]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/ip_output.c
Merge tag 'irqdomain-for-linus' of git://git.secretlab.ca/git/linux-2.6
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / ip_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The Internet Protocol (IP) output module.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
17 *
18 * See ip_input.c for original log
19 *
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
43 */
44
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84 EXPORT_SYMBOL(sysctl_ip_default_ttl);
85
86 /* Generate a checksum for an outgoing IP datagram. */
87 __inline__ void ip_send_check(struct iphdr *iph)
88 {
89 iph->check = 0;
90 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
91 }
92 EXPORT_SYMBOL(ip_send_check);
93
94 int __ip_local_out(struct sk_buff *skb)
95 {
96 struct iphdr *iph = ip_hdr(skb);
97
98 iph->tot_len = htons(skb->len);
99 ip_send_check(iph);
100 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
101 skb_dst(skb)->dev, dst_output);
102 }
103
104 int ip_local_out(struct sk_buff *skb)
105 {
106 int err;
107
108 err = __ip_local_out(skb);
109 if (likely(err == 1))
110 err = dst_output(skb);
111
112 return err;
113 }
114 EXPORT_SYMBOL_GPL(ip_local_out);
115
116 /* dev_loopback_xmit for use with netfilter. */
117 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
118 {
119 skb_reset_mac_header(newskb);
120 __skb_pull(newskb, skb_network_offset(newskb));
121 newskb->pkt_type = PACKET_LOOPBACK;
122 newskb->ip_summed = CHECKSUM_UNNECESSARY;
123 WARN_ON(!skb_dst(newskb));
124 skb_dst_force(newskb);
125 netif_rx_ni(newskb);
126 return 0;
127 }
128
129 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
130 {
131 int ttl = inet->uc_ttl;
132
133 if (ttl < 0)
134 ttl = ip4_dst_hoplimit(dst);
135 return ttl;
136 }
137
138 /*
139 * Add an ip header to a skbuff and send it out.
140 *
141 */
142 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
143 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
144 {
145 struct inet_sock *inet = inet_sk(sk);
146 struct rtable *rt = skb_rtable(skb);
147 struct iphdr *iph;
148
149 /* Build the IP header. */
150 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
151 skb_reset_network_header(skb);
152 iph = ip_hdr(skb);
153 iph->version = 4;
154 iph->ihl = 5;
155 iph->tos = inet->tos;
156 if (ip_dont_fragment(sk, &rt->dst))
157 iph->frag_off = htons(IP_DF);
158 else
159 iph->frag_off = 0;
160 iph->ttl = ip_select_ttl(inet, &rt->dst);
161 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
162 iph->saddr = saddr;
163 iph->protocol = sk->sk_protocol;
164 ip_select_ident(iph, &rt->dst, sk);
165
166 if (opt && opt->opt.optlen) {
167 iph->ihl += opt->opt.optlen>>2;
168 ip_options_build(skb, &opt->opt, daddr, rt, 0);
169 }
170
171 skb->priority = sk->sk_priority;
172 skb->mark = sk->sk_mark;
173
174 /* Send it out. */
175 return ip_local_out(skb);
176 }
177 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
178
179 static inline int ip_finish_output2(struct sk_buff *skb)
180 {
181 struct dst_entry *dst = skb_dst(skb);
182 struct rtable *rt = (struct rtable *)dst;
183 struct net_device *dev = dst->dev;
184 unsigned int hh_len = LL_RESERVED_SPACE(dev);
185 struct neighbour *neigh;
186
187 if (rt->rt_type == RTN_MULTICAST) {
188 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
189 } else if (rt->rt_type == RTN_BROADCAST)
190 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
191
192 /* Be paranoid, rather than too clever. */
193 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
194 struct sk_buff *skb2;
195
196 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
197 if (skb2 == NULL) {
198 kfree_skb(skb);
199 return -ENOMEM;
200 }
201 if (skb->sk)
202 skb_set_owner_w(skb2, skb->sk);
203 kfree_skb(skb);
204 skb = skb2;
205 }
206
207 rcu_read_lock();
208 neigh = dst_get_neighbour_noref(dst);
209 if (neigh) {
210 int res = neigh_output(neigh, skb);
211
212 rcu_read_unlock();
213 return res;
214 }
215 rcu_read_unlock();
216
217 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
218 __func__);
219 kfree_skb(skb);
220 return -EINVAL;
221 }
222
223 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
224 {
225 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
226
227 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
228 skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
229 }
230
231 static int ip_finish_output(struct sk_buff *skb)
232 {
233 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
234 /* Policy lookup after SNAT yielded a new policy */
235 if (skb_dst(skb)->xfrm != NULL) {
236 IPCB(skb)->flags |= IPSKB_REROUTED;
237 return dst_output(skb);
238 }
239 #endif
240 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
241 return ip_fragment(skb, ip_finish_output2);
242 else
243 return ip_finish_output2(skb);
244 }
245
246 int ip_mc_output(struct sk_buff *skb)
247 {
248 struct sock *sk = skb->sk;
249 struct rtable *rt = skb_rtable(skb);
250 struct net_device *dev = rt->dst.dev;
251
252 /*
253 * If the indicated interface is up and running, send the packet.
254 */
255 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
256
257 skb->dev = dev;
258 skb->protocol = htons(ETH_P_IP);
259
260 /*
261 * Multicasts are looped back for other local users
262 */
263
264 if (rt->rt_flags&RTCF_MULTICAST) {
265 if (sk_mc_loop(sk)
266 #ifdef CONFIG_IP_MROUTE
267 /* Small optimization: do not loopback not local frames,
268 which returned after forwarding; they will be dropped
269 by ip_mr_input in any case.
270 Note, that local frames are looped back to be delivered
271 to local recipients.
272
273 This check is duplicated in ip_mr_input at the moment.
274 */
275 &&
276 ((rt->rt_flags & RTCF_LOCAL) ||
277 !(IPCB(skb)->flags & IPSKB_FORWARDED))
278 #endif
279 ) {
280 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
281 if (newskb)
282 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
283 newskb, NULL, newskb->dev,
284 ip_dev_loopback_xmit);
285 }
286
287 /* Multicasts with ttl 0 must not go beyond the host */
288
289 if (ip_hdr(skb)->ttl == 0) {
290 kfree_skb(skb);
291 return 0;
292 }
293 }
294
295 if (rt->rt_flags&RTCF_BROADCAST) {
296 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
297 if (newskb)
298 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
299 NULL, newskb->dev, ip_dev_loopback_xmit);
300 }
301
302 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
303 skb->dev, ip_finish_output,
304 !(IPCB(skb)->flags & IPSKB_REROUTED));
305 }
306
307 int ip_output(struct sk_buff *skb)
308 {
309 struct net_device *dev = skb_dst(skb)->dev;
310
311 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
312
313 skb->dev = dev;
314 skb->protocol = htons(ETH_P_IP);
315
316 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
317 ip_finish_output,
318 !(IPCB(skb)->flags & IPSKB_REROUTED));
319 }
320
321 /*
322 * copy saddr and daddr, possibly using 64bit load/stores
323 * Equivalent to :
324 * iph->saddr = fl4->saddr;
325 * iph->daddr = fl4->daddr;
326 */
327 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
328 {
329 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
330 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
331 memcpy(&iph->saddr, &fl4->saddr,
332 sizeof(fl4->saddr) + sizeof(fl4->daddr));
333 }
334
335 int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
336 {
337 struct sock *sk = skb->sk;
338 struct inet_sock *inet = inet_sk(sk);
339 struct ip_options_rcu *inet_opt;
340 struct flowi4 *fl4;
341 struct rtable *rt;
342 struct iphdr *iph;
343 int res;
344
345 /* Skip all of this if the packet is already routed,
346 * f.e. by something like SCTP.
347 */
348 rcu_read_lock();
349 inet_opt = rcu_dereference(inet->inet_opt);
350 fl4 = &fl->u.ip4;
351 rt = skb_rtable(skb);
352 if (rt != NULL)
353 goto packet_routed;
354
355 /* Make sure we can route this packet. */
356 rt = (struct rtable *)__sk_dst_check(sk, 0);
357 if (rt == NULL) {
358 __be32 daddr;
359
360 /* Use correct destination address if we have options. */
361 daddr = inet->inet_daddr;
362 if (inet_opt && inet_opt->opt.srr)
363 daddr = inet_opt->opt.faddr;
364
365 /* If this fails, retransmit mechanism of transport layer will
366 * keep trying until route appears or the connection times
367 * itself out.
368 */
369 rt = ip_route_output_ports(sock_net(sk), fl4, sk,
370 daddr, inet->inet_saddr,
371 inet->inet_dport,
372 inet->inet_sport,
373 sk->sk_protocol,
374 RT_CONN_FLAGS(sk),
375 sk->sk_bound_dev_if);
376 if (IS_ERR(rt))
377 goto no_route;
378 sk_setup_caps(sk, &rt->dst);
379 }
380 skb_dst_set_noref(skb, &rt->dst);
381
382 packet_routed:
383 if (inet_opt && inet_opt->opt.is_strictroute && fl4->daddr != rt->rt_gateway)
384 goto no_route;
385
386 /* OK, we know where to send it, allocate and build IP header. */
387 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
388 skb_reset_network_header(skb);
389 iph = ip_hdr(skb);
390 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
391 if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
392 iph->frag_off = htons(IP_DF);
393 else
394 iph->frag_off = 0;
395 iph->ttl = ip_select_ttl(inet, &rt->dst);
396 iph->protocol = sk->sk_protocol;
397 ip_copy_addrs(iph, fl4);
398
399 /* Transport layer set skb->h.foo itself. */
400
401 if (inet_opt && inet_opt->opt.optlen) {
402 iph->ihl += inet_opt->opt.optlen >> 2;
403 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
404 }
405
406 ip_select_ident_more(iph, &rt->dst, sk,
407 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
408
409 skb->priority = sk->sk_priority;
410 skb->mark = sk->sk_mark;
411
412 res = ip_local_out(skb);
413 rcu_read_unlock();
414 return res;
415
416 no_route:
417 rcu_read_unlock();
418 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
419 kfree_skb(skb);
420 return -EHOSTUNREACH;
421 }
422 EXPORT_SYMBOL(ip_queue_xmit);
423
424
425 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
426 {
427 to->pkt_type = from->pkt_type;
428 to->priority = from->priority;
429 to->protocol = from->protocol;
430 skb_dst_drop(to);
431 skb_dst_copy(to, from);
432 to->dev = from->dev;
433 to->mark = from->mark;
434
435 /* Copy the flags to each fragment. */
436 IPCB(to)->flags = IPCB(from)->flags;
437
438 #ifdef CONFIG_NET_SCHED
439 to->tc_index = from->tc_index;
440 #endif
441 nf_copy(to, from);
442 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
443 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
444 to->nf_trace = from->nf_trace;
445 #endif
446 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
447 to->ipvs_property = from->ipvs_property;
448 #endif
449 skb_copy_secmark(to, from);
450 }
451
452 /*
453 * This IP datagram is too large to be sent in one piece. Break it up into
454 * smaller pieces (each of size equal to IP header plus
455 * a block of the data of the original IP data part) that will yet fit in a
456 * single device frame, and queue such a frame for sending.
457 */
458
459 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
460 {
461 struct iphdr *iph;
462 int ptr;
463 struct net_device *dev;
464 struct sk_buff *skb2;
465 unsigned int mtu, hlen, left, len, ll_rs;
466 int offset;
467 __be16 not_last_frag;
468 struct rtable *rt = skb_rtable(skb);
469 int err = 0;
470
471 dev = rt->dst.dev;
472
473 /*
474 * Point into the IP datagram header.
475 */
476
477 iph = ip_hdr(skb);
478
479 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
480 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
481 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
482 htonl(ip_skb_dst_mtu(skb)));
483 kfree_skb(skb);
484 return -EMSGSIZE;
485 }
486
487 /*
488 * Setup starting values.
489 */
490
491 hlen = iph->ihl * 4;
492 mtu = dst_mtu(&rt->dst) - hlen; /* Size of data space */
493 #ifdef CONFIG_BRIDGE_NETFILTER
494 if (skb->nf_bridge)
495 mtu -= nf_bridge_mtu_reduction(skb);
496 #endif
497 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
498
499 /* When frag_list is given, use it. First, check its validity:
500 * some transformers could create wrong frag_list or break existing
501 * one, it is not prohibited. In this case fall back to copying.
502 *
503 * LATER: this step can be merged to real generation of fragments,
504 * we can switch to copy when see the first bad fragment.
505 */
506 if (skb_has_frag_list(skb)) {
507 struct sk_buff *frag, *frag2;
508 int first_len = skb_pagelen(skb);
509
510 if (first_len - hlen > mtu ||
511 ((first_len - hlen) & 7) ||
512 ip_is_fragment(iph) ||
513 skb_cloned(skb))
514 goto slow_path;
515
516 skb_walk_frags(skb, frag) {
517 /* Correct geometry. */
518 if (frag->len > mtu ||
519 ((frag->len & 7) && frag->next) ||
520 skb_headroom(frag) < hlen)
521 goto slow_path_clean;
522
523 /* Partially cloned skb? */
524 if (skb_shared(frag))
525 goto slow_path_clean;
526
527 BUG_ON(frag->sk);
528 if (skb->sk) {
529 frag->sk = skb->sk;
530 frag->destructor = sock_wfree;
531 }
532 skb->truesize -= frag->truesize;
533 }
534
535 /* Everything is OK. Generate! */
536
537 err = 0;
538 offset = 0;
539 frag = skb_shinfo(skb)->frag_list;
540 skb_frag_list_init(skb);
541 skb->data_len = first_len - skb_headlen(skb);
542 skb->len = first_len;
543 iph->tot_len = htons(first_len);
544 iph->frag_off = htons(IP_MF);
545 ip_send_check(iph);
546
547 for (;;) {
548 /* Prepare header of the next frame,
549 * before previous one went down. */
550 if (frag) {
551 frag->ip_summed = CHECKSUM_NONE;
552 skb_reset_transport_header(frag);
553 __skb_push(frag, hlen);
554 skb_reset_network_header(frag);
555 memcpy(skb_network_header(frag), iph, hlen);
556 iph = ip_hdr(frag);
557 iph->tot_len = htons(frag->len);
558 ip_copy_metadata(frag, skb);
559 if (offset == 0)
560 ip_options_fragment(frag);
561 offset += skb->len - hlen;
562 iph->frag_off = htons(offset>>3);
563 if (frag->next != NULL)
564 iph->frag_off |= htons(IP_MF);
565 /* Ready, complete checksum */
566 ip_send_check(iph);
567 }
568
569 err = output(skb);
570
571 if (!err)
572 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
573 if (err || !frag)
574 break;
575
576 skb = frag;
577 frag = skb->next;
578 skb->next = NULL;
579 }
580
581 if (err == 0) {
582 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
583 return 0;
584 }
585
586 while (frag) {
587 skb = frag->next;
588 kfree_skb(frag);
589 frag = skb;
590 }
591 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
592 return err;
593
594 slow_path_clean:
595 skb_walk_frags(skb, frag2) {
596 if (frag2 == frag)
597 break;
598 frag2->sk = NULL;
599 frag2->destructor = NULL;
600 skb->truesize += frag2->truesize;
601 }
602 }
603
604 slow_path:
605 left = skb->len - hlen; /* Space per frame */
606 ptr = hlen; /* Where to start from */
607
608 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
609 * we need to make room for the encapsulating header
610 */
611 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
612
613 /*
614 * Fragment the datagram.
615 */
616
617 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
618 not_last_frag = iph->frag_off & htons(IP_MF);
619
620 /*
621 * Keep copying data until we run out.
622 */
623
624 while (left > 0) {
625 len = left;
626 /* IF: it doesn't fit, use 'mtu' - the data space left */
627 if (len > mtu)
628 len = mtu;
629 /* IF: we are not sending up to and including the packet end
630 then align the next start on an eight byte boundary */
631 if (len < left) {
632 len &= ~7;
633 }
634 /*
635 * Allocate buffer.
636 */
637
638 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
639 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
640 err = -ENOMEM;
641 goto fail;
642 }
643
644 /*
645 * Set up data on packet
646 */
647
648 ip_copy_metadata(skb2, skb);
649 skb_reserve(skb2, ll_rs);
650 skb_put(skb2, len + hlen);
651 skb_reset_network_header(skb2);
652 skb2->transport_header = skb2->network_header + hlen;
653
654 /*
655 * Charge the memory for the fragment to any owner
656 * it might possess
657 */
658
659 if (skb->sk)
660 skb_set_owner_w(skb2, skb->sk);
661
662 /*
663 * Copy the packet header into the new buffer.
664 */
665
666 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
667
668 /*
669 * Copy a block of the IP datagram.
670 */
671 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
672 BUG();
673 left -= len;
674
675 /*
676 * Fill in the new header fields.
677 */
678 iph = ip_hdr(skb2);
679 iph->frag_off = htons((offset >> 3));
680
681 /* ANK: dirty, but effective trick. Upgrade options only if
682 * the segment to be fragmented was THE FIRST (otherwise,
683 * options are already fixed) and make it ONCE
684 * on the initial skb, so that all the following fragments
685 * will inherit fixed options.
686 */
687 if (offset == 0)
688 ip_options_fragment(skb);
689
690 /*
691 * Added AC : If we are fragmenting a fragment that's not the
692 * last fragment then keep MF on each bit
693 */
694 if (left > 0 || not_last_frag)
695 iph->frag_off |= htons(IP_MF);
696 ptr += len;
697 offset += len;
698
699 /*
700 * Put this fragment into the sending queue.
701 */
702 iph->tot_len = htons(len + hlen);
703
704 ip_send_check(iph);
705
706 err = output(skb2);
707 if (err)
708 goto fail;
709
710 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
711 }
712 kfree_skb(skb);
713 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
714 return err;
715
716 fail:
717 kfree_skb(skb);
718 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
719 return err;
720 }
721 EXPORT_SYMBOL(ip_fragment);
722
723 int
724 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
725 {
726 struct iovec *iov = from;
727
728 if (skb->ip_summed == CHECKSUM_PARTIAL) {
729 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
730 return -EFAULT;
731 } else {
732 __wsum csum = 0;
733 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
734 return -EFAULT;
735 skb->csum = csum_block_add(skb->csum, csum, odd);
736 }
737 return 0;
738 }
739 EXPORT_SYMBOL(ip_generic_getfrag);
740
741 static inline __wsum
742 csum_page(struct page *page, int offset, int copy)
743 {
744 char *kaddr;
745 __wsum csum;
746 kaddr = kmap(page);
747 csum = csum_partial(kaddr + offset, copy, 0);
748 kunmap(page);
749 return csum;
750 }
751
752 static inline int ip_ufo_append_data(struct sock *sk,
753 struct sk_buff_head *queue,
754 int getfrag(void *from, char *to, int offset, int len,
755 int odd, struct sk_buff *skb),
756 void *from, int length, int hh_len, int fragheaderlen,
757 int transhdrlen, int maxfraglen, unsigned int flags)
758 {
759 struct sk_buff *skb;
760 int err;
761
762 /* There is support for UDP fragmentation offload by network
763 * device, so create one single skb packet containing complete
764 * udp datagram
765 */
766 if ((skb = skb_peek_tail(queue)) == NULL) {
767 skb = sock_alloc_send_skb(sk,
768 hh_len + fragheaderlen + transhdrlen + 20,
769 (flags & MSG_DONTWAIT), &err);
770
771 if (skb == NULL)
772 return err;
773
774 /* reserve space for Hardware header */
775 skb_reserve(skb, hh_len);
776
777 /* create space for UDP/IP header */
778 skb_put(skb, fragheaderlen + transhdrlen);
779
780 /* initialize network header pointer */
781 skb_reset_network_header(skb);
782
783 /* initialize protocol header pointer */
784 skb->transport_header = skb->network_header + fragheaderlen;
785
786 skb->ip_summed = CHECKSUM_PARTIAL;
787 skb->csum = 0;
788
789 /* specify the length of each IP datagram fragment */
790 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
791 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
792 __skb_queue_tail(queue, skb);
793 }
794
795 return skb_append_datato_frags(sk, skb, getfrag, from,
796 (length - transhdrlen));
797 }
798
799 static int __ip_append_data(struct sock *sk,
800 struct flowi4 *fl4,
801 struct sk_buff_head *queue,
802 struct inet_cork *cork,
803 int getfrag(void *from, char *to, int offset,
804 int len, int odd, struct sk_buff *skb),
805 void *from, int length, int transhdrlen,
806 unsigned int flags)
807 {
808 struct inet_sock *inet = inet_sk(sk);
809 struct sk_buff *skb;
810
811 struct ip_options *opt = cork->opt;
812 int hh_len;
813 int exthdrlen;
814 int mtu;
815 int copy;
816 int err;
817 int offset = 0;
818 unsigned int maxfraglen, fragheaderlen;
819 int csummode = CHECKSUM_NONE;
820 struct rtable *rt = (struct rtable *)cork->dst;
821
822 skb = skb_peek_tail(queue);
823
824 exthdrlen = !skb ? rt->dst.header_len : 0;
825 mtu = cork->fragsize;
826
827 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
828
829 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
830 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
831
832 if (cork->length + length > 0xFFFF - fragheaderlen) {
833 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
834 mtu-exthdrlen);
835 return -EMSGSIZE;
836 }
837
838 /*
839 * transhdrlen > 0 means that this is the first fragment and we wish
840 * it won't be fragmented in the future.
841 */
842 if (transhdrlen &&
843 length + fragheaderlen <= mtu &&
844 rt->dst.dev->features & NETIF_F_V4_CSUM &&
845 !exthdrlen)
846 csummode = CHECKSUM_PARTIAL;
847
848 cork->length += length;
849 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
850 (sk->sk_protocol == IPPROTO_UDP) &&
851 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
852 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
853 hh_len, fragheaderlen, transhdrlen,
854 maxfraglen, flags);
855 if (err)
856 goto error;
857 return 0;
858 }
859
860 /* So, what's going on in the loop below?
861 *
862 * We use calculated fragment length to generate chained skb,
863 * each of segments is IP fragment ready for sending to network after
864 * adding appropriate IP header.
865 */
866
867 if (!skb)
868 goto alloc_new_skb;
869
870 while (length > 0) {
871 /* Check if the remaining data fits into current packet. */
872 copy = mtu - skb->len;
873 if (copy < length)
874 copy = maxfraglen - skb->len;
875 if (copy <= 0) {
876 char *data;
877 unsigned int datalen;
878 unsigned int fraglen;
879 unsigned int fraggap;
880 unsigned int alloclen;
881 struct sk_buff *skb_prev;
882 alloc_new_skb:
883 skb_prev = skb;
884 if (skb_prev)
885 fraggap = skb_prev->len - maxfraglen;
886 else
887 fraggap = 0;
888
889 /*
890 * If remaining data exceeds the mtu,
891 * we know we need more fragment(s).
892 */
893 datalen = length + fraggap;
894 if (datalen > mtu - fragheaderlen)
895 datalen = maxfraglen - fragheaderlen;
896 fraglen = datalen + fragheaderlen;
897
898 if ((flags & MSG_MORE) &&
899 !(rt->dst.dev->features&NETIF_F_SG))
900 alloclen = mtu;
901 else
902 alloclen = fraglen;
903
904 alloclen += exthdrlen;
905
906 /* The last fragment gets additional space at tail.
907 * Note, with MSG_MORE we overallocate on fragments,
908 * because we have no idea what fragment will be
909 * the last.
910 */
911 if (datalen == length + fraggap)
912 alloclen += rt->dst.trailer_len;
913
914 if (transhdrlen) {
915 skb = sock_alloc_send_skb(sk,
916 alloclen + hh_len + 15,
917 (flags & MSG_DONTWAIT), &err);
918 } else {
919 skb = NULL;
920 if (atomic_read(&sk->sk_wmem_alloc) <=
921 2 * sk->sk_sndbuf)
922 skb = sock_wmalloc(sk,
923 alloclen + hh_len + 15, 1,
924 sk->sk_allocation);
925 if (unlikely(skb == NULL))
926 err = -ENOBUFS;
927 else
928 /* only the initial fragment is
929 time stamped */
930 cork->tx_flags = 0;
931 }
932 if (skb == NULL)
933 goto error;
934
935 /*
936 * Fill in the control structures
937 */
938 skb->ip_summed = csummode;
939 skb->csum = 0;
940 skb_reserve(skb, hh_len);
941 skb_shinfo(skb)->tx_flags = cork->tx_flags;
942
943 /*
944 * Find where to start putting bytes.
945 */
946 data = skb_put(skb, fraglen + exthdrlen);
947 skb_set_network_header(skb, exthdrlen);
948 skb->transport_header = (skb->network_header +
949 fragheaderlen);
950 data += fragheaderlen + exthdrlen;
951
952 if (fraggap) {
953 skb->csum = skb_copy_and_csum_bits(
954 skb_prev, maxfraglen,
955 data + transhdrlen, fraggap, 0);
956 skb_prev->csum = csum_sub(skb_prev->csum,
957 skb->csum);
958 data += fraggap;
959 pskb_trim_unique(skb_prev, maxfraglen);
960 }
961
962 copy = datalen - transhdrlen - fraggap;
963 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
964 err = -EFAULT;
965 kfree_skb(skb);
966 goto error;
967 }
968
969 offset += copy;
970 length -= datalen - fraggap;
971 transhdrlen = 0;
972 exthdrlen = 0;
973 csummode = CHECKSUM_NONE;
974
975 /*
976 * Put the packet on the pending queue.
977 */
978 __skb_queue_tail(queue, skb);
979 continue;
980 }
981
982 if (copy > length)
983 copy = length;
984
985 if (!(rt->dst.dev->features&NETIF_F_SG)) {
986 unsigned int off;
987
988 off = skb->len;
989 if (getfrag(from, skb_put(skb, copy),
990 offset, copy, off, skb) < 0) {
991 __skb_trim(skb, off);
992 err = -EFAULT;
993 goto error;
994 }
995 } else {
996 int i = skb_shinfo(skb)->nr_frags;
997 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
998 struct page *page = cork->page;
999 int off = cork->off;
1000 unsigned int left;
1001
1002 if (page && (left = PAGE_SIZE - off) > 0) {
1003 if (copy >= left)
1004 copy = left;
1005 if (page != skb_frag_page(frag)) {
1006 if (i == MAX_SKB_FRAGS) {
1007 err = -EMSGSIZE;
1008 goto error;
1009 }
1010 skb_fill_page_desc(skb, i, page, off, 0);
1011 skb_frag_ref(skb, i);
1012 frag = &skb_shinfo(skb)->frags[i];
1013 }
1014 } else if (i < MAX_SKB_FRAGS) {
1015 if (copy > PAGE_SIZE)
1016 copy = PAGE_SIZE;
1017 page = alloc_pages(sk->sk_allocation, 0);
1018 if (page == NULL) {
1019 err = -ENOMEM;
1020 goto error;
1021 }
1022 cork->page = page;
1023 cork->off = 0;
1024
1025 skb_fill_page_desc(skb, i, page, 0, 0);
1026 frag = &skb_shinfo(skb)->frags[i];
1027 } else {
1028 err = -EMSGSIZE;
1029 goto error;
1030 }
1031 if (getfrag(from, skb_frag_address(frag)+skb_frag_size(frag),
1032 offset, copy, skb->len, skb) < 0) {
1033 err = -EFAULT;
1034 goto error;
1035 }
1036 cork->off += copy;
1037 skb_frag_size_add(frag, copy);
1038 skb->len += copy;
1039 skb->data_len += copy;
1040 skb->truesize += copy;
1041 atomic_add(copy, &sk->sk_wmem_alloc);
1042 }
1043 offset += copy;
1044 length -= copy;
1045 }
1046
1047 return 0;
1048
1049 error:
1050 cork->length -= length;
1051 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1052 return err;
1053 }
1054
1055 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1056 struct ipcm_cookie *ipc, struct rtable **rtp)
1057 {
1058 struct inet_sock *inet = inet_sk(sk);
1059 struct ip_options_rcu *opt;
1060 struct rtable *rt;
1061
1062 /*
1063 * setup for corking.
1064 */
1065 opt = ipc->opt;
1066 if (opt) {
1067 if (cork->opt == NULL) {
1068 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1069 sk->sk_allocation);
1070 if (unlikely(cork->opt == NULL))
1071 return -ENOBUFS;
1072 }
1073 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1074 cork->flags |= IPCORK_OPT;
1075 cork->addr = ipc->addr;
1076 }
1077 rt = *rtp;
1078 if (unlikely(!rt))
1079 return -EFAULT;
1080 /*
1081 * We steal reference to this route, caller should not release it
1082 */
1083 *rtp = NULL;
1084 cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
1085 rt->dst.dev->mtu : dst_mtu(&rt->dst);
1086 cork->dst = &rt->dst;
1087 cork->length = 0;
1088 cork->tx_flags = ipc->tx_flags;
1089 cork->page = NULL;
1090 cork->off = 0;
1091
1092 return 0;
1093 }
1094
1095 /*
1096 * ip_append_data() and ip_append_page() can make one large IP datagram
1097 * from many pieces of data. Each pieces will be holded on the socket
1098 * until ip_push_pending_frames() is called. Each piece can be a page
1099 * or non-page data.
1100 *
1101 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1102 * this interface potentially.
1103 *
1104 * LATER: length must be adjusted by pad at tail, when it is required.
1105 */
1106 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1107 int getfrag(void *from, char *to, int offset, int len,
1108 int odd, struct sk_buff *skb),
1109 void *from, int length, int transhdrlen,
1110 struct ipcm_cookie *ipc, struct rtable **rtp,
1111 unsigned int flags)
1112 {
1113 struct inet_sock *inet = inet_sk(sk);
1114 int err;
1115
1116 if (flags&MSG_PROBE)
1117 return 0;
1118
1119 if (skb_queue_empty(&sk->sk_write_queue)) {
1120 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1121 if (err)
1122 return err;
1123 } else {
1124 transhdrlen = 0;
1125 }
1126
1127 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, getfrag,
1128 from, length, transhdrlen, flags);
1129 }
1130
1131 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1132 int offset, size_t size, int flags)
1133 {
1134 struct inet_sock *inet = inet_sk(sk);
1135 struct sk_buff *skb;
1136 struct rtable *rt;
1137 struct ip_options *opt = NULL;
1138 struct inet_cork *cork;
1139 int hh_len;
1140 int mtu;
1141 int len;
1142 int err;
1143 unsigned int maxfraglen, fragheaderlen, fraggap;
1144
1145 if (inet->hdrincl)
1146 return -EPERM;
1147
1148 if (flags&MSG_PROBE)
1149 return 0;
1150
1151 if (skb_queue_empty(&sk->sk_write_queue))
1152 return -EINVAL;
1153
1154 cork = &inet->cork.base;
1155 rt = (struct rtable *)cork->dst;
1156 if (cork->flags & IPCORK_OPT)
1157 opt = cork->opt;
1158
1159 if (!(rt->dst.dev->features&NETIF_F_SG))
1160 return -EOPNOTSUPP;
1161
1162 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1163 mtu = cork->fragsize;
1164
1165 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1166 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1167
1168 if (cork->length + size > 0xFFFF - fragheaderlen) {
1169 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu);
1170 return -EMSGSIZE;
1171 }
1172
1173 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1174 return -EINVAL;
1175
1176 cork->length += size;
1177 if ((size + skb->len > mtu) &&
1178 (sk->sk_protocol == IPPROTO_UDP) &&
1179 (rt->dst.dev->features & NETIF_F_UFO)) {
1180 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1181 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1182 }
1183
1184
1185 while (size > 0) {
1186 int i;
1187
1188 if (skb_is_gso(skb))
1189 len = size;
1190 else {
1191
1192 /* Check if the remaining data fits into current packet. */
1193 len = mtu - skb->len;
1194 if (len < size)
1195 len = maxfraglen - skb->len;
1196 }
1197 if (len <= 0) {
1198 struct sk_buff *skb_prev;
1199 int alloclen;
1200
1201 skb_prev = skb;
1202 fraggap = skb_prev->len - maxfraglen;
1203
1204 alloclen = fragheaderlen + hh_len + fraggap + 15;
1205 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1206 if (unlikely(!skb)) {
1207 err = -ENOBUFS;
1208 goto error;
1209 }
1210
1211 /*
1212 * Fill in the control structures
1213 */
1214 skb->ip_summed = CHECKSUM_NONE;
1215 skb->csum = 0;
1216 skb_reserve(skb, hh_len);
1217
1218 /*
1219 * Find where to start putting bytes.
1220 */
1221 skb_put(skb, fragheaderlen + fraggap);
1222 skb_reset_network_header(skb);
1223 skb->transport_header = (skb->network_header +
1224 fragheaderlen);
1225 if (fraggap) {
1226 skb->csum = skb_copy_and_csum_bits(skb_prev,
1227 maxfraglen,
1228 skb_transport_header(skb),
1229 fraggap, 0);
1230 skb_prev->csum = csum_sub(skb_prev->csum,
1231 skb->csum);
1232 pskb_trim_unique(skb_prev, maxfraglen);
1233 }
1234
1235 /*
1236 * Put the packet on the pending queue.
1237 */
1238 __skb_queue_tail(&sk->sk_write_queue, skb);
1239 continue;
1240 }
1241
1242 i = skb_shinfo(skb)->nr_frags;
1243 if (len > size)
1244 len = size;
1245 if (skb_can_coalesce(skb, i, page, offset)) {
1246 skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
1247 } else if (i < MAX_SKB_FRAGS) {
1248 get_page(page);
1249 skb_fill_page_desc(skb, i, page, offset, len);
1250 } else {
1251 err = -EMSGSIZE;
1252 goto error;
1253 }
1254
1255 if (skb->ip_summed == CHECKSUM_NONE) {
1256 __wsum csum;
1257 csum = csum_page(page, offset, len);
1258 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1259 }
1260
1261 skb->len += len;
1262 skb->data_len += len;
1263 skb->truesize += len;
1264 atomic_add(len, &sk->sk_wmem_alloc);
1265 offset += len;
1266 size -= len;
1267 }
1268 return 0;
1269
1270 error:
1271 cork->length -= size;
1272 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1273 return err;
1274 }
1275
1276 static void ip_cork_release(struct inet_cork *cork)
1277 {
1278 cork->flags &= ~IPCORK_OPT;
1279 kfree(cork->opt);
1280 cork->opt = NULL;
1281 dst_release(cork->dst);
1282 cork->dst = NULL;
1283 }
1284
1285 /*
1286 * Combined all pending IP fragments on the socket as one IP datagram
1287 * and push them out.
1288 */
1289 struct sk_buff *__ip_make_skb(struct sock *sk,
1290 struct flowi4 *fl4,
1291 struct sk_buff_head *queue,
1292 struct inet_cork *cork)
1293 {
1294 struct sk_buff *skb, *tmp_skb;
1295 struct sk_buff **tail_skb;
1296 struct inet_sock *inet = inet_sk(sk);
1297 struct net *net = sock_net(sk);
1298 struct ip_options *opt = NULL;
1299 struct rtable *rt = (struct rtable *)cork->dst;
1300 struct iphdr *iph;
1301 __be16 df = 0;
1302 __u8 ttl;
1303
1304 if ((skb = __skb_dequeue(queue)) == NULL)
1305 goto out;
1306 tail_skb = &(skb_shinfo(skb)->frag_list);
1307
1308 /* move skb->data to ip header from ext header */
1309 if (skb->data < skb_network_header(skb))
1310 __skb_pull(skb, skb_network_offset(skb));
1311 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1312 __skb_pull(tmp_skb, skb_network_header_len(skb));
1313 *tail_skb = tmp_skb;
1314 tail_skb = &(tmp_skb->next);
1315 skb->len += tmp_skb->len;
1316 skb->data_len += tmp_skb->len;
1317 skb->truesize += tmp_skb->truesize;
1318 tmp_skb->destructor = NULL;
1319 tmp_skb->sk = NULL;
1320 }
1321
1322 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1323 * to fragment the frame generated here. No matter, what transforms
1324 * how transforms change size of the packet, it will come out.
1325 */
1326 if (inet->pmtudisc < IP_PMTUDISC_DO)
1327 skb->local_df = 1;
1328
1329 /* DF bit is set when we want to see DF on outgoing frames.
1330 * If local_df is set too, we still allow to fragment this frame
1331 * locally. */
1332 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1333 (skb->len <= dst_mtu(&rt->dst) &&
1334 ip_dont_fragment(sk, &rt->dst)))
1335 df = htons(IP_DF);
1336
1337 if (cork->flags & IPCORK_OPT)
1338 opt = cork->opt;
1339
1340 if (rt->rt_type == RTN_MULTICAST)
1341 ttl = inet->mc_ttl;
1342 else
1343 ttl = ip_select_ttl(inet, &rt->dst);
1344
1345 iph = (struct iphdr *)skb->data;
1346 iph->version = 4;
1347 iph->ihl = 5;
1348 iph->tos = inet->tos;
1349 iph->frag_off = df;
1350 ip_select_ident(iph, &rt->dst, sk);
1351 iph->ttl = ttl;
1352 iph->protocol = sk->sk_protocol;
1353 ip_copy_addrs(iph, fl4);
1354
1355 if (opt) {
1356 iph->ihl += opt->optlen>>2;
1357 ip_options_build(skb, opt, cork->addr, rt, 0);
1358 }
1359
1360 skb->priority = sk->sk_priority;
1361 skb->mark = sk->sk_mark;
1362 /*
1363 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1364 * on dst refcount
1365 */
1366 cork->dst = NULL;
1367 skb_dst_set(skb, &rt->dst);
1368
1369 if (iph->protocol == IPPROTO_ICMP)
1370 icmp_out_count(net, ((struct icmphdr *)
1371 skb_transport_header(skb))->type);
1372
1373 ip_cork_release(cork);
1374 out:
1375 return skb;
1376 }
1377
1378 int ip_send_skb(struct sk_buff *skb)
1379 {
1380 struct net *net = sock_net(skb->sk);
1381 int err;
1382
1383 err = ip_local_out(skb);
1384 if (err) {
1385 if (err > 0)
1386 err = net_xmit_errno(err);
1387 if (err)
1388 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1389 }
1390
1391 return err;
1392 }
1393
1394 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1395 {
1396 struct sk_buff *skb;
1397
1398 skb = ip_finish_skb(sk, fl4);
1399 if (!skb)
1400 return 0;
1401
1402 /* Netfilter gets whole the not fragmented skb. */
1403 return ip_send_skb(skb);
1404 }
1405
1406 /*
1407 * Throw away all pending data on the socket.
1408 */
1409 static void __ip_flush_pending_frames(struct sock *sk,
1410 struct sk_buff_head *queue,
1411 struct inet_cork *cork)
1412 {
1413 struct sk_buff *skb;
1414
1415 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1416 kfree_skb(skb);
1417
1418 ip_cork_release(cork);
1419 }
1420
1421 void ip_flush_pending_frames(struct sock *sk)
1422 {
1423 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1424 }
1425
1426 struct sk_buff *ip_make_skb(struct sock *sk,
1427 struct flowi4 *fl4,
1428 int getfrag(void *from, char *to, int offset,
1429 int len, int odd, struct sk_buff *skb),
1430 void *from, int length, int transhdrlen,
1431 struct ipcm_cookie *ipc, struct rtable **rtp,
1432 unsigned int flags)
1433 {
1434 struct inet_cork cork;
1435 struct sk_buff_head queue;
1436 int err;
1437
1438 if (flags & MSG_PROBE)
1439 return NULL;
1440
1441 __skb_queue_head_init(&queue);
1442
1443 cork.flags = 0;
1444 cork.addr = 0;
1445 cork.opt = NULL;
1446 err = ip_setup_cork(sk, &cork, ipc, rtp);
1447 if (err)
1448 return ERR_PTR(err);
1449
1450 err = __ip_append_data(sk, fl4, &queue, &cork, getfrag,
1451 from, length, transhdrlen, flags);
1452 if (err) {
1453 __ip_flush_pending_frames(sk, &queue, &cork);
1454 return ERR_PTR(err);
1455 }
1456
1457 return __ip_make_skb(sk, fl4, &queue, &cork);
1458 }
1459
1460 /*
1461 * Fetch data from kernel space and fill in checksum if needed.
1462 */
1463 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1464 int len, int odd, struct sk_buff *skb)
1465 {
1466 __wsum csum;
1467
1468 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1469 skb->csum = csum_block_add(skb->csum, csum, odd);
1470 return 0;
1471 }
1472
1473 /*
1474 * Generic function to send a packet as reply to another packet.
1475 * Used to send TCP resets so far. ICMP should use this function too.
1476 *
1477 * Should run single threaded per socket because it uses the sock
1478 * structure to pass arguments.
1479 */
1480 void ip_send_reply(struct sock *sk, struct sk_buff *skb, __be32 daddr,
1481 const struct ip_reply_arg *arg, unsigned int len)
1482 {
1483 struct inet_sock *inet = inet_sk(sk);
1484 struct ip_options_data replyopts;
1485 struct ipcm_cookie ipc;
1486 struct flowi4 fl4;
1487 struct rtable *rt = skb_rtable(skb);
1488
1489 if (ip_options_echo(&replyopts.opt.opt, skb))
1490 return;
1491
1492 ipc.addr = daddr;
1493 ipc.opt = NULL;
1494 ipc.tx_flags = 0;
1495
1496 if (replyopts.opt.opt.optlen) {
1497 ipc.opt = &replyopts.opt;
1498
1499 if (replyopts.opt.opt.srr)
1500 daddr = replyopts.opt.opt.faddr;
1501 }
1502
1503 flowi4_init_output(&fl4, arg->bound_dev_if, 0,
1504 RT_TOS(arg->tos),
1505 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1506 ip_reply_arg_flowi_flags(arg),
1507 daddr, rt->rt_spec_dst,
1508 tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1509 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1510 rt = ip_route_output_key(sock_net(sk), &fl4);
1511 if (IS_ERR(rt))
1512 return;
1513
1514 /* And let IP do all the hard work.
1515
1516 This chunk is not reenterable, hence spinlock.
1517 Note that it uses the fact, that this function is called
1518 with locally disabled BH and that sk cannot be already spinlocked.
1519 */
1520 bh_lock_sock(sk);
1521 inet->tos = arg->tos;
1522 sk->sk_priority = skb->priority;
1523 sk->sk_protocol = ip_hdr(skb)->protocol;
1524 sk->sk_bound_dev_if = arg->bound_dev_if;
1525 ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1526 &ipc, &rt, MSG_DONTWAIT);
1527 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1528 if (arg->csumoffset >= 0)
1529 *((__sum16 *)skb_transport_header(skb) +
1530 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1531 arg->csum));
1532 skb->ip_summed = CHECKSUM_NONE;
1533 ip_push_pending_frames(sk, &fl4);
1534 }
1535
1536 bh_unlock_sock(sk);
1537
1538 ip_rt_put(rt);
1539 }
1540
1541 void __init ip_init(void)
1542 {
1543 ip_rt_init();
1544 inet_initpeers();
1545
1546 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1547 igmp_mc_proc_init();
1548 #endif
1549 }