);
2898
2899 headroom = skb_headroom(head_skb);
2900 pos = skb_headlen(head_skb);
2901
2902 do {
2903 struct sk_buff *nskb;
2904 skb_frag_t *nskb_frag;
2905 int hsize;
2906 int size;
2907
2908 len = head_skb->len - offset;
2909 if (len > mss)
2910 len = mss;
2911
2912 hsize = skb_headlen(head_skb) - offset;
2913 if (hsize < 0)
2914 hsize = 0;
2915 if (hsize > len || !sg)
2916 hsize = len;
2917
2918 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
2919 (skb_headlen(list_skb) == len || sg)) {
2920 BUG_ON(skb_headlen(list_skb) > len);
2921
2922 i = 0;
2923 nfrags = skb_shinfo(list_skb)->nr_frags;
2924 frag = skb_shinfo(list_skb)->frags;
2925 frag_skb = list_skb;
2926 pos += skb_headlen(list_skb);
2927
2928 while (pos < offset + len) {
2929 BUG_ON(i >= nfrags);
2930
2931 size = skb_frag_size(frag);
2932 if (pos + size > offset + len)
2933 break;
2934
2935 i++;
2936 pos += size;
2937 frag++;
2938 }
2939
2940 nskb = skb_clone(list_skb, GFP_ATOMIC);
2941 list_skb = list_skb->next;
2942
2943 if (unlikely(!nskb))
2944 goto err;
2945
2946 if (unlikely(pskb_trim(nskb, len))) {
2947 kfree_skb(nskb);
2948 goto err;
2949 }
2950
2951 hsize = skb_end_offset(nskb);
2952 if (skb_cow_head(nskb, doffset + headroom)) {
2953 kfree_skb(nskb);
2954 goto err;
2955 }
2956
2957 nskb->truesize += skb_end_offset(nskb) - hsize;
2958 skb_release_head_state(nskb);
2959 __skb_push(nskb, doffset);
2960 } else {
2961 nskb = __alloc_skb(hsize + doffset + headroom,
2962 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
2963 NUMA_NO_NODE);
2964
2965 if (unlikely(!nskb))
2966 goto err;
2967
2968 skb_reserve(nskb, headroom);
2969 __skb_put(nskb, doffset);
2970 }
2971
2972 if (segs)
2973 tail->next = nskb;
2974 else
2975 segs = nskb;
2976 tail = nskb;
2977
2978 __copy_skb_header(nskb, head_skb);
2979 nskb->mac_len = head_skb->mac_len;
2980
2981 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
2982
2983 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
2984 nskb->data - tnl_hlen,
2985 doffset + tnl_hlen);
2986
2987 if (nskb->len == len + doffset)
2988 goto perform_csum_check;
2989
2990 if (!sg) {
2991 nskb->ip_summed = CHECKSUM_NONE;
2992 nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
2993 skb_put(nskb, len),
2994 len, 0);
2995 SKB_GSO_CB(nskb)->csum_start =
2996 skb_headroom(nskb) + doffset;
2997 continue;
2998 }
2999
3000 nskb_frag = skb_shinfo(nskb)->frags;
3001
3002 skb_copy_from_linear_data_offset(head_skb, offset,
3003 skb_put(nskb, hsize), hsize);
3004
3005 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3006 SKBTX_SHARED_FRAG;
3007
3008 while (pos < offset + len) {
3009 if (i >= nfrags) {
3010 BUG_ON(skb_headlen(list_skb));
3011
3012 i = 0;
3013 nfrags = skb_shinfo(list_skb)->nr_frags;
3014 frag = skb_shinfo(list_skb)->frags;
3015 frag_skb = list_skb;
3016
3017 BUG_ON(!nfrags);
3018
3019 list_skb = list_skb->next;
3020 }
3021
3022 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3023 MAX_SKB_FRAGS)) {
3024 net_warn_ratelimited(
3025 "skb_segment: too many frags: %u %u\n",
3026 pos, mss);
3027 goto err;
3028 }
3029
3030 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3031 goto err;
3032
3033 *nskb_frag = *frag;
3034 __skb_frag_ref(nskb_frag);
3035 size = skb_frag_size(nskb_frag);
3036
3037 if (pos < offset) {
3038 nskb_frag->page_offset += offset - pos;
3039 skb_frag_size_sub(nskb_frag, offset - pos);
3040 }
3041
3042 skb_shinfo(nskb)->nr_frags++;
3043
3044 if (pos + size <= offset + len) {
3045 i++;
3046 frag++;
3047 pos += size;
3048 } else {
3049 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3050 goto skip_fraglist;
3051 }
3052
3053 nskb_frag++;
3054 }
3055
3056 skip_fraglist:
3057 nskb->data_len = len - hsize;
3058 nskb->len += nskb->data_len;
3059 nskb->truesize += nskb->data_len;
3060
3061 perform_csum_check:
3062 if (!csum) {
3063 nskb->csum = skb_checksum(nskb, doffset,
3064 nskb->len - doffset, 0);
3065 nskb->ip_summed = CHECKSUM_NONE;
3066 SKB_GSO_CB(nskb)->csum_start =
3067 skb_headroom(nskb) + doffset;
3068 }
3069 } while ((offset += len) < head_skb->len);
3070
3071 return segs;
3072
3073 err:
3074 kfree_skb_list(segs);
3075 return ERR_PTR(err);
3076 }
3077 EXPORT_SYMBOL_GPL(skb_segment);
3078
3079 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3080 {
3081 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3082 unsigned int offset = skb_gro_offset(skb);
3083 unsigned int headlen = skb_headlen(skb);
3084 struct sk_buff *nskb, *lp, *p = *head;
3085 unsigned int len = skb_gro_len(skb);
3086 unsigned int delta_truesize;
3087 unsigned int headroom;
3088
3089 if (unlikely(p->len + len >= 65536))
3090 return -E2BIG;
3091
3092 lp = NAPI_GRO_CB(p)->last;
3093 pinfo = skb_shinfo(lp);
3094
3095 if (headlen <= offset) {
3096 skb_frag_t *frag;
3097 skb_frag_t *frag2;
3098 int i = skbinfo->nr_frags;
3099 int nr_frags = pinfo->nr_frags + i;
3100
3101 if (nr_frags > MAX_SKB_FRAGS)
3102 goto merge;
3103
3104 offset -= headlen;
3105 pinfo->nr_frags = nr_frags;
3106 skbinfo->nr_frags = 0;
3107
3108 frag = pinfo->frags + nr_frags;
3109 frag2 = skbinfo->frags + i;
3110 do {
3111 *--frag = *--frag2;
3112 } while (--i);
3113
3114 frag->page_offset += offset;
3115 skb_frag_size_sub(frag, offset);
3116
3117 /* all fragments truesize : remove (head size + sk_buff) */
3118 delta_truesize = skb->truesize -
3119 SKB_TRUESIZE(skb_end_offset(skb));
3120
3121 skb->truesize -= skb->data_len;
3122 skb->len -= skb->data_len;
3123 skb->data_len = 0;
3124
3125 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3126 goto done;
3127 } else if (skb->head_frag) {
3128 int nr_frags = pinfo->nr_frags;
3129 skb_frag_t *frag = pinfo->frags + nr_frags;
3130 struct page *page = virt_to_head_page(skb->head);
3131 unsigned int first_size = headlen - offset;
3132 unsigned int first_offset;
3133
3134 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3135 goto merge;
3136
3137 first_offset = skb->data -
3138 (unsigned char *)page_address(page) +
3139 offset;
3140
3141 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3142
3143 frag->page.p = page;
3144 frag->page_offset = first_offset;
3145 skb_frag_size_set(frag, first_size);
3146
3147 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3148 /* We dont need to clear skbinfo->nr_frags here */
3149
3150 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3151 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3152 goto done;
3153 }
3154 if (pinfo->frag_list)
3155 goto merge;
3156 if (skb_gro_len(p) != pinfo->gso_size)
3157 return -E2BIG;
3158
3159 headroom = skb_headroom(p);
3160 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3161 if (unlikely(!nskb))
3162 return -ENOMEM;
3163
3164 __copy_skb_header(nskb, p);
3165 nskb->mac_len = p->mac_len;
3166
3167 skb_reserve(nskb, headroom);
3168 __skb_put(nskb, skb_gro_offset(p));
3169
3170 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3171 skb_set_network_header(nskb, skb_network_offset(p));
3172 skb_set_transport_header(nskb, skb_transport_offset(p));
3173
3174 __skb_pull(p, skb_gro_offset(p));
3175 memcpy(skb_mac_header(nskb), skb_mac_header(p),
3176 p->data - skb_mac_header(p));
3177
3178 skb_shinfo(nskb)->frag_list = p;
3179 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3180 pinfo->gso_size = 0;
3181 skb_header_release(p);
3182 NAPI_GRO_CB(nskb)->last = p;
3183
3184 nskb->data_len += p->len;
3185 nskb->truesize += p->truesize;
3186 nskb->len += p->len;
3187
3188 *head = nskb;
3189 nskb->next = p->next;
3190 p->next = NULL;
3191
3192 p = nskb;
3193
3194 merge:
3195 delta_truesize = skb->truesize;
3196 if (offset > headlen) {
3197 unsigned int eat = offset - headlen;
3198
3199 skbinfo->frags[0].page_offset += eat;
3200 skb_frag_size_sub(&skbinfo->frags[0], eat);
3201 skb->data_len -= eat;
3202 skb->len -= eat;
3203 offset = headlen;
3204 }
3205
3206 __skb_pull(skb, offset);
3207
3208 if (NAPI_GRO_CB(p)->last == p)
3209 skb_shinfo(p)->frag_list = skb;
3210 else
3211 NAPI_GRO_CB(p)->last->next = skb;
3212 NAPI_GRO_CB(p)->last = skb;
3213 skb_header_release(skb);
3214 lp = p;
3215
3216 done:
3217 NAPI_GRO_CB(p)->count++;
3218 p->data_len += len;
3219 p->truesize += delta_truesize;
3220 p->len += len;
3221 if (lp != p) {
3222 lp->data_len += len;
3223 lp->truesize += delta_truesize;
3224 lp->len += len;
3225 }
3226 NAPI_GRO_CB(skb)->same_flow = 1;
3227 return 0;
3228 }
3229 EXPORT_SYMBOL_GPL(skb_gro_receive);
3230
3231 void __init skb_init(void)
3232 {
3233 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3234 sizeof(struct sk_buff),
3235 0,
3236 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3237 NULL);
3238 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3239 (2*sizeof(struct sk_buff)) +
3240 sizeof(atomic_t),
3241 0,
3242 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3243 NULL);
3244 }
3245
3246 /**
3247 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3248 * @skb: Socket buffer containing the buffers to be mapped
3249 * @sg: The scatter-gather list to map into
3250 * @offset: The offset into the buffer's contents to start mapping
3251 * @len: Length of buffer space to be mapped
3252 *
3253 * Fill the specified scatter-gather list with mappings/pointers into a
3254 * region of the buffer space attached to a socket buffer.
3255 */
3256 static int
3257 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3258 {
3259 int start = skb_headlen(skb);
3260 int i, copy = start - offset;
3261 struct sk_buff *frag_iter;
3262 int elt = 0;
3263
3264 if (copy > 0) {
3265 if (copy > len)
3266 copy = len;
3267 sg_set_buf(sg, skb->data + offset, copy);
3268 elt++;
3269 if ((len -= copy) == 0)
3270 return elt;
3271 offset += copy;
3272 }
3273
3274 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3275 int end;
3276
3277 WARN_ON(start > offset + len);
3278
3279 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3280 if ((copy = end - offset) > 0) {
3281 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3282
3283 if (copy > len)
3284 copy = len;
3285 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3286 frag->page_offset+offset-start);
3287 elt++;
3288 if (!(len -= copy))
3289 return elt;
3290 offset += copy;
3291 }
3292 start = end;
3293 }
3294
3295 skb_walk_frags(skb, frag_iter) {
3296 int end;
3297
3298 WARN_ON(start > offset + len);
3299
3300 end = start + frag_iter->len;
3301 if ((copy = end - offset) > 0) {
3302 if (copy > len)
3303 copy = len;
3304 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3305 copy);
3306 if ((len -= copy) == 0)
3307 return elt;
3308 offset += copy;
3309 }
3310 start = end;
3311 }
3312 BUG_ON(len);
3313 return elt;
3314 }
3315
3316 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3317 * sglist without mark the sg which contain last skb data as the end.
3318 * So the caller can mannipulate sg list as will when padding new data after
3319 * the first call without calling sg_unmark_end to expend sg list.
3320 *
3321 * Scenario to use skb_to_sgvec_nomark:
3322 * 1. sg_init_table
3323 * 2. skb_to_sgvec_nomark(payload1)
3324 * 3. skb_to_sgvec_nomark(payload2)
3325 *
3326 * This is equivalent to:
3327 * 1. sg_init_table
3328 * 2. skb_to_sgvec(payload1)
3329 * 3. sg_unmark_end
3330 * 4. skb_to_sgvec(payload2)
3331 *
3332 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3333 * is more preferable.
3334 */
3335 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3336 int offset, int len)
3337 {
3338 return __skb_to_sgvec(skb, sg, offset, len);
3339 }
3340 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3341
3342 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3343 {
3344 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3345
3346 sg_mark_end(&sg[nsg - 1]);
3347
3348 return nsg;
3349 }
3350 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3351
3352 /**
3353 * skb_cow_data - Check that a socket buffer's data buffers are writable
3354 * @skb: The socket buffer to check.
3355 * @tailbits: Amount of trailing space to be added
3356 * @trailer: Returned pointer to the skb where the @tailbits space begins
3357 *
3358 * Make sure that the data buffers attached to a socket buffer are
3359 * writable. If they are not, private copies are made of the data buffers
3360 * and the socket buffer is set to use these instead.
3361 *
3362 * If @tailbits is given, make sure that there is space to write @tailbits
3363 * bytes of data beyond current end of socket buffer. @trailer will be
3364 * set to point to the skb in which this space begins.
3365 *
3366 * The number of scatterlist elements required to completely map the
3367 * COW'd and extended socket buffer will be returned.
3368 */
3369 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3370 {
3371 int copyflag;
3372 int elt;
3373 struct sk_buff *skb1, **skb_p;
3374
3375 /* If skb is cloned or its head is paged, reallocate
3376 * head pulling out all the pages (pages are considered not writable
3377 * at the moment even if they are anonymous).
3378 */
3379 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3380 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3381 return -ENOMEM;
3382
3383 /* Easy case. Most of packets will go this way. */
3384 if (!skb_has_frag_list(skb)) {
3385 /* A little of trouble, not enough of space for trailer.
3386 * This should not happen, when stack is tuned to generate
3387 * good frames. OK, on miss we reallocate and reserve even more
3388 * space, 128 bytes is fair. */
3389
3390 if (skb_tailroom(skb) < tailbits &&
3391 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3392 return -ENOMEM;
3393
3394 /* Voila! */
3395 *trailer = skb;
3396 return 1;
3397 }
3398
3399 /* Misery. We are in troubles, going to mincer fragments... */
3400
3401 elt = 1;
3402 skb_p = &skb_shinfo(skb)->frag_list;
3403 copyflag = 0;
3404
3405 while ((skb1 = *skb_p) != NULL) {
3406 int ntail = 0;
3407
3408 /* The fragment is partially pulled by someone,
3409 * this can happen on input. Copy it and everything
3410 * after it. */
3411
3412 if (skb_shared(skb1))
3413 copyflag = 1;
3414
3415 /* If the skb is the last, worry about trailer. */
3416
3417 if (skb1->next == NULL && tailbits) {
3418 if (skb_shinfo(skb1)->nr_frags ||
3419 skb_has_frag_list(skb1) ||
3420 skb_tailroom(skb1) < tailbits)
3421 ntail = tailbits + 128;
3422 }
3423
3424 if (copyflag ||
3425 skb_cloned(skb1) ||
3426 ntail ||
3427 skb_shinfo(skb1)->nr_frags ||
3428 skb_has_frag_list(skb1)) {
3429 struct sk_buff *skb2;
3430
3431 /* Fuck, we are miserable poor guys... */
3432 if (ntail == 0)
3433 skb2 = skb_copy(skb1, GFP_ATOMIC);
3434 else
3435 skb2 = skb_copy_expand(skb1,
3436 skb_headroom(skb1),
3437 ntail,
3438 GFP_ATOMIC);
3439 if (unlikely(skb2 == NULL))
3440 return -ENOMEM;
3441
3442 if (skb1->sk)
3443 skb_set_owner_w(skb2, skb1->sk);
3444
3445 /* Looking around. Are we still alive?
3446 * OK, link new skb, drop old one */
3447
3448 skb2->next = skb1->next;
3449 *skb_p = skb2;
3450 kfree_skb(skb1);
3451 skb1 = skb2;
3452 }
3453 elt++;
3454 *trailer = skb1;
3455 skb_p = &skb1->next;
3456 }
3457
3458 return elt;
3459 }
3460 EXPORT_SYMBOL_GPL(skb_cow_data);
3461
3462 static void sock_rmem_free(struct sk_buff *skb)
3463 {
3464 struct sock *sk = skb->sk;
3465
3466 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3467 }
3468
3469 /*
3470 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3471 */
3472 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3473 {
3474 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3475 (unsigned int)sk->sk_rcvbuf)
3476 return -ENOMEM;
3477
3478 skb_orphan(skb);
3479 skb->sk = sk;
3480 skb->destructor = sock_rmem_free;
3481 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3482
3483 /* before exiting rcu section, make sure dst is refcounted */
3484 skb_dst_force(skb);
3485
3486 skb_queue_tail(&sk->sk_error_queue, skb);
3487 if (!sock_flag(sk, SOCK_DEAD))
3488 sk->sk_data_ready(sk);
3489 return 0;
3490 }
3491 EXPORT_SYMBOL(sock_queue_err_skb);
3492
3493 void skb_tstamp_tx(struct sk_buff *orig_skb,
3494 struct skb_shared_hwtstamps *hwtstamps)
3495 {
3496 struct sock *sk = orig_skb->sk;
3497 struct sock_exterr_skb *serr;
3498 struct sk_buff *skb;
3499 int err;
3500
3501 if (!sk)
3502 return;
3503
3504 if (hwtstamps) {
3505 *skb_hwtstamps(orig_skb) =
3506 *hwtstamps;
3507 } else {
3508 /*
3509 * no hardware time stamps available,
3510 * so keep the shared tx_flags and only
3511 * store software time stamp
3512 */
3513 orig_skb->tstamp = ktime_get_real();
3514 }
3515
3516 skb = skb_clone(orig_skb, GFP_ATOMIC);
3517 if (!skb)
3518 return;
3519
3520 serr = SKB_EXT_ERR(skb);
3521 memset(serr, 0, sizeof(*serr));
3522 serr->ee.ee_errno = ENOMSG;
3523 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3524 serr->ee.ee_info = SCM_TSTAMP_SND;
3525
3526 err = sock_queue_err_skb(sk, skb);
3527
3528 if (err)
3529 kfree_skb(skb);
3530 }
3531 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3532
3533 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3534 {
3535 struct sock *sk = skb->sk;
3536 struct sock_exterr_skb *serr;
3537 int err;
3538
3539 skb->wifi_acked_valid = 1;
3540 skb->wifi_acked = acked;
3541
3542 serr = SKB_EXT_ERR(skb);
3543 memset(serr, 0, sizeof(*serr));
3544 serr->ee.ee_errno = ENOMSG;
3545 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3546
3547 err = sock_queue_err_skb(sk, skb);
3548 if (err)
3549 kfree_skb(skb);
3550 }
3551 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3552
3553
3554 /**
3555 * skb_partial_csum_set - set up and verify partial csum values for packet
3556 * @skb: the skb to set
3557 * @start: the number of bytes after skb->data to start checksumming.
3558 * @off: the offset from start to place the checksum.
3559 *
3560 * For untrusted partially-checksummed packets, we need to make sure the values
3561 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3562 *
3563 * This function checks and sets those values and skb->ip_summed: if this
3564 * returns false you should drop the packet.
3565 */
3566 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3567 {
3568 if (unlikely(start > skb_headlen(skb)) ||
3569 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3570 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3571 start, off, skb_headlen(skb));
3572 return false;
3573 }
3574 skb->ip_summed = CHECKSUM_PARTIAL;
3575 skb->csum_start = skb_headroom(skb) + start;
3576 skb->csum_offset = off;
3577 skb_set_transport_header(skb, start);
3578 return true;
3579 }
3580 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3581
3582 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3583 unsigned int max)
3584 {
3585 if (skb_headlen(skb) >= len)
3586 return 0;
3587
3588 /* If we need to pullup then pullup to the max, so we
3589 * won't need to do it again.
3590 */
3591 if (max > skb->len)
3592 max = skb->len;
3593
3594 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3595 return -ENOMEM;
3596
3597 if (skb_headlen(skb) < len)
3598 return -EPROTO;
3599
3600 return 0;
3601 }
3602
3603 #define MAX_TCP_HDR_LEN (15 * 4)
3604
3605 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3606 typeof(IPPROTO_IP) proto,
3607 unsigned int off)
3608 {
3609 switch (proto) {
3610 int err;
3611
3612 case IPPROTO_TCP:
3613 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3614 off + MAX_TCP_HDR_LEN);
3615 if (!err && !skb_partial_csum_set(skb, off,
3616 offsetof(struct tcphdr,
3617 check)))
3618 err = -EPROTO;
3619 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3620
3621 case IPPROTO_UDP:
3622 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3623 off + sizeof(struct udphdr));
3624 if (!err && !skb_partial_csum_set(skb, off,
3625 offsetof(struct udphdr,
3626 check)))
3627 err = -EPROTO;
3628 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3629 }
3630
3631 return ERR_PTR(-EPROTO);
3632 }
3633
3634 /* This value should be large enough to cover a tagged ethernet header plus
3635 * maximally sized IP and TCP or UDP headers.
3636 */
3637 #define MAX_IP_HDR_LEN 128
3638
3639 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3640 {
3641 unsigned int off;
3642 bool fragment;
3643 __sum16 *csum;
3644 int err;
3645
3646 fragment = false;
3647
3648 err = skb_maybe_pull_tail(skb,
3649 sizeof(struct iphdr),
3650 MAX_IP_HDR_LEN);
3651 if (err < 0)
3652 goto out;
3653
3654 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3655 fragment = true;
3656
3657 off = ip_hdrlen(skb);
3658
3659 err = -EPROTO;
3660
3661 if (fragment)
3662 goto out;
3663
3664 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3665 if (IS_ERR(csum))
3666 return PTR_ERR(csum);
3667
3668 if (recalculate)
3669 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3670 ip_hdr(skb)->daddr,
3671 skb->len - off,
3672 ip_hdr(skb)->protocol, 0);
3673 err = 0;
3674
3675 out:
3676 return err;
3677 }
3678
3679 /* This value should be large enough to cover a tagged ethernet header plus
3680 * an IPv6 header, all options, and a maximal TCP or UDP header.
3681 */
3682 #define MAX_IPV6_HDR_LEN 256
3683
3684 #define OPT_HDR(type, skb, off) \
3685 (type *)(skb_network_header(skb) + (off))
3686
3687 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3688 {
3689 int err;
3690 u8 nexthdr;
3691 unsigned int off;
3692 unsigned int len;
3693 bool fragment;
3694 bool done;
3695 __sum16 *csum;
3696
3697 fragment = false;
3698 done = false;
3699
3700 off = sizeof(struct ipv6hdr);
3701
3702 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3703 if (err < 0)
3704 goto out;
3705
3706 nexthdr = ipv6_hdr(skb)->nexthdr;
3707
3708 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3709 while (off <= len && !done) {
3710 switch (nexthdr) {
3711 case IPPROTO_DSTOPTS:
3712 case IPPROTO_HOPOPTS:
3713 case IPPROTO_ROUTING: {
3714 struct ipv6_opt_hdr *hp;
3715
3716 err = skb_maybe_pull_tail(skb,
3717 off +
3718 sizeof(struct ipv6_opt_hdr),
3719 MAX_IPV6_HDR_LEN);
3720 if (err < 0)
3721 goto out;
3722
3723 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3724 nexthdr = hp->nexthdr;
3725 off += ipv6_optlen(hp);
3726 break;
3727 }
3728 case IPPROTO_AH: {
3729 struct ip_auth_hdr *hp;
3730
3731 err = skb_maybe_pull_tail(skb,
3732 off +
3733 sizeof(struct ip_auth_hdr),
3734 MAX_IPV6_HDR_LEN);
3735 if (err < 0)
3736 goto out;
3737
3738 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3739 nexthdr = hp->nexthdr;
3740 off += ipv6_authlen(hp);
3741 break;
3742 }
3743 case IPPROTO_FRAGMENT: {
3744 struct frag_hdr *hp;
3745
3746 err = skb_maybe_pull_tail(skb,
3747 off +
3748 sizeof(struct frag_hdr),
3749 MAX_IPV6_HDR_LEN);
3750 if (err < 0)
3751 goto out;
3752
3753 hp = OPT_HDR(struct frag_hdr, skb, off);
3754
3755 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3756 fragment = true;
3757
3758 nexthdr = hp->nexthdr;
3759 off += sizeof(struct frag_hdr);
3760 break;
3761 }
3762 default:
3763 done = true;
3764 break;
3765 }
3766 }
3767
3768 err = -EPROTO;
3769
3770 if (!done || fragment)
3771 goto out;
3772
3773 csum = skb_checksum_setup_ip(skb, nexthdr, off);
3774 if (IS_ERR(csum))
3775 return PTR_ERR(csum);
3776
3777 if (recalculate)
3778 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3779 &ipv6_hdr(skb)->daddr,
3780 skb->len - off, nexthdr, 0);
3781 err = 0;
3782
3783 out:
3784 return err;
3785 }
3786
3787 /**
3788 * skb_checksum_setup - set up partial checksum offset
3789 * @skb: the skb to set up
3790 * @recalculate: if true the pseudo-header checksum will be recalculated
3791 */
3792 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
3793 {
3794 int err;
3795
3796 switch (skb->protocol) {
3797 case htons(ETH_P_IP):
3798 err = skb_checksum_setup_ipv4(skb, recalculate);
3799 break;
3800
3801 case htons(ETH_P_IPV6):
3802 err = skb_checksum_setup_ipv6(skb, recalculate);
3803 break;
3804
3805 default:
3806 err = -EPROTO;
3807 break;
3808 }
3809
3810 return err;
3811 }
3812 EXPORT_SYMBOL(skb_checksum_setup);
3813
3814 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3815 {
3816 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3817 skb->dev->name);
3818 }
3819 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3820
3821 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3822 {
3823 if (head_stolen) {
3824 skb_release_head_state(skb);
3825 kmem_cache_free(skbuff_head_cache, skb);
3826 } else {
3827 __kfree_skb(skb);
3828 }
3829 }
3830 EXPORT_SYMBOL(kfree_skb_partial);
3831
3832 /**
3833 * skb_try_coalesce - try to merge skb to prior one
3834 * @to: prior buffer
3835 * @from: buffer to add
3836 * @fragstolen: pointer to boolean
3837 * @delta_truesize: how much more was allocated than was requested
3838 */
3839 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3840 bool *fragstolen, int *delta_truesize)
3841 {
3842 int i, delta, len = from->len;
3843
3844 *fragstolen = false;
3845
3846 if (skb_cloned(to))
3847 return false;
3848
3849 if (len <= skb_tailroom(to)) {
3850 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3851 *delta_truesize = 0;
3852 return true;
3853 }
3854
3855 if (skb_has_frag_list(to) || skb_has_frag_list(from))
3856 return false;
3857
3858 if (skb_headlen(from) != 0) {
3859 struct page *page;
3860 unsigned int offset;
3861
3862 if (skb_shinfo(to)->nr_frags +
3863 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3864 return false;
3865
3866 if (skb_head_is_locked(from))
3867 return false;
3868
3869 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3870
3871 page = virt_to_head_page(from->head);
3872 offset = from->data - (unsigned char *)page_address(page);
3873
3874 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3875 page, offset, skb_headlen(from));
3876 *fragstolen = true;
3877 } else {
3878 if (skb_shinfo(to)->nr_frags +
3879 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3880 return false;
3881
3882 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3883 }
3884
3885 WARN_ON_ONCE(delta < len);
3886
3887 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3888 skb_shinfo(from)->frags,
3889 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3890 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3891
3892 if (!skb_cloned(from))
3893 skb_shinfo(from)->nr_frags = 0;
3894
3895 /* if the skb is not cloned this does nothing
3896 * since we set nr_frags to 0.
3897 */
3898 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3899 skb_frag_ref(from, i);
3900
3901 to->truesize += delta;
3902 to->len += len;
3903 to->data_len += len;
3904
3905 *delta_truesize = delta;
3906 return true;
3907 }
3908 EXPORT_SYMBOL(skb_try_coalesce);
3909
3910 /**
3911 * skb_scrub_packet - scrub an skb
3912 *
3913 * @skb: buffer to clean
3914 * @xnet: packet is crossing netns
3915 *
3916 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
3917 * into/from a tunnel. Some information have to be cleared during these
3918 * operations.
3919 * skb_scrub_packet can also be used to clean a skb before injecting it in
3920 * another namespace (@xnet == true). We have to clear all information in the
3921 * skb that could impact namespace isolation.
3922 */
3923 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
3924 {
3925 if (xnet)
3926 skb_orphan(skb);
3927 skb->tstamp.tv64 = 0;
3928 skb->pkt_type = PACKET_HOST;
3929 skb->skb_iif = 0;
3930 skb->ignore_df = 0;
3931 skb_dst_drop(skb);
3932 skb->mark = 0;
3933 secpath_reset(skb);
3934 nf_reset(skb);
3935 nf_reset_trace(skb);
3936 }
3937 EXPORT_SYMBOL_GPL(skb_scrub_packet);
3938
3939 /**
3940 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
3941 *
3942 * @skb: GSO skb
3943 *
3944 * skb_gso_transport_seglen is used to determine the real size of the
3945 * individual segments, including Layer4 headers (TCP/UDP).
3946 *
3947 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
3948 */
3949 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
3950 {
3951 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3952
3953 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3954 return tcp_hdrlen(skb) + shinfo->gso_size;
3955
3956 /* UFO sets gso_size to the size of the fragmentation
3957 * payload, i.e. the size of the L4 (UDP) header is already
3958 * accounted for.
3959 */
3960 return shinfo->gso_size;
3961 }
3962 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);